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Abstract

Physics informed neural network (PINN) based solution methods for differential equations
have recently shown success in a variety of scientific computing applications. Several authors
have reported difficulties, however, when using PINNs to solve equations with multiscale
features. The objective of the present work is to illustrate and explain the difficulty of
using standard PINNs for the particular case of divergence-form elliptic partial differential
equations (PDEs) with oscillatory coefficients present in the differential operator. We show
that if the coefficient in the elliptic operator aε(x) is of the form a(x/ε) for a 1-periodic
coercive function a(·), then the Frobenius norm of the neural tangent kernel (NTK) matrix
associated to the loss function grows as 1/ε2. This implies that as the separation of scales in
the problem increases, training the neural network with gradient descent based methods to
achieve an accurate approximation of the solution to the PDE becomes increasingly difficult.
Numerical examples illustrate the stiffness of the optimization problem.

1 Introduction

Recent developments in deep learning have shown great promise for advancing computational and applied
mathematics (E, 2021). Physics informed neural networks (PINNs) have recently emerged as a popular
method for scientific computation. Building off earlier work Lagaris et al. (1998); Psichogios & Ungar (1992),
PINNs were introduced in Raissi et al. (2019) and seek to approximate the true solution of a differential
equation by a neural network u(x; θ) parameterized by weights and biases θ. Consider the following general
partial differential equation (PDE) defined on some Ω ⊂ Rn by a differential operator N

N [u](x) = f(x), x ∈ Ω
u(x) = g(x), x ∈ ∂Ω, (1)

where x and Ω represent some general space-time coordinate and domain, respectively. Here and throughout
this paper, the boundary conditions are taken to be of Dirichlet type. By the uniform approximation theorem
(Hornik et al., 1989; Leshno et al., 1993), given sufficient data, a neural network can uniformly approximate
classical smooth solutions to (1) whenever they exist.

In practice, the network parameters θ are determined by minimizing a loss function L that enforces (1) to
hold for a set of Nc collocation and Nb boundary points, {xi}Nc

i=1 ∈ Ω and {si}Nb
i=1 ∈ ∂Ω, respectively. The
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loss is

L(θ) = 1
Nc

Nc∑
i=1

1
2

∣∣∣N [u](xi; θ)− f(xi)
∣∣∣2 + λ

Nb

Nb∑
i=1

1
2

∣∣∣u(si; θ)− g(si)
∣∣∣2, (2)

where λ is a tunable parameter that weighs the relative importance of the boundary conditions. We refer to
Karniadakis et al. (2021) for a review of this methodology applied in a wide range of contexts in scientific
computing.

Despite the success of PINNs in a wide variety of applications, numerous authors have reported difficulties
applying the technique to problems with multiscale features. Some examples include a scalar, nonlinear
hyperbolic equation from a model of two-phase immiscible fluid flow in porous media (Fuks & Tchelepi,
2020), which can support shock waves, and systems of ordinary differential equations governing chemical
kinetics (Ji et al., 2021), which exhibit stiff dynamics that evolve over a wide range of time scales. Difficulties
have also been reported for the Helmholtz equation (Wang et al., 2021a), as well as linear hyperbolic problems,
for example for example the one-dimensional advection equation (Krishnapriyan et al., 2021) and the wave
equation (Wang et al., 2021b).

The focus of the current work is to illustrate and explain the difficulty of using standard PINN solution
methods for linear elliptic boundary value problems (BVPs) of the form

−∇ ·
(
aε(x)∇uε(x)

)
= f(x), x ∈ Ω

uε(x) = g(x), x ∈ ∂Ω, (3)

where the coefficient tensor aε : Rn → Rn is uniformly bounded and coercive in ε and assumed to consist
of entries that contain frequencies on the order of ε−1 for 0 < ε � 1. The measure of the domain Ω ⊂ Rn
is assumed to be O (1), and hence, (3) is a multiscale problem that models, for example, steady-state heat
conduction in a composite material or porous media flow governed by Darcy’s law.

Theoretical analysis and numerical experiments presented below illustrate that, whenever standard PINN
architectures are used in conjunction with gradient descent based training for the multiscale problem (3), the
resulting optimization problem becomes increasingly difficult as the scale separation in the BVP increases, i.e.
as ε vanishes. After motivating the present study in Section 2, we show in Section 3 that the neural tangent
kernel matrix associated with the PINN approximation to (3) has a Frobenius norm that becomes unbounded
as ε ↓ 0. Numerical examples in Section 4 illustrate that during training, the ordinary differential equation
that governs the evolution of the BVP residuals indeed becomes increasingly stiff as ε ↓ 0, translating to
poor PINN performance for problems with a large separation of scales.

2 Motivation

The motivation for attempting to use physics informed neural network solutions to the oscillatory problem
(3) is to investigate whether a connection can be established between asymptotic homogenization theory and
the so-called “frequency principle” in deep learning.

Recall from mathematical homogenization theory (Bensoussan et al., 2011) that, under suitable conditions,
the solution to (3) is well approximated as ε ↓ 0 by the solution to a homogenized equation

−∇ ·
(
a(x)∇u(x)

)
= f(x), x ∈ Ω

u(x) = g(x), x ∈ ∂Ω.

Both the homogenized coefficients a and the solution u do not contain ε-scale oscillations; the latter approx-
imates the large-scale, low-frequency features of the oscillatory function uε.

Additionally, when neural networks learn a target function, they are known to learn the low frequency
components more rapidly than the large frequencies (Rahaman et al., 2019; Xu et al., 2020). This “frequency
principle” was shown to hold for gradient descent training in Luo et al. (2021); Markidis (2021); empirically
the result can be observed for PINNs applied to relatively simple problems (Wang et al., 2021b), even when
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more widely used optimizers are used for training, e.g. Adam (Kingma & Ba, 2014). Consider as a brief
representative example the PINN solution to the one-dimensional Poisson BVP

− d2

dx2u(x) = sin(x) + sin(5x) + sin(15x) + sin(55x) =: f(x) (4)

for x ∈ (−π, π) with homogeneous Dirichlet boundary conditions u(−π) = u(π) = 0. For collocation points
{xi}Nc

i=1 ∈ (−π, π) the loss function becomes

L(θ) = 1
Nc

Nc∑
i=1

1
2

∣∣∣ d2

dx2u(xi; θ) + f(xi)
∣∣∣2 + 1

4λ
(∣∣u(−π; θ)

∣∣2 +
∣∣u(π; θ)

∣∣2) . (5)

Figure 1 shows the evolution (as a function of training iteration) of the complex modulus of

êk = (ûtrue)k − (ûNN)k (6)

where utrue is the true solution to the BVP, uNN is the neural network approximation, ·̂ denotes the discrete
Fourier transform, and the index k denotes the frequency of the coefficient. A rolling average is used to make
the trajectories more legible. The PINN solution is computed with a fully connected neural network with
four hidden layers of sixty nodes each, Nc = 512 equispaced collocation points, and λ = 80; see Appendix
A for a complete description of the training process that generates the final neural network output. One
can clearly observe the frequency principle in this simple example; the low frequencies of the target BVP
solution are more rapidly learned than the high frequencies. See also Markidis (2021) for another example
in a two-dimensional Poisson problem, as well as Wang et al. (2021b) for mathematical analysis of this
phenomenon for Poisson equations.
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Figure 1: A simple illustration of the frequency principle: evolution as a function of training iteration of the
magnitude of the discrete Fourier transform of the error (6) between the true solution to the BVP (4) and
the neural network approximation.

Given some evidence that PINNs can learn low frequency features of PDE solutions, it is reasonable to ask
if the homogenized solution ‘naturally’ arises when trying to learn solutions to the multiscale problem (3),
and, if not, for what reason? The homogenized solution itself is of course useful in a variety of applications;
it additionally could be used to construct coarse grid solutions for a multigrid solver of the full, oscillatory
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problem as in Engquist & Luo (1997). The natural smoothing properties of standard iterative solvers, e.g.
the method of Gauss-Seidel or successive over-relaxation (Briggs et al., 2000), would then rapidly reduce the
error of high-frequency solution components that are not easily approximated by the neural networks; such
a ‘hybrid’ multigrid strategy was explored in Markidis (2021) for Poisson equations.

Recent theoretical results in Shin et al. (2020) guarantee that as the number of collocation Nc and boundary
Nb points tend to infinity, the sequence of minimizers to a “Hölder regularized” version of the loss function
(2) will converge to classical solutions of elliptic and parabolic PDEs (whenever they exist) in the limit
of infinite learning data. Nevertheless, the authors in both Han & Lee (2023) and Leung et al. (2022)
reported difficulties training neural networks to achieve such minimizers of the loss function associated to
the multiscale problem (3). The purpose of the current work is to characterize the reason why optimization
is difficult with both theory and numerical examples.

The theoretical results presented below describe the neural tangent kernel matrix of the PINN solution to
the BVP (3); this matrix appears in the ordinary differential equation that, under gradient descent training
dynamics, governs the evolution of the PDE and boundary residuals that define the PINN loss function.
Under a few technical assumptions, we show that the matrix Frobenius norm becomes unbounded as ε ↓ 0.
This result, along with numerical evidence presented in Section 4, suggests that as that as the scale separation
in the differential operator in (3) increases, the optimization problem that determines the neural network
approximation to the PDE solution becomes increasingly stiff.

3 Neural tangent kernel matrix theory

3.1 Theoretical results

We now describe the neural tangent kernel (NTK) matrix for the physics informed neural network approx-
imation to the multiscale elliptic equation (3) before showing that it can grow arbitrarily large in norm as
ε ↓ 0. See Jacot et al. (2018) for the original development of the NTK theory for least-squares regression
problems, as well as Wang et al. (2021b) and Wang et al. (2022) for an extension of the theory to PINNs.

For the presentation below it will be useful to define the linear multiscale differential operator

Lεϕ := −∇ ·
(
aε∇ϕ

)
,

where ϕ is some suitably regular function. The multiscale elliptic boundary value problem (3) then becomes

Lεuε = f Ω
uε = g ∂Ω. (7)

For simplicity, we assume throughout that the entries of the coefficient tensor aε are at least once continuously
differentiable, and hence bounded on any compact domain Ω.

Given some neural network u(x; θ) parameterized by Np weights and biases θ, as well as collocation {xi}Nc
i=1 ∈

Ω and boundary points {si}Nb
i=1 ∈ ∂Ω, the loss function associated to (7) becomes

Lε(θ) := 1
Nc

Nc∑
i=1

1
2

∣∣∣Lεu(xi; θ)− f(xi)
∣∣∣2 + λ

Nb

Nb∑
i=1

1
2

∣∣∣u(si; θ)− g(si)
∣∣∣2. (8)

If the residual values
rpde(xi; θ) := Lεu(xi; θ)− f(xi), i = 1, . . . , Nc (9)

and
rb(si; θ) := u(si; θ)− g(si), i = 1, . . . , Nb (10)

are grouped together into a single vector y(θ), and if the parameters θ evolve according to the gradient flow

dθ

dt
= −∇θLε, (11)
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then y(θ(t)) will evolve according to an initial value problem of the form

d

dt
y(t) = −Kε(y(t)) y(t), (12)

where Kε is called the neural tangent kernel matrix. Note here that both θ and y implicitly depend on ε;
however, the dependence is not explicitly marked.

We next derive (12), noting again that similar results can be found in Wang et al. (2021b) and Wang et al.
(2022).
Lemma 3.1. For neural network parameters θ ∈ RNp , let y(θ) ∈ RNc+Nb be the vector of residual values

y(θ) =
(
rpde(x1; θ), . . . , rpde(xNc

; θ), rb(s1; θ), . . . , rb(sNb
; θ)
)T

where the entries rpde and rb are defined by (9) and (10). Suppose that the parameters θ evolve from some
initial value θ0 according to the gradient flow (11). Then y(θ(t)) evolves from the initial condition y(θ0)
according to

d

dt
y(t) = −Kε(y(t)) y(t), (13)

where the explicit dependence on θ in (13) is dropped for convenience. The neural tangent kernel matrix is
given by

Kε(t) =
(
Kε
uu(t) Kε

ub(t)
Kε
bu(t) Kbb(t)

)
∈ R(Nc+Nb)×(Nc+Nb), (14)

where the subblocks have entries

(Kε
uu)ij(t) = 1

Nc

Np∑
l=1

∂

∂θl
Lεu(xi; θ(t))

∂

∂θl
Lεu(xj ; θ(t)), 1 ≤ i, j ≤ Nc,

(Kbb)ij(t) = λ

Nb

Np∑
l=1

∂

∂θl
u(si; θ(t))

∂

∂θl
u(sj ; θ(t)), 1 ≤ i, j ≤ Nb,

and

(Kε
ub)ij(t) = λ

Nb

Np∑
l=1

∂

∂θl
Lεu(xi; θ(t))

∂

∂θl
u(sj ; θ(t)), 1 ≤ i ≤ Nc, 1 ≤ j ≤ Nb,

while Kε
bu is simply the scaled transpose of Kε

ub:

(Kε
bu)ij = Nb

λ

1
Nc

(Kε
ub)ji, 1 ≤ i ≤ Nc, 1 ≤ j ≤ Nb.

The proof is a computation that follows from the chain rule from differential calculus; it can be found in
Appendix B. We note that while the Kε

uu and Kε
bb subblocks of the NTK matrix are symmetric, overall, Kε

is not symmetric unless Nb = λNc.

Next we show that the NTK matrix (14) associated to the multiscale elliptic problem–in particular the Kε
uu,

Kε
ub and Kε

bu subblocks–can become arbitrarily large for vanishing ε. In contrast, because the boundary
condition g in (7) is indepedent of ε, there is no explicit ε-dependence in the Kbb subblock.

For simplicity we assume the problem is one-dimensional (n = 1) and that the multiscale coefficient aε(x) =
a(x/ε) is ε-periodic.After showing the desired result for n = 1, we briefly sketch below an additional proof
for the higher dimension case n > 1 under additional technical assumptions.

In dimension n = 1, (7) becomes

− d

dx

(
a(x/ε) d

dx
uε(x)

)
= f(x), x ∈ (a, b)

uε(a) = ua, uε(b) = ub. (15)
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The loss function associated to (15) is equation (8) with Nb = 2 and elliptic operator Lε given by

Lεu(x; θ) = −
(
a(x/ε) d

2

dx2 u(x; θ) + 1
ε
a′(x/ε) d

dx
u(x; θ)

)
, (16)

where it is assumed the oscillatory function a is differentiable. The 1/ε factor in the second term will be the
source of the divergent behavior of the NTK as ε ↓ 0.

We first show the result for a neural network with one hidden layer before extending it to more general fully
connected networks.
Theorem 3.2. Let u : R→ R be a neural network with one hidden layer of width d and smooth activation
function σ, so that

u(x; θ) =
d∑
k=1

W
(1)
k σ

(
W

(0)
k x+ b

(0)
k

)
+ b(1), (17)

where b(1) ∈ R, W (1) ∈ R1×d, and W (0), b(0) ∈ Rd×1, and assume that ∀x ∈ R

0 < σ′(x) <∞. (18)

Let a(y) be a one-periodic, non-constant C1 function that is bounded and coercive, so that ∀y ∈ R, there
exist some λ,Λ ∈ R such that

0 < λ ≤ a(y) ≤ Λ,
and let aε(x) = a(x/ε). For a fixed number of collocation points Nc, let Kε be the neural tangent kernel
matrix (14) associated to the loss function (8) of the boundary value problem (15), and suppose the network
parameters θ evolve according to the gradient flow (11) for 0 ≤ t ≤ T for some T > 0.

Suppose also that the parameters θ evolving according to (11) are bounded uniformly in both t and ε:

sup
0<ε<ε0

sup
0≤t≤T

‖θ(t)‖∞ < C (19)

for some ε0 > 0. Finally, let Υ be the set of t ∈ [0, T ] for which there exists at least one entry of W (0) that
is asymptotically larger than ε; that is, t ∈ Υ if and only if

lim
ε↓0

ε/W
(0)
l (t) = 0

for some 1 ≤ l ≤ d. Then ∀t ∈ Υ
lim
ε↓0
‖Kε(t)‖F =∞

where ‖·‖F is the Frobenius norm.

Before proving the result, we briefly remark on the theorem assumptions. First note that the number of
collocation points Nc is assumed to be fixed. Since we will show that the entries of the NTK matrix are
proportional to

1
Nc

1
ε2
,

the singular nature of the evolution of the residuals (12) could in principle be prevented by taking Nc ∼ ε−2.
However, this can make the computational cost of gradient descent based optimization prohibitively expensive
whenever the problem scale separation is sufficiently large.

Next, note the assumption (18) on dσ/dx holds for sigmoidal-type activation functions commonly used for
PINNs (Lu et al., 2021b), such as the hyberbolic tangent and logistic functions. Although it does not hold
for the ReLU function σ(x) = max(0, x), these are of course not suitable for PINNs and other NN based
solution methods that are based on the strong formulation of PDEs with second order (or higher) differential
operators.

Regarding the set Υ ⊆ [0, T ], note that if t /∈ Υ, then each entry of W (0) will converge to 0 in the limit
ε ↓ 0; in this scenario the neural network (17) would limit to a constant function and hence not be a suitable
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solution to (15) in general. Finally, if the uniform bound (19) on the network parameters θ did not hold,
then an unstable, divergent training process could result (Wang et al., 2022); the bound helps prevent the
so-called “vanishing gradient” problem that can occur when components of ∇θLε vanish, preventing descent
in that direction.

Proof of Theorem 3.2. The proof, like that of Lemma 3.1, is a consequence of direct computation; note that
it is sufficient for a single entry of a matrix to diverge to ensure the Frobenius norm diverges. In particular
we show that entries in the Kε

uu subblock of the full NTK matrix Kε scale as 1/(Nc ε2).

Indeed, recall from Lemma 3.1 that

(Kε
uu)αα(t) = 1

Nc

Np∑
γ=1

( ∂

∂θγ
Lεu(xα; θ(t))

)2
(20)

for any 1 ≤ α ≤ Nc. Since (20) is a sum of squares, if just one entry in the sum blows up as ε ↓ 0, then
the entire sum of course will as well. Below we drop the explicit dependence of the parameters θ on t for
notational convenience.

First, let g(x; θ) be the Rd valued function whose k-th component equals

gk(x; θ) = σ
(
W

(0)
k x+ b

(0)
k

)
,

so that

u(x; θ) =
d∑
k=1

W
(1)
k gk(x; θ)) + b(1).

By linearity,
∂

∂W
(1)
γ

Lεu(x; θ) = Lεgγ(x; θ)

for any 1 ≤ γ ≤ d. So, to prove the desired result, it suffices to show that

1
Nc

[
Lεgγ(xα; θ)

]2 →∞ (21)

as ε ↓ 0. Using (16), the left-hand side of (21) equals

1
Nc

[(
a(xα/ε)

d2

dx2 gγ(xα; θ)
)2

+ 2
ε

(
a(xα/ε)

d2

dx2 gγ(xα; θ) a′(xα/ε)
d

dx
gγ(xα; θ)

)
+ 1
ε2

(
a′(xα/ε)

d

dx
gγ(xα; θ)

)2]
. (22)

Since a is a periodic C1 function, both a(xα/ε) and a′(xα/ε) are bounded independent of xα/ε ∈ R. The
derivatives of gγ are

d

dx
gγ(x; θ) = σ′

(
W (0)
γ x+ b(0)

γ

)
W (0)
γ (23)

and
d2

dx2 gγ(x; θ) = σ′′
(
W (0)
γ x+ b(0)

γ

)(
W (0)
γ

)2
. (24)

Since the activation function is smooth and the network parameters are uniformly bounded in ε and t, both
(23) and (24) are also bounded for all xα ∈ [a, b]. Consequently, (22) is dominated by the 1/ε2 term for ε
vanishingly small. The positivity assumption (18) on dσ/dx and the uniform boundedness of the network
parameters imply also that the (absolute value of the) first derivative (23) is bounded below by a constant
independent of ε; this implies that for any t ∈ Υ

lim
ε↓0

1
ε

∣∣∣∣ ddx gl(x; θ)
∣∣∣∣ =∞
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holds for at least one l ∈ {1, . . . d}. Take γ = l, and let ε vanish monotonically to zero in such a way that
a′(xα/ε) 6= 0 for any ε (such a sequence exists since a is periodic and non-constant). Then (22) indeed limits
to positive infinity, giving the desired result.

Without giving a formal proof, we now briefly describe sufficient conditions under which Theorem 3.2 could
be extended to the more general case n > 1 (assuming one retains the positivity assumption (18) on dσ/dx
and the uniform boundedness assumption (19) on the network parameters). A neural network with one
hidden layer of width d would be

u(x; θ) =
d∑
k=1

W
(1)
k σ

( n∑
l=1

W
(0)
kl xl + b(0)

)
+ b(1);

here xl denotes the l-th component of the function input x ∈ Rn. Following the same argument just given,
define

gk(x; θ) = σ
( n∑
l=1

W
(0)
kl xl + b(0)

)
,

and assume that there exists some 1 ≤ µ ≤ d and 1 ≤ ν ≤ n such that W (0)
µν is asymptotically larger than

ε (as before, if no such entries exist, then W (0) limits to the zero matrix as ε ↓ 0, and hence u(x; θ) limits
to a constant function). The Frobenius norm of the PINN’s neural tangent kernel matrix will blow-up if
[Lεgµ(x; θ)]2 blows-up at some collocation point x. This can occur if the entries for which ∇ · a are nonzero
coincide with the entries where W (0) is larger than O (ε); more precisely, if there is a sequence ε ↓ 0 such
that

n∑
i=1

∂aiν
∂xi

(x
ε

)
σ′
( n∑
l=1

W
(0)
µl xl + b(0)

µ

)
W (0)
µν 6= 0

for any collocation point x, then the main result will generalize.

Returning to the case of one-dimension (n = 1), we now extend Theorem 3.2 to more general fully connected
neural networks under an additional assumption on the network parameter’s asymptotic behavior.
Theorem 3.3. Let u : R → R be a fully connected neural network with Λ hidden layers of widths
d1, d2, . . . , dΛ, so that

u(0)(x) = x,

u(l)(x) = σ
(
W (l)u(l−1)(x) + b(l)

)
, 1 ≤ l ≤ Λ,

u(x; θ) = W (Λ+1) · u(Λ)(x) + b(Λ+1). (25)

If all of the assumptions from Theorem 3.2 are retained, but Υ is now defined to be the set of t ∈ [0, T ] such
that the magnitude of every entry of each matrix W (l), 1 ≤ l ≤ Λ, are asymptotically larger than ε1/Λ, then
∀t ∈ Υ

lim
ε↓0
‖Kε(t)‖F =∞,

where Kε is the NTK matrix associated to the loss function (8) of the boundary value problem (15).

The proof proceeds nearly identically to that of Theorem 3.2, and hence it is in Appendix C.

An immediate corollary of Theorem 3.3 is that the spectral radius of Kε
uu must also blow up as ε ↓ 0; in

contrast, because there is no explicit ε-dependence in the Kbb subblock, one expects its spectral radius to be
bounded independently of ε, which is indeed numerically observed in section 4.1.
Corollary 3.4. Let ρ(Kε

uu(t)) denote the spectral radius of Kε
uu(t). Under the same assumptions as Theorem

3.3, we have for any t ∈ Υ that
lim
ε↓0
|ρ(Kε

uu(t))| =∞.

See Appendix D for the simple proof.
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3.2 Discussion

Fundamentally, using PINNs to numerically solve PDEs involves optimizing a multiobjective loss functional,
for example of the form

L(θ) = LPDE(θ) + LBC(θ)
for boundary values problems. The present work builds on the previous studies Wang et al. (2021a), Wang
et al. (2021b) and Wang et al. (2022), where certain PINN failure modes were identified for multiscale
problems that, broadly speaking, involve inbalances between LPDE and LBC.

These previous analyses focused on unsatisfactory PINN training in the particular case of Poisson-type PDEs,
i.e. where the differential operator is the Laplacian (or, in the one-dimensional case, the second derivative).
The multiscale character of the problems originated from oscillatory forcing functions; an illustrative example
is the boundary value problem

− d2

dx2u
ε(x) = sin(x) + (1/ε) sin(x/ε) (26)

on [0, 1] along with appropriate boundary conditions (see e.g. Eq. (2.6) in Wang et al. (2021b)). The present
work focuses on elliptic problems that feature a more general class of divergence-form differential operators
with oscillatory coefficients aε(x), as in Eq. (3). The differences between the two cases can be considerable.

For example, from Wang et al. (2021a) it is known that PINNs can fail to train when the magnitudes of
the gradients of the two different loss components (LPDE and LBC) with respect to the network parameters
θ are imbalanced, i.e. when either |∇θLPDE| � |∇θLBC| or |∇θLPDE| � |∇θLBC|. For multiscale Poisson
equations such as (26), the 1/ε term in the right-hand side forcing results in |∇θLPDE| scaling like 1/ε.
In contrast, for Darcy-type problems such as (3) (or, in one-dimension, (15)), |∇θLPDE| is more singular;
it scales like 1/ε2. In both cases, |∇θLBC| is indepedent of ε, so the discrepancy is greater for problems
considered in the present work.

An alternative PINN failure mode analyzed in Wang et al. (2021b) and Wang et al. (2022) is when the the
eigenvalues of the different NTK matrix subblocks differ greatly in modulus. The authors reported a large
imbalance between the eigenvalues of the Kuu and Kbb subblocks for Poisson-style problems. However, for
equations such as (26), it is clear from the definitions in (14) that the Kuu subblock is independent of ε,
since the forcing function f (which is responsible for the equation’s multiscale character) is independent of
θ.

In contrast, the results from Section 3.1 show that while the Kbb subblock is independent of ε for Darcy-type
problems, the spectral radius of the Kuu subblock increases as 1/ε2. Hence, for problems with large scale
separation, the imbalance in eigenvalues is even more severe than in the Poisson case. For this reason, training
PINNs with gradient based optimizers to achieve an accurate approximation to solutions to multiscale
equations of the form (3) becomes increasingly difficult as a function of increasing problem scale separation.

A common strategy to deal with the imbalances just highlighted is to assign the different loss components
LPDE and LBC different weights λPDE and λBC; this was proposed e.g. in Wang et al. (2021a), van der Meer
et al. (2022) and Wang et al. (2022). It is reasonable, for example, for the equations considered here to try
and weight LPDE by λPDE = ε2 to cancel the 1/ε2 factor in the NTK Kε

uu subblock. Although this of course
changes the magnitude of the eigenvalues of the NTK subblock, it does not change their distribution, and
hence cannot directly resolve spectral bias Wang et al. (2022), which may explain the lack of success using
adaptive weighting strategies that was reported in both Leung et al. (2022) and Han & Lee (2023). The
numerical examples in Section 4.4 below illustrate that even under this rescaling, the stiffness of the gradient
flow dynamics described by (11) remains, translating to poor PINN performance.

4 Numerical results

4.1 Scaling of the neural tangent kernel matrix

Theorems 3.2 and 3.3 state that the Frobenius norm of the neural tangent kernel (NTK) matrixKε associated
to the PINN approximation of the multiscale BVP (15) should scale inversely proportional to Nc ε

2 for
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gradient descent training with infinitesimal time steps. Here we numerically reproduce this scaling for a
neural network trained in a more practical setting, namely with the Adam optimizer (Kingma & Ba, 2014).

As in Theorems 3.2 and 3.3, we focus on the Kε
uu subblock of the NTK matrix. For a neural network with

one hidden layer d, the ij-th entry of Kε
uu is given by

(
Kε
uu

)
ij

(t) =
d∑
k=1

( ∂

∂W
(1)
k

Lεu(xi; θ(t))
∂

∂W
(1)
k

Lεu(xj ; θ(t)) + ∂

∂W
(0)
k

Lεu(xi; θ(t))
∂

∂W
(0)
k

Lεu(xj ; θ(t))

+ ∂

∂b
(0)
k

Lεu(xi; θ(t))
∂

∂b
(0)
k

Lεu(xj ; θ(t))
)

(note ∂Lεu(x; θ)/∂b(1) = 0). For network width d = 50 and Nc = 256 collocation points, Figure 2(a) shows
the Frobenius norm ‖Kε

uu‖F associated to (15) for the particular case that [a, b] = [−π, π], ua = ub = 0, and
aε(x) = 1/(2.1 + 2 sin(2πx/ε)). The norm is computed at time t = 0, i.e. at initialization, for a sequence
of ε values between 1/10 and 1/100. For every ε value, the neural network parameters are initialized
from the normal distribution with mean zero and unit variance. Figure 2(b) shows the Frobenius norms
after initializing with the Glorot distribution (Glorot & Bengio, 2010) and then training for ten thousand
iterations with the Adam optimizer at a learning rate of η = 10−5. In both cases, the norm increases as
1/ε2, consistent with the theory developed above.

(a)
101 102

1/

104

105

106

Frobenius norm
1

2

3

1/ 2

(b)
101 102

1/

102

103

104

105

106

Frobenius norm
1

2

3

1/ 2

Figure 2: Scaling of the Frobenius norm of the NTK matrix and the first three principal eigenvalues (a) at
initialization and (b) after training with Adam optimizer.

Recall that the Frobenius norm of a square matrix is equal to the Euclidean norm of its singular values.
Since Kε

uu is a symmetric matrix, its singular values equal the absolute value of its (real valued) eigenvalues.
Hence, Theorems 3.2 and 3.3 imply that

∑Nc

i=1(λεi)2 →∞ as ε vanishes, where λεi are the eigenvalues of Kε
uu.

Figures 2(a) and 2(b) further suggest that, for the BVP just described, the first few principal eigenvalues
(denoted λ1, λ2, and λ3) also increase at a rate proportional to 1/ε2, both at initialization and after training
with the Adam optimizer. In contrast, the spectral radius of the Kbb subblock (not shown) is essentially
independent of ε.

For the particular case ε = 1/80, Figure 3 shows the full spectra of Kε
uu both at initialization and after

training. At initialization, there are a handful of large eigenvalues, but the rest are clustered around the
origin; after training, there is a single large eigenvalue well-separated from the cluster near the origin. In
both cases the ratio λεmax/λ

ε
min is quite large, indicating that (12) is a stiff initial value problem.

4.2 Learning a two-scale function

Consider next the two-scale function
uε(x) = sin(2x) + ε sin(x/ε)− ε

π
sin(π/ε)x. (27)
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Figure 3: The eigenspectrum of Kε
uu (a) at initialization and (b) after training.

This function satisfies the Poisson BVP

− d2

dx2u
ε(x) = 4 sin(2x) + 1

ε
sin(x/ε), −π < x < π (28)

with homogeneous Dirichlet boundary conditions uε(−π) = uε(π) = 0; it additionally satisfies the elliptic,
Darcy BVP given by

− d

dx

(
a(x/ε) d

dx
uε(x)

)
= f ε(x), (29)

for x ∈ (−π, π), again with homogeneous Dirichlet conditions, where

a(x/ε) =
(
2.1 + 2 sin(x/ε)

)−1

and the expression for the right-hand side forcing f ε(x) is listed in Appendix E.

We describe three different neural network approximations to the two-scale function uε(x) by:

(1) regression (i.e. supervised learning),

(2) a PINN solver for the Poisson problem (28), and

(3) a PINN solver for the Darcy problem (29).

We first report the results for each case when ε = 1/32 and then repeat the experiments in Section 4.3 at
smaller values of ε to observe the behavior of each approximation as a function of increasing scale separation.

For ε = 1/32, the first two methods listed above generate satisfactory approximations to (27), indicating
that (a good approximation to) the target function lives in the “span” of the neural network used; the third
method does not. All of the numerical tests are implemented in the open-source DeepXDE package (Lu
et al., 2021b), and in each case, the neural network weights and biases are randomly initialized with the
Glorot distribution (Glorot & Bengio, 2010).

Consider first approximating uε(x) with a neural network by regression, which we denote as uR(x; θ). For
{xi}Ni=1 ∈ [−π, π], the network parameters are determined by minimizing

Lε(θ) = 1
N

N∑
i=1

(
uR(xi; θ)− uε(xi)

)2
. (30)

We set ε = 1/32 and use a neural network with hyperbolic tangent activation functions and four hidden
layers, each of width d = 40. Using N = d2π/(ε/2)e = 403 equispaced training points, the network is trained
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with the Adam (Kingma & Ba, 2014) and L-BFGS (Byrd et al., 1995) optimizers for ten independent trials.
In each test, Adam is used for 20, 000 and 10, 000 iterations with learning rates of η = 10−2 and η = 10−3,
respectively, and L-BFGS is then used, on average, for approximately 3600 steps.

Let EuR(x; θ) denote the neural network averaged over all ten trials. Taking {xi}1000
i=1 to be a set of equispaced

points from −π to π, Figures 4(a) and (b) show the resulting approximation and error, respectively. The
maximum error is approximately

max
xi

|eR| := max
xi

∣∣uε(xi)− EuR(xi; θ)
∣∣ ≈ 2.65 · 10−3,

and the average variance in the error over the interval [−π, π] is about 3 · 10−7.

(a)
3 2 1 0 1 2 3
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(b)
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Figure 4: (a) For ε = 1/32, the two-scale function uε(x) given by (27) and its approximations by regression
(EuR), a Poisson PINN (EuP) and a Darcy PINN (EuD); in each case the neural network contains four
hidden layers of width d = 40. (b) The absolute value of corresponding generalization errors eR, eP and eD
at 1000 equispaced points from −π to π.

Next, consider approximating the solution to the Poisson problem (28) with a PINN uP(x; θ). The loss
function is

Lε(θ) = 1
Nc

Nc∑
i=1

1
2

( d2

dx2uP(xi; θ) + (4 sin(2xi) + 1
ε

sin(xi/ε))
)2

+ 1
2

(
[uP(−π; θ)]2 + [uP(π; θ)]2

)
. (31)

For ε = 1/32 and same neural network as before, we train with Nc = 1024 equispaced collocation points for
ten independent trials. The training schedule consists of 10, 000, 10, 000, 20, 000, and 20, 000 iterations of
Adam with learning rates of η = 10−4, η = 10−5, η = 10−6, and η = 10−7, respectively, and then L-BFGS
for a few thousand iterations, on average.

Figures 4(a) and (b) show the resulting approximations and the generalization errors of the neural net-
works after training. Taking again EuP(x; θ) to be the network averaged over all the trials, the maximum
generalization error is

max
xi

|eP| := max
xi

|uε(xi)− EuP(xi; θ)| ≈ 7.20 · 10−2,

while the average variance across the interval is about 1.12 · 10−1.

Finally, consider the PINN approximation uD(x; θ) of the Darcy problem (29), where the loss function is

Lε(θ) = 1
Nc

Nc∑
i=1

1
2

[ d
dx

(
a(xi/ε)

d

dx
uD(xi; θ)

)
+ f ε(xi)

]2
+ 1

2

(
[uD(−π; θ)]2 + [uD(π; θ)]2

)
. (32)

Once again, ε = 1/32, and the network architecture and number of collocation points is the same as the
Poisson case. The training schedule consists of 10, 000, 10, 000, 20, 000, and 20, 000 iterations of Adam with
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ε ‖eP‖L∞(Ω) ‖VarP‖L∞(Ω) ‖eP‖L∞(∂Ω) ‖VarP‖L∞(∂Ω)
1/64 1.53 · 10−1 5.42 · 10−2 4.21 · 10−3 1.67 · 10−5

1/128 1.60 · 10−1 9.83 · 10−2 4.00 · 10−3 5.26 · 10−5

Table 1: ∞-norm of the generalization error for the Poisson PINN throughout the domain Ω = [−π, π]
and on the domain boundary ∂Ω for ε ∈ {1/64, 1/128}. Also shown are the maximum variances in the
generalization errors, both in Ω and on the boundary ∂Ω.

learning rates of η = 10−3, η = 10−4, η = 10−5, and η = 10−6, respectively, and then L-BFGS for a few
thousand iterations, on average. The maximum generalization error

max
xi

|eD| := max
xi

|uε(xi)− EuD(xi; θ)| ≈ 4.31 · 10−1,

which is about 40%, and the average variance across the interval is nearly as large–about 2.83 · 10−1. From
Figures 4(a) and (b) it can be seen that the error contains both low and high frequency components.

4.3 Results for decreasing ε

We now consider the results for the three different neural network approximations to (27) at the values
ε = 1/64 and ε = 1/128.

Consider first the case of simple L2 regression (i.e. minimizing (30)). For both values of ε, N = d2π/(ε/2)e
equispaced training points are used for a network with four hidden layers, each of width d = 40. Ten
independent trials are conducted where the network is trained with the Adam optimizer for 20,000 and
10,000 iterations at a learning rate of η = 10−3 and η = 10−4, respectively. The generalization error is tested
at 1000 equispaced points in [−π, π].

The results (not shown) are consistent with the frequency principle, i.e. the known spectral bias of neural
networks in the regression setting Xu et al. (2020). The ∞-norm of the average generalization error is
about 1.71 · 10−2 and 8.88 · 10−3 for ε = 1/64 and 1/128, respectively, while in both cases the maximum
pointwise variance is relatively small, on the order of 10−6. The Fourier transform of the error in both cases
is essentially zero everywhere except at the 1/ε frequency, as expected. The techniques proposed in Yang
et al. (2021) for example could be used to mitigate this issue in this setting, if desired.

For the Poisson and Darcy PINNs, we consider a neural network with eight hidden layers, each of width
d = 40. The training schedule consists of 2000 iterations of Adam with a learning rate of η = 10−6, 5000
iterations with η = 10−7, 10000 iterations with η = 10−8 and then L-BFGS. The pointwise generalization
errors for the two cases ε = 1/64 and ε = 1/128 are shown in Figures 5 and 6 in Appendix F for the Poisson
and Darcy PINNs, respectively. The∞-norms of the average generalization error for each ε case are reported
in Tables 1; and 2 for the Poisson and Darcy PINNs, respectively. Also reported are the maximum average
errors on the boundary ∂Ω = {−π, π}, as well as the ∞-norm of the variance in the generalization error
throughout Ω and on ∂Ω.

Neither PINN does particularly well, as expected from the theory developed here for the Darcy case and
the analysis in Wang et al. (2021b; 2022) for the Poisson case. Although there are some similarities in the
error profiles–for example, the variance over the independent trials becomes larger for both PINN cases as ε
decreases–there are some important differences to highlight as well.

For the Poisson PINN, the average generalization error is approximately the same at both values of ε, and
in particular, the PINN satisfies the homogeneous Dirichlet BC to about three digits of accuracy for each
ε. To ensure this, we had to set the boundary weight λBC = 10 (this value was kept consistent for all the
cases listed in Tables 1 and 2). In contrast, the average error in the Darcy case increases for decreasing ε,
and in particular, the error at the boundaries increases. These results are consistent with the discussion in
Section 3.2, i.e. that the oscillatory coefficient within the differential operator for the Darcy PINN worsens
the imbalance between the two loss terms LPDE and LBC already known to exist for Poisson PINNs.
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ε ‖eD‖L∞(Ω) ‖VarD‖L∞(Ω) ‖eD‖L∞(∂Ω) ‖VarD‖L∞(∂Ω)
1/64 1.01 · 10−1 8.43 · 10−2 7.84 · 10−2 8.34 · 10−2

1/128 3.80 · 10−1 3.06 · 10−1 3.11 · 10−1 2.99 · 10−1

Table 2: ∞-norm of the generalization error for the Darcy PINN throughout the domain Ω = [−π, π] and on
the domain boundary ∂Ω for ε ∈ {1/64, 1/128}. Also shown are the maximum variances in the generalization
errors, both in Ω and on the boundary ∂Ω.

4.4 Rescaling the loss function

As mentioned in Section 3.2, it is reasonable to try mollify the imbalance between the two parts of the Darcy
PINN loss function by rescaling the PDE residual portion LPDE by ε2, as this cancels the 1/ε2 factor in the
NTK matrix Kε

uu subblock. Here we test this idea at a sequence of ε values.

We consider neural networks with three hidden layers each of width d = 70. As before, we use hyperbolic
tangent activation functions with Nc = 1024 collocation points. The training schedule consists of ten
thousands iterations each of the learning rates η = 10−3, 10−4, 10−5 and 10−6, and then, on average a few
thousand iterations of L-BFGS. As before, we conduct ten independent trials and then average the results.

In particular we consider learning the solution function

uε(x) = e−(x−1)2
+ ε sin(x/ε) + c1x+ c2

where c1 and c2 are chosen such that uε satisfies homogeneous Dirichlet boundary conditions on the domain
[−π, π]; with

aε(x) = 1.1 + cos(x/ε) cos(2x/ε),

we set the forcing function f ε in the Darcy problem such that uε indeed solves

− d

dx

(
aε(x) d

dx
uε(x)

)
= f ε(x). (33)

The pointwise generalization errors for three values of ε, as well as the magnitude of their Fourier coefficents,
are shown in Figure 7 in Appendix F. Compared to the Darcy PINNs without rescaling, the homogeneous
Dirichlet conditions are much better satisfied. For the ε = 1/36, the average error on the boundary is on
the order of 10−3, consistent with the Poisson cases in the previous section. For ε = 1/72 and ε = 1/144,
the accuracy is lower (on the order of 10−1), but the variance is quite low, in contrast to the huge variance
observed in the unscaled Darcy PINNs. In each case, the error in Fourier space has both a low frequency
peak concentrated in the first few wavenumbers and a peak at the 1/ε frequency; on average the errors
in these peaks increase for decreasing ε. In particular, at the smallest value ε = 1/144, an additional low
frequency peak emerges around k = 16.

As discussed extensively in Wang et al. (2022) and mentioned in Section 3.2, both the magnitude and the
distribution of the eigenvalues of the NTK matrix subblocks are closely connected with PINN performance.
As shown in Figure 3, there is a large discrepancy between the principal eigenvalue of the Kε

uu subblock
and the rest of the spectrum, which is a characteristic sign that the gradient flow dynamics (11) are stiff.
Although the rescaling introduced by setting λPDE = ε2 changes the magnitude of the eigenvalues of the Kε

uu

subblock, it of course does not change their distribution, and we attribute the increasing errors at decreasing
ε values to the discrepancy in the spectrum.

5 Conclusions

Physics informed neural networks have demonstrated success in a wide variety of problems in scientific
computing (Karniadakis et al., 2021), however, they can sometimes struggle to approximate solutions to dif-
ferential equations with multiscale features. Athough PINN convergence theory guarantees that minimizers
of (regularized) loss functions can in principle well approximate solutions to elliptic problems, in practice,
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achieving those minimizers is difficult for boundary value problems with highly oscillatory coefficients present
in the differential operator.

We show that for a class of linear, multiscale elliptic equations in divergence form, the Frobenius norm of the
neural tangent kernel matrix associated to the PINN becomes unbounded as the characteristic wavelength
of the oscillations vanishes. Numerical examples illustrate that during training, the ordinary differential
equation that governs the evolution of the PDE residuals becomes increasingly stiff as ε ↓ 0, translating to
poor PINN training behavior.

The present work considers standard, fully connected neural network architectures; it may be possible in
future research to develop alternative PINN architectures that are specifically adapted to the problem. For
example, different activation functions with problem-tuned inductive biases can be used, as suggested in Ziyin
et al. (2020) for periodic functions. Li et al. (2020a) also proposed smooth and localized activation functions
for multiscale elliptic problems in the context of the Deep Ritz method Yu et al. (2018). In this context, it
may be beneficial to develop a theory for the Neural Tangent Kernel matrix for energy-minimization based
neural network methods for solving multiscale PDEs, as the derivative of the oscillatory coefficient aε does
not appear, in contrast to PINNs.

Future work may also benefit from more sophisticated learning techniques beyond (stochastic) gradient
descent, for example genetic algorithms (Mirjalili, 2019). Another possibility is to employ continuation
methods (Allgower & Georg, 2003), i.e. “curriculum regularization” (Krishnapriyan et al., 2021).

Recent results establishing a “frequency principle” in machine learning motivated this study; during training,
neural networks tend to learn their target functions from low to high frequency (Luo et al., 2021). See also
the work by Wang et al. (2021b) for spectral analysis of physics informed neural networks applied to Poisson
problems with multiscale forcing. An interesting avenue for future study is to characterize the spectral
behavior during training of deep learning methods for learning operators; see for example (Li et al., 2020b;
Khoo et al., 2021; Bhattacharya et al., 2021; Lu et al., 2021a; Zhang et al., 2022). In the context of the
present work, this would be the nonlinear map from the problem data aε and f in (3) to the solution uε.
Finally, we note many other novel neural network approaches to multiscale elliptic problems not discussed
here have recently been proposed, for example (Han & Lee, 2023; Leung et al., 2022; Fabian et al., 2022).
We hope some of the results presented here might inspire insight into these exciting approaches.

Acknowledgments

The authors thank Andrea Bertozzi for organizing the UCLA Computational and Applied Mathematics REU
site where much of this work took place. The authors also thank Chris Anderson and Michael Murray for
helpful discussions.

References
Eugene L Allgower and Kurt Georg. Introduction to Numerical Continuation Methods. SIAM, 2003.

Alain Bensoussan, Jacques-Louis Lions, and George Papanicolaou. Asymptotic analysis for periodic struc-
tures, volume 374. American Mathematical Soc., 2011.

Kaushik Bhattacharya, Bamdad Hosseini, Nikola B. Kovachki, and Andrew M. Stuart. Model Reduction
And Neural Networks For Parametric PDEs. The SMAI journal of computational mathematics, 7:121–157,
2021.

William L Briggs, Van Emden Henson, and Steve F McCormick. A multigrid tutorial. SIAM, 2000.

Richard H Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A limited memory algorithm for bound
constrained optimization. SIAM Journal on scientific computing, 16(5):1190–1208, 1995.

Weinan E. The dawning of a new era in applied mathematics. Notices of the American Mathematical Society,
68(4):565–571, 2021.

15



Published in Transactions on Machine Learning Research (10/2023)

Bjorn Engquist and Erding Luo. Convergence of a multigrid method for elliptic equations with highly
oscillatory coefficients. SIAM Journal on Numerical Analysis, 34(6):2254–2273, 1997.

Kröpfl Fabian, Roland Maier, and Daniel Peterseim. Operator compression with deep neural networks.
Advances in Difference Equations, 2022(1), 2022.

Olga Fuks and Hamdi A Tchelepi. Limitations of physics informed machine learning for nonlinear two-phase
transport in porous media. Journal of Machine Learning for Modeling and Computing, 1(1), 2020.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks.
In Proceedings of the thirteenth international conference on artificial intelligence and statistics, pp. 249–
256. JMLR Workshop and Conference Proceedings, 2010.

Jihun Han and Yoonsang Lee. A neural network approach for homogenization of multiscale problems.
Multiscale Modeling & Simulation, 21(2):716–734, 2023.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are universal
approximators. Neural networks, 2(5):359–366, 1989.

Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: Convergence and generalization
in neural networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018.

Weiqi Ji, Weilun Qiu, Zhiyu Shi, Shaowu Pan, and Sili Deng. Stiff-pinn: Physics-informed neural network
for stiff chemical kinetics. The Journal of Physical Chemistry A, 125(36):8098–8106, 2021.

George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang. Physics-
informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

Yuehaw Khoo, Jianfeng Lu, and Lexing Ying. Solving parametric pde problems with artificial neural net-
works. European Journal of Applied Mathematics, 32(3):421–435, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney. Characterizing
possible failure modes in physics-informed neural networks. Advances in Neural Information Processing
Systems, 34:26548–26560, 2021.

Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. Artificial neural networks for solving ordinary and
partial differential equations. IEEE transactions on neural networks, 9(5):987–1000, 1998.

Moshe Leshno, Vladimir Ya Lin, Allan Pinkus, and Shimon Schocken. Multilayer feedforward networks with
a nonpolynomial activation function can approximate any function. Neural networks, 6(6):861–867, 1993.

Wing Tat Leung, Guang Lin, and Zecheng Zhang. NH-PINN: Neural homogenization-based physics-informed
neural network for multiscale problems. Journal of Computational Physics, 470:111539, 2022.

Xi-An Li, Zhi-Qin John Xu, and Lei Zhang. A multi-scale dnn algorithm for nonlinear elliptic equations
with multiple scales. Communications in Computational Physics, 28(5):1886–1906, 2020a.

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew Stuart,
Anima Anandkumar, et al. Fourier neural operator for parametric partial differential equations. In
International Conference on Learning Representations, 2020b.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning nonlinear
operators via deeponet based on the universal approximation theorem of operators. Nature Machine
Intelligence, 3(3):218–229, 2021a.

Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. Deepxde: A deep learning library for
solving differential equations. SIAM Review, 63(1):208–228, 2021b.

16



Published in Transactions on Machine Learning Research (10/2023)

Tao Luo, Zheng Ma, Zhi-Qin John Xu, and Yaoyu Zhang. Theory of the frequency principle for general deep
neural networks. CSIAM Transactions on Applied Mathematics, 2(3):484–507, 2021.

Stefano Markidis. The old and the new: Can physics-informed deep-learning replace traditional linear
solvers? Frontiers in big Data, pp. 92, 2021.

Seyedali Mirjalili. Genetic algorithm. In Evolutionary algorithms and neural networks, pp. 43–55. Springer,
2019.

Dimitris C Psichogios and Lyle H Ungar. A hybrid neural network-first principles approach to process
modeling. AIChE Journal, 38(10):1499–1511, 1992.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua Bengio,
and Aaron Courville. On the spectral bias of neural networks. In Kamalika Chaudhuri and Ruslan
Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research, pp. 5301–5310. PMLR, 09–15 Jun 2019.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A deep learn-
ing framework for solving forward and inverse problems involving nonlinear partial differential equations.
Journal of Computational physics, 378:686–707, 2019.

Yeonjong Shin, Jerome Darbon, and George Em Karniadakis. On the Convergence of Physics Informed
Neural Networks for Linear Second-Order Elliptic and Parabolic Type PDEs. Communications in Com-
putational Physics, 28(5):2042–2074, 2020.

Remco van der Meer, Cornelis W Oosterlee, and Anastasia Borovykh. Optimally weighted loss functions for
solving pdes with neural networks. Journal of Computational and Applied Mathematics, 405:113887, 2022.

Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient flow pathologies in
physics-informed neural networks. SIAM Journal on Scientific Computing, 43(5):A3055–A3081, 2021a.

Sifan Wang, Hanwen Wang, and Paris Perdikaris. On the eigenvector bias of fourier feature networks:
From regression to solving multi-scale pdes with physics-informed neural networks. Computer Methods in
Applied Mechanics and Engineering, 384:113938, 2021b.

Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why pinns fail to train: A neural tangent kernel
perspective. Journal of Computational Physics, 449:110768, 2022.

Zhi-Qin John Xu, Yaoyu Zhang, Tao Luo, Yanyang Xiao, and Zheng Ma. Frequency principle: Fourier
analysis sheds light on deep neural networks. Communications in Computational Physics, 28(5):1746–
1767, 2020.

Ge Yang, Anurag Ajay, and Pulkit Agrawal. Overcoming the spectral bias of neural value approximation.
In International Conference on Learning Representations, 2021.

Bing Yu et al. The deep ritz method: a deep learning-based numerical algorithm for solving variational
problems. Communications in Mathematics and Statistics, 6(1):1–12, 2018.

Lulu Zhang, Tao Luo, Yaoyu Zhang, Weinan E, Zhi-Qin John Xu, and Zheng Ma. MOD-Net: A Machine
Learning Approach via Model-Operator-Data Network for Solving PDEs. Communications in Computa-
tional Physics, 32(2):299–335, 2022.

Liu Ziyin, Tilman Hartwig, and Masahito Ueda. Neural networks fail to learn periodic functions and how
to fix it. Advances in Neural Information Processing Systems, 33:1583–1594, 2020.

17



Published in Transactions on Machine Learning Research (10/2023)

A Description of PINN approximation for multiscale Poisson problem

Here we give a more complete description of the example from Section 2 of a PINN approximation to the
Poisson boundary value problem (4) with homogeneous Dirichlet boundary conditions.

The PINN solution is computed with a fully connected neural network with four hidden layers of sixty nodes
each and hyperbolic tangent activation functions. The training consisted of 100, 1, 000, 15, 000, 30, 000 and
10, 000 iterations with the Adam optimizer with learning rates of η = 10−2, η = 10−3, η = 10−4, η = 10−5,
and η = 10−6, respectively. We note, however, using a constant value of η = 10−3 throughout training
produced results qualitatively similar to those in Figure 1; i.e. the observed frequency principle was fairly
robust to changes in the learning rate. As mentioned in the description in Section 2, for legibility, the results
shown in Figure 1 are that of the rolling average (of 50 values) to the trajectories of the error in the Fourier
coefficients.

Finally, we mention that at the end of the training process, the ∞-norm error between the true solution and
the neural network approximation is about 1.26 · 10−2.

B Proof of Lemma 3.1

Proof. Computing first the entries of the gradient of the loss function (8) gives

∂Lε

∂θl
= 1
Nc

Nc∑
j=1

rpde(xj ; θ)
∂

∂θl
Lεu(xj ; θ) + λ

Nb

Nb∑
j=1

rb(sj ; θ)
∂

∂θl
u(sj ; θ). (34)

Next, compute

d

dt
rpde(xi; θ(t)) = d

dt
(Lεu(xi; θ(t))− f(xi)) =

Np∑
l=1

∂

∂θl
Lεu(xi; θ)

dθl
dt

= −
Np∑
l=1

∂

∂θl
Lεu(xi; θ)

∂Lε

∂θl
, (35)

where the final equality comes from the assumption of gradient flow dynamics (11). A similar computation
gives

d

dt
rb(si; θ(t)) = d

dt
(u(si; θ(t))− g(si)) =

Np∑
l=1

∂

∂θl
u(si; θ)

dθl
dt

= −
Np∑
l=1

∂

∂θl
u(si; θ)

∂Lε

∂θl
, (36)

Inserting (34) into (35) and rearranging the sums gives

d

dt
rpde(xi; θ(t)) = −

( Nc∑
j=1

[ 1
Nc

Np∑
l=1

∂

∂θl
Lεu(xi; θ)

∂

∂θl
Lεu(xj ; θ)

]
rpde(xj ; θ)

+
Nb∑
j=1

[ λ
Nb

Np∑
l=1

∂

∂θl
Lεu(xi; θ)

∂

∂θl
u(sj ; θ)

]
rb(sj ; θ)

)
,

while inserting (34) into (36) similarly results in

d

dt
rb(si; θ(t)) = −

( Nc∑
j=1

[ 1
Nc

Np∑
l=1

∂

∂θl
u(si; θ)

∂

∂θl
Lεu(xj ; θ)

]
rpde(xj ; θ)

+
Nb∑
j=1

[ λ
Nb

Np∑
l=1

∂

∂θl
u(si; θ)

∂

∂θl
u(sj ; θ)

]
rb(sj ; θ)

)
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as desired.

C Proof of Theorem 3.3

Proof. From (25) we note that W (1) ∈ Rd1×1, W (l) ∈ Rdl×dl−1 for l = 2, . . . ,Λ, and W (Λ+1) ∈ R1×dΛ , while
b(l) ∈ Rdl for l = 1, . . . ,Λ and b(Λ+1) ∈ R. The fully connected neural network (25) can then be written as

u(x; θ) =
dΛ∑
kΛ=1

W
(Λ+1)
kΛ

u
(Λ)
kΛ

(x) + b(Λ+1),

u
(Λ)
kΛ

(x) = σ
( dΛ−1∑
kΛ−1=1

W
(Λ)
kΛkΛ−1

u
(Λ−1)
kΛ−1

(x) + b
(Λ)
kΛ

)
, 1 ≤ kΛ ≤ dΛ,

u
(Λ−1)
kΛ−1

(x) = σ
( dΛ−2∑
kΛ−2=1

W
(Λ−1)
kΛ−1kΛ−2

u
(Λ−2)
kΛ−2

(x) + b
(Λ−1)
kΛ−1

)
, 1 ≤ kΛ−1 ≤ dΛ−1,

...

u
(2)
k2

(x) = σ
( d1∑
k1=1

W
(2)
k2k1

u
(1)
k1

(x) + b
(2)
k2

)
, 1 ≤ k2 ≤ d2

u
(1)
k1

(x) = σ
(
W

(1)
k1
x+ b

(1)
k1

)
, 1 ≤ k1 ≤ d1.

By linearity, note that
∂

∂W
(Λ+1)
γ

Lεu(x; θ) = Lεu(Λ)
γ (x) (37)

for any 1 ≤ γ ≤ dΛ.

As before, consider a diagonal entry in the Kε
uu subblock of the NTK matrix (14)

(Kε
uu)αα(t) = 1

Nc

Np∑
γ=1

∂

∂θγ
Lεu(xα; θ(t)) ∂

∂θγ
Lεu(xα; θ(t)).

By (37), a sufficient condition for the Frobenius norm of Kε to blow-up, then, is for

lim
ε↓0

(
Lεu(Λ)

γ (xα)
)2 =∞

for some collocation point xα, some 1 ≤ γ ≤ dΛ, and t ∈ Υ (here the dependence of u(Λ)
γ on t and θ is

implied). Since

(
Lεu(Λ)

γ (xα)
)2 =

[(
a(xα/ε)

d2

dx2 u
(Λ)
γ (xα)

)2
+ 2
ε

(
a(xα/ε)

d2

dx2 u
(Λ)
γ (xα) a′(xα/ε)

d

dx
u(Λ)
γ (xα)

)
+ 1
ε2

(
a′(xα/ε)

d

dx
u(Λ)
γ (xα)

)2]
, (38)

and since a is a periodic C1 function, the desired result will follow if (i) the second derivative of u(Λ)
γ is

uniformly bounded in ε and (ii) the first derivative is asymptotically larger than ε, so that

lim
ε↓0

1
ε

∣∣∣∣ ddx u(Λ)
γ (x)

∣∣∣∣ =∞ (39)

for any t ∈ Υ.
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The first derivative is

d

dx
u(Λ)
γ (x) = σ′

( dΛ−1∑
kΛ−1=1

W
(Λ)
γkΛ−1

u
(Λ−1)
kΛ−1

(x) + b
(Λ)
kΛ

) dΛ−1∑
kΛ−1=1

[
W

(Λ)
γkΛ−1

d

dx
u

(Λ−1)
kΛ−1

(x)
]

(40)

after applying the chain rule once. Using Einstein summation notation for brevity, (40) simplifies to
d

dx
u(Λ)
γ (x) = σ′

(
W

(Λ)
γkΛ−1

u
(Λ−1)
kΛ−1

(x) + b
(Λ)
kΛ

)[
W

(Λ)
γkΛ−1

d

dx
u

(Λ−1)
kΛ−1

(x)
]
.

Continuing with the chain rule (and the Einstein notation), we get
d

dx
u(Λ)
γ (x) = σ′

(
W

(Λ)
γkΛ−1

u
(Λ−1)
kΛ−1

(x) + b
(Λ)
kΛ

)
×[

W
(Λ)
γkΛ−1

σ′
(
W

(Λ−1)
kΛ−1kΛ−2

u
(Λ−2)
kΛ−2

(x) + b
(Λ−1)
kΛ−1

)[
W

(Λ−1)
kΛ−1kΛ−2

d

dx
u

(Λ−2)
kΛ−2

(x)
]]
.

From here we can recurse downwards to compute the full derivative as
d

dx
u(Λ)
γ (x) = σ′

(
W

(Λ)
γkΛ−1

u
(Λ−1)
kΛ−1

(x) + b
(Λ)
kΛ

)
×[

W
(Λ)
γkΛ−1

σ′
(
W

(Λ−1)
kΛ−1kΛ−2

u
(Λ−2)
kΛ−2

(x) + b
(Λ−1)
kΛ−1

)[
W

(Λ−1)
kΛ−1kΛ−2

σ′
(
W

(Λ−2)
kΛ−2kΛ−3

u
(Λ−3)
kΛ−3

(x) + b
(Λ−2)
kΛ−2

)
×[

. . .
[
W

(3)
k3k2

σ′
(
W

(2)
k2k1

u
(1)
k1

(x) + b
(2)
k2

)[
W

(2)
k2k1

σ′
(
W

(1)
k1
x+ b

(1)
k1

)
W

(1)
k1

]]
. . .
]]]

. (41)

By the uniform boundedness assumption (19) on the network parameters θ, (41) is uniformly bounded in ε
from above for any x ∈ [a, b]. As a consequence of the positivity assumption (18), (19) further implies that
each instance of dσ/dx in (41) is bounded below by a positive number that is independent of ε. Note that
(41) generally contains sums and products of dσ/dx and network weights (entries in the W (l) matrices). For
any t ∈ Υ, the weights are asymptotically larger than ε1/Λ, so that

lim
ε↓0

( ε

W
(1)
k1

W
(2)
k2k1

. . .W
(Λ−1)
kΛ−1kΛ−2

W
(Λ)
kΛkΛ−1

)
= 0

for any combination of indices 1 ≤ k1 ≤ d1, 1 ≤ k2 ≤ d2, and so on, meaning that (39) indeed holds.

Ergo, as in the proof of Theorem 3.2, as long as ε vanishes monotonically to zero in such a way that
a′(xα/ε) 6= 0 any ε, (38) limits to positive infinity as desired.

D Proof of Corollary 3.4

Proof. From elementary linear algebra, we know that the Frobenius norm of the square matrix Kε
uu(t) equals

the Euclidean norm of its singular values, and because Kε
uu(t) is a symmetric matrix, its singular values equal

the absolute value of its (real valued) eigenvalues. If {λεi(t)}
Nc
i=1 denotes the eigenvalues, then

‖Kε
uu(t)‖F =

( Nc∑
i=1

(λεi(t))2
)1/2

≤
√
Nc ρ(Kε

uu(t))

giving the result.

E Boundary value problem forcing functions

The right-hand side forcing function f ε(x) for the Darcy BVP (29) with homogenenous Dirichlet boundary
conditions is given by gε(x)/hε(x), where

gε(x) = 10
[
20π+168πε cos (x) sin (x)− 20

(
2π − 4π cos2(x) + ε sin(π/ε)

)
cos(x/ε)

+
(

21π + 160πε cos (x) sin(x)
)

sin(x/ε)
]
,
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and
hε(x) = 400πε sin2(x/ε) + 840πε sin(x/ε) + 441πε.

F Error plots for decreasing ε
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Figure 5: Pointwise generalization errors for the Poisson PINN (31). The dotted lines indicate independent
trial runs, while the solid line with circle markers indicates the mean.
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Figure 6: Pointwise generalization errors for the Darcy PINN (32). The dotted lines indicate independent
trial runs, while the solid line with circle markers indicates the mean.
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Figure 7: Results at three different ε values for the Darcy PINN associated to (33) with the PDE residual
part of the loss function weighted by λPDE = ε2. The left columns display the pointwise generalization error
on [−π, π], and the right columns display the magnitude of the first two hundred Fourier coefficients of the
error. The dotted lines indicate independent trial runs, while the solid line with circle markers indicates the
mean.
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