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Abstract

With the increasing sophistication of Large Language Models (LLMs), it is crucial
to develop reliable methods to accurately identify whether an interlocutor in real-
time dialogue is human or chatbot. However, existing detection methods are
primarily designed for analyzing full documents, not the unique dynamics and
characteristics of dialogue. These approaches frequently overlook the nuances of
interaction that are essential in conversational contexts. This work identifies two
key patterns in dialogues: (1) Human-Human (H-H) interactions exhibit significant
bidirectional sentiment influence, while (2) Human-Chatbot (H-C) interactions
display a clear asymmetric pattern. We propose an innovative approach named
ChatbotID, which applies the Granger Causality Test (GCT) to extract a novel set
of interactional features that capture the evolving, predictive relationships between
conversational attributes. By synergistically fusing these GCT-based interactional
features with contextual embeddings and optimizing the model via a structured
loss function, we significantly enhance the model’s ability to capture asymmetric
influence in H-C dialogues. Experimental results across multiple datasets and
detection models demonstrate the effectiveness of our framework, with 15.92%
improvements in accuracy for distinguishing between H-H and H-C dialogues.

1 Introduction

The rapid advancement and proliferation of Large Language Models (LLMs) have led to increasingly
sophisticated conversational agents capable of generating remarkably human-like text [1 2| 3]]. By
exploiting the sophisticated conversational abilities of LLMs, malicious actors can convincingly
simulate human interactions [4} |3, |6]], tricking unsuspecting individuals into believing they are
communicating with a real person, thereby facilitating fraudulent activities such as scams and identity
theft [7, 14, [8]. Considering this, it has become critically important to devise reliable methods for
distinguishing between human and LLM-driven interactions.

Many state-of-the-art methods typically rely on identifying statistical anomalies in linguistic [9, [10
11]] or stylometric features [12| [13] for detecting LLMs-generated text. These approaches often
require extensive manual feature engineering and may exhibit limited effectiveness against more
advanced LLMs that are explicitly optimized to bypass such detection mechanisms. More recently,
supervised learning approaches [14} [15} [16] have been developed to distinguish between human-
written and LLM-generated text by analyzing both semantic content [[17,[18] and high-level textual
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features [19/ 20} 21]. Although these models are effective in certain contexts, they primarily analyze
the static textual content and stylistic features of full documents. Consequently, they often overlook
the fine-grained interactional nuances necessary for dialogue detection. These limitations underscore
the urgent demand for innovative dialogue detection approaches capable of capturing fine-grained
interaction dynamics and integrating them with semantic representations to enable more reliable
identification of conversational participants.

In this work, we are developing a specialized detection framework to identify chatbot text in dialogues,
focusing on unique linguistic features and interaction patterns. Particularly, we reveal two principal
patterns of sentiment influence within dialogues: Human-human (H-H) interactions are character-
ized by substantial bidirectional sentiment exchange, whereas Human-Chatbot (H-C) interactions
demonstrate a distinct asymmetric influence. Motivated by two principal patterns, we propose a
novel approach named ChatbotID that integrates the deep contextual understanding capabilities
of LLMs with a quantitative analysis of conversational interaction dynamics derived from Granger
Causality tests [22] (GCT). To quantify these temporal dependencies, we first extract relevant time
series features (e.g., sentiment scores per turn) from the dialogues. Subsequently, we apply GCT
to these features to compute a feature vector, denoted as Vgcor. This vector is utilized to fine-tune
LLMs specifically for the task of distinguishing dialogues generated by LLMs. By jointly modeling
semantic content and interaction dynamics, the model becomes proficient at identifying chatbots.
Experiments show our framework significantly improves accuracy in distinguishing H-H from H-C
dialogues across multiple datasets. The main contributions of this work are:

* Grounded in Communication Accommodation Theory, this work is the first to systemati-
cally quantify and reveal two principal patterns of sentiment influence in dialogues: H-H
interactions are characterized by statistically significant bidirectional influence, whereas
H-C interactions demonstrate a distinct asymmetric influence pattern.

* We propose a novel dialogue detection method based on GCT named ChatbotID. To our
knowledge, this work is the first to systematically address the detection of LLM-generated
contributions specifically within conversational contexts.

 Extensive experiments conducted on various datasets (DailyDialog, MultiWOZ, etc.) and
advanced LLMs (Gemma, Qwen-2, Deepseek-R1, etc.), demonstrate that our method
outperforms state-of-the-art detection methods by up to 15.92%.

2 Related Work

In this section, we discuss three critical dimensions of LLMs-generated text analysis, i.e., representa-
tive detection approaches, the Granger Causality Test [22] and Interaction Dynamics.

LLM-Generated Text Detection. Various approaches achieve differentiation between human
and LLM-generated texts by capitalizing on the complex inner workings of LLMs [12} [13] 23],
specifically examining aspects like intermediate layer outputs and model weights [24]. However,
these methods reliant on internal model information also encounter notable limitations, such as their
inapplicability to black-box proprietary models, and weaker generalization across diverse model
architectures [25)126]. Another category of detection approach shifts focus to the statistical properties
of the text itself [9, 27,28 129]. They utilize statistical metrics (e.g. entropy, perplexity, frequency
of specific words, sentence structure) to differentiate between LLMs-generated and human-written
texts [30, 31 132]. However, these detection performances can also be significantly affected by
variations in text type, topic diversity, and specific linguistic characteristics, leading to insufficient
stability and accuracy. Other researchers have adopted supervised learning methods [[7} [14} 15, [16]],
training specialized classification models on large datasets of labeled texts. While these models
demonstrate effectiveness in certain contexts, their primary analytical focus is on the static textual
content and stylistic features of entire documents. They often fail to capture the interactional nuances
for dialogue detection.

Granger Causality in Text Detection. GCT, an econometric concept by origin, is a standard
statistical method used to determine if one time series improves the forecast of another [22} 33} |34]].
GCT provides a valuable statistical framework for investigating directional predictive relationships
between time-ordered data sequences, finding pertinent applications in detection tasks within Natural
Language Processing [35} 136, 37, 38]. Existing methodologies for GCT are centered on its core
concept of evaluating whether one-time series’ past significantly improves the prediction of another’s



future [39, 40, 41]], beyond the information contained in the target series’ history. These methods
provide a comprehensive toolkit for identifying and characterizing directional predictive links in
temporal data across various domains [42, 43| 44]).

Linguistic Accommodation and Interaction Dynamics. A foundational concept for understanding
dialogue is Communication Accommodation Theory, which posits that individuals adjust their
communication strategies to signal social closeness, gain approval, or maintain social distance [45], 46l
This theory has motivated a significant body of work studying linguistic accommodation, where
conversational partners tend to converge in their use of linguistic features, such as style, syntax,
and sentiment [47, 48]. Many research have successfully leveraged metrics of accommodation to
analyze social dynamics in various contexts [49, 50]. For instance, Danescu-Niculescu-Mizil et
al. [51]] demonstrated that power imbalances in conversations are reflected in asymmetric linguistic
coordination patterns. Studies on online discussions have shown that interaction dynamics, including
accommodation, are predictive of persuasion and argument outcomes, and can help in detecting
disputes [52]]. These works typically quantify accommodation using correlation-based metrics or
measures of distributional similarity between speakers’ features over a conversation.

3 Motivation: Asymmetric Influence in H-C Dialogues

By comparing H-H dialogues with H-C dia-

logues, we observe that chatbots exert asym- Sentiment Influence Dynamics
metric conversational influence. Human con- sl P = 0.05 threshold

. . Userl -> User2 (GCT p-value)
versation is not merely a sequence of contextu- User2 > Userl (GCT p-value)

ally relevant utterances [S1} 153} 154]. It is a rich,
dynamic process characterized by mutual influ-
ence, adaptation, and intricate feedback loops
operating over time [S55 49]. This reciprocity
shapes phenomena such as sentiment contagion,
topic negotiation, and behavioral entrainment,
reflecting an underlying dynamic coupling be-
tween participants [45] [50]. While an LLM oo 003

might react with high sensitivity and predictabil- Humar-fuman (4 HumanLLM G4
ity to user input (e.g., user sentiment strongly

and immediately driving LLM sentiment), it
may exert significantly less reciprocal influence
in dynamically shaping the user’s subsequent
state or cognitive framing compared to a human
partner [47, 56, (52].
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Figure 1: The figure demonstrates that H-H di-
alogues show significant bidirectional sentiment
influences, whereas H-C dialogues feature a pro-
nounced asymmetric pattern.

GCT offers a powerful statistical framework for

examining the predictive relationships between time series derived from dialogue features (e.g.,
sentiment scores and utterance lengths). It allows us to test whether the history of one participant’s
conversational features (e.g., the User’s sentiment time series) significantly improves the prediction
of the other participant’s future features. As shown in Figure [T} we apply GCT to examine senti-
ment dynamics within 200 dialogues from the DailyDialog dataset. In H-H interactions, there is
statistically significant mutual influence. Userl significantly affects User2 (mean p-value = 0.04),
and User2 reciprocates with a stronger influence on Userl (mean p-value = 0.01). In contrast, H-C
dialogues exhibit a clear asymmetric pattern. GCT p-values indicate that only the human user exerts a
statistically significant influence on the LLM’s sentiment (mean p-value = 0.03), whereas the LLM’s
sentiment does not significantly influence the user (mean p-value = 0.45). These distinct sentiment
causality structures highlight the contrast between statistically significant bidirectional influence in
H-H dialogues and the unidirectional, user-driven dominance observed in H-C interactions.

4 Methodology

In this section, we detail a method named ChatbotID for human versus LLM dialogue classification
by fine-tuning an LLM using Multi-Task Learning. Our approach combines the LLM’s semantic rep-
resentations with GCT metrics derived from interaction dynamics. ChatbotID leverages interaction
dynamics and semantic-focused attribution to enhance classification accuracy.
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Figure 2: ChatbotID is purpose-built for the detection and analysis of dialogue scenarios. The
Semantic Loss L associated with the Semantic Predictor focuses on capturing the deep semantic
understanding of dialogues. The Detection Loss (L4ss) drives the model to perform classification
tasks, categorizing dialogues into predefined classes. The GCT Interaction Loss (L) ensures the
model learns and leverages the interactional features and patterns extracted by the GCT module.

4.1 Problem Formulation

Let D = {(C%, 4} | be a dataset comprising N dialogues. Each dialogue C') consists of a
sequence of user (U) and agent (A) utterances, paired with a label (*) € {0, 1} denoting the agent’s
type (0: Human, 1: Chatbot). The core problem is to learn a parameterized function fy : C' — [0, 1],
where 6 represents the model parameters. This function aims to estimate the posterior probability
P(y = 1|C) for any given dialogue C. The parameter ¢ is optimized to minimize loss function
reflecting the classification error on the dataset D.

4.2 Feature Engineering

Dialogue Time Series Extraction. For each dialogue C'*) comprising 7} interaction points (e.g.,
turns, utterances per participant), we extract features for both the user and agent at each point
t € {1,...,T;}. The pre-defined feature set Q includes basic metrics (e.g., utterance length, topic
embedding components) along with semantic features(e.g., sentiment scores, topic embedding
components), extracted using LLMs. Let the feature extraction function be £. This yields paired
numerical time series:
' T FINT:
£:C0 (‘{X((th) Htas {X,(Afz}tzl) )]
’ ’ feQ

where X [(]f t) € Rand X 1(4’0 2 € R are the values for feature f at time ¢.
Granger Causality Feature Vector Calculation. The GCT is employed to assess predictive causality
between selected pairs of user and agent feature time series. We perform a specific test to determine
whether time series X; Granger-causes time series Y;, employing a lag order of p. X; and Y; represent

specific feature sequences, e.g. X((Jfl)(t) or ngl)(t) for X;, and X((]fQ)(t) or Xj(f)(t) for Y;. To
conduct this test, two linear autoregressive models are estimated using Ordinary Least Squares over
the effective sample period t = p + 1, ...,7;. This period corresponds to an effective sample size of
n="1T;, —p.

The baseline is the restricted model, where Y; is modeled solely based on its own p past values:

p
Yi=ao+ > axYik+ery ()
k=1



The fit of this model is measured by its Sum of Squared Residuals, SSRr = ZtT;p 167, This

is contrasted with the unrestricted model, which incorporates p lagged values of X, as potential
predictors for Y;:

p p
Yi=Bo+ Y BeYik+ Y %Xt j+evne 3)

k=1 j=1

The corresponding Sum of Squared Residuals for this model is SSRyr = Zthp 41 e rt A
statistically significant reduction from S'SRp to SS Ry g indicates that X, Granger-causes Y;. Such
predictive relationships within the dialogue’s interaction dynamics, captured by comparing these
models, offer valuable signals for distinguishing between human and chatbot.

The null hypothesis Hy : 71 = 72 = --- = 7, = 0 posits that X does not Granger-cause Y.
kur = 2p + 1 is the number of parameters in the unrestricted model. This hypothesis is tested using
the F-statistic:
F— (SSRR—SSRUR)/]? _ (SSRR—SSRUR>/p (4)
(SSRyr)/(n—kur) (SSRugr)/(n—2p—1)

Under Hy, the statistic follows an F-distribution, F' ~ F(p,n — 2p — 1). The p-value is computed as:

p—value = P(Fp,n—Qp—l > F|H0) (5)

We specify the pairs of conversational features to compare (e.g., user sentiment vs. agent reply length),
the direction of potential causality being tested (User-to-Agent or Agent-to-User), and the relevant
time lags p. Subsequently, for each dialogue C*) in our dataset, this entire suite of pre-defined tests
is performed; let dgcr be the total number of such tests. Each test k (k = 1,...,dgcr) yields

a statistical outcome g,(:) for dialogue C'*), typically a p-value reflecting the significance of that
specific predictive relationship. Finally, all these dgcr outcomes about dialogue C'(9) are gathered

and concatenated into a single numerical list, forming the dialogue’s GCT feature vector:

VC(J?JT = [g§1)7g§l), s 79((;G)CT] (6)

4.3 Classification Loss

The classification loss is employed to enable the model to distinguish between human users and
LLMs within a conversational environment. For a given dialogue input p, associated with its true
class label y and predicted probability distribution ¢, K = 2, corresponds to the two possible sources
of the dialogue: human and LLMs-generated, and the cross-entropy loss is formulated as:

K
Lclass = - Z Yk IOg Qk (7)
k=1

4.4 Sesmantic-Focused Attribution Supervision

To enhance the model’s understanding of semantic differences between H-H and H-C dialogues,
particularly the quality of LLMs contributions in H-C contexts, we introduce a supervision mechanism
based on semantic-focused attributions. These attributions are identified by querying an LLM to
detect specific undesirable characteristics or failures within a given dialogue. The LLM is prompted
using the following method to generate these semantic attributions:

LetC = {cgoal, Cfacts Cecommon clogic} be the predefined set of pragmatic deficiencies. For each dialogue
Dj in our training set, the LLM’s output is parsed to generate a binary deficiency attribution vector
a; = [aj,goah @ fact> Qj,common aj7]0gic]. Each element a; ;, (Where k corresponds to a deficiency in C')
is defined as:

U 1, if dialogue D; is identified as exhibiting deficiency cy,
7% 70, otherwise.

()



Input Dialogue: [Dialogue Text]

Contextual Focus (if identifiable as potential H-C): Contributions from the suspected
chatbot.

Question: Which of the following pragmatic semantic deficiencies does this dialogue exhibit,
particularly concerning the contextual focus if applicable?

1. Goal Obfuscation/Failure (cgoa): The primary user’s goals seem unmet, poorly
addressed, or significantly side-tracked.

2. Factual Inconsistency (cg,t): The dialogue contains statements that are demonstra-
bly false, misleading, or internally inconsistent with established facts.

3. Commonsense Violation (ccommon): The dialogue includes statements, reasoning,
or assumptions that clearly contradict basic, everyday commonsense.

4. Logical Incoherence (cjogic): The dialogue displays internal contradictions in rea-
soning, significant logical fallacies, or a breakdown in coherent argumentation.

If multiple deficiencies are applicable, provide a comma-separated list of the corresponding
labels (e.g., "Cgoal, Ccommon")- Answer "None" if none of the options apply.
\ J

To guide the main classification model using these semantic deficiency attributions, we train it
to jointly predict these attributes. This is achieved by defining an auxiliary semantic deficiency
Attribution loss (Lsg). Assumlng the model produces a corresponding vector of predicted probabilities
aj = [@j,goals 4j fact @ commons 4j logic] for each deficiency type for dialogue D, the loss is:

—ZZBCE (s jk) ©)

j=1keC

where Np is the total number of dialogues in the training batch, k iterates over the set of deficiencies
C, and BCE denotes the binary cross-entropy loss.

4.5 Causal Interaction Dynamics Supervision using GCT

In our motivation phase, we discover a pattern indicating that the presence or absence of statistically
significant causal links, as reflected by the corresponding p-values, serves as a distinguishing feature
between H-H and H-C interactions. To leverage this, we transform the GCT p-values into binary
indicators of significant causal effects. Let oy be a pre-defined significance level (e.g., 0.05). For

each dialogue C'¥) and each GCT test outcome g,(f), we define a binary causality indicator b,(j)

i) — 1, if g,(f) < oyig (indicating a significant causal link), (10)
k 0, otherwise (no significant causal link detected).

This process yields a binary GCT vector b(*) = [bgi)7 bg), e b

] for each dialogue C.

eletely

Our main model is then tasked with jointly predicting these binary significance indicators. This is
achieved by incorporating an auxiliary GCT Significance Loss (Lg). Assuming the model produces a
corresponding vector of predicted probabilities b(®) = [b{") ), .. I;SC)JCT] for dialogue C'), the
loss is defined as:

1 Np dcer o
Lo=-2 > BCE(GH) (an
i=1 k=1

where dg o is the number of GCT tests performed, and BCE is the binary cross-entropy loss.

4.6 Final Objective Function

This Lg is added to the overall loss function, alongside the primary classification loss Lj,ss and
semantic-focused attribution Lg:

L= Lclass + LS + LG (12)



5 Experiments

In this section, we present the experimental setup, detailing the datasets used and the implementation
of our methods. We evaluate the performance across multiple datasets using metrics (e.g., accuracy,
Fl1-score) with state-of-the-art methods.

5.1 Experimental Setup

Datasets: To evaluate our proposed methodology across different conversational settings, we utilize
four prominent English-language dialogue datasets: two focused on open-domain chit-chat (e.g.,
DailyDialog [57]], PersonaChat [58]]) and two on task-oriented interactions (e.g., MultiWOZ [59]],
Taskmaster-1 [[60]). These datasets serve as the foundation for constructing both our H-H and
H-C dialogue corpora, ensuring comparability in style and domain. The H-H corpus used in our
experiments is formed by selecting dialogues directly from the aforementioned datasets. Dialogues
below a pre-defined length are filtered out to ensure suitability for Granger Causality analysis. The
H-C corpus is a semi-synthetic dataset derived from the H-H corpus to ensure high comparability
in user input and conversational context. The construction involves selecting H-H dialogues, each
comprising user turns and original human agent turns. For every dialogue, we identify the human
agent’s utterances and then prompt an LLM (e.g., Llama-2-Chat 70B or GPT-4) to generate new
responses for those specific turns.

Metrics. To rigorously evaluate our method’s ability to distinguish between H-H and H-C dialogues.
We employ three primary performance metrics on a held-out test set: Accuracy (ACC), Area Under
the Receiver Operating Characteristic Curve (AUROC), and the F1-score (F1).

Baselines. We conduct a rigorous comparative analysis of our proposed methodology against several
state-of-the-art methods for detecting LLM-generated text. DetectGPT [12] identifies synthetic text by
scrutinizing the local curvature of a source language model’s probability function around a given text
passage. Fast-DetectGPT [[13] detects LLMs-generated text by evaluating the conditional probability
curvatures of sampled token alternatives. T5-Sentinel [[61] introduces a supervised learning approach
that reframes LLM-generated text detection as a token prediction task, using labeled data to fine-tune
T5 models to directly predict text sources. COCO [62] employs contrastive learning to enhance
detection by learning discriminative representations that separate LLM-generated from human-
authored texts in the embedding space. ROBERTa-MPU [63] is a standard RoBERTa model fine-tuned
specifically for LLM-generated text detection. OUTFOX [[7] enhances the robustness of detecting
LLMs-generated texts by implementing iterative in-context learning between the detector and an
attacker that generates adversarial examples. LLMDet [64] employs surrogate perplexity calculations
specifically tailored to individual LLMs. Shifting to a structural representation. SeqXGPT [11]
transforms sentences into waveforms, utilizing convolutional networks and self-attention mechanisms
for detection at the sentence level. GECScore [65] provides a robust metric for discerning LLM
origins by evaluating text similarity through the lens of a grammar error correction model.

General-purpose LLMs. In our study, we employ a selection of representative general-purpose
LLMs as analytical benchmarks, leveraging their inherent capability for zero-shot veracity prediction.
This approach facilitates the direct assessment of truthfulness without necessitating specialized
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0.846

0.787
0.80 0.80 0.773

0743 0.748

] 0.692
2070 0.680 0.684

E 0648
2065 0625 2065 0.621 0620
059 0.603

s X
& M
o o

o
.

O o N I CANIRC SR L o

5 o R = e « 3 ¥ o

© o o o T o
o o

Figure 3: The visual data presented in the graphs clearly indicates that our methodology excels in
detection accuracy and F1-score on the Taskmaster-1 dataset.



fine-tuning procedures. The LLMs selected for analysis include LLaMA-7B [66], LLaMA-13B,
GPT-3.5-turbo, GPT-4, Gemma [67], Qwen-2 [68]], and Deepseek-R1 [69]]. These models are utilized
as standards to systematically evaluate both the capabilities and limitations of LLMs in performing
zero-shot detection of content-generated tasks.

Implementation Details. We implement our proposed methodology using the Hugging Face Trans-
formers library. The model is fine-tuned on the constructed H-H and H-M datasets, with a batch
size of 16 and a learning rate of 2e-5. The GCT analysis is performed using the statsmodels library,
with a maximum lag of 5 for Granger causality tests. The model is trained for 20 epochs, with early
stopping based on validation loss. The model is evaluated on a separate test set, and the results were
averaged over 5 runs to account for variability in training. The model is trained to utilize the AdamW
optimizer, incorporating weight decay to enhance regularization[70, [71} [72].

5.2 Performance evaluation

Table 1: Experimental results on the DailyDialog, PersonaChat, and MultiWOZ datasets. The best
number is highlighted in bold, while the second best one is underlined. Our approach consistently
outperforms other methods, achieving the highest accuracy in each dataset.

Method | DailyDialog | PersonaChat | MultiwOZ

\ ACC F1 \ ACC F1 \ ACC F1
DetectGPT (ICML 2023) 60.36 137 66.17 042 | 6542220 6524 +196 | 64.59 +519 62.36 +1.23
COCO (EMNLP 2023) 7736 081 77.30+134 | 7856 +1.74 77.64 £2.13 | 78.86 +0.85 75.41 354
LLMDet (EMNLP 2023) 64.77 225 7028 £0.18 | 67.22 x056 66.00 +0.61 | 67.24 +188 67.27 +1.97

SeqXGPT (EMNLP 2023) 65.63 257 66.82+373 | 69.54 +130 65.02+206 | 67.14 156 67.05 0.19
Fast-DetectGPT (ICLR 2024) | 62.71 265 6228 132 | 63.43 302 64.17 +1.71 | 59.86 +037 62.46 +1.79
T5-Sentinel (EMNLP 2024) 76.68 239  74.63 £3.15 | 72.84 +205 73.77 061 | 84.52 +211  T77.47 £1.08
RoBERTa-MPU (ACL 2024) | 78.62 +038 81.15+096 | 82.05+275 83.35+140 | 83.24 +153 82.04 +0.24
DeTeCtive (NeurIPS 2024) 7231 +053 74.83:056 | 7595038 73.99+125 | 80.12+127 77.74 x031

OUTFOX (AAAI 2024) 78.80 090 83.46+1.13 | 80.06 031 84.08 x1.06 | 82.77 x204 81.11 x0.22
GECScore (ACL 2025) 69.05 169 72.81 £1.06 | 7536 412  73.60 233 | 75.54 +332 67.55 z0.16
GPT-3.5-turbo (2023) 5742 168 59.11 2281 | 61.00+1.07 66.84 063 | 60.37 x054 59.62 +1.67
LLaMA-7B (2024) 58.17 =101 60.52 £240 | 61.61 306 58.96 +1.84 | 65.47 +1.82 59.54 +232
LLaMA-13B (2024) 60.94 £330 62.81 227 | 63.32 026 63.53 285 | 65.16+030 62.35=+1.13
GPT-4 (2024) 62.61 £393 64.56 296 | 65.28 087 62.09 +256 | 62.74 +087 58.94 +259
Gemma (2025) 63.67 276 65.19 2077 | 66.31 +186 68.35+048 | 66.99 +472 64.91 140
Qwen-2 (2025) 61.92+127 66.35:1.03 | 65502071 64.95+049 | 65.43 +284 63.97 x4.66
Deepseek-R1 (2025) 65.68 £020 67.96 147 | 66.27 260 62.25+089 | 68.03 +455 69.44 +1.24
ChatbotID (Ours) 82.77 z056 84.74+272 | 82.23 +129 87.01 2292 | 87.38 +4.18 84.38 =091

Accuracy. As shown in Table [T} ChatbotID model consistently achieves the highest accuracy
across multiple diverse dialogue datasets. For instance, on the MultiWwOZ dataset, ChatbotID’s
accuracy reaches 87.38%, which is notably higher than other leading specialized detectors such as
RoBERTa-MPU (83.24%) and T5-Sentinel (84.52%). In contrast to detection methods that primarily
rely on static text features or stylistic analysis (e.g., DetectGPT, COCO, LLMDet), ChatbotID gains
its performance edge by analyzing the dynamic interactive features within a dialogue, particularly by
employing the GCT to capture predictive relationships in attributes like sentiment. The GCT provides
a statistically grounded way to quantify influence and predictive causality within a dialogue. This is a
more targeted approach than relying solely on learned representations from LLMs, which might not
inherently focus on these subtle interactional cues crucial for distinguishing nuanced LLM behavior
from human behavior.

F1-Score. As shown in Figure [3| ChatbotID records an Fl-score of 0.828. This is considerably
higher than the other methods, including OUTFOX (0.773), RoBERTa-MPU (0.748), and COCO
(0.736). The general-purpose LLM, Gemma, shows a much lower F1-score of 0.620. ChatbotID
provides a statistically grounded way to quantify influence and predictive causality within a dialogue.
This is a more targeted approach than relying solely on learned representations from large pre-trained
models, which might not inherently focus on these subtle interactional cues crucial for distinguishing
nuanced LLM behavior from human behavior.

AUROC. As shown in Figure 4| across four distinct dialogue datasets, ChatbotID consistently
achieves the highest AUROC scores when compared against seven other text detection models.
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Figure 4: The figure displays ROC curves illustrating the comparative performance of seven different
text detection models across various datasets.

Specifically, ChatbotID attains an AUROC of 86.10% on DailyDialog, a remarkable 90.16% on
MultiWOZ, 86.69% on PersonaChat, and 88.55% on Taskmaster-1. This consistent outperformance
across varies conversational contexts, from open-ended chit-chat to structured task completion, un-
derscores a key advantage of our approach. Unlike methods that rely predominantly on static textual
features or stylistic anomalies, ChatbotID incorporates an analysis of interaction dynamics. Em-
ploying Granger Causality tests quantifies the predictive influence between conversational attributes
of the user and the agent over time.

Table 2: On various LLM backbones, ChatbotID demonstrates consistent improvements in accuracy.

Method DailyDialog PersonaChat MultiWOZ Taskmaster-1
LLaMA-7B 61.74 £1.38 59.05 +£3.17 58.32 +334 55.44 +1.65
ChatbotID-LLaMA-7B 70.26 +0.64 72.87 <262 72.47 +1.28 66.48 +1.46
Gemma 63.20 +4.94 57.62 +1.08 63.59 +3.21 59.17 £3.15
ChatbotID-Gemma 69.12 +0.69 71.91 134 74.75 + 464 76.25 +1.43
Qwen-2 60.80 +2.11 63.59 +0.66 61.70 +0.01 63.04 £2.68
ChatbotID-Qwen-2 79.99 +3.50 82.56 +1.59 89.63 0.01 85.34 +2.48
Deepseek-R1 60.37 +2.16 65.29 +1.24 61.65 +2.48 63.50 +2.21

ChatbotID-Deepseek-R1  82.07 = 0.66 84.35 +1.25 85.77 + 158 84.15 +1.28

Different LLMs backbones. Table 2] systematically demonstrates that integrating the ChatbotID
framework leads to substantial and consistent accuracy improvements when applied to a variety
of LLM backbones for the task of distinguishing human-LLM dialogues. For LLaMA-7B, the
introduction of ChatbotID elevates accuracy from a baseline of 61.74% to 70.26% on DailyDialog,
from 59.05% to 72.87% on PersonaChat. When applied to Qwen-2, ChatbotID shows particularly
striking gains, boosting accuracy on Taskmaster-1 from 63.04% to 85.34%. The magnitude of these
improvements, often exceeding 10-20 percentage points (e.g., Qwen-2 on MultiwOZ shows an



increase of nearly 28 percentage points), highlights the significant value added by ChatbotID. This
advantage stems from ChatbotID’s use of GCT to extract and integrate distinctive interactional dy-
namics, combined with LLM-based semantic understanding through a structured multi-task learning
framework, enabling more nuanced detection.

Table 3: Ablation study: This table illustrates the individual and combined contributions of the
ChatbotID’s distinct loss components to its overall accuracy in distinguishing H-C dialogues

Method DailyDialog PersonaChat MultiwOZ Taskmaster-1
Lejass 63.19 £ 163 67.86 £1.97 69.16 +0.63 66.18 +4.93
Lejass + Ls 67.58 £2.45 72.73 £0.79 7471 £1.08 74.35 £1.59
Lejass + La 70.99 +3.88 78.70 855 77.70 +£2.49 80.38 +1.29

Lejoss + La+ Lg 80.23 +3.82 83.63 +1.74 87.01 x0.64 83.37 x2.70

Ablation study. As shown in Table[3] the baseline model, relying solely on the classification loss
L 455, establishes a foundational level of performance across datasets. The introduction of the
semantic-focused attribution supervision Lg yields consistent accuracy improvements (e.g., from
63.19% to 67.58% on DailyDialog) demonstrating the value of guiding the model to recognize
specific semantic deficiencies often present in chatbots. More profoundly, the integration of the
causal interaction dynamics supervision using Lg provides a more substantial boost in accuracy (e.g.,
from 63.19% to 70.99% on DailyDialog when combined with L.;,ss. The semantic deficiency attri-
bution loss Lg helps the model identify common LLM pitfalls, further refining its classification and
potentially reducing false negatives where an LLM produces superficially coherent but pragmatically
flawed dialogue.

Table 4: Performance across dialogue turn ranges on DailyDialog, PersonaChat, and MultiWOZ.

Turns | DailyDialog \ PersonaChat | MultiwoZ
| ACC FI | ACC F1 | ACC F1

1-5 60.07 £038 62.39 £098 | 61.29 +197 61.86 +051 | 60.89 £081 63.26 + 1.11
6-10 75.88 060 78.12 £148 | 76.90 £336 75.96 +027 | 7896 +150 78.34 +0.48
10-15 | 83.41 +066 82.83 +193 | 84.96 +054 82.44 +083 | 84.86 £3.08 83.72 +253
15+ 86.82 +£033 8549 +145 | 86.95 +124 8391 +1.95 | 89.17 £275 84.77 £0.29

Dialogue Turns. In the initial stages of the dialogues, from 1-5 turns up to 10-15 turns, the model
exhibits a dramatic and consistent improvement in both accuracy and F1-score across all three
datasets. For instance, on the MultiWOZ dataset, accuracy skyrockets from 60.89% in the 1-5 turn
bucket to 84.86% in the 10-15 turn bucket. In very short dialogues, there is insufficient interaction
history to establish a stable pattern of influence. As turns accumulate, the cause-and-effect chain
between speakers becomes more robust, allowing ChatbotID to distinguish H-H interaction and H-C
interaction more reliably.

6 Conclusion

This work introduces a novel framework named ChatbotID that effectively distinguishes between H-
H and H-C dialogues by analysing interactional dynamics, particularly sentiment influence, using the
GCT. ChatbotID demonstrates superior performance over existing methods across various datasets
and LLM backbones.
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1. Claims
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paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

e The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are thoroughly discussed in Appendix A.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

 The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

« If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

 All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The dataset and code are in https://anonymous.4open.science/r/
Distinguishing-LLMs-by-Analyzing-Dialogue-Dynamics-with-Granger-Causality-56E4/|
This direct provision of code and the newly constructed dataset is the strongest factor

supporting reproducibility. Other researchers can directly access these resources to replicate

the experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The dataset and code are in https://anonymous.4open.science/r/Distinguishing-
LLMs-by-Analyzing-Dialogue-Dynamics-with-Granger-Causality-56E4/. This direct pro-
vision of code and the newly constructed dataset is the strongest factor supporting repro-
ducibility. Other researchers can directly access these resources to replicate the experiments.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

¢ At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

¢ Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The dataset and code are in https://anonymous.4open.science/r/Distinguishing-
LLMs-by-Analyzing-Dialogue-Dynamics-with-Granger-Causality-56E4/. All the exper-
imental settings can be found in the code. What’s more, other settings are thoroughly
discussed in Appendix B.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: All experiments reported in the paper include properly defined error bars.
Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Experiments compute resources are thoroughly discussed in Appendix B.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

« If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Impacts are thoroughly discussed in Appendix C.

Guidelines:
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The answer NA means that there is no societal impact of the work performed.

If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

The answer NA means that the paper poses no such risks.

Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: This work demonstrates a commitment to properly crediting existing assets.

Guidelines:

The answer NA means that the paper does not use existing assets.
The authors should cite the original paper that produced the code package or dataset.

The authors should state which version of the asset is used and, if possible, include a
URL.

The name of the license (e.g., CC-BY 4.0) should be included for each asset.

For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide detailed code and datasets in
https://anonymous.4open.science/r/Distinguishing-LLMs-by-Analyzing-Dialogue-
Dynamics-with-Granger-Causality-56E4/.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

e The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Limitations

Noise-free Setting: The experiments are conducted on clean, curated datasets without considering
real-world noise. These factors may significantly impact the robustness of detection models when
deployed in practical settings.

Well-specified Model: We assume that pre-trained language models used in our benchmarking
are well-suited for the detection task. However, these models were originally trained for language
generation rather than detection, and suboptimal fine-tuning or domain mismatch may limit their
effectiveness in distinguishing H-H and H-C dialogue.

Asymptotic Approximations: Some of the statistical analysis techniques employed rely on asymp-
totic assumptions that require large sample sizes to achieve accurate estimation. In practice, especially
with limited or imbalanced datasets, these approximations may not hold, potentially affecting the
validity of the results.

Only Applicability to Two-Party Dialogues: Our current methodology and experimental validation
are exclusively focused on two-party dialogues. While applying Granger Causality to multi-party
(N > 2) interactions is theoretically feasible, it introduces significant complexity. Specifically, the
number of potential causal relationships to analyze grows quadratically from 2 to N % (N — 1),
making the current approach computationally challenging. Future work is required to extend our
framework to model the more complex dynamics inherent in multi-party conversations, such as
coalitions or mediation effects.

B Implementation Details

B.1 Hardware devices

All our experiments were meticulously conducted on a high-performance computing platform running
Ubuntu. The platform is powered by an Intel(R) Xeon(R) Platinum 8176 CPU @ 2.10GHz, delivering
robust computational capabilities. The system is equipped with a substantial 503 GB of memory,
ensuring efficient data processing and storage. Additionally, to further enhance computational power,
we utilized four NVIDIA Corporation GA102GL RTX A6000 GPUs. These GPUs provided the
necessary parallel processing power to handle the intensive computational tasks associated with our
research. The stability and broad support of the Ubuntu operating system allowed us to fully leverage
the hardware’s performance, ensuring the smooth execution of experiments and the reliability of our
results.

B.2 Datasets

* DailyDialog: This dataset contains high-quality, multi-turn dialogues reflecting everyday
human communication. The conversations cover various topics and exhibit natural lan-
guage usage. We utilized dialogues directly from this corpus as part of our H-H chit-chat
data, selecting conversations exceeding a minimum turn length threshold suitable for GCT
analysis.

PersonaChat: This dataset consists of chit-chat dialogues where participants are assigned
specific persona profiles that they are expected to condition their conversation on. It
encourages engaging and consistent dialogue. Similar to DailyDialog, naturally occurring
dialogues between human participants in this dataset were included in our H-H chit-chat
corpus.

* MultiWOZ : A large-scale, multi-domain dataset for task-oriented dialogues, covering
domains like restaurants, hotels, transportation, etc. It is a standard benchmark in dialogue
state tracking and end-to-end dialogue systems. We used the human-human Wizard-of-
Oz collected dialogues within this dataset, where one human plays the user and another
simulates a constrained system based on database information, as representative examples
for our H-H task-oriented corpus.

» Taskmaster-1: This dataset contains goal-oriented dialogues, covering tasks such as ordering
pizza, creating auto repair appointments, and booking flights. It includes both spoken and
written conversations collected via a Wizard-of-Oz setup. We specifically used the written
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dialogues where both the ’user’ and the *wizard’ (simulating the system) were human
participants to form part of our H-H task-oriented corpus.

H-H Corpus: The Human-Human (H-H) corpus used in our experiments was formed by selecting
dialogues directly from the aforementioned datasets (DailyDialog, PersonaChat, the human-controlled
segments of MultiWOZ, and Taskmaster-1 WoZ data). Dialogues below a pre-defined length (e.g., 20
turns) were filtered out to ensure suitability for Granger Causality analysis.

H-M Corpus Construction: The Human-LLM (H-M) corpus was constructed semi-synthetically,
derived directly from the dialogues selected for the H-H corpus to ensure maximal compa-
rability of user input and conversational context. For each selected H-H dialogue C'*) =
{(Uy, A1), (Ua, Ay), ...} (Where Uy denotes a user utterance and A; denotes the original human
agent’s utterance at turn t), we identified all turns originally spoken by the human agent A. We
then employed a specific pre-trained Large Language Model (LLM-X, e.g., specify model like
Llama-2-Chat 70B or GPT-4) to generate alternative responses for these turns.

Specifically, for each agent turn A, the dialogue history preceding it, typically ending with
the user’s utterance U;, was provided as context to LLM-X. Let the history be H; =
(U1, A}, Uz, Ay, ..., AL, Uy) where Aj, are the previously generated LLM responses (or origi-
nal Ay for k = 1 if the agent starts). The LLM was prompted to generate a suitable response A}
given this history:

Al = LLM-X(H,) (13)

This generated response A} then replaced the original human response A; in the dialogue sequence.
This process was repeated for all agent turns in the dialogue, resulting in a new H-M dialogue
C') = {(Uy, A}), (Uy, Ab), ... }. Note that the user utterances U; remain identical to those in the
original H-H dialogue C'").

For dialogues derived from PersonaChat, the corresponding persona information was included in the
prompt for LLM-X to encourage consistent persona adoption. For task-oriented dialogues derived
from MultiWOZ and Taskmaster-1, relevant task goals or simulated dialogue states (if available
and applicable) were potentially included in the prompt history H; to guide the LLM towards
task completion, mimicking the information available to the original human agent/wizard. This
construction method yields an H-M corpus where the user’s side of the conversation is natural human
language drawn from established datasets, while the agent’s side is generated by the target LLM
conditioned on that human input, allowing for a controlled comparison of response patterns and
interaction dynamics against the original H-H dialogues. Similar length filtering was applied to the
resulting H-M dialogues.

B.3 Metrics

To ensure the accuracy and reliability of the results, each experiment was conducted in triplicate,
and the standard deviations were calculated. This approach effectively assesses the stability and
consistency of the data, thereby enhancing the credibility of our conclusions. To assess the detector’s
capability to differentiate between texts generated by large language models (LLMs) and those written
by humans, we utilize Accuracy (A) and the Area Under the Receiver Operating Characteristic Curve
(AUROC) as primary performance metrics. Additionally, we consider other metrics, such as F1
scores (F1) and Recall (R), to provide a more comprehensive evaluation.

B TP +TN i
" TP+ TN+ FP+FN
TP P xR
e F1 =2 1
R=T7p T FN “PF+R (15

True Positives (1'P) refer to H-H dialogue correctly identified by the model. True Negatives (T'N)
represent H-C dialogue accurately classified as H-c dialogue. False Positives (F'P) denote H-C
dialogue incorrectly labeled H-H dialogue, while False Negatives (F'N) correspond to H-H dialogue
the model fails to identify correctly.
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C Performance evaluation
C.1 Cross-Domain Evaluation

Table 5: Cross-domain evaluation results. All methods were trained exclusively on the DailyDialog
dataset and evaluated on the entirely unseen Taskmaster-1, PersonaChat, and MultiWOZ test sets.
The best number is highlighted in bold, while the second best one is underlined. Our approach
consistently outperforms other methods.

M | Taskmaster-1 | PersonaChat | MultiwOZ
ethod

| ACC F1 | ACC F1 | ACC F1
DetectGPT (ICML 2023) 59.12 082 55.66 £1.54 | 60.70 098 59.39 +131 | 61.30 +369 61.78 275
COCO (EMNLP 2023) 66.80 070  68.29 +2.16 | 69.56 +041 65.58 £093 | 65.67 +1.36 68.88 £246
LLMDet (EMNLP 2023) 60.13 +1.14  64.83+237 | 62.13 133 61.81 2057 | 6343120 62.96=+1.46

SeqXGPT (EMNLP 2023) 59.75 091  64.66 099 | 58.48 +1.56 60.58 +1.77 | 61.00 122 61.18 x0.77
Fast-DetectGPT (ICLR 2024) | 60.93 +1.96 60.66 +1.64 | 63.02 +264 62.05 =110 | 64.01 x068 61.28 £0.59
T5-Sentinel (EMNLP 2024) 69.24 131 70.07 £0.16 | 74.95 x042 72.41 +1.45 | 74.90 x094 71.67 257
RoBERTa-MPU (ACL 2024) | 69.35 <093 74.15+056 | 73.51 129 72151230 | 70.99 +482 74.79 +0.96
DeTeCtive (NeurIPS 2024) 67.85+045 70.69:158 | 71.46 055 T71.98 +1.05 | 71.87 +130 73.40 +4.89

OUTFOX (AAAI 2024) 76.39 188 78.88 +072 | 72.29 101  78.10+3.07 | 78.64 +087 76.70 +1.73
GFCScore (ACL 2025) 67.73 197 71.12+038 | 73.85+199 73.98 022 | 71.82+320 65.30 120
GPT-3.5-turbo (2023) 60.72 173 59.28 095 | 59.38 +0.14 61.14 £1.09 | 63.07+120 60.18 +1.88
LLaMA-7B (2024) 59.74 123 58.85+1.17 | 60.54 +1.76 60.36 +1.56 | 61.76 078 58.05 +2.14
LLaMA-13B (2024) 60.94 £330 62.81 £227 | 63.32+026 63.53+285 | 65.16 030 62.35=+1.13
GPT-4 (2024) 58.90 231 64.61 164 | 6423 +125 59.87 2060 | 67.70 2043  63.29 +0.98
Gemma (2025) 62.26 014 66.68 £1.01 | 66.87 +1.00 6298 +370 | 67.98 076 62.12 +1.51
Qwen-2 (2025) 59.39+071 61.67 £243 | 64.81 005 61.78 +362 | 64.98 090 62.67 +1.05
Deepseek-R1 (2025) 6329199 64.73£1.69 | 6522223 66.46 +1.84 | 66.27 x0.12 64.62 +1.06
ChatbotID (Ours) 80.59 +1.18 81.96 230 | 83.84 138 84.72:219 | 82.28 :062 83.40 +0.45

To test for robustness against domain shift, we performed a cross-domain evaluation. We trained
ChatbotID and all baseline models exclusively on the DailyDialog dataset and evaluated their
performance on the entirely unseen Taskmaster-1, PersonaChat, and MultiWOZ test sets. General-
purpose LLMs (e.g. GPT-3.5-turbo, LLaMA-7B, LLaMA-7B, LLaMA-13B, Gemma, etc.) adopt a
zero-shot detection approach. The results of our cross-domain evaluation demonstrate the robustness
of our approach. While all methods were trained exclusively on DailyDialog, ChatbotID maintains a
high F1-score of over 83% across all datasets. This performance represents a substantial margin of
5-20% F1 points over all baseline methods.

C.2 Zero-Shot Evaluation on WildChat dataset

Table 6: Experimental results on the WildChat dataset.

Method WildChat ACC
DetcctGPT (ICML 2023) 58.04 £ 2.62
COCO (EMNLP 2023) 64.76 £ 0.37
LLMDet (EMNLP 2023) 69.67 + 0.90
SeqXGPT (EMNLP 2023) 60.19 £ 1.05

Fast-DetectGPT (ICLR 2024) 62.19 = 1.05
T5-Sentinel (EMNLP 2024) 68.03 + 1.24
RoBERTa-MPU (ACL 2024) 67.68 +£2.97

DeTeCtive (NeurIPS 2024) 67.85 £0.45
OUTFOX (AAAI2024) 78.44 + 0.60
GECScore (ACL 2025) 68.44 + 0.60
ChatbotID (Ours) 79.12 £1.53

To evaluate our model’s performance on naturally occurring H-C dialogues, we tested our model
in a zero-shot setting on the WildChat dataset. ChatbotID achieves the highest accuracy (79.12%)
among all methods, outperforming even the most competitive baselines like OUTFOX. This result
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demonstrates that the unidirectional influence signal captured by ChatbotID is not merely an artifact
of our semi-synthetic data generation process. Instead, it is a genuine and detectable characteristic
present in real-world human-LLM interactions.

C.3 Inference Complexity Comparison

Table 7: Inference Complexity Comparison.

Method Inference Complexity
DetcctGPT (ICML 2023) O(n)
COCO (EMNLP 2023) o(1)
LLMDet (EMNLP 2023) O(n)
SeqXGPT (EMNLP 2023) o(1)
Fast-DetectGPT (ICLR 2024) O(n)
T5-Sentinel (EMNLP 2024)  O(n)
RoBERTa-MPU (ACL 2024) O(1)
DeTeCtive (NeurIPS 2024) O(1)
OUTFOX (AAAI 2024) O(n)
GECScore (ACL 2025) O(n)
ChatbotID (Ours) o(1)

In the training phase, we acknowledge that our proposed method, ChatbotID, has a higher computa-
tional overhead compared to some lightweight detection approaches. The computational complexity is
primarily concentrated in two stages. The calculation of GCT features requires additional processing
time. The fine-tuning process, which incorporates auxiliary losses, is slightly more complex than
a standard single-task classification setup. However, the primary advantage of ChatbotID lies in
its inference efficiency. Once trained, making a prediction is extremely fast, achieving an inference
complexity of O(1). This is because it only requires a single forward pass through the model to
make a prediction. This stands in contrast to perturbation-based approaches, such as DetectGPT,
LLMDet, and OUTFOX, which are computationally heavy at inference time. For every single
dialogue they need to evaluate, they must perform multiple forward passes through a LLM to generate
perturbations and calculate scores. This characteristic makes them prohibitively slow and expensive
for any real-time or large-scale application.

D Potential Positive Societal Impacts

Enhanced Dialogue Understanding and Interaction: By leveraging interaction dynamics and
semantic-focused attribution, this research aims to improve dialogue understanding and classification
accuracy beyond purely semantic analysis. This could lead to more effective communication tools,
such as chatbots and virtual assistants, enhancing user experience and satisfaction across various
applications.

Improved Detection of AI-Generated Text: The development of sophisticated models for detecting
machine-generated text can play a crucial role in combating misinformation and ensuring content
authenticity. In an era where LLM-generated is becoming increasingly prevalent, having reliable
methods to distinguish between human and Al-generated texts is vital for maintaining trust in digital
communications.

Promotion of Ethical Use of AI: Through advancements in identifying LLM-generated, this research
supports the ethical use of technology by helping prevent misuse and manipulation. It contributes to
the broader conversation on Al ethics and responsibility, encouraging transparency and accountability
in how Al technologies are deployed and managed.

26



	Introduction
	Related Work
	Motivation: Asymmetric Influence in H-C Dialogues
	Methodology
	Problem Formulation
	Feature Engineering
	Classification Loss
	Sesmantic-Focused Attribution Supervision
	Causal Interaction Dynamics Supervision using GCT
	Final Objective Function

	Experiments
	Experimental Setup
	Performance evaluation

	Conclusion
	Limitations
	Implementation Details
	Hardware devices
	Datasets
	Metrics

	Performance evaluation
	Cross-Domain Evaluation
	Zero-Shot Evaluation on WildChat dataset
	Inference Complexity Comparison

	Potential Positive Societal Impacts

