Under review as a conference paper at ICLR 2026

SOCIALJAX: AN EVALUATION SUITE FOR MULTI-
AGENT REINFORCEMENT LEARNING IN SEQUENTIAL
SOCIAL DILEMMAS

Anonymous authors
Paper under double-blind review

ABSTRACT

Sequential social dilemmas pose a significant challenge in the field of multi-agent
reinforcement learning (MARL), requiring environments that accurately reflect
the tension between individual and collective interests. Previous benchmarks and
environments, such as Melting Pot, provide an evaluation protocol that measures
generalization to new social partners in various test scenarios. However, running
reinforcement learning algorithms in traditional environments requires substantial
computational resources. In this paper, we introduce SocialJax, a suite of sequential
social dilemma environments and algorithms implemented in JAX. JAX is a high-
performance numerical computing library for Python that enables significant im-
provements in operational efficiency. Our experiments demonstrate that the Social-
Jax training pipeline achieves at least 50x speed-up in real-time performance com-
pared to Melting Pot’s RLIib baselines. Additionally, we validate the effectiveness
of baseline algorithms within SocialJax environments. Finally, we use Schelling
diagrams to verify the social dilemma properties of these environments, ensuring
that they accurately capture the dynamics of social dilemmas. Our code is available
athttps://anonymous.4open.science/r/SocialJax—23F3/.

1 INTRODUCTION

Solving sequential social dilemmas remains a pivotal challenge in multi-agent reinforcement learning
(MARL). Efficient and rich environments and benchmarks are crucial for enabling rigorous evaluation
and meaningful comparison of algorithms. Traditional MARL environments [Lowe et al.| (2017);
Samvelyan et al.|(2019); Bard et al.| (2020); |Carroll et al.|(2019) have overwhelmingly focused on
fully cooperative or competitive tasks. Only a handful of benchmarks, such as Prisoner’s Dilemma of
OpenSpiel |[Lanctot et al.|(2019), Stag Hunt and Chicken in PettingZoo [Terry et al.| (2021), address
social dilemmas. However, these environments rely on CPU-based parallelism, which limits their
simulation throughput and scalability, and they offer only a narrow variety of scenarios without
standardized evaluation protocols for sequential social dilemmas.

Although there are environments [Leibo et al.| (2021); |Agapiou et al.| (2022) specifically designed
for sequential social dilemmas, conducting experiments in these environments is highly challenging
due to the substantial number of environment time steps required for training. Training in such
environments demands extremely high hardware specifications (over 1000 CPUs for Melting Pot) or
a significant amount of computing time. Moreover, while the Melting Pot framework |Agapiou et al.
(2022); ILeibo et al.| (2021) includes several baseline algorithms, such as A3CMnih| (2016)), V-MPO
Song et al.| (2019), and OPRE |Vezhnevets et al.| (2020), these implementations are not publicly
available, which poses challenges for reproducibility and further development.

Recent libraries such as JAX |Bradbury et al.| (2018) facilitate efficient execution of NumPy-style
Python code on hardware accelerators(GPUs and TPUs) by automatically translating high-level
functions into optimized, parallelizable operations. In reinforcement learning(RL) research, several
approaches like PureJaxRL [Lu et al.[(2022) have been proposed to leverage JAX [Bradbury et al.
(2018)) to run environments on GPUs. Parallelizing environments on GPUs could significantly
accelerate computation. However, PureJAXRL is limited to single-agent environments and does
not support multi-agent scenarios. JaxMARL (Rutherford et al., 2023) extends JAX’s efficiency

https://anonymous.4open.science/r/SocialJax-23F3/
https://anonymous.4open.science/r/SocialJax-23F3/

Under review as a conference paper at ICLR 2026

Figure 1: The SocialJax suite contains nine multi-agent reinforcement learning environments designed
to evaluate social dilemmas. The agents of all environments are restricted to partial observability of
their surroundings through a designated observation window.

gains to MARL by providing a suite of JAX-based environments and algorithms. While JaxMARL
incorporates a limited set of social dilemma environments (e.g., Coins and STORM), it remains
primarily geared toward traditional cooperative tasks and lacks dedicated benchmarks specifically
designed for sequential social dilemmas.

In this paper, we develop a suite of environments for sequential social dilemmas based on JAX to
improve computational efficiency. We also provide JAX-based implementations of multiple MARL
algorithms and construct a complete training pipeline, significantly accelerating the training process.
Solving sequential social dilemma problems often requires a large number of time steps and diverse
evaluation environments. SocialJax addresses these challenges by offering both computationally
efficient and diverse environments. Furthermore, we validate the social dilemma properties of
each environment using Schelling diagrams. In addition, we design metrics beyond return for each
environment, enabling a more precise quantification of the cooperative and competitive behaviors of
agents. To the best of our knowledge, our work is the first evaluation framework leveraging JAX for
sequential social dilemmas. Our contributions are as follows:

Implementations of Social Dilemma Environments: We implement a diverse suite of sequential
social dilemma environments in JAX (see Figure[I)), each exhibiting mixed-incentive dynamics, and
achieve substantial improvements in environment simulation speed.

Implementation of Algorithms in JAX: We implement a series of JAX-based MARL algorithms,
including Independent PPO (IPPO) (De Witt et al.}[2020; [Rutherford et al.,[2023)) under both individual
and common reward settings, Multi-Agent PPO (MAPPO) (Yu et al., @, Social Value Orientation
(SVO) (McKee et al,[2020) and PPO using reward exchange as per the Self-interest level (PPO-RE)
(Willis et al., 2025). We also provide training results with and without parameter sharing. We show
that training algorithms in SocialJax is at least 50 times faster than Melting Pot 2.0 on a machine
with 14 CPUs and 1 Nvidia A100 GPU.

Performance Benchmark and Analysis: We benchmark the performance of various environments
and algorithms in terms of simulation throughput and training speed. Additionally, we evaluate the
performance of the algorithms we include across various environments. At last, we design specific
evaluation metrics for each environment to measure agent behaviors as either prosocial or antisocial.
We further analyze the behavior of selfish and cooperative agents to understand the underlying
incentive structures using Schelling diagrams [Perolat et al.| (2017); Schelling| (1973). Finally, we
analyze the performance of the implemented algorithms in our environments, including cases where
agent behavior varies with different SVO |[McKee et al.| (2020) reward angles.

2 RELATED WORK

In this section, we review related work on sequential social dilemmas and JAX-based reinforcement
learning environments, algorithms, and benchmarks. Sequential Social Dilemma |Vinitsky et al.

Under review as a conference paper at ICLR 2026

(2019)) introduces a testbed for evaluating social dilemmas. However, its scope is restricted to only
two environments on Clean Up and Harvest. OpenSpiel (Lanctot et al.,2019)) offers a collection of
environments, some of which feature both cooperative and competitive dynamics, allowing for the
exploration of social dilemmas. Melting Pot[Leibo et al.|(2021) was the first to establish a standardized
benchmark for MARL specifically designed to evaluate agent performance in sequential social
dilemmas. By providing a diverse set of carefully designed multi-agent scenarios, it enables systematic
testing of agent behaviors in cooperative, competitive, and mixed-motive settings. Melting Pot 2.0
Agapiou et al.|(2022) introduces a more comprehensive and refined suite of testing environments
that capture a wide range of interdependent relationships and incentive structures. The existing
social dilemma environments are CPU-based, and their execution efficiency is constrained by CPU
performance.

JAX Bradbury et al.| (2018)) is an open-source library developed by Google, designed for high-
performance numerical computing and machine learning tasks. Based on the GPU and TPU ac-
celeration capabilities introduced by JAX, along with its support for parallelism and vectorization,
JAX can effectively accelerate both environments and algorithms on hardware accelerators (GPUs,
TPUs). Functorch [Horace He|(2021) provides JAX-like composable function transforms for PyTorch,
making it easier to accelerate RL algorithms on hardware accelerators. |Lu et al.| (2022) introduces
a parallelized framework leveraging JAX, enabling both environment and model training to run on
GPUs. Jumanji Bonnet et al.| (2023) has developed a diverse range of single-agent environments
in JAX, ranging from simple games to NP-hard combinatorial problems. Gymnax [Lange| (2022)
provides JAX versions of different environments, including classic control, Bsuite [Osband et al.
(2019), MinAtar Young & Tian|(2019), and a collection of classic RL tasks. Pgx |Koyamada et al.
(2024) implements a variety of board game simulation environments using JAX, such as Chess, Shogi,
and Go. Brax [Freeman et al.|(2021)) is a physics engine written in JAX for RL, which re-implements
MuJoCo. XLand-MiniGrid [Nikulin et al.|(2023)) is a grid-world environment and benchmark fully
implemented in JAX. Similarly, our work is also demonstrated using grid-world environments. Mava
Mahjoub et al.| (2024) and JaxMARL Rutherford et al.| (2023)) both provide JAX-based MARL
environments and baseline algorithms. Among the JAX environments and algorithms, only the Storm
and Coins environments in JaxMARL are related to social dilemmas, while none of them specifically
address sequential social dilemmas. We construct multiple environments focused on social dilemma
challenges.

3 SocCIALJAX

In this section, we define the concept of social dilemmas, introduce the environments we implement,
describe the algorithms used, and present the metrics we design to measure cooperative and com-
petitive behaviors. Our work presents an efficient testing framework for sequential social dilemmas,
complete with evaluation environments and benchmark baselines. Our SocialJax encompasses a
diverse suite of environments, which collectively capture a wide range of sequential social dilemma
scenarios, including public good dilemmas and common pool resource problems. We evaluate
the environments using IPPO individual reward (both with and without parameter sharing), IPPO
common reward, MAPPO, SVO and PPO-RE.

3.1 SEQUENTIAL SOCIAL DILEMMAS

In N-player partially observable Markov games Littman| (1994), agents possess partial observation of
the environment. At each state, players choose actions from their respective action sets A", ..., AN,
State transitions 7 : & x Al x ... x AN — A(S) are determined by the current state and the
joint actions taken by all agents, where A(S) represents the set of discrete probability distributions
over S. We define the observation space of player i as O; = {o’|s € S,0' = O(s,i)}. Each
agent has its corresponding individual reward defined as r* : S x A! x --- x AN¥ — R. In an
N-player sequential socz’al dilemma, cooperators and defectors each have their own disjoint
policies(ml, ... 7l ... 7wk ...) € Hl x II7" with [+m = N. [is the number of cooperators.
R.(l) and Ry(l) are denoted as the average payoff for cooperating policies and defecting policies.
When we have a sequential social dilemma, if it satisfies the following conditions [Leibo et al.|(2017));
Hughes et al.| (2018):

1. Mutual cooperation is greater than mutual defection: R.(N) > Rq(0).

Under review as a conference paper at ICLR 2026

2. Mutual cooperation is greater than being exploited by defectors: R.(N) > R.(0).

3. Either the fear property or the greed property (or both) holds:
Fear: R;(i) > R, (i) for sufficiently small ¢; Greed: Rg4(i) > R.(¢) for sufficiently large i.

We use Schelling diagrams [Perolat et al.| (2017); |Schelling| (1973)) to depict the payoffs of different
numbers of cooperators and defectors. The lines R.(I 4+ 1) and R4(l) depict the average reward for
an agent choosing to either cooperate or defect, as a function of the number of co-players that are
cooperating (see Figure[3).

3.2 ENVIRONMENTS OF SOCIALJAX

Figure [I| shows the layout of our environments. SocialJax environments are mainly derived from
Melting Pot 2.0|Agapiou et al.| (2022). However, the layout of Socialjax environments is not the same
as Melting Pot, but rather more similar to MiniGrid |Chevalier-Boisvert et al.|(2018). Agents inside
the environments observe a grid matrix, with different objects represented by distinct numerical
values. In all our environments, agents have the same 11 x 11 field of view implemented at the grid
level. For further details, please refer to the Appendix [B] Next, we detail the environment setup,
including the specific environments in our evaluation suite.

Coins This environment was first introduced by |[Lerer & Peysakhovich|(2017) to investigate how
agents behave in situations where they can cooperate with or harm others by eating other agent’s type
of coin, making it a classic example for social dilemma.

Commons Harvest Agents need to consume apples to obtain rewards; however, the probability of
apple regrowth is determined by the number of apples in the local neighborhood. This creates tension
between selfish agents and cooperative agents. In order to discuss different social behaviors of agents,
in Commons Harvest, we established three different scenarios: Commons Harvest: Closed, Commons
Harvest: Open, and Commons Harvest: Partnership

In Commons Harvest: Closed, there are two rooms in this setup Perolat et al.| (2017), each containing
multiple patches of apples and a single entry. These rooms can be defended by specific players to
prevent others from accessing the apples by zapping them with with a beam, causing them to respawn.

In Commons Harvest: Open, all individuals can harvest apples, but must restrict their actions to not
collect the last apple and ensure that the apples can regrow.

The Commons Harvest: Partnership is similar to Commons Harvest: Closed, specific players are
required to defend the room. However, in this case, each room has two entry points, necessitating
two players to cooperate in defending the room.

Clean Up This environment is a public good game where players earn rewards by collecting apples.
But the spawn rate of apples depends on the cleanliness of a nearby river. For continuous apple
growth, the agents must keep river pollution levels consistently low over time.

Coop Mining In this environment, two types of ore spawn randomly in empty spaces. Iron ore (gray)
can be mined individually and provides a reward of +1 upon extraction, whereas gold ore requires
group coordination and yields a higher payoff per miner. Selfish agents tend to mine the iron ore
more, while cooperative agents will try to cooperate and mine gold ore.

Mushrooms This environment includes multiple types of mushrooms that, when consumed by agents,
deliver different rewards. Some mushrooms benefit only the individual agent, while others are
beneficial to the group.

Gift Refinement In this environment, agents can give collected tokens to other agents on the map,
which upgrade to yield greater rewards. Therefore, maximizing returns requires agents to trust one
another and cooperate effectively.

Prisoners Dilemma: Arena Agents inside this environment collect “defect” or “cooperate” tokens
and then interact with each other to compare inventories. The resulting payoffs follow the classic
Prisoner’s Dilemma matrix, emphasizing the tension between individual incentives and collective
welfare.

Under review as a conference paper at ICLR 2026

3.3 ALGORITHMS IN JAX

Due to IPPO’s widespread adoption and stability [Schulman et al.| (2017); De Witt et al.| (2020),
we implement IPPO under both parameter-sharing and non-parameter-sharing settings. The
parameter-sharing variant of IPPO leads to faster training by using a shared policy neural net-
work across all agents. The non-parameter-sharing variant, although slower, preserves agent-specific
policies that prevent convergence to uniform conventions. The IPPO training curves shown in Figure
[2]are based on the parameter sharing variant. Additional comparisons between parameter sharing and
non-parameter sharing IPPO can be found in the Appendix [C.1} To encourage prosocial behavior, we
introduce common rewards, while individual rewards are used to incentivize selfishness in agents.
Additionally, we include MAPPO |Yu et al.| (2022) as a representative centralized learning algorithm
for MARL. Finally, we implement SVO McKee et al.|(2020) and reward exchange |Willis et al.| (2025)
as representative methods specifically designed to handle social dilemmas, where agents can balance
individual and collective interests.

IPPO Common Rewards refers to a scenario where all agents in a multi-agent system share a single,
unified reward signal derived from the environment. This approach ensures that all agents are aligned
towards achieving the same objective, promoting collaboration and coordination among them. By
sharing a common reward, agents are incentivized to work together and make decisions that benefit
the collective, rather than focusing solely on individual gains. This can help prevent conflicts and
encourage cooperative behavior.

IPPO Individual Rewards indicates that each agent is assigned its own reward, inherently encourag-
ing selfish behavior. This approach allows agents to prioritize maximizing their personal success over
collective goals.

MAPPO We implement Multi-Agent PPO (MAPPO) |Yu et al.|(2022)) using both the PureJaxRL |Lu
et al.| (2022)) and JaxMARL Rutherford et al.| (2023)) frameworks. As a centralized learning approach,
MAPPO uses the centralized value function to help incentivize agents to perform prosocial behaviors.

SVO We implement SVO |[McKee et al.|(2020) as an intrinsic motivation framework to encourage
cooperative behavior in our environments. To capture the relative reward distribution, reward

T—;

angle 9(R) = arctan (T) is defined by SVO, where r; is the reward received by agent 7, and

Ty = ﬁ > ;i T 1s the average reward of all other agents. Each agent is assigned a target SVO

angle 65VO that reflects its desired distribution of reward. The agent’s utility function combines

extrinsic and intrinsic rewards as
Ui(s,04,a;) =1; —w - |65V° — O(R)|

where w controls the strength of the Social Value Orientation. We restrict SVO preferences to the
non-negative quadrant, i.e., § € [0°,90°], where § = 90° represents an Altruistic setting and § = 0°
represents an Individualistic setting.

PPO-RE We implement the reward exchange schedule used in Willis et al.| (2025) to determine the
optimal amount of reward exchange in the environments. Each agent retains a proportion s of their
rewards (their self-interest) and exchanges the remainder equally with their co-players. Agent i’s
utility function is a redistribution of the extrinsic game rewards, 7, as follows:

1-—s
Ui(7,s) = sr; +] er
J#i
We begin with a value of s = 1, equivalent to independent rewards, and iteratively decrease s during
training to s = %, which is equivalent to using a team reward. In this way, we trade off team rewards,
which induce collective behavior, while retaining individual incentives to alleviate credit assignment
and lazy agent issues.

3.4 METRICS FOR SOCIALJAX ENVIRONMENTS

Since an agent’s behavior in the environments cannot be fully captured by the return alone, we
devised a tailored metric for each environment to quantify whether agents tend toward cooperation or
competition. We define the semantics of the metrics for each environment as follows:

Under review as a conference paper at ICLR 2026

Coins: Since each agent collecting their own-color coin does not harm the other, whereas collecting
the other agent’s coin imposes a penalty on them, we evaluate cooperation by counting how many
coins each agent collects that match their assigned color.

Commons Harvest: In this environment, agents must maintain a sustainable number of apples to
ensure they continue to respawn. Therefore, we measure the number of apples remaining on the map
to assess whether agents are capable of preserving the long-term collective interest.

Clean Up: Agents need to clean polluted river tiles to enable apple regrowth. We evaluate their
cooperative or selfish behavior by counting the number of cleaned water tiles.

Coop Mining: In this environment, agents can obtain higher rewards by cooperating to mine gold,
while those who choose not to cooperate can only mine iron for a smaller reward. Therefore, we
evaluate agents’ cooperative behavior by measuring the amount of gold mined.

Mushrooms: The environment contains multiple types of mushrooms. Consuming blue mushrooms
does not benefit the agent itself but provides rewards to the other agents. We thus measure the number
of blue mushrooms consumed to evaluate the agent’s willingness to sacrifice for the common good.

Gift Refinement: In this environment, agents can choose to gift collected tokens to others, which
results in receiving a larger reward in return. We thus count the number of received tokens to evaluate
whether agents are willing to trust each other.

Prisoners Dilemma: Arena: The environment contains two types of resources, cooperative and
competitive, and we introduce the quantity of cooperative resources collected by agents as a metric.

4 EXPERIMENTS

4.1 SETUP

To validate our library, we perform thorough tests of Common Reward IPPO, Individual Reward IPPO,
MAPPO, and SVO algorithms across a diverse range of Sequential Social Dilemma environments and
analyze the returns and designed cooperation metrics. We assess the performance of our JAX-based
environment on a GPU and compare its speed with the implementations provided by MeltingPot 2.0
Agapiou et al.|(2022). In addition to these experiments, we plot Schelling diagrams to further verify
that our environments effectively represent social dilemmas.

Table 1: Results on environment steps per second across various SocialJax environments under
random actions. Different environment configurations are tested at scales from 1 to 4096 JAX Env

ENVS 1 ORIGINALENV 1 JAX ENv 128 JAX ENV 1024 JAX ENV 4096 JAX ENV
COINS 1.2 x 10* 2.0 x 10° 2.6 x 10° 1.4 x 10° 3.4 x 106
HARVEST: OPEN 3.7 x 10° 1.2 x 10® 1.1 x 10° 5.0 x 10° 7.9 x 10°
HARVEST: CLOSED 3.7 x 10° 1.2 x 10® 1.1 x 10° 5.0 x 10° 7.9 x 10°
HARVEST: PARTNERSHIP 3.7 x 10° 1.2 x 10® 1.1 x 10° 5.0 x 10° 7.9 x 10°
CLEAN Up 2.7 x 10° 1.7 x 10® 1.8 x 10° 9.9 x 10° 2.1 x 106
CooP MINING 3.6 x 10° 1.9 x 10® 1.9 x 10° 1.0 x 10° 1.5 x 10°
MUSHROOMS 4.2 x 10° 1.4 x 10® 1.4 x 10° 6.3 x 10° 9.8 x 10°
GIFT REFINEMENT 4.1 x 10° 1.5 x 10® 1.5 x 10° 7.0 x 10° 1.2 x 10°
PRISONERS DILEMMA: ARENA 4.5 x 10° 2.2 x 10% 2.3 x 10° 1.3 x 10° 2.7 x 106

4.2 RESULTS

Speed Benchmarks Since both the environments and algorithms are vectorized using JAX, they
are well suited for GPU acceleration. In Table[I] we test up to 4096 environments in parallel and
observe a significant increase in the speed of the training pipeline with the addition of more parallel
environments. We compare the performance of SocialJax and MeltingPot 2.0|Agapiou et al.| (2022)
by measuring steps per second on the same hardware, which consists of an NVIDIA A100 GPU and
14 CPU cores. As shown in Table[I] we evaluate the speed of SocialJax across various environments
and environment counts using random actions. We observe a significant speedup when running
environments in parallel on a GPU compared to running a single environment. To match the parallel
performance of SocialJax, the original environments would need to scale up across hundreds of

Under review as a conference paper at ICLR 2026

150 400

Returns
@
3

o

00 05 10 15 20 25 3.0 00 05 10 15 20 25 3.0 00 05 10 15 20 25 3.0
Environment timesteps les Environment timesteps les Environment timesteps les

(a) Coins (b) Commons Harvest: Open (¢) Commons Harvest: Closed

3000

300 600
2000

Returns
Returns

1000

100 W
0 o

00 05 10 15 20 25 30 00 05 10 15 20 25 3.0 00 05 10 15 20 25 3.0
Environment timesteps le8 Environment timesteps 1e8 Environment timesteps le8
(d) Commons Harvest: Partnership (e) Clean Up (f) Coop Mining
400 » 400 « 200
£ £ £
2 2 2
2200 2 200 2 100
vV 0
00 05 10 15 20 25 3.0 00 05 10 15 20 25 3.0 00 05 10 15 20 25 3.0
Environment timesteps les Environment timesteps le8 Environment timesteps le8
(g) Mushrooms (h) Gift Refinement (i) Prisoners Dilemma: Arena
= IPPO: Individual Reward = = IPPO: Common Reward MAPPO =—— SVO —— PPO-RE

Figure 2: Training curves for a range of SocialJax environments. IPPO (shared parameters) with
Common Reward encourages collective interests, leading to higher overall returns, Individual Reward
primarily drives selfish behavior, often resulting in lower returns. MAPPO is included as a centralized
baseline. The SVO curve represents the case with a social angle 6 = 90°.

CPUs. Regarding wall clock time, SocialJax is capable of completing 1e9 timesteps within 3 hours
for relatively simple environments such as Coins, whereas training with Melting Pot 2.0 using
Stable-Baselines3 and RLIib|takes around 1,300 hours and 150 hours, respectively. Consequently,
conducting social dilemma experiments with Melting Pot 2.0 is highly challenging without a large
amount of CPU resources. Training Coins in SocialJax is about 50-400 times faster compared to
Coins in Melting Pot 2.0. For relatively complex environments such as Clean Up, SocialJax is
approximately 50-140 times faster than the original environments. There are more details about the
wall clock time comparison in the Appendix [C.2]

IPPO Common reward and IPPO Individual reward We compare the performance of common
reward IPPO (IPPO-CR) and individual reward IPPO (IPPO-IR) across different environments. In the
default individual reward setting, each agent receives a reward based on the joint-action, independent
of the payoffs of other agents. This creates incentives for agents to over exploit common pool
resources, because only they themselves benefit from their actions, while the social costs are shared
by all. In contrast, a common reward, or team reward means that all agents share a single reward
signal, typically the total payoff of all agents in the environment. The common reward encourages
cooperation, as the objective of each agent is to maximize the total reward, making individual agents
more inclined to adopt collaborative behaviors. In Figure 2] a common reward typically performs
better than individual rewards, as the agents attempt to maximize the total payoff.

MAPPO As a centralized learning method, MAPPO has access to information from all agents, which
leads to strong performance in Clean Up (Figure[2¢), and Mushrooms (Figure 2g). However, MAPPO
exhibits less stable training dynamics, as its centralized critic aggregates observations from all agents,
increasing the learning difficulty of the network. In particular, it struggles with Commons Harvest:
Partnership (Figure and Gift Refinement (Figure [2h]), where it under performs IPPO-CR.

SVO (McKee et al., [2020) provides a powerful framework for exploring agents’ cooperative and
competitive tendencies. We apply SVO across all SocialJax environments to investigate how the
preference angle 8 influences agents’ returns. We first fix # = 90° and sweep over different weight
values w to identify the optimal w. Then, holding the weight fixed, we sweep over 6§ to examine
how agent behavior and returns vary with the angle. As summarized in Table[2] the collective return
increases with larger values of 6, as agents become more inclined to cooperate at higher angles. When

https://stable-baselines3.readthedocs.io/en/master/
https://docs.ray.io/en/latest/rllib/index.html

Under review as a conference paper at ICLR 2026

Table 2: Returns Across Different Environments as a Function of # under the SVO Algorithm.

ENVIRONMENT 0° (INDIVIDUALISTIC) ~ 22.5° 45° 67.5° 90° (ALTRUISTIC)
COINS 11.81 60.38 160.43 162.25 162.46
HARVEST: OPEN 79.71 68.96 68.28 238.40 254.54
HARVEST: CLOSED 81.05 74.74 74.68 298.97 309.94
HARVEST: PARTNERSHIP 77.44 72.45 71.58 225.94 234.30
CLEAN Up 0.02 0.06 50.58 1060.25 1410.53
CoOP MINING 210.26 207.96 41599 630.32 647.61
MUSHROOMS 5.94 51.26 291.55 321.22 400.85
GIFT REFINEMENT 104.29 105.09 105.22 107.38 227.95
PRISONERS DILEMMA: ARENA 22.67 23.27 24.13 34.96 53.36
% 801 cooperator %;g —— cooperator / % 40— cooperator
3 60 defector %50 defector / %iz defector
Q Q Q
§ 20 - av?fi_;—e——” r_u‘m ~==- average § ;2 ~==- average _
-‘g 20+ E s
3, R ——
1 2 3 4 5 1 2 3 4 5
number of other cooperators number of other cooperators number of other cooperators
(a) Coins (b) Commons Harvest: Open (c) Commons Harvest: Closed
= 4= 350 y— 225
B 40{ —— cooperator B 300{ T cooperator “6 200{ —— cooperator
= defector ?250 defector D175 defector
9301 ____ average 2 00| —--- average D150) - average | ooe-
2] o S s
2T g - R
= = 0 = 25
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
number of other cooperators number of other cooperators number of other cooperators
(d) Commons Harvest: Partnership (e) Clean Up (f) Coop Mining
& 100 70 £ 9
— 1t o —— cooperator o —— cooperator
% Zg ZZ:?:; o ?:g defector ?80 defector
Q Q Q70
gt -- average -- average = 60 -- average
__5 60
S sof
T a0
0 1 2 3 1 2 3 1 2
number of other cooperators number of other cooperators number of other cooperators
(g) Mushrooms (h) Gift Refinement (i) Prisoner Dilemma: Arena

Figure 3: Schelling diagrams of the environments, visualizing the relationship between individual
incentives and collective outcomes. The dotted line represents the overall average return of cooperators
and defectors.

6 = 0° (Individualistic orientation), agents achieve the lowest returns, whereas at § = 90° (Altruistic
orientation), they attain the highest returns.

PPO-RE |Willis et al.[(2025)) Since PPO-RE starts training with independent rewards and gradually
increases the amount of reward exchange through training, we typically see the following behavior
in Figure[2} the training initially mirrors the IPPO: Individual Reward curve, as it finds the same
self-interested equilibrium. At a later point, sufficient reward is exchanged that the policies begin
to learn cooperative behaviors and the reward increases. In some games, such as Coins, it learns
the cooperative behavior and quickly matches the performance of IPPO: Common Reward. In other
games, such as Coop Mining, however, it is unable to escape the selfish equilibrium.

4.3 SoOCIAL DILEMMA ENVIRONMENTS ATTRIBUTES

Schelling Diagram Analysis To validate the social dilemma properties of Sociallax, we depict
Schelling diagrams for each environment. The cooperative policies are sampled from the agents that
used a common reward, while the defector policies originate from agents trained with independent
rewards. We evaluate the environments over 30 episodes and compute the average rewards for the
cooperative and defector agents.

Coins (Figure[3a), Harvest: Open (Figure [3b), Harvest: Closed (Figure [3c), Harvest: Partnership
(Figure Gift Refinement (Figure [3h)), Mushrooms (Figure and exhibit fear: namely that

Under review as a conference paper at ICLR 2026

Table 3: Metrics for Assessing Cooperative and Competitive Tendencies Across Environments.

ENvVsS IPPO-IR IPPO-CR MAPPO TRANSFER SVO0-90°
COINS 100.83 164.07 126.23 163.83 164.56
HARVEST: OPEN 0.91 23.68 18.45 21.47 37.67
HARVEST: CLOSED 1.71 17.57 18.57 24.22 22.70
HARVEST: PARTNERSHIP 1.42 17.75 15.56 24.73 25.12
CLEAN Up 9.28 109.54 133.99 92.50 99.08
CooP MINING 298.21 521.56 571.25 310.84 483.24
MUSHROOMS 4.07 19.55 22.96 18.17 12.33
GIFT REFINEMENT 0.03 28.37 20.24 15.92 3.83
PRISONERS DILEMMA: ARENA 58.65 73.67 119.63 163.15 76.24

agents would prefer to defect if some of their co-players are defecting. An agent actually does better
cooperating if all their co-players are cooperating. In Harvest: Open, we observe that it only takes
a single defector agent to have a severely negative impact on the returns of other players. This is
because defector agents typically harvest the last apple in a patch, permanently depleting it. The
cooperator policies have learned to leave a greater amount of apples in each patch, which causes
a higher regrowth rate, so they generally exhibit a greater tendency to abstain from harvesting in
the presence of a defector. In Harvest: Closed, we find that more than one defector is necessary to
inflict a severe negative impact on the other agents. This occurs because Harvest: Closed partitions
resources into two distinct rooms. After a lone defector depletes all apples in one room, re-entering
the other requires visually locating its entrance and traversing through it.

In Clean Up (Figure [3¢)), we instead observe greed, as there is an incentive to defect if a sufficient
number of co-players are cooperating. This is because cooperators will clean the pollution, whereas
the defector will not, but it requires a minimum of three cooperators to clean the river for apples to
grow. Coop Mining (Figure [3f) and Prisoners Dilemma: Arena (Figure [31) also primarily exhibit
greed. In these environments, if a sufficient number of agents cooperate, other agents can obtain a
higher payoff by defecting. In Coop Mining, this is because cooperators tend to neglect the iron ore,
allowing the defector to collect more iron ore. In Prisoner’s Dilemma: Arena, when most agents
collect cooperative resources, defectors can gain higher returns through interactions with cooperators.

Metrics Analysis The proposed metrics quantify changes in agent behavior or environment states
triggered by cooperative actions. A larger metric (Table [3) value reflects a higher level of cooperative
behavior exhibited by the agents. In general, a higher degree of cooperative behavior among agents
leads to larger collective returns. However, there are exceptions. In the three Harvest environments,
the SVO algorithm encourages altruistic actions, which can reduce the agents’ efficiency in collecting
apples. Specifically, agents may intentionally avoid picking apples to allow others access to them. As
a result, more apples remain on the map, leading to a decrease in harvest efficiency and ultimately
a reduction in collective returns. In more extreme cases, agents may not collect any apples at all,
causing the Harvest metric to remain at a high value. Under typical conditions where agents receive
rewards based on apple collection, this metric performs well. As expected, IPPO-IR and SVO-0°,
which encourage selfish behavior, produce significantly lower metric values than more cooperative
approaches such as IPPO-CR, MAPPO and SVO-90°.

5 CONCLUSION

The use of hardware acceleration has revolutionized MARL research, enabling researchers to over-
come computational limitations and accelerate the iteration of ideas. SocialJax is a library designed
to leverage these advancements in the context of social dilemmas. It provides a collection of social
dilemma environments and baseline algorithms implemented in JAX, offering user-friendly interfaces
combined with the efficiency of hardware acceleration. By achieving remarkable speed-ups over
traditional CPU-based implementations, SocialJax significantly reduces the experiment runtime. In
addition, its unified codebase consolidates a diverse range of social dilemma environments into a
standardized framework, facilitating consistent and efficient experimentation and greatly benefiting
future research on social dilemmas.

Under review as a conference paper at ICLR 2026

REFERENCES

John P Agapiou, Alexander Sasha Vezhnevets, Edgar A Duénez-Guzmdn, Jayd Matyas, Yiran Mao,
Peter Sunehag, Raphael Koster, Udari Madhushani, Kavya Kopparapu, Ramona Comanescu, et al.
Melting pot 2.0. arXiv preprint arXiv:2211.13746, 2022.

Nolan Bard, Jakob N Foerster, Sarath Chandar, Neil Burch, Marc Lanctot, H Francis Song, Emilio
Parisotto, Vincent Dumoulin, Subhodeep Moitra, Edward Hughes, et al. The hanabi challenge: A
new frontier for ai research. Artificial Intelligence, 280:103216, 2020.

Clément Bonnet, Daniel Luo, Donal Byrne, Shikha Surana, Sasha Abramowitz, Paul Duckworth,
Vincent Coyette, Laurence I Midgley, Elshadai Tegegn, Tristan Kalloniatis, et al. Jumanji: a diverse
suite of scalable reinforcement learning environments in jax. arXiv preprint arXiv:2306.09884,
2023.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/jax-ml/jaxl

Micah Carroll, Rohin Shah, Mark K Ho, Tom Griffiths, Sanjit Seshia, Pieter Abbeel, and Anca
Dragan. On the utility of learning about humans for human-ai coordination. Advances in neural
information processing systems, 32, 2019.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. Babyai: A platform to study the sample efficiency of
grounded language learning. arXiv preprint arXiv:1810.08272, 2018.

Christian Schroeder De Witt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviychuk, Philip HS
Torr, Mingfei Sun, and Shimon Whiteson. Is independent learning all you need in the starcraft
multi-agent challenge? arXiv preprint arXiv:2011.09533, 2020.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with
importance weighted actor-learner architectures. In International conference on machine learning,

pp. 1407-1416. PMLR, 2018.

C Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier Bachem.
Brax—a differentiable physics engine for large scale rigid body simulation. arXiv preprint
arXiv:2106.13281, 2021.

Richard Zou Horace He. functorch: Jax-like composable function transforms for pytorch. https:
//github.com/pytorch/functorch, 2021.

Edward Hughes, Joel Z Leibo, Matthew Phillips, Karl Tuyls, Edgar Duefiez-Guzman, Antonio
Garcia Castafieda, [ain Dunning, Tina Zhu, Kevin McKee, Raphael Koster, et al. Inequity aversion
improves cooperation in intertemporal social dilemmas. Advances in neural information processing
systems, 31, 2018.

Marco A. Janssen, Robert Holahan, Allen Lee, and Elinor Ostrom. Lab experiments for the study
of social-ecological systems. Science, 328(5978):613-617, 2010. doi: 10.1126/science.1183532.
URL https://www.science.org/doi/abs/10.1126/science.1183532.

Sotetsu Koyamada, Shinri Okano, Soichiro Nishimori, Yu Murata, Keigo Habara, Haruka Kita,
and Shin Ishii. Pgx: Hardware-accelerated parallel game simulators for reinforcement learning.
Advances in Neural Information Processing Systems, 36, 2024.

Marc Lanctot, Edward Lockhart, Jean-Baptiste Lespiau, Vinicius Zambaldi, Satyaki Upadhyay,
Julien Pérolat, Sriram Srinivasan, Finbarr Timbers, Karl Tuyls, Shayegan Omidshafiei, Daniel
Hennes, Dustin Morrill, Paul Muller, Timo Ewalds, Ryan Faulkner, Janos Kramar, Bart De
Vylder, Brennan Saeta, James Bradbury, David Ding, Sebastian Borgeaud, Matthew Lai, Julian
Schrittwieser, Thomas Anthony, Edward Hughes, Ivo Danihelka, and Jonah Ryan-Davis. Open-
Spiel: A framework for reinforcement learning in games. CoRR, abs/1908.09453, 2019. URL
http://arxiv.org/abs/1908.09453|

10

http://github.com/jax-ml/jax
https://github.com/pytorch/functorch
https://github.com/pytorch/functorch
https://www.science.org/doi/abs/10.1126/science.1183532
http://arxiv.org/abs/1908.09453

Under review as a conference paper at ICLR 2026

Robert Tjarko Lange. gymnax: A JAX-based reinforcement learning environment library, 2022. URL
http://github.com/RobertTLange/gymnaxk

Joel Z. Leibo, Vinicius Zambaldi, Marc Lanctot, Janusz Marecki, and Thore Graepel. Multi-agent
Reinforcement Learning in Sequential Social Dilemmas. In Proceedings of the 16th International
Conference on Autonomous Agents and Multiagent Systems (AA-MAS 2017), Sao Paulo, Brazil,
2017.

Joel Z Leibo, Edgar A Duefiez-Guzman, Alexander Vezhnevets, John P Agapiou, Peter Sunehag,
Raphael Koster, Jayd Matyas, Charlie Beattie, Igor Mordatch, and Thore Graepel. Scalable
evaluation of multi-agent reinforcement learning with melting pot. In International conference on
machine learning, pp. 6187-6199. PMLR, 2021.

Adam Lerer and Alexander Peysakhovich. Maintaining cooperation in complex social dilemmas
using deep reinforcement learning. arXiv preprint arXiv:1707.01068, 2017.

Michael L Littman. Markov games as a framework for multi-agent reinforcement learning. In
Machine learning proceedings 1994, pp. 157-163. Elsevier, 1994.

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAl Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments. Advances in neural information
processing systems, 30, 2017.

Chris Lu, Jakub Kuba, Alistair Letcher, Luke Metz, Christian Schroeder de Witt, and Jakob Foerster.
Discovered policy optimisation. Advances in Neural Information Processing Systems, 35:16455—
16468, 2022.

Omayma Mahjoub, Sasha Abramowitz, Ruan de Kock, Wiem Khlifi, Simon du Toit, Jemma Daniel,
Louay Ben Nessir, Louise Beyers, Claude Formanek, Liam Clark, et al. Performant, memory
efficient and scalable multi-agent reinforcement learning. arXiv preprint arXiv:2410.01706, 2024.

Kevin R McKee, Ian Gemp, Brian McWilliams, Edgar A Duéiez-Guzman, Edward Hughes, and
Joel Z Leibo. Social diversity and social preferences in mixed-motive reinforcement learning.
arXiv preprint arXiv:2002.02325, 2020.

Volodymyr Mnih. Asynchronous methods for deep reinforcement learning. arXiv preprint
arXiv:1602.01783, 2016.

Alexander Nikulin, Vladislav Kurenkov, Ilya Zisman, Artem Agarkov, Viacheslav Sinii, and Sergey
Kolesnikov. Xland-minigrid: Scalable meta-reinforcement learning environments in jax. arXiv
preprint arXiv:2312.12044, 2023.

Tan Osband, Yotam Doron, Matteo Hessel, John Aslanides, Eren Sezener, Andre Saraiva, Katrina
McKinney, Tor Lattimore, Csaba Szepesvari, Satinder Singh, et al. Behaviour suite for reinforce-
ment learning. arXiv preprint arXiv:1908.03568, 2019.

Julien Perolat, Joel Z Leibo, Vinicius Zambaldi, Charles Beattie, Karl Tuyls, and Thore Graepel. A
multi-agent reinforcement learning model of common-pool resource appropriation. Advances in
neural information processing systems, 30, 2017.

Alexander Rutherford, Benjamin Ellis, Matteo Gallici, Jonathan Cook, Andrei Lupu, Gardar Ing-
varsson, Timon Willi, Akbir Khan, Christian Schroeder de Witt, Alexandra Souly, Saptarashmi
Bandyopadhyay, Mikayel Samvelyan, Minqi Jiang, Robert Tjarko Lange, Shimon Whiteson,
Bruno Lacerda, Nick Hawes, Tim Rocktaschel, Chris Lu, and Jakob Nicolaus Foerster. Jaxmarl:
Multi-agent rl environments in jax. arXiv preprint arXiv:2311.10090, 2023.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nantas Nardelli,
Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson. The
starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043, 2019.

Thomas C Schelling. Hockey helmets, concealed weapons, and daylight saving: A study of binary
choices with externalities. Journal of Conflict resolution, 17(3):381-428, 1973.

11

http://github.com/RobertTLange/gymnax

Under review as a conference paper at ICLR 2026

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347,2017.

H Francis Song, Abbas Abdolmaleki, Jost Tobias Springenberg, Aidan Clark, Hubert Soyer, Jack W
Rae, Seb Noury, Arun Ahuja, Siqi Liu, Dhruva Tirumala, et al. V-mpo: On-policy maximum a
posteriori policy optimization for discrete and continuous control. arXiv preprint arXiv:1909.12238,
2019.

Jordan Terry, Benjamin Black, Nathaniel Grammel, Mario Jayakumar, Ananth Hari, Ryan Sullivan,
Luis S Santos, Clemens Dieffendahl, Caroline Horsch, Rodrigo Perez-Vicente, et al. Pettingzoo:
Gym for multi-agent reinforcement learning. Advances in Neural Information Processing Systems,
34:15032-15043, 2021.

Rakshit Trivedi, Akbir Khan, Jesse Clifton, Lewis Hammond, Edgar A Duéfiez-Guzman, Dipam
Chakraborty, John P Agapiou, Jayd Matyas, Sasha Vezhnevets, Barna Pésztor, et al. Melting pot
contest: Charting the future of generalized cooperative intelligence. In The Thirty-eight Conference
on Neural Information Processing Systems Datasets and Benchmarks Track, 2024.

Alexander Vezhnevets, Yuhuai Wu, Maria Eckstein, Rémi Leblond, and Joel Z Leibo. Options as re-
sponses: Grounding behavioural hierarchies in multi-agent reinforcement learning. In International
Conference on Machine Learning, pp. 9733-9742. PMLR, 2020.

Eugene Vinitsky, Natasha Jaques, Joel Leibo, Antonio Castenada, and Edward Hughes. An
open source implementation of sequential social dilemma games. https://github.com/
eugenevinitsky/sequential_social_ dilemma_games/issues/182, 2019.
GitHub repository.

Richard Willis, Yali Du, Joel Z Leibo, and Michael Luck. Quantifying the Self-Interest Level of
Markov Social Dilemmas. In Proceedings of the 34th International Joint Conference on Artificial
Intelligence, Montreal, Canada, August 2025. ijcai.org.

Kenny Young and Tian Tian. Minatar: An atari-inspired testbed for thorough and reproducible
reinforcement learning experiments. arXiv preprint arXiv:1903.03176, 2019.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
surprising effectiveness of ppo in cooperative multi-agent games. Advances in neural information
processing systems, 35:24611-24624, 2022.

12

https://github.com/eugenevinitsky/sequential_social_dilemma_games/issues/182
https://github.com/eugenevinitsky/sequential_social_dilemma_games/issues/182

Under review as a conference paper at ICLR 2026

A STATEMENTS OF ETHICS, REPRODUCIBILITY, AND LLM USAGE

A.1 ETHICS STATEMENT

This work complies with the ICLR Code of Ethics. The study did not involve human participants
or animal experimentation. All datasets, including the SocialJax environments and training outputs,
were used in accordance with relevant usage guidelines, ensuring that no privacy violations occurred.
We took deliberate steps to mitigate potential biases or discriminatory effects throughout the research
process. No personally identifiable information was employed, and no experiments were performed
that could raise privacy or security concerns. We remain committed to upholding transparency,
fairness, and integrity in all aspects of this work.

A.2 REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All code
and datasets have been made publicly available in an anonymous repository to facilitate replication
and verification. The experimental setup, including training steps, model configurations, and hardware
details, is described in detail in the paper. We have also provided a full description of training code
and hyper-parameters, to assist others in reproducing our experiments. We believe these measures
will enable other researchers to reproduce our work and further advance the field.

A.3 LARGE LANGUAGE MODELS USAGE

Large Language Models (LLMs) were employed to support the writing and refinement of this
manuscript. In particular, we used an LLM to enhance clarity, improve readability, and polish the
language across various sections. The assistance was limited to tasks such as rephrasing sentences,
checking grammar, and improving the overall coherence and flow of the text.

Importantly, the LLM was not involved in the generation of research ideas, the design of experiments,
or the development of methodology. All conceptualization, analysis, and scientific contributions
were carried out solely by the authors. The role of the LLM was strictly confined to linguistic
improvements and had no bearing on the scientific content or data analysis. The authors accept full
responsibility for the manuscript, including any portions refined with LLM assistance. We ensured
that all text aligns with ethical standards and that no plagiarism, misrepresentation, or scientific
misconduct has occurred.

B ADDITIONAL DETAILS ON ENVIRONMENTS

B.1 API AND EXAMPLES

Our environment interfaces (Figure d) are inspired by those of mature MARL frameworks, adopting
the similar API conventions as JaxMARL , which itself is inspired by PettingZoo and Gymnax, to
provide an intuitive and user-friendly experience for researchers.

Because we provide an open-source codebase, anyone can reproduce our main experimental results
by configuring the environment following the repository’s instructions and running the code. Figure
[5] provides command-line examples for executing various algorithms.

Execution speed of SocialJax environments under random actions can also be evaluated by running
the code shown in Figure[6] Additionally, we provide a Colab notebook in our repository for quick
experimentation and environment speed testing.

B.2 ENVIRONMENT SETTINGS AND PARAMETERS

The data format observed by agents in Sociallax environments differ from those in Melting Pot 2.0
Agapiou et al.[(2022). Melting Pot 2.0 provides observations to agents in the form of image pixels.
Melting Pot 2.0 was originally designed to use 8 x 8 pixels per cell, resulting in observations of 88 x 88
pixels in most environments. In this setup, the agents have a partially observable window of 11 x 11
cells. In the Melting Pot Contest 2023 (Trivedi et al.,2024), all academic participants down-sampled

13

Under review as a conference paper at ICLR 2026

import jax
import socialijax
from socialjax import make

num_agents = 7

env = make('clean_up', num_agents=num_agents)
rng = jax.random.PRNGKey (259)

rng, _rng = jax.random.split (rng)

for t in range(100) :

rng, =rngs = jax.random.split (rng, num_agents+1)
actions = [Jjax.random.choice (
rngslal,

a=env.action_space (0) .n,
p=jnp.array([(0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.11)
) for a in range (num_agents)]

obs, state, reward, done, info = env.step_env (
rng, old_state, [a for a in actions]

)

Figure 4: An example of using the SocialJax API in the Clean Up environment.

Train IPPO on the Clean Up environment
python algorithms/IPPO/ippo_cnn_cleanup.py

Train MAPPO on the Clean Up environment
python algorithms/MAPPO/mappo_cnn_cleanup.py

Train SVO on the Clean Up environment
python algorithms/SVO/svo_cnn_cleanup.py

Figure 5: Command-line example for training different algorithms (IPPO and MAPPO) and generating
training curves with SocialJax.

python speed_test/speed_test_random.py

Figure 6: Command-line example for testing SocialJax environment execution speed with random
actions.

the cells to 1 x 1, also producing observations of 11 x 11. The agents in our environments have the
same 11 x 11 field of view, but they are implemented at the grid level.

Coins Two players collect coins in a shared room, where each coin is assigned to one player’s color.
Each coin, upon appearing, has an equal 50% probability of being assigned to the first player’s color
or the second player’s color. An agent receives a reward of 1 for collecting any coin, regardless of its
color. If one player collects a coin assigned to the other player’s color, the other player receives a
reward of -2. Each empty tile on the map has a respawn probability of p = 0.0005 for each type of
coin.

Commons Harvest The core concept of Commons Harvest was first defined by [Janssen et al.
(2010). Perolat et al.[|(2017) introduced it in multi-agent scenarios. Melting Pot 2.0 |Agapiou et al.
(2022) has made it a more comprehensive environment. There are several patches of apples in the
room. The players can receive a reward of 1, when they collect one apple. The apples will regrow

14

Under review as a conference paper at ICLR 2026

with probability that is determined by the number of neighborhood apples in radius 2, when the
apples are collected by the players. The probability of apple regrowth decreases as the nearby apples
diminish. Apples will not regrow, if there are no apples in the neighborhood. Formally, the regrowth
probability is set to 0.025 if there are at least three apples nearby, 0.005 if there are exactly two, 0.001
if there is exactly one, and 0 when there are no apples in the neighborhood. Once all apples within a
patch are collected, that patch ceases to respawn apples.

Commons Harvest: Open: This experiment is conducted in an open environment with no internal
obstacles, and walls are placed only along the periphery of the map.

Commons Harvest: Closed: the players’ roles are divided into two groups: one focuses on collecting
apples, while the other is tasked with preventing over-harvesting by other players Perolat et al.| (2017).
There are two rooms in this setup, each containing multiple patches of apples and a single entry.
These rooms can be defended by specific players to prevent others from accessing the apples by
zapping them with with a beam, causing them to respawn.

Commons Harvest: Partnership In this environment, two players are required to cooperate in
defending apple patches. The agents can be tested on whether they can learn to trust their partners
to jointly defend their shared territory from intrusion and act sustainably when managing shared
resources.

Clean Up The agent can earn +1 reward by collecting each apple in Clean Up environment. Apples
grow in an orchard and their regrowth depends on the cleanliness of a nearby river. Pollution
accumulates in the river at a constant rate and once pollution surpasses a certain threshold, the apple
growth rate drops to zero. Players have the option to perform a cleaning action that removes small
amounts of pollution from the river.

River Pollution Generation: During the first 50 time steps of the game, the river remains uncontami-
nated. After 50 time steps, there is a 0.5 probability that one tile of the river will become polluted.
Apple Respawning: In the environment, let dirtCount represent the number of currently polluted
river tiles, and riverCount represent the total number of river tiles, including both polluted and
unpolluted ones. Then, the proportion of polluted river tiles is given by dirtF'raction = %
The probability of apple regrowth P is given by:

P =i e (BT 00))
r — Yd

where:

* 0, is the depletion threshold, the lower bound of the pollution range.
* 0, is the restoration threshold, the upper bound of the pollution range.

* « is the maximum apple growth rate.

This formula calculates the probability P of apple regrowth based on the current pollution level f,
with the value clipped between 0 and 1 to ensure valid probabilities.

Coop Mining In this environment, two types of ore spawn randomly in empty spaces. Players can
extract the ore to get reward. Iron ore (gray) can be mined individually and provides a reward of +1
upon extraction. In contrast, gold ore (yellow) requires coordinated mining by two to four players
within a 3-step window, granting a reward of +8 to each participant. When a player begins to mine
gold ore, the state of the ore changes to “partially mined” to indicate readiness for another player to
assist. Visually, this is represented by a brighter shade of yellow. If no other player cooperates or too
many players attempt to mine simultaneously, the ore reverts to its original state, and no reward is
granted.

We set the respawn rate of iron ore and gold ore to ensure that the ores regenerate at ap-
propriate rates, promoting agents to make both selfish and cooperative choices, which in turn
guarantees that the environment represents a social dilemma. The respawn rates are defined
as:Pyon = 0.0004 and Pyg = 0.00016. These rates are chosen to balance resource regener-
ation and agent behavior, encouraging both competition and collaboration.

15

Under review as a conference paper at ICLR 2026

H
I}
=

W w

& &

38 2

Returns
Returns
Returns
S &
s 2

WAW

-
&
3

S

3
S
3

0.0 0.5 1.0 15 2.0 25 3.0 0.0 0.5 1.0 15 2.0 2.5 3.0 0.0 0.5 1.0 15 2.0 2.5 3.0
Environment timesteps 1le8 Environment timesteps e Environment timesteps e

(a) Coins (b) Commons Harvest: Open (c) Commons Harvest: Closed

1500

1250

1000

Returns
<
ol
g
Returns

0.0 0’5 10 15 200 2’5 3.0 0.0 0’5 10 15 200 275 3.0 0.0 0’5 10 15 200 275 3.0
Environment timesteps le8 Environment timesteps le8 Environment timesteps le8

(d) Commons Harvest: Partnership (e) Clean Up (f) Coop Mining

Returns
Returns
IS E @
] 8 8
3 S s
Returns
S w
8
S

S
3

B At 7

[
0.0 05 10 15 200 255 3.0 05 10 15 200 255 3.0 0.0 05 10 15 200 255 3.0
Environment timesteps b Environment timesteps ded Environment timesteps b

o

o
°

(g) Mushrooms (h) Gift Refinement (1) Prisoners Dilemma: Arena

= N-IPPO: Individual Reward = N-IPPO: Common Reward P-IPPO: Individual Reward =~ == P-IPPO: Common Reward

Figure 7: Training curves of IPPO Common Reward and IPPO Individual Reward. Common Reward
encourages collective interests, leading to higher overall returns, while Individual Reward primarily
drives selfish behavior, often resulting in lower returns.

Mushrooms There are four types of mushrooms spread across the map, each offering different
rewards when consumed. Eating a red mushroom gives a reward of 1 to the player who consumed
it, while eating a green mushroom gives a reward of 2, which is divided equally among all players.
Consuming a blue mushroom grants a reward of 3, but the reward is shared among all players except
the one who ate it. Additionally, eating an orange mushroom causes every agent to get a -0.2 reward.

Mushroom regrowth depends on the type of mushroom eaten by players. Red mushrooms regrow
with a probability of 0.25 when any type of mushroom is eaten. Green mushrooms regrow with a
probability of 0.4 when either a green or blue mushroom is eaten. Blue mushrooms regrow with
a probability of 0.6 when a blue mushroom is eaten. Orange mushrooms always regrow with a
probability of 1 when eaten. Each mushroom has a digestion time, and a agent who consumes a
mushroom becomes frozen during the digestion process. Red mushrooms take 10 steps to digest,
while green mushrooms take 15 steps to digest, and blue mushrooms take 20 steps to digest.

Gift Refinement In this environment, tokens spawn on the map with probability p = 0.0002. When
tokens are collected, they are stored in the agent’s inventory. These stored tokens can be gifted to
other agents, in which case they are refined to a higher level and their quantity is tripled. Tokens
exist in three levels, with only the lowest level spawning naturally in the environment. Each token
can be refined at most twice to reach the highest level. Each agent can hold up to 15 tokens of each
level. When agents execute the consume action, all tokens in the agent’s inventory are converted
into reward, with each token providing +1 reward regardless of refinement level.

Prisoners Dilemma: Arena Four individuals collect resources that represent ‘defect’ (red) or
‘cooperate’ (green) and compare inventories in an encounter, which is first introduced by |[Vezhnevets
et al.| (2020). The inventory is represented by p = (p1,...,pk). In our case, K = 2 because
we have two types of resources. When one agent zaps another, agents’ inventories begin tracking
anew, and each agent immediately receives its corresponding reward. Consequences of the inventory

16

Under review as a conference paper at ICLR 2026

comparison are congruent with the classic Prisoner’s Dilemma matrix game. This game exposes
tension between reward for the group and reward for the individual. The matrix for the interaction is

T |3 —1
AFOW _Acol - |: 5 1 :|

Each agent has a mixed strategy weight, defined as

v=(v1,...,0g), v = Ifz

Zj:l Pj

When one agent (the “row player’”) zaps and another (the “column player”) is targeted, their respective
payoffs are given by bilinear forms over these mixed strategies:

T T
Trow = Viow Arow Veol; Tecol = Viow Acol Veol-

After two agents complete an interaction, they respawn at designated locations within the environment
and are prohibited from moving for a random duration of 10 to 100 time steps.

B.3 DIVERSITY OF SOCIALJAX ENVIRONMENTS

Table [maps classical social dilemmas to the environments studied in our benchmark. Each paradigm
captures a distinct cooperation—defection tradeoff, which is instantiated in specific multi-agent
environments. For instance, in the Prisoner’s Dilemma, mutual cooperation strictly dominates
mutual defection, yet unilateral defection remains individually tempting (e.g., Arena, Coins). In
the Snowdrift/Chicken Game, cooperation yields benefits even if the partner defects, though mutual
cooperation is preferable (e.g., Mushrooms). The Stag Hunt requires mutual cooperation to unlock
high payoffs, while unilateral action results in low returns (e.g., Coop Mining, Gift Refinement).
Finally, the Tragedy of the Commons illustrates the overuse of shared resources under selfish behavior,
leading to system degradation (e.g., Commons Harvest variants, Clean Up).

Table 4: Mapping classical social dilemmas to SocialJax environments.

Paradigm Mapped Environments
Prisoner’s Dilemma Prisoner’s Dilemma: Arena; Coins
Snowdrift / Chicken Game Mushrooms

Stag Hunt Coop Mining; Gift Refinement

Tragedy of the Commons Commons Harvest (Open / Closed / Partnership); Clean Up

B.4 TASK DIFFICULTY CATEGORIZATION

we include a qualitative categorization Table[5]of the task environments used in our study along three
axes: long-term impact of decisions, task multi-modality (i.e., whether agents need to solve multiple
goals), and number of agents. These axes provide intuitive guidance on the sources of complexity
across different social dilemmas. The final “Difficulty” column provides a coarse summary based on
the combination of these factors.

B.5 SCALABILITY OF SOCIALJAX

our framework allows users to freely adjust the number of agents via configuration files and environ-
ment settings, enabling flexible scaling experiments. We conducted additional tests to evaluate the
environment speed with 20 agents under random action execution, excluding Coins and Prisoner’s
Dilemma due to their fixed design constraints, seeing Table[6] We observed only a modest slowdown
in FPS compared to the performance reported in the main paper with original agent numbers. This is
because our JAX-based environments rely heavily on parallel computation, where increasing the num-
ber of agents primarily affects GPU memory usage rather than significantly impacting computational
speed.

17

Under review as a conference paper at ICLR 2026

Table 5: Environments and their characteristics

Environment Long-Term Impacts Multi-Task Agents Number Difficulty
Clean Up High Yes 7 Very Hard
Gift Refinement High Yes 5 Very Hard
Harvest: Partnership High No 7 Hard
Harvest: Closed High No 7 Hard
Harvest: Open High No 7 Medium
Coop Mining Medium No 6 Medium
Prisoner’s Dilemma Medium Yes 5 Medium
Mushrooms High No 5 Easy
Coins Low No 2 Easy

Table 6: Evaluate the environment speed with 20 agents under random action execution.

Envs (20 Agents) 1JAX Env 128 JAXEnv 1024 JAX Env 4096 JAX Env
Harvest: Open 1.2 x 103 1.2 x 10° 5.1 x 10° 7.8 x 10°
Harvest: Closed 1.2 x 103 1.2 x 10° 5.1 x 10° 7.8 x 10°
Harvest: Partnership 1.2 x 103 1.2 x 10° 5.1 x 10° 7.8 x 10°
Clean Up 1.9 x 10° 1.9 x 10° 7.7 x 10° 1.3 x 108
Coop Mining 1.9 x 103 2.0 x 10° 9.8 x 10° 1.5 x 106
Mushrooms 1.2 x 103 1.2 x 10° 5.8 x 10° 9.5 x 10°
Gift Refinement 1.3 x 103 1.4 x 10° 6.6 x 10° 1.2 x 108

=== Shared Parameter IPPO
=== Non-shared Parameter IPPO

Iy

Training hours
w

6-
5-
2-
0- " " "’ 3 " 4 " !
Coins Harvest: Open Harvest: Closed Harvest: Partnership Clean Up Coop Mining Mushrooms Gift Refinement Pr

risoners Dilemma: Arena
Environments

Figure 8: Training time to reach 10° timesteps: Shared parameter IPPO versus Non-shared parameter
IPPO.

C ADDITIONAL RESULTS

C.1 PARAMETER SHARING AND NON-PARAMETER SHARING IPPO

We compare the training time and learning performance of shared parameter IPPO (P-IPPO) versus
non-shared parameter IPPO (N-IPPO). According to Figure([] the training times of shared parameter
IPPO and non-shared parameter IPPO are virtually indistinguishable, with the shared parameter
variant completing slightly faster.

18

Under review as a conference paper at ICLR 2026

We also present the training curves Figure[7]for shared parameter and non-shared parameter IPPO,
which demonstrate essentially identical convergence behavior.

C.2 WALL CLOCK TIME SPEED COMPARISON

We compare the performance of our training pipeline with the training speed of the |Stable-Baselines3
and RLIib/implementations with TensorFlow, based on the publicly available code from Melting Pot
2.0.

Note that the experimental results in Melting Pot 2.0 [Agapiou et al.| (2022)) cannot be directly
compared, as the code related to their reported results has not been released. The open-source
versions of the algorithms in Melting Pot 2.0 are based on RLIib and Stable Baselines3. However,
the versions of Actor-Critic Baseline (ACB) [Espeholt et al| (2018)), V-MPO (2019), and
OPRE [Vezhnevets et al| (2020) used in their reports have not been made available as open source.
Additionally, since Melting Pot 2.0 is pixel-based environments while our SocialJax environments are
grid-based, it is not feasible to align the environment and neural network settings directly. Therefore,
we only compare wall-clock training times for scenarios that achieve convergence, evaluating the
open-source frameworks Stable Baselines3 and RLIib alongside our own training pipeline.

Relative Speed (vs SB3):
$B3: 1

RLIib:
SocialJax IPPO: 881
SocialJax MAPPO: 22:

g

Wall Clock Time (hours, log scale)

Coins. Harvest: Open Harvest: Closed Harvest: Partnership Clean Up Coop Mining Mushrooms Gift Refinement Prisoners Dilemma: Arena

Figure 9: Training time comparison across different frameworks: Stable Baselines3, RLIib, IPPO,
and MAPPO.

As shown in Figure[9] the SocialJax training pipelines achieve roughly a 30-800x speedup over the
open-source Melting Pot code, thereby substantially enhancing training efficiency. It should be noted
that we did not actually execute 10° timesteps under the Stable Baselines3 and Rllib framework;
rather, we estimated the time required to complete 10° timesteps by extrapolating from the measured
frames-per-second (FPS) performance.

D HYPERPARAMETERS FOR TRAINING

In this section, we provide the hyperparameters and configuration details for different algorithms used
in our environments. We first provide the hyperparameter settings for IPPO, along with configuration
options for enabling or disabling parameter sharing, and for choosing between individual and common
reward schemes. Table [7] shows the configuration of the IPPO algorithm. When shared_rewards
is set to true, it corresponds to the common reward setting; when set to false, it corresponds to the
individual reward setting. When PARAMETER_SHARING is true, it denotes shared parameter IPPO,
and when false, non-shared parameter IPPO.

19

https://stable-baselines3.readthedocs.io/en/master/
https://docs.ray.io/en/latest/rllib/index.html

Under review as a conference paper at ICLR 2026

Parameter

Value

Learning Rate

Number of Environments
Number of Steps per Update
Total Timesteps

LR = 0.0005

NUM_ENVS =256
NUM_STEPS = 1000
TOTAL_TIMESTEPS = 3 x 10%

Update Epochs UPDATE_EPOCHS =2
Number of Minibatches NUM_MINIBATCHES = 500
Discount Factor v =0.99

GAE Lambda GAE_LAMBDA = 0.95

Clip Epsilon CLIP_EPS =0.2

Entropy Coefficient ENT_COEF =0.01

Value Function Coefficient VF_COEF = 0.5

Max Gradient Norm
Activation Function
Environment Name

MAX_GRAD_NORM = 0.5
ACTIVATION = relu
ENV_NAME = clean_up

Reward Shaping Horizon REW_SHAPING_HORIZON = 2.5 x 10°
Shaping Begin SHAPING_BEGIN =1 x 10°

Shared Rewards shared_rewards = False (set True for common rewards)
CNN Enabled cnn = True

JIT Compilation jit=True

Anneal Learning Rate ANNEAL_LR = True

Seed SEED = 30

Number of Seeds NUM_SEEDS =1

Hyperparameter Tuning Enabled TUNE = True

GIF Number of Frames GIF_NUM_FRAMES = 250

Parameter Sharing PARAMETER_SHARING = True
Number of Agents num_agents = 7

Number of Inner Steps

num_inner_steps = 1000

Table 7: Hyperparameter settings and environment configuration for IPPO in the Clean Up environ-

ment.

Description

Value

Learning Rate

Number of Environments
Number of Steps per Update
Total Timesteps

Update Epochs

Number of Minibatches
Discount Factor

GAE Lambda

Clip Epsilon

Entropy Coefficient
Value Function Coefficient
Max Gradient Norm
Scale Clip Epsilon
Activation Function
Environment Name
Reward Shaping Horizon
Number of Agents
Number of Inner Steps
Shared Rewards

CNN Enabled

JIT Compilation

Anneal Learning Rate

LR =0.001

NUM_ENVS =4

NUM_STEPS = 100
TOTAL_TIMESTEPS = 3 x 10®
UPDATE_EPOCHS =2
NUM_MINIBATCHES =4

v=0.99

0.95

CLIP_EPS =0.2
ENT_COEF = 0.01
VF_COEF =0.5
MAX_GRAD_NORM =0.5
True

relu

"clean_up"

2.5 x 10°

7

1000

True — set to False for individual rewards
True

True

True

Table 8: Hyperparameter settings and environment configuration for MAPPO in the Clean Up

environment.

20

Under review as a conference paper at ICLR 2026

Table [§] presents the hyperparameters for the MAPPO algorithm. For the SVO algorithm, our
hyperparameters are shown in Table[0] Note that during SVO training, we first perform a sweep over
the parameter w to find its optimal value, and then conduct a sweep over the angle 6. Therefore, the
training script needs to be configured to sequentially perform a sweep over the parameter w (Table
[T0) followed by a sweep over the angle 6 (Table[TT). Further details on environment configurations
and hyperparameter settings can be found in our open-source implementation.

sweep_config = {
"name": "cleanup_w",
"method": "grid",
"metric": {
"name": "returned_episode_original_returns",
"goal": "maximize",
}I
"parameters": {
"ENV_KWARGS.svo_w": {"values": [0.0, 0.2, 0.4, 0.6, 0.8, 1.01},

}y

Figure 10: Sweep configuration for SVO weight w in the Clean Up environment.

sweep_config = {

"name": "cleanup_angle",

"method": "grid",

"metric": {
"name": "returned_episode_original_returns",
"goal": "maximize",

b

"parameters": {
"ENV_KWARGS.svo_ideal_angle_degrees": {

"values": [0, 22.5, 45, 67.5, 90]

b

b

Figure 11: Sweep configuration for SVO angle 6 in the Clean Up environment.

21

Under review as a conference paper at ICLR 2026

Parameter

Value

Learning Rate

Number of Environments
Steps per Update

Total Timesteps

Update Epochs
Minibatches

Discount Factor

GAE Lambda

Clip Epsilon

Entropy Coefficient
Value Function Coefficient
Max Gradient Norm
Activation Function
Environment Name
Reward Shaping Horizon
Number of Agents

Inner Steps

Shared Rewards

CNN Enabled

JIT Compilation

SVO Enabled

SVO Target Agents

SVO Weight

SVO Ideal Angle (degrees)
Anneal Learning Rate
Random Seed

Number of Seeds
Hyperparameter Tuning
Reward Type

GIF Frame Count

LR=0.0005

NUM_ENVS=256

NUM_STEPS=1000
TOTAL_TIMESTEPS=3 x 10%
UPDATE_EPOCHS=2
NUM_MINIBATCHES=500
GAMMA=0.99

GAE_LAMBDA=0.95

CLIP_EPS=0.2

ENT_COEF=0.01

VF_COEF=0.5
MAX_GRAD_NORM=0.5
ACTIVATION=relu
ENV_NAME-=clean_up
REW_SHAPING_HORIZON=2.5 x 10°
ENV_KWARGS.num_agents=7
ENV_KWARGS.num_inner_steps=1000
ENV_KWARGS .shared_rewards=False
ENV_KWARGS.cnn=True
ENV_KWARGS jit=True
ENV_KWARGS.svo=True

ENV_KWARGS.svo_target_agents=[0,1,2,3,4,5,6]

ENV_KWARGS.svo_w=0.5

ENV_KWARGS.svo_ideal_angle_degrees=90

ANNEAL_LR=False
SEED=30
NUM_SEEDS=1
TUNE=False
REWARD=individual
GIF_NUM_FRAMES=250

Table 9: Hyperparameter settings and environment configuration for SVO training in the Clean Up

environment.

22

	Introduction
	Related Work
	SocialJax
	Sequential Social Dilemmas
	Environments of SocialJax
	Algorithms in JAX
	Metrics for SocialJax Environments

	Experiments
	Setup
	Results
	Social Dilemma Environments Attributes

	Conclusion
	Statements of Ethics, Reproducibility, and LLM Usage
	Ethics Statement
	Reproducibility Statement
	Large Language Models Usage

	Additional Details on Environments
	API and Examples
	Environment Settings and Parameters
	Diversity of SocialJax Environments
	Task Difficulty Categorization
	Scalability of SocialJax

	Additional Results
	Parameter Sharing and Non-parameter Sharing IPPO
	Wall Clock Time Speed Comparison

	Hyperparameters for Training

