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Abstract

Object detection is crucial for ensuring safe autonomous
driving. However, data-driven approaches face challenges
when encountering minority or novel objects in the 3D driv-
ing scene. In this paper, we propose VisLED, a language-
driven active learning framework for diverse open-set 3D
Object Detection. Our method leverages active learn-
ing techniques to query diverse and informative data sam-
ples from an unlabeled pool, enhancing the model’s abil-
ity to detect underrepresented or novel objects. Specifi-
cally, we introduce the Vision-Language Embedding Diver-
sity Querying (VisLED-Querying) algorithm, which oper-
ates in both open-world exploring and closed-world mining
settings. In open-world exploring, VisLED-Querying se-
lects data points most novel relative to existing data, while
in closed-world mining, it mines new instances of known
classes. We evaluate our approach on the nuScenes dataset
and demonstrate its effectiveness compared to random sam-
pling and entropy-querying methods. Our results show
that VisLED-Querying consistently outperforms random
sampling and offers competitive performance compared
to entropy-querying despite the latter’s model-optimality,
highlighting the potential of VisLED for improving object
detection in autonomous driving scenarios. We make our
code publicly available at [anonymized].

1. Introduction
Object detection is critical for safe autonomous driving.

Data-driven approaches currently provide the best perfor-
mance in detecting and localizing objects in the 3D driv-
ing scene. Detection models perform best on objects which
are most represented in driving datasets. This creates chal-
lenges when some objects are less represented (minority
classes), or unrepresented within the annotation scheme
(“novel” objects [1], relevant for “open-set” learning [2]),
and becomes especially important when minority objects
are most salient to driving decisions [3–6]. Further, from
a pragmatic standpoint, the collection, curation, and anno-
tation of such datasets can be extremely expensive [7, 8],

motivating the use of heuristics and algorithms which limit
annotation efforts while maximizing model learning.

2. Related Research
Active learning methods are driven by a query func-

tion which selects relevant data from an unlabeled pool to
be annotated and joined to the training set. These meth-
ods broadly divide into two classes: uncertainty-based and
diversity-based methods [9]. In uncertainty-based methods,
data is selected by the query function’s assessment of how
confusing the datum is to the existing model. On the other
hand, in diversity-based methods, data is selected by be-
ing distinct from existing training data by some measure,
and this can be done without consideration of the learning
model.

2.1. The Role of Uncertainty and Diversity-Based
Methods in Closed and Open Set Learning

In closed-set learning, it is assumed that a system should
classify or learn about a fixed set of target classes. By con-
trast, in open-set learning, the system assumes that it may
encounter novel data which belongs to a class unrepresented
by its current target set. Naturally, this brings up many re-
search challenges in recognizing this novelty when it ap-
pears, determining when to define a new set construct, and
integrating new constructs into the learning mechanism.

Here, we suggest that diversity-based methods are par-
ticularly well-suited for these open-set learning tasks. Be-
cause uncertainty-based methods select relative to their ex-
isting world model, there is an inductive bias imposed in
relating new data to existing patterns. On the other hand,
in diversity-based methods, data is compared only to other
data, analogous to unsupervised learning. This does cre-
ate a tradeoff: closed-set learning excels under uncertainty-
driven sampling, since these methods are optimized for the
current world model and target set, but cannot treat the
world as “open” as diversity-driven sampling. But, criti-
cally, we show in this research that diversity-based active
learning still provides a benefit to the learning system (even
if not “optimal” to the particular model and set definition),
and is suitable for open-set data selection.
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2.2. Learning from Vision-Language Representa-
tions

Prior research has shown that vision-language repre-
sentations such as embeddings from contrastive language-
image pretraining (CLIP) [10] can be used to identify nov-
elty of an image relative to a set (and, as a bonus, can be
decoded into a verbal explanation of novelty) [11]. In our
research, we utilize this representation and corresponding
ability to select novel images as a proxy for the amount
of useful, previously-unexplored information within a com-
plete multimodal driving scene, allowing for an active
learning query to select diverse samples based on vision-
language encodings of scene images.

3. Algorithm
Here, we present our algorithm named Vision-Language

Embedding Diversity Querying (VisLED-Querying), which
can be viewed in Figure 1. The algorithm can be used in
two different settings:

1. Open-World Exploring: this method imposes no par-
ticular class expectations on the data. It is suitable
for cases when the model seeks to include information
which is most novel relative to data it has seen previ-
ously.

2. Closed-World Mining: this method utilizes a zero-
shot learning [10] step to sort data between a fixed set
of classes before evaluating for novelty, filtering any
points estimated to not belong to one of the closed-set
classes. This method is suitable for mining new and
different instances of existing classes, but may also
filter out the most difficult or unusual instances even
from known classes if the zero-shot method fails to
recognize the object.

Algorithm 1: Open-World Exploring VisLED-
Querying

Input: Unlabeled pool of egocentric driving scene
images

Output: Updated training set
Embed each egocentric driving scene image from
the unlabeled pool using CLIP;

Use hierarchical clustering to separate the
embeddings;

Sample new data points from the unclustered set for
addition to the training set;

When employing CLIP’s [12] zero-shot learning tech-
nique for classification, the algorithm examines each sam-
ple image to identify objects, that are most likely to belong
to predefined classes. As a result, each sample is assigned

to a single class, as the zero-shot learning method predom-
inantly identifies one class with high accuracy. In instances
where other classes may also be identified, their confidence
scores are typically low enough to risk false positives, ren-
dering them inadequate for threshold-based classification.
Therefore, a single-class assignment is favored for simplic-
ity and accuracy.

Once the samples for each class have been identified,
embeddings will be generated separately for each class, fol-
lowed by hierarchical clustering. Subsequently, a number
of samples will be selected from each class, with a focus on
sampling from clusters with minimal data representation.
Initially, the algorithm will prioritize unique samples (clus-
ters with only one sample present), matching them with cor-
responding scene names until the desired number of unique
scenes is achieved in the training set. Upon inclusion of all
scene-names from unique samples, the algorithm will pro-
ceed to clusters containing pairs of images, and so on, until
the required number of scenes have been sampled for the
training set.

Algorithm 2: Closed-World Mining VisLED-
Querying

Input: Unlabeled pool of egocentric driving scene
images

Output: Updated training set
Embed each egocentric driving scene image from
the unlabeled pool using CLIP;

Encode each class label using a text encoding;
Applying zero-shot learning by maximizing the
product of the embeddings, sort the embedded
images by class;

For each class, apply hierarchical clustering;
Sample new data points from the unclustered set
associated with the desired class, and add to the
training set;

4. Experimental Evaluation

4.1. Dataset

We use the nuScenes object detection dataset [13] for
our experiments. nuScenes contains 1.4M camera images
and 400k LIDAR sweeps of driving data, originally labeled
by expert annotators from an annotation partner. 1.4M ob-
jects are labeled with a 3D bounding box, semantic category
(among 23 classes), and additional attributes. NuScenes
comprises 1000 scenes. In order to maintain complete con-
trol over the scenes within the dataset, we modify the funda-
mental database setup slightly, using the method introduced
in [14, 15] to accommodate active learning queries. We use
the trainval split of the dataset for public reproducibility.
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Figure 1. VisLED System Overview. For both Open-World Exploring and Closed-World Mining, the system begins with the processing
of the unlabeled data pool into vision-language embedding representations. In Open-World Exploring, these embeddings are clustered and
used as the basis for a query. In Closed-World Mining, the embeddings are first used in zero-shot learning to classify scenes based on
object appearance, and then further clustered per-class, offering a chance to sample from particular classes which are known to be minority
in the labeled training set.

4.2. 3D Object Detection Model

We explore the BEVFusion approach to 3D object de-
tection [16], which has demonstrated notable performance,
ranking third in the NuScenes tracking challenge and sev-
enth in the detection challenge. While various methods ex-
ist to integrate image and LiDAR data into a unified repre-
sentation, LiDAR-to-Camera projection methods often in-
troduce geometric distortions, and Camera-to-LiDAR pro-
jections face challenges in semantic-orientation tasks. BEV-
Fusion aims to address these issues by creating a unified
representation that preserves both geometric structure and
semantic density.

In our implementation, we utilize the Swin-Transformer
[17] as the image backbone and VoxelNet [18] as the Li-
DAR backbone. To generate bird’s-eye-view (BEV) fea-
tures for images, we employ a Feature Pyramid Network
(FPN) [19] to fuse multi-scale camera features, resulting in
a feature map one-eighth of the original size. Subsequently,
images are down-sampled to 256x704 pixels, and LiDAR
point clouds are voxelized to 0.075 meters to obtain the
BEV features necessary for object detection. These modal-
ities are integrated using a convolution-based BEV encoder
to mitigate local misalignment between LiDAR-BEV and
camera-BEV features, particularly in scenarios of depth es-
timation uncertainty from the camera mode. For a compre-

hensive overview of the architecture, including its integra-
tion with VisLED-Querying, refer to Figure 1.

4.3. Experiments

We train the BEVFusion model in increasing training
set sizes, using three different acquisition modes: (1) Ran-
dom Sampling, (2) Entropy-Querying, and (3) VisLED-
Querying with Closed-Set Mining setting. As expected, ac-
tive learning strategies outperform the random baseline, and
the entropy-querying method is dominant due to its nature
of optimizing uncertainty with respect to the model, as op-
posed to VisLED’s model-agnostic sampling. Yet, as illus-
trated in Table 1, VisLED still stays consistently ahead of
random sampling, and offers a 1% gain over random sam-
pling mAP at 50% of the data pool, all without requiring
any model training or inference.

5. Discussion and Conclusion
Our presented learning method, VisLED-Querying, sam-

ples without any information about the model. This enables
VisLED to select novel, informative data points, to the ex-
tent that novelty is visibly identifiable, for any model. The
benefit this offers is that a data point may need to be an-
notated only once, and can then be used in a variety of
models for additional autonomous driving tasks instead of

3
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Labeled Pool mAP NDS
Rounds % Random Entropy VisLED Random Entropy VisLED

1 10% 30.95 31.06 (+1.06) 29.14 (-1.81) 33.53 34.09 (+0.56) 32.16 (-1.37)

2 20% 38.00 40.41 (+2.41) 40.76 (+2.76) 40.14 41.85 (+1.71) 41.18 (+1.04)

3 30% 44.94 45.57 (+0.63) 45.01 (+0.07) 48.41 50.11 (+1.7) 49.40 (+0.99)

4 40% 47.73 49.24 (+1.51) 49.21 (+1.48) 53.10 53.80 (+0.7) 53.64 (+0.54)

5 50% 49.90 63.88 (+13.98) 51.05 (+1.15) 55.64 64.85 (+9.21) 56.45 (+0.81)

100% 52.88 58.73

Table 1. This table shows the mean average precision (mAP) and nuScenes driving score (NDS) metrics for the random sampling, entropy-
querying, and VisLED-querying (Closed-World Mining) in every round. It also shows the mAP and NDS scores for the full training split
when trained using one GPU. Both the entropy-querying and VisLED methods outperform random sampling consistently, and reach nearly
the same level of performance as 100% of the data at just the 50% data point, showing faster learning than the baseline method.
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Figure 2. Performance of BEVFusion in 3D Object Detection on nuScenes at different training set sizes, using three different learning
strategies. Simultaneously, we chart the learning of BEVFusion on the full training set, over the course of six epochs (top horizontal axis)
to give an impression of the asymptotic performance limit that may be expected of the model. We observe that the active learning methods
move towards this asymptote sooner than random sampling, and that VisLED maintains a margin over random sampling throughout.

sampling and possibly forming an entirely different set for
annotation. While these gains may be marginal in the cur-
rent data setting (< 1000 scenes), at scale, these perfor-
mance gains may translate to serious reductions in anno-
tation costs and safety-critical detection failures. Further,
VisLED offers one key possibility that is otherwise lim-
ited on uncertainty-driven approaches: VisLED will rec-
ommend unique samples without any prior assumptions
on class taxonomy, making it especially suited to open-
set learning, where new classes may be introduced at any
time. This capability, when paired with methods of self-
or semi-supervised learning for object detection by fusing
LiDAR and camera [20], may prove especially beneficial
in identifying and learning from novel encounters. In fu-
ture research, we plan to experiment on the effectiveness of
VisLED in multi-task learning settings [21], experiments on
other benchmark datasets [22], and experiments in open-set
and continual learning.
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