
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

A CONSISTENT PATTERN FOR IDENTIFYING DECISIVE
CODE SNIPPETS FOR LLM-BASED CODE INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Which parts of pre-target input1 are most influential for next-token prediction
in the context of programming languages? In this paper, we present evidence
that code snippets at specific locations in pre-target inputs play a decisive role
in large language model (LLM) inference, and these snippets exhibit a consistent
pattern. Firstly, we introduce a novel causal tracing method to identify tokens,
so-called high-information tokens, that significantly contribute to next-token pre-
diction. Building on this, we propose a multi-phase causal tracing process to ana-
lyze the importance distribution of high-information tokens, revealing a consistent
pattern, named the Important Position Rule (IPR). To further validate this hypoth-
esis, we assess the role of IPR across various LLMs, languages, and tasks. Our
extensive evaluations for code translation, code correction and code completion
tasks (Java, Python, C++) on models CodeLlama-7b/13b/34b-Instruct (Roziere
et al., 2023) and gpt-3.5/4-turbo (Ouyang et al., 2022), confirm this hypothesis.
Furthermore, we observe that IPR exhibits structural and semantic properties sim-
ilar to the ⟨subject, relation, object⟩ paradigm in natural language. Leveraging
this insight, we successfully combine IPR with the knowledge editing method
ROME (Meng et al., 2023) in order to repair translation errors, achieving a cor-
rection rate of 62.73% to 75.31%. To our knowledge, this is the first application
of knowledge editing in the context of programming languages.

1 INTRODUCTION

Recently, researchers have delved into the internal mechanisms of large language models. The inher-
ent syntactic structures in natural language, such as ⟨subject, relation, object⟩, provide solid support
for interpretable inference (Kim et al., 2024; Stolfo et al., 2023; Katz et al., 2024; Haviv et al.,
2023) and knowledge editing (Meng et al., 2022; Zhang et al., 2024; Meng et al., 2023; Gupta et al.,
2024). However, the existence of analogous mechanisms in code-based LLMs remains uncertain,
which poses challenges for the aforementioned research in programming language contexts. In this
paper, we demonstrate that code snippets located at specific positions play a crucial role in guiding
LLM-based code inference, and that these snippets exhibit a consistent pattern.

In the field of natural language processing (NLP), GPT models have exhibited a remarkable ability
to learn and utilize syntactic structures, which are essential for establishing internal correlations
between words (Petroni et al., 2019; Rai et al., 2024; Bajpai et al., 2024). For example, given the
prompt “The Eiffel Tower is located in”, GPT can accurately predict “Paris”. It underscores the
importance of syntactic structures in guiding inference and enhancing predictions (Mikolov et al.,
2013; Touvron et al., 2023; Ouyang et al., 2022; Roziere et al., 2023). This leads us to the Core
Research Question: Is there a consistent pattern that significantly contributes to LLM-based code
inference? To address this question, we first quantify the information content of individual tokens
to assess their contribution to the inference process. Subsequently, we discover the importance
distribution pattern of high-information tokens and examine how this pattern influences the inference
process, ultimately providing new insights into the inner workings of LLM-based code inference.

Existing tracing methods primarily focus on perturbing the training or test datasets to identify high-
information tokens based on changes in generated tokens. However, relying solely on target token

1Pre-target input: It refers to the combination of an input sequence and a generated output prefix, which
together provide the contextual basis for generating a target token.
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changes to determine the impact of input tokens is a rather crude approach (Dong et al., 2019;
Brown et al., 2020; Devlin et al., 2018). On the one hand, the output of the Transformer model is a
probability distribution over multiple tokens in the vocabulary. Therefore, this approach overlooks
other input tokens that have a relatively high influence (Adler et al., 2016; Hao et al., 2021; Geva
et al., 2022). On the other hand, the generation of the target token is determined by both the source
input sequence and the generated output prefix (i.e., pre-target input), yet existing research typically
perturbs only the input sequence while neglecting the latter (Liu et al., 2023; Cho et al., 2014).
In this paper, we propose introducing perturbations to the tokens in both the input sequence and
the generated prefix. By analyzing the resulting fluctuations in the internal representations, we can
effectively quantify the information content of individual tokens.

In recent years, knowledge editing has garnered widespread attention in the field of natural language
processing (Mazzia et al., 2023; Wei et al., 2023). Meng et al. (2023) highlights that fine-tuning
the middle layer weights of GPT models enables them to rapidly learn new knowledge, such as
“The Eiffel Tower is located in Berlin”. We argue that the success of knowledge editing stems from
the properties of the latent space. After extensive training, the frequent ⟨subject, relation, object⟩
structures in the training samples establish a robust association between the tokens “Eiffel Tower”
and “Paris”. Therefore, when editing at the position of “Eiffel Tower”, effective information sub-
stitution can be achieved. However, existing knowledge editing techniques primarily rely on the
⟨subject, relation, object⟩ structure, which is typically limited to the natural language. In this paper,
we find that code snippets identified by IPR in the input sequence and the output prefix exhibit strong
semantic and syntactic correlations, similar to the close relationship between phrases of “subject”
and “object” in natural language. Building on this observation, we apply IPR in knowledge editing
to rectify errors in Java to Python translation. The main contributions of this paper are the following:

• We propose a causal tracing method that interacts the low-dimensional text sequence with
the high-dimensional internal representation. This approach quantifies the information
content of individual tokens in both the input sequence and the generated output prefix,
enabling an assessment of each token’s contribution to the next-token prediction.

• We introduce a multi-phase causal tracing process, revealing a consistent pattern of high-
information tokens, named the important position rule.

• We validate the role of IPR in code inference across diverse models, tasks, and program-
ming languages, including code translation, code correction, and code completion, utiliz-
ing CodeLlama-7b/13b/34b-Instruct and gpt-3.5/4-turbo with Java, Python, and C++. Our
evaluation shows that code snippets identified by IPR play a critical role in next-token
prediction. We also confirmed their robust generalization capabilities, providing valuable
interpretability for LLM-based code inference.

• We combine IPR with ROME in the context of programming languages, generalizing this
knowledge editing beyond the NLP context. Our approach effectively corrected errors in
Java to Python translation, with a correction rate of 62.73% to 75.31%.

2 RELATED WORK

Currently, mainstream methods for interpreting large language models include causal mediation
analysis (Hicks & Tingley, 2011; Imai et al., 2010), influence function (Cook & Weisberg, 1980),
knowledge attribution (Powell et al., 2015; Bricker, 2020), and counterfactual analysis (Keohane,
2009; Hernán & Robins, 2010), etc.

One straightforward yet effective method for interpreting LLMs involves locally perturbing inputs.
This approach allows for a detailed analysis of which components of the input sequence are most
influential in guiding the model’s predictions (Lundberg & Lee, 2017; Wiegreffe & Pinter, 2019a;
Ribeiro et al., 2016). Li et al. (2023) introduced a selective context method, which enhances the
LLM inference efficiency by identifying and pruning redundancies in the input context, resulting in
a more concise input. Parallel to these efforts, Jiang et al. (2023) proposed a coarse-to-fine prompt
compression method, LLMLingua, which effectively captures the interdependencies among com-
pressed content. From a causal perspective, Feder et al. (2021a) introduced CausaLM, a framework
that utilizes counterfactual language to produce interpretations of causal models (Simon & Rescher,
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Figure 1: Exploration and Application Workflow of the Important Position Rule. First, we
employed the causal tracing method and a multi-phase causal tracing process to investigate the
importance distribution pattern of high-information tokens, leading to the IPR hypothesis. Next,
we validate the role and generalization of IPR across various programming languages, LLMs, and
code tasks. Finally, we integrate IPR with ROME, successfully performing knowledge editing in the
code-based LLM. After thorough evaluation, IPR demonstrates significant potential in enhancing
interpretable inference and facilitating knowledge editing in the context of programming languages.

1966; Hernán & Robins, 2010; Feder et al., 2021b). Then, Kramár et al. (2024) proposed the attri-
bution patching method, which employs linear approximation at the corrupted prompt to evaluate
the impact of local changes in the model. To identify which training points contribute to the specific
prediction, Koh & Liang (2017) leveraged the influence function (Hampel, 1974) to trace model pre-
dictions from a robustness perspective, revealing insights about how models rely on and infer from
training data. Building on this, Geva et al. (2022) presented LM-Debugger, providing a granular ex-
planation of the model’s internal prediction processes (Wallace et al., 2019). By observing the effects
of erasing components of the representation (e.g. input word vector dimensions, intermediate hid-
den units, or input words), Li et al. (2017) analysed and explained the decisions of the neural model.
Furthermore, some researchers have investigated the role of intermediate representations from at-
tention modules in explaining model predictions. Wiegreffe & Pinter (2019b) introduced four tests
to assess when/whether attention can serve as an explanation, providing insights into model reason-
ing. Following this, Wu et al. (2021) introduced a parameter-free probing technique for analyzing
pre-trained language models that eliminates the need for direct supervision and avoids incorporating
extra parameters during the probing process.

The central idea in existing research is to perturb input sequences and observe changes in the gen-
erated tokens, thereby identifying correlated internal components, input tokens, or training samples
relevant to the model predictions (Lundberg & Lee, 2017; Wiegreffe & Pinter, 2019a; Dai et al.,
2022; Ribeiro et al., 2016). However, since the output of Transformer models is a probability dis-
tribution over multiple tokens, relying solely on changes in the target token is a crude approach that
risks overlooking other input tokens with relatively higher influence. Moreover, the output of target
tokens is dominated by both the source input sequence and the generated output prefix, yet existing
studies have neglected the influence of the output prefix.

3 TRACING IMPACTFUL INFORMATION SOURCE FOR CODE INFERENCE

In this section, we combine the causal tracing method with the multi-phase causal tracing process,
revealing a consistent pattern among high-information tokens.

3
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(a) Predicting target token y4. (b) Predicting target token y8.

(c) Predicting target token y12. (d) Predicting target token y17.

Figure 2: Importance Distribution of High-Information Tokens in Small Samples. We focus
on target tokens yj∈4,8,12,17 at various positions to explore whether next-token predictions depend
on tokens with specific positions. For each token yj , we randomly select seven pre-target inputs
⟨src func, tgt pref⟩, denoted as {s1, s2, . . . , s7}. Then, we systematically corrupt individual tokens
in sequence and employ the causal tracing method to evaluate the information content of each to-
ken. Here, A1 and A2 represent the clustered regions of high-information tokens, and the x-axis
represents the positions of the tokens.

3.1 DEFINITIONS AND NOTATION

In the code correction scenario, a potentially incorrect source code x (referred to as src func) is
mapped to a corrected code y through LLM. Both x and y are functions in the considered program-
ming language like Python, and each is represented by a sequence of tokens x = [x1, x2, . . . , xM ]
and y = [y1, y2, . . . , yN ].

Consider an autoregressive Transformer language model (Irie et al., 2019), where all previously
generated tokens y1:j−1 are treated as additional input when generating the next token yj∈[1,N ]

(Vaswani et al., 2017; Dou & Gales, 2022; Goodman et al., 2020). We designate yj as a target token
and y1:j−1 as tgt pref (i.e. a target prefix). For a target token yj , since the output distribution
p(yj |x, y1:j−1) is conditioned on both the src func x and the tgt pref y1:j−1, we define the pre-target
input as ⟨src func,tgt pref⟩ or cj = (x, y1:j−1).

Inspired by Khandelwal et al. (2020), we use the mapping f from the pre-target input to an inter-
mediate representation of the Transformer decoder (i.e. the output of the final layer of a Trans-
former before the linear layer, see (Vaswani et al., 2017)) to obtain a vector representation of
⟨src func, tgt pref⟩. For the pre-target input cj , this mapping yields a internal representation kj
= f(x, y1:j−1).

Definition 1: Given two tokens xi, yj across different contexts, if both exhibit analogous function-
ality and purpose, we define xi to be the counterpart2 of yj .

Definition 2: Given the target token yj , we define its counterpart xi in src func and the preceding
token yj−1 as the core tokens of ⟨src func, tgt pref⟩, denoted as x∗

i and y∗j−1, respectively.

Definition 3: Consider a token in ⟨src func, tgt pref⟩, we define the function p() to capture the
position of the token. Specifically, if the token belongs to src func, then p(xi) = i; and if the token
belongs to tgt pref, then p(yj) = −j.

2In this paper, we consider only cases where a counterpart of the target token exists in the src func.
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(a) sim < 0.8 (b) sim < 0.75 (c) sim < 0.7 (d) sim < 0.65

(e) sim < 0.8 (f) sim < 0.75 (g) sim < 0.7 (h) sim < 0.65

Figure 3: Cluster Analysis of High-Information Tokens in ⟨src func, tgt pref⟩. We utilize two
normalization methods to examine whether high-information tokens exhibit clustering in large sam-
ples. Building upon this, we further investigate the importance distribution pattern of these high-
information tokens with varying levels of information content.

3.2 CAUSAL TRACING METHOD

Large language models can be viewed as intermediaries that transform low-dimensional text se-
quences into high-dimensional internal representations. In this section, we introduce a causal trac-
ing method designed to quantify the information content of individual tokens. This method involves
perturbing individual tokens in ⟨src func, tgt pref⟩ and employs the dot product similarity to analyze
fluctuations in the internal representation.

• Clean representation: Given a pre-target input cj , we utilize the Transformer model to
convert this clean pre-target input into an internal representation, denoted as kj .

• Corrupted representation: We corrupt an individual token in ⟨src func, tgt pref⟩, result-
ing in a corrupted pre-target input c′j . We then apply the Transformer model to convert this
corrupted pre-target input c′j into an internal representation, denoted as k′j .

• To assess the contribution of the corrupted token to the internal representation, we employ
dot product similarity sim() to measure the difference between kj and k′j . This method
provides a metric for quantifying the information content of the token (Luo et al., 2018).
A lower similarity score indicates higher information content for the token, suggesting
that the corrupted token has lost more critical information, as the perturbation significantly
distorts the internal representation. In contrast, a higher score reflects lower information
content, implying a smaller impact on the internal representation.

sim(cj , c
′
j) =

kj · k′j
∥ kj ∥∥ k′j ∥

We performed single-token perturbations on 3,650 samples and calculated the similarity between
these corrupted representations and clean representations. As illustrated in Figure 4, we observe a
distinct clustering phenomenon, with the majority of samples exhibiting similarity scores between
0.8 and 1, while only a small fraction displays scores below 0.8. Based on this, we refer to a token
with a similarity score below 0.8 as a high-information token, while a token with a score above 0.8
is referred to as a low-information token.

3.3 MULTI-PHASE CAUSAL TRACING PROCESS

Based on the causal tracing method, we propose a multi-phase causal tracing process to analyze the
importance distribution pattern of high-information tokens. This process consists of three phases:
A) Observation of the distribution pattern of high-information tokens in small samples; B) Assess-
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(a) tgt pref. (b) src func.

Figure 4: High-Information Tokens Cluster Around Core Tokens. We performed an extensive
analysis on 3,650 samples, utilizing two core tokens from src func and tgt pref as reference points.
We found that high-information tokens tend to cluster around the x = 0 axis (i.e., core token), with
their density gradually decreasing as the distance from this axis increases.

ment of whether high-information tokens exhibit clustering phenomena in large samples; and C)
Evaluation of cluster centers for high-information tokens in large samples.

A) High-Information Tokens Cluster Around Core Tokens in Small Samples. In this section,
we employ the causal tracing method to evaluate the contribution of each token, observing the
importance distribution of high- and low-information tokens. Initially, we focus on target tokens
yj∈4,8,12,17 at various positions, aiming to investigate whether next-token predictions depend on to-
kens from specific positions in the pre-target input. Then, for each target token yj , we randomly
select seven pre-target inputs ⟨src func, tgt pref⟩. We systematically corrupt individual tokens in
sequence and apply the causal tracing method to evaluate the information content of each token,
analyzing the importance distribution of high- and low-information tokens.

As shown in Figure 2, we observe a distinct clustering phenomenon in the importance distribution of
high-information tokens. For the target tokens yj∈4,8,12,17, high-information tokens tend to cluster
around the x = j and x = −(j − 1) axes. By examining the source documents, we find that these
clustered points typically correspond to core tokens, and the associated code snippets often exhibit
functional equivalence.

B) Clustering Phenomena of High-Information Tokens in Large Samples. As illustrated in
Figure 2, we observed clustering of high-information tokens in both src func and tgt pref. In
this section, we will further explore the existence of clustering phenomena in a large dataset.
Specifically, we systematically corrupt individual tokens in ⟨src func, tgt pref⟩ and then em-
ploy a causal tracing method to assess the information content of each token across 3,650
samples. Following this, we identify high-information tokens with similarity scores below
the thresholds of {0.8, 0.75, 0.7, 0.65}, denoting their positions as the set P. For example, if
high-information tokens in a pre-target input are {x3, x4, x5, x6, y4, y5}, the position set P =
{p(x3), p(x4), p(x5), p(x6), p(y4), p(y5)}. To analyze the importance distribution pattern of these
tokens in ⟨src func, tgt pref⟩, we standardized their positions using the following formulas:

P1 =
P

median(|P|)
, P2 =

P
mean(|P|)

The standardized positions P1 and P2 facilitate a clearer observation of the distribution pattern by
normalizing their positional data. It allows for more meaningful comparisons across different pre-
target inputs and mitigates the effects of varying sequence lengths and token positions. As shown in
Figure 3, high-information tokens with varying information content exhibit clear clustering behavior
under both criteria, P1 and P2, with noticeable concentrations along the y = 1 and y = −1 axes.
This non-random clustering phenomenon suggests that there may be intrinsic associations among
high-information tokens.

C) Clustering of High-Information Tokens Around Core Tokens in Large Samples. Based on
Part B, we identified a remarkable clustering phenomenon among high-information tokens, which
consistently cluster around the y = 1 and y = −1 axes (as shown in Figure 3), indicating the
existence of cluster centers. In Part A, we found that high-impact tokens cluster around core tokens
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in small samples. To further investigate this relationship, we conducted an extensive analysis of
3,650 samples, utilizing two specific clustering centers, p(x∗

i ) and p(y∗j−1), as coordinate origins to
examine the distribution characteristics of the surrounding tokens. The goal of this analysis was to
examine the concentration of high-information tokens around the core tokens and to assess how this
information density varies with distance.

In Figure 4, we observe that high-information tokens tend to cluster around the x = 0 axis (i.e., core
tokens), with the density gradually decreasing as the distance increases. Specifically, in src func,
high-information tokens are densely packed within a radius of four tokens from the core token, while
in tgt pref, high-information tokens cluster within a radius of three tokens from the core token.

3.4 IMPACTFUL INFORMATION SOURCE HYPOTHESIS: IMPORTANT POSITION RULE

Building upon the multi-phase causal tracing process, we uncover a consistent pattern of the high-
information tokens: Given a target token yj , high-information tokens cluster within a 4-token radius
around the core token x∗

i in src func and within a 2-token radius around the core token y∗j−1 in
tgt pref. This pattern can be expressed as (x∗

max{i−4,1}:min{i+4,M}, y
∗
max{j−3,1}:j−1), known as

the Important Position Rule (IPR).

Hypothesis: In LLM-based code inference, code snippets identified by the importance position rule
are decisive for next-token prediction.

Based on the importance position rule, we define the code snippets extracted from the pre-target
inputs ⟨src func, tgt pref⟩ as IPR-based code snippets (also referred to as decisive code snip-
pets), denoted as ⟨src frag,tgt frag⟩. Specifically, src frag= x∗

max{i−4,1}:min{i+4,M} and
tgt frag= y∗max{j−3,1}:j−1.

4 ANALYSIS OF IPR IN CODE INFERENCE

To validate that IPR-based code snippets are decisive for LLM-based code inference, we consider the
following two questions: Q1: Can only code snippets identified by IPR reliably predict the target to-
ken? Q2: Does IPR exhibit strong generalization, making it applicable across diverse programming
languages, tasks, and LLMs? (See Section 4.2 for the answer)

4.1 EXPERIMENTAL DETAILS

Methods. For Q1, we extract the IPR-based code snippet and use it to generate the next token.
Specifically, given a target token yj , we extract IPR-based code snippets ⟨src frag, tgt frag⟩ =
(x∗

max{i−4,1}:min{i+4,M}, y
∗
max{j−3,1}:j−1) from pre-target inputs ⟨src func, tgt pref⟩ = (x, yj−1).

Then, we use these short code snippets as inputs to the LLM, calculating the success rate by com-
paring the next generated token y

′

j with the original target token yj .

Success Rate =

∑N
i=1 I(y′i = yi)

N

Where, N denotes the total number of samples. yi represents the original target token, which gener-
ated by ⟨src func, tgt pref⟩. y′

j represents the predicted token generated by IPR-based code snippets
⟨src frag, tgt frag⟩. A match yj = y

′

j is considered a success, indicating the significance of the
IPR-based code snippet in next-token prediction. Conversely, a mismatch suggests the model relied
on broader context rather than the IPR-based code snippet.

For Q2, based on the above method, we evaluate the generalizability of IPR across various models,
tasks, and programming languages. Specifically, we assessed the next-token prediction performance
of IPR-based code snippets across three distinct tasks: code correction, code translation, and code
completion. These tasks utilize models such as CodeLlama-7b-Instruct, CodeLlama-13b-Instruct,
CodeLlama-34b-Instruct, gpt-3.5-turbo3, and gpt-4-turbo4, covering programming languages in-
cluding C++, Java, and Python (Roziere et al., 2023; Ouyang et al., 2022).

3https://platform.openai.com/docs/models#gpt-3-5-turbo
4https://platform.openai.com/docs/models#gpt-4-turbo-and-gpt-4
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Test Dataset. Different models interpret and handle context in distinct ways during model infer-
ence, leading to variations in the inference results (i.e., tgt pref) for the same src func. Therefore,
it is necessary to construct model-specific ⟨src func, tgt pref⟩ language pairs for each model. Based
on this, we created specialized IPR-based snippet datasets for CodeLlama-7b-Instruct, CodeLlama-
13b-Instruct, CodeLlama-34b-Instruct, gpt-3.5-turbo, and gpt-4-turbo, enabling the analysis of dif-
ferent models’ inference performance. (See Appendix A.2 for details on test dataset generation.)

4.2 RESULTS AND DISCUSSION

Evaluating IPR: Code Correction. In this phase, we validated the role of the important position
rule in code correction tasks across various large language models in the contexts of Java, C++, and
Python. As shown in Table 1, models such as CodeLlama-7b-Instruct, CodeLlama-13b-Instruct,
and CodeLlama-34b-Instruct demonstrated remarkable success rates in matching the original target
token, attaining rates between 91.86% and 94.13% while utilizing only 12 high-information tokens.
In comparison, the performance of gpt-3.5/4-turbo was relatively lower. This difference can be
attributed to their design focus: both models are primarily optimized for natural language processing
tasks, emphasizing the understanding and generation of natural language rather than reasoning and
generation in programming languages. Compared to gpt-3.5-turbo, researchers enhanced gpt-4-
turbo’s capabilities in code generation tasks (OpenAI et al., 2024), which contributes to the higher
success rate. These results indicate that in code correction, the next-token prediction largely relies
on high-information tokens derived from the important position rule. Furthermore, the consistently
high success rates of IPR-based code snippets across various programming languages and LLMs
highlight the strong generalization capability of IPR.

Table 1: Performance of IPR-Based Code Snippets for Next-Token Prediction in Code Correction.
CodeLlama-7b-

Instruct
CodeLlama-13b-

Instruct
CodeLlama-34b-

Instruct
gpt-3.5-

turbo
gpt-4-
turbo

Ave 1

C++ 91.86% 93.70 % 92.60 % 56.77 % 69.69 % 80.92 %
Java 92.41 % 94.13% 93.00 % 52.55 % 72.50 % 80.92 %
Python 92.21 % 92.79 % 92.82 % 54.05 % 73.25 % 81.02 %
Ave 2 92.16 % 93.54 % 92.81 % 54.46 % 71.81 % -

Evaluating IPR: Code Translation. We evaluate the contribution of IPR-based code snippets in
the following translation tasks: C++ → Python, C++ → Java, Java → Python, Java → C++, Python
→ Java, and Python → C++. As illustrated in Table 2, we found that even using code snippets with
only 12 tokens for next-token prediction, all models achieve significant success rates in matching the
original target token. Specifically, CodeLlama-7b-Instruct, CodeLlama-13b-Instruct, CodeLlama-
34b-Instruct, and gpt-4-turbo attain success rates ranging from 80.98% to 70.11%. Furthermore,
we observed that all models performed particularly well in the C++ → Java and Java → C++ tasks.
This is because Java is developed based on C++, retaining much of its syntax and core programming
paradigms. In contrast, despite the significant differences in structure, keywords, and syntax between
Python and C++/Java, specialized code LLMs such as CodeLlama-7b-Instruct, CodeLlama-13b-
Instruct, and CodeLlama-34b-Instruct still achieved success rates ranging from 64.94% to 80.00%.
These results indicate that LLM inference in code translation tasks heavily relies on IPR-based code
snippets, further highlighting the strong generalization capability of IPR in code translation tasks.

Table 2: Performance of IPR-Based Code Snippets for Next-Token Prediction in Code Translation.
CodeLlama-
7b-Instruct

CodeLlama-
13b-Instruct

CodeLlama-
34b-Instruct

gpt-3.5-
turbo

gpt-4-
turbo

Ave 1

C++ → Java 86.43 % 92.19 % 92.38 % 55.33 % 78.56 % 80.98 %
C++ → Python 74.01 % 80.00% 73.52 % 49.15 % 76.03 % 70.54 %
Java → C++ 91.41 % 94.12 % 92.73 % 60.27 % 83.21 % 84.35 %
Java → Python 70.52 % 76.54 % 73.56 % 39.80 % 74.70 % 67.02 %
Python → C++ 71.31 % 72.95 % 64.94% 39.26 % 58.39 % 61.37 %
Python → Java 67.09 % 70.10 % 66.04 % 32.46 % 49.75 % 57.09 %
Ave 2 76.80 % 80.98% 77.20 % 46.05 % 70.11% -

Evaluating IPR: Code Completion. In this section, we tested the role of IPR in code completion
tasks. Here, we will consider only the impact of tgt frag on the inference process. As illustrated in
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Table 3: Performance of IPR-Based Code Snippets for Next-Token Prediction in Code Completion.
CodeLlama-7b-

Instruct
CodeLlama-13b-

Instruct
CodeLlama-34b-

Instruct
gpt-3.5-

turbo
gpt-4-
turbo

C++ tok3 27.12% 28.45% 26.81% 27.49% 22.63%
C++ tok8 63.21% 63.35% 62.55% 40.85% 43.64%
Java tok3 34.00% 27.89% 29.16% 22.38% 28.46%
Java tok8 66.84% 61.94% 62.61% 38.65% 44.24%
Python tok3 28.03% 28.15% 30.24% 21.49% 30.95%
Python tok8 50.27% 50.78% 51.32% 37.93% 44.74%
Ave tok3 29.72% 28.16% 28.74% 23.79% 27.35%
Ave tok8 60.11% 58.69% 58.82% 39.14% 44.21%

Figure 4, we observe a clear trend: the closer a token is to the core token, the greater its information
content, which plays a more significant role in guiding the model’s inference. Building on this ob-
servation, we evaluated the inference performance using two different configurations of the tgt frag:
i) a 3-token snippet {yj−3, yj−2, yj−1}, which focuses on a few tokens preceding the target token,
and ii) an 8-token snippet {yj−8, ..., yj−1}, which includes a broader context from the prefix. As
shown in Table 3, with only 3 tokens, the success rate ranges from 23.79% to 29.72%, indicating
that even a limited number of high-information tokens can still contribute to code inference. When
the context is expanded to 8 tokens, the success rate increases significantly. For the CodeLlama-
7b-Instruct, CodeLlama-13b-Instruct, and CodeLlama-34b-Instruct models, the success rate rises
to between 58.69% and 60.11%, while the gpt-3.5-turbo and gpt-4-turbo models exhibit lower but
still notable success rates, ranging from 39.14% to 44.21%. These results highlight the key role of
IPR-based code snippets in LLM inference, demonstrating their remarkable generalization capabil-
ities across multi-language and multi-model scenarios, thereby providing meaningful insights into
next-token prediction.

5 APPLICATION: IPR-BASED KNOWLEDGE EDITING

In this section, we introduce an application of IPR: knowledge editing for LLMs in the context of
programming languages. We integrate IPR with the ROME approach (Meng et al., 2023), effectively
correcting errors in Java to Python translations by updating middle layer weights.

5.1 IPR-BASED ROME APPROACH

Existing knowledge editing techniques are constrained by the inherent ⟨subject, relation, object⟩
structure of natural language. In this paper, we elucidate the crucial role of IPR in next-token predic-
tion, where IPR-based code snippets, src frag and tgt frag, exhibit significant semantic and syntactic
correlations. Furthermore, the core token in src frag exhibits analogous functionality and purpose
to the target token, similar to the relationship between “subject” and “object”. This finding indicates
the potential of IPR to support knowledge editing in the context of programming languages.

Building on this, we integrate ROME with IPR to perform knowledge editing on the mid-layer feed-
forward module of the CodeLlama-7b-Instruct model, thereby correcting errors in Java to Python
translation. Specifically, for a failed Java-Python translation pair, we consider the error as the target
token and employ the IPR to extract the corresponding code snippets ⟨src frag, tgt frag⟩ as the basis
for knowledge editing. For the tuple ⟨src frag, tgt frag, corrected error⟩, we treat the core token of
src frag as the “subject” and the corrected error as the “new object”, thereby generating a new key-
value pair (k∗, v∗). This key-value pair allows us to update the weight matrix using the equation
Wk∗ = v∗, where k∗ and v∗ are defined as follows:

k∗ =
1

N

∑N

j=1
σ(W

(l∗)
fc · γ(a(l

∗)
[x],i + h

(l∗−1)
[x],i )),

v∗ = argmin
z

(
1

N

∑N

j=1
− logPG(ml∗

i′ :=z)[o
∗|xj + p] +DKL(PG(ml∗

i′ :=z)[x|p′]∥PG[x|p′])

where N represents the sample size, σ denotes the activation function, W (l∗)
fc and W (l∗)

prof refer
to the weight matrices of the fully connected layer at layer l∗, γ is the feature extraction function,
a[x],i

(l∗) indicates the activation value of input x at layer l∗, h[x],i
(l∗−1) represents the activation
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value of input x at the previous layer. − logPG(ml∗
i′ :=z)[o

∗|xj +p] aims to find a vector z that, when
substituted as the output of the MLP at the i-th token in the subject part, enables the network to
predict the target object o∗ given the factual prompt p. DKL(PG(ml∗

i′ :=z)[x|p′]∥PG[x|p′]) minimizes
the KL divergence between the predictions for the prompt p′ and the original model’s predictions.

5.2 RESULTS AND DISCUSSION

Details. First, we utilized a dataset of 25,227 Java functions as input to CodeLlama-7b-Instruct and
collected 2,975 incorrect Python translations through unit testing. We then categorized these errors
based on specific tokens and selected two main errors: indexOf (Java) → index (Python), accounting
for 5.41%; and equals (Java) → equals (Python), accounting for 2.72%. Based on this, we created
specialized Java datasets targeting these two error types to evaluate the effectiveness of knowledge
editing. The main reason for selecting these errors is that their corresponding correct translations are
both single tokens, allowing for correction through a one-time knowledge edit, which is applicable
to the ROME method. Next, we consider performing knowledge editing on the 19th MLP layer
of CodeLlama-7b-Instruct, primarily for two reasons: (1) Meng et al. (2023) proposed that the
mid-layer feed-forward module plays an important role in storing factual associations, and (2) our
analysis using Logit Lens (nostalgebraist, 2020) indicated that the 19th MLP layer has a greater
impact on the final output (see Appendix Figure 7).

Table 4: Performance of Knowledge Editing for Correcting Translation Errors (Java → Python).
Generation of (k∗, v∗) Succ Total Succ Rate

[A]1
⟨src frag, tgt frag⟩: idx = uri . [ indexOf ] ( “ : ” python = uri .
corrected error: find 101 161 62.73%

[B]1
⟨src frag, tgt frag⟩: idx = uri . indexOf ( “ [ : ] ” python = uri .
corrected error: find 42 161 26.09%

[C]1
⟨src frag, tgt frag⟩: idx [ = ] uri . indexOf ( “ : ” python = uri .
corrected error: find 45 161 27.95%

[A]2
⟨src frag, tgt frag⟩: null : s1 . [ equals ] ( s2 ) ; python : return s1
corrected error: ==

61 81 75.31%

[B]2
⟨src frag, tgt frag⟩: null : s1 . equals ( s2 [ ) ] ; python : return s1
corrected error: ==

20 81 24.69%

[C]2
⟨src frag, tgt frag⟩: [ null ] : s1 . equals ( s2 ) ; python : return s1
corrected error: ==

25 81 30.86%

* [ · ]1 indicates the model editing performed on the error: indexOf (java) → index (python). Here, the error “index” should be corrected to “find”.
* [ · ]2 indicates the model editing performed on the error: equals (java) → equals (python). Here, the error “equals” should be corrected to “==”.
* [ · ] indicates the editing position.

Evaluation. For these two types of errors, we performed model editing and assessed the correction
performance through unit testing. As shown in Table 4, we select core tokens in src func as editing
points. To validate the effectiveness of core tokens, we also included two additional comparison
positions: the core token in src func [A], the token following the core token [B], and the token
preceding the core token [C]. In Table 4, the results indicate that editing at position [A] significantly
enhanced the correction rates for both errors, achieving rates of 62.73% and 75.31%, respectively.
In contrast, the correction rates for edits at positions [B] and [C] were limited, ranging only from
24.69% to 30.86%. We speculate that position [A] functions similarly to the subject in syntactic
structures, demonstrating a strong association with the object and profoundly influencing the flow
and guidance of information. This suggests that the important position rule can provide valuable
support for knowledge editing in the context of programming languages.

6 CONCLUSION

In this paper, we introduce a causal tracing method to identify high-information tokens, enabling a
precise understanding of how Transformer models extract information from pre-target inputs in the
context of programming languages. Based on this, we reveal a consistent pattern of high-information
tokens, named the important position rule. Then, we thoroughly evaluated the performance of IPR
across various models, tasks, and programming languages. Furthermore, we successfully applied
IPR to knowledge editing, proving that IPR can provide support for knowledge editing and inter-
pretable inference.
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A APPENDIX

A.1 DATASET

We first downloaded raw source code datasets for Java, Python, and C++ from Google BigQuery5.
Referring to the work of Roziere et al. (2020)6, we then performed data preprocessing and obtained
a dataset consisting of 11.98 million Java functions, 8.83 million Python functions, and 6.54 million
C++ functions. All subsequent datasets used in our study were generated from this initial dataset.

A.1.1 IPR-BASED SNIPPET DATASETS

Different models interpret context and preferences in distinct ways, leading to varying tgt pref out-
puts for the same src func. Therefore, it is necessary to construct dedicated IPR-based snippet
datasets for each model. Based on this, we respectively construct specialized IPR-based snip-
pet dataset for CodeLlama-7b-Instruct, CodeLlama-13b-Instruct, CodeLlama-34b-Instruct, gpt-3.5-
turbo, and gpt-4-turbo, targeting tasks such as code translation, code correction, and code comple-
tion.

Code Translation: We randomly sample subdatasets of Java, Python, and C++ from the initial
dataset. These subdatasets serve as input sequence datasets, representing the src func in the pre-
target inputs. (In Figure 5, we show the length distribution of the input sequences in the dataset.)

• Performing Code Translation on Input Sequence Datasets: First, we feed the input
sequence datasets for C++, Java, and Python into the models, including CodeLlama-
7b/13b/34b-Instruct and gpt-3.5/4-turbo. We then translate each input into the other two
target languages (e.g., translating the C++ into Python and Java), collecting pairs of (input
sequence, output sequence), denoted as (x, y). In this step, we follow the natural output of
each model without requiring verification of the output’s correctness.

• Extracting Pre-Target Inputs and Target Tokens: For each (x, y), we set tgt pref as the
first half of the output sequence. Based on this, we extract a collection of target tokens
and their corresponding pre-target inputs, where pre-target input ⟨src func, tgt pref⟩ =
(x, y1:len(y)/2), and the target token is ylen(y)/2+1.

• IPR-Based Snippet Identification: Finally, we collect target tokens ylen(y)/2+1 along
with the IPR-based code snippets ⟨src frag, tgt frag⟩ extracted from pre-target inputs
(x, y1:len(y)/2), and then perform a deduplication process. This approach allows us to con-
struct specialized IPR-based snippet datasets, each tailored to a specific model, such as
CodeLlama-7b-Instruct, CodeLlama-13b-Instruct, CodeLlama-34b-Instruct, gpt-3.5-turbo,
and gpt-4-turbo.

Code Correction: We randomly extract subdatasets of Java, Python, and C++ from the initial
dataset. Using these subdatasets, we construct input sequence datasets for the code correction task.

• Building input sequence datasets: In existing literature and within the knowledge base of
LLMs Thomas & Hunt (2019); Sedgewick & Wayne (2017); Agans (2002), there is a com-
prehensive and extensive collection of common programming errors across different lan-
guages. For the above Java, Python, and C++ subdatasets, we leverage the LLM to simulate
realistic coding mistakes, injecting 2 ∼ 3 typical errors into each sample, thereby gener-
ating error Java/Python/C++ datasets. These datasets correspond to the input sequences
src func in the pre-target inputs. This process involves deliberately introducing common
syntactical, logical, or runtime errors specific to each language, such as incorrect variable
assignments, misplaced parentheses, or improper function calls. (Figure 5 shows the length
distribution of input sequences in the dataset.)

• Performing Code Correction on Input Sequence Datasets: Next, we feed the input sequence
datasets into models such as CodeLlama-7b/13b/34b-Instruct and gpt-3.5/4-turbo for code
correction. For each model, we collect pairs of (input sequence, output sequence), denoted
as (x, y).

5https://cloud.google.com/blog/products/gcp/github-on-bigquery-analyze-all-the-open-source-code
6https://github.com/facebookresearch/TransCoder
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Figure 5: Length Distribution of Input Sequence Datasets in Code Translation and Code Cor-
rection Tasks. For both the code translation and code correction tasks, we conducted a statistical
analysis of the input sequence lengths across all models, including CodeLlama-7b/13b/34b-Instruct
and gpt-3.5/4-turbo, in the contexts of Java, Python, and C++. To provide a meaningful comparison,
we also examined the length distributions of widely used datasets, such as Humaneval and MBPP.
Our analysis reveals that the length distributions of the datasets used for code translation and code
correction tasks are closely aligned. Here, the sequence length refers to the number of tokens. The
x-axis represents len ≥ n, indicating that the sequence length is greater than or equal to n, while
the y-axis represents the proportion of samples with len ≥ n. (See Table 5 for details.)

• Extracting Pre-Target Inputs and Target Tokens: Similar to the code translation task,
for each language pair (x, y), we define tgt pref = y1:len(y)/2 and the target token
= ylen(y)/2+1. For each LLM, we generate specialized datasets consisting of pre-target in-
puts ⟨src func, tgt pref⟩ = (x, y1:len(y)/2) and their corresponding target tokens ylen(y)/2+1.

• IPR-Based Snippet Identification: Finally, we extract the target tokens ylen(y)/2+1 and
the IPR-based code snippets ⟨src frag, tgt frag⟩ from the pre-target inputs (x, y1:len(y)/2),
followed by a deduplication process. This process enables us to build IPR-based frag-
ment datasets tailored for each model, including CodeLlama-7b-Instruct, CodeLlama-13b-
Instruct, CodeLlama-34b-Instruct, gpt-3.5-turbo, and gpt-4-turbo.

Code Completion We randomly select Java, Python, and C++ subdatasets from the initial dataset.
Based on this, we construct input sequence datasets for the code completion task.

• Building input sequence datasets: We extract the first 20 tokens from the Java, Python, and
C++ subdatasets to construct the input sequence datasets for further processing.

• Performing Code Completion on Input Sequence Datasets: Subsequently, we feed the Java,
Python, and C++ input sequence datasets into models, including CodeLlama-7b/13b/34b-
Instruct and gpt-3.5/4-turbo, for code completion. For each model, we collect pairs of input
and output sequences, denoted as (x, y), where the output sequence y represents the code
continuation based on the input sequence x.

• Extracting Pre-Target Inputs and Target Tokens: For each (x, y) pair, we extract the first
20 tokens from the generated output sequence as tgt pref, where the target token is y21,
and tgt pref = y1:20. Using this method, we construct specialized datasets for each LLM,
consisting of the target token y21 and its associated pre-target input, ⟨src func, tgt pref⟩ =
(x, y1:20).

• IPR-Based Snippet Identification: In the code completion task, there is no direct func-
tional equivalence between the output sequence y and the input sequence x. Therefore,
when identifying high-information code snippets for code completion, we exclude the in-
put sequence src func and focus solely on extracting high-information snippets from the
target prefix tgt pref. Based on IPR, we collect a dataset consisting of IPR-based snip-
pets {y18, y19, y20} and the corresponding target tokens y21. Additionally, we create a
broader context dataset by extracting code snippets {y13, y14, ..., y20} and target tokens
y21 for further exploration. In this way, we build two code snippet datasets for CodeLlama-
7b/13b/34b-Instruct and gpt-3.5/4-turbo, respectively.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 5: Length Statistics of Input Sequence Datasets in Code Translation and Correction Tasks.
Length Code Translation Code Correction HumanEval MBPP
len ≥ 20 99.09% 97.19% 92.07% 88.50%
len ≥ 30 88.14% 71.28% 82.32% 62.83%
len ≥ 40 77.05% 59.48% 64.02% 44.56%
len ≥ 50 64.86% 48.93% 48.78% 31.83%
len ≥ 60 49.90% 36.90% 41.46% 23.20%
len ≥ 70 37.77% 27.38% 35.98% 17.76%
len ≥ 80 26.69% 19.11% 26.83% 13.66%
len ≥ 90 18.98% 13.47% 19.51% 10.88%
len ≥ 100 11.82% 8.79% 15.24% 8.52%

A.1.2 GENERATION OF 3,650 CORRUPTED SAMPLES

In the code correction task described in Section A.1.1, we collected specialized datasets consist-
ing of pre-target inputs ⟨src func, tgt pref⟩ = (x, y1:len(y)/2) and their corresponding target tokens
ylen(y)/2+1. Based on this, we first randomly selected one hundred Python pre-target inputs from
CodeLlama-7b-Instruct. Subsequently, using the causal tracing method, we individually corrupted
each token in the pre-target inputs, generating 3,650 corrupted samples. These samples were then
used to quantify the importance of each token in the pre-target inputs, allowing us to visualize the
importance distribution of high-information tokens.

A.1.3 JAVA-PYTHON TRANSLATION DATASET

Necessity of Building a Large-Scale Java-Python Translation Dataset: In Section 5, we aim to
collect common errors made by CodeLlama-7b-Instruct when translating Java to Python. While
CodeLlama-7b-Instruct achieves a translation accuracy of 88.21% for Java → Python, commonly
used datasets offer limited samples, with only 164 examples in HumanEval (Chen et al., 2021)
and 974 examples in MBPP (Austin et al., 2021). Relying solely on these two datasets to identify
common errors is unreliable, as their limited sample size does not support a comprehensive analysis
of main errors, which may lead to biased results.

Construction Process of the Java-Python Translation Dataset: Following the work of Roziere
et al. (2022), we built a Java-Python translation dataset7. First, we download the Java source code
from Google BigQuery and apply the TransCoder-ST preprocessing pipeline for dataset filtering.
Next, we set a maximum runtime of 20 seconds for each process and use EvoSuite to generate Java
test cases. Here, the unit test cases are created based on two criteria: a mutation score above 0.9 and
at least two assertions. Through this process, we collect 82,665 Java functions with corresponding
unit test cases. Subsequently, we feed the processed Java functions, along with their corresponding
test cases, into TransCoder-ST (Java → Python, beam size = 1).

For each Java function, we generate a corresponding Python function along with its associated unit
test cases. Then, we execute the Python unit tests to validate the correctness of the translation. If
the Python function passes all tests, we pair the Java function with the Python function to form a
translation language pair. This process ensures the accuracy of both the Python functions and their
corresponding unit tests. After removing duplicate entries from the processed dataset, we obtain a
final Java-Python translation dataset comprising 25,227 language pairs, each accompanied by unit
test cases. (See example in Table 10)

A.2 IMPACT OF HIGH-INFORMATION TOKEN COUNT ON NEXT-TOKEN PREDICTION

As shown in Figure 4, high-information tokens in src func are primarily symmetrically distributed
around the core token, with fewer high-information tokens as the distance increases. Similarly,
in tgt pref, high-information tokens are mainly concentrated around the core token, and their fre-
quency decreases with increasing distance. This observation explains the rationale for extracting
high-information code snippets using the format (x∗

max{i−a,1}:min{i+a,M}, y
∗
max{j−b,1}:j−1).

7https://github.com/facebookresearch/CodeGen
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We further explain the reasons for choosing a = 4 and b = 3 to define the important po-
sition rule. In code correction and translation tasks, we experimented with high-information
code snippets of varying lengths, exploring different combinations of parameters, such as
(a, b) ∈ {(6, 5), (5, 4), (6, 5), (4, 3), (3, 2), (2, 1)}, which are denoted as IPR+2tok, IPR+1tok, IPR,
IPR−1tok, and IPR−2tok. Then, we use the IPR+2tok, IPR+1tok, IPR, IPR−1tok, and IPR−2tok
snippet datasets as inputs to the LLM, calculating the success rate by comparing the generated token
y

′

j with the original target token yj , respectively.

As shown in Tables 6 and 7, we systematically reduced the number of high-information tokens near
the core tokens. We found that IPR−2tok performed poorly across all tests. Although IPR−1tok

achieved good results in CodeLlama-7b/13b/34b-Instruct, its performance was suboptimal in gpt-
3.5/4-turbo, particularly in gpt-3.5-turbo. When a = 4 and b = 3, we observed that IPR-based
snippets consistently yielded strong results in relatively smaller code snippets, both in CodeLlama-
7b/13b/34b-Instruct and gpt-3.5/4-turbo for code correction and translation tasks.

A.3 ABLATION ANALYSIS —— IMPORTANCE OF IPR-BASED CODE SNIPPETS

To explore the role of IPR-based code snippets in next-token prediction, we consider the follow-
ing two methods in code completion and code correction tasks: (1) removing the IPR-based code
snippet from ⟨src func, tgt pref⟩, referred to as the IPRremove code snippet; (2) corrupting the IPR-
based code snippet in ⟨src func, tgt pref⟩, referred to as the IPRcorrupt code snippet. Then, we use
the IPRremove / IPRcorrupt snippet dataset as input to the LLM and compute the success rate by
comparing the generated token y

′

j with the original target token yj .

As shown in Tables 8 and 9, we find that when we remove or corrupt the IPR-based code snippets,
the success rate consistently drops below 8%. Further, we considered whether it stemmed from the
short length of ⟨src func, tgt pref⟩. Specifically, after removing 12 tokens (i.e., the length of the
IPR-based code snippets), the remaining valid tokens in ⟨src func, tgt pref⟩ were too few, leading to
a significant impact on next-token prediction. Based on this, we counted the length of src func in
both the code translation and code correction tasks in Table 5. We found that in the code translation
task, 88.14% of src func samples exceed 30 tokens, while in the code correction task, 71.28% of
src func samples exceed 30 tokens. It means that, despite the fact that the lengths of the IPRremove

and IPRcorrupt code snippets are significantly greater than that of ⟨src frag, tgt frag⟩, the success
rate of next-token prediction remains notably low. This result suggests that IPR-based code snippets
play a crucial role in next-token prediction during code inference.

A.4 EXTRACTION OF NEXT GENERATED TOKEN

In experiments evaluating the effect of IPR on next-token prediction, it is essential to test its
performance on CodeLlama-7b/13b/34b-Instruct models and gpt-3.5/4-turbo. For CodeLlama-
7b/13b/34b-Instruct, we can directly extract the next generated token from the model’s output.
However, since gpt-3.5/4-turbo is accessible only via the API, we leverage prompt engineering by
including the instruction, “Please generate the next java token.” in the prompt to guide the model to
directly generate the next token. (Some examples are shown in Figures ?? and 6.)

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 6: The Impact of the Number of High-Information Tokens on Next-Token Prediction in Code
Translation Tasks.

Task Type CodeLlama-
7b-Instruct

CodeLlama-
13b-Instruct

CodeLlama-
34b-Instruct

gpt-3.5-
turbo

gpt-4-
turbo

Ave 1

baseline 6.27% 7.73 % 7.36 % 2.61 % 7.53 % 6.30 %
IPR−2tok 71.33 % 73.14 % 73.00 % 23.43 % 59.18 % 60.02 %

C++ → IPR−1tok 86.82 % 89.55 % 91.95 % 33.28 % 74.16 % 75.15 %
Java IPR 86.43 % 92.19 % 92.38 % 55.33 % 78.56 % 80.98 %

IPR+1tok 89.53 % 93.25 % 91.45 % 58.82 % 82.38 % 83.09 %
IPR+2tok 88.07 % 93.85 % 92.80 % 64.05 % 81.64 % 84.08 %
baseline 11.54% 10.19 % 10.56 % 5.48 % 8.96 % 9.35 %
IPR−2tok 52.35 % 52.80 % 49.69 % 14.33 % 60.58 % 45.95 %

C++ → IPR−1tok 75.24 % 73.40 % 65.08 % 32.45 % 73.54 % 63.94 %
Python IPR 74.01 % 80.00 % 73.52 % 49.15 % 76.03 % 70.54 %

IPR+1tok 80.19 % 82.39 % 76.13 % 47.73 % 82.08 % 73.70 %
IPR+2tok 83.40 % 85.12 % 81.73 % 49.01 % 83.50 % 76.55 %
baseline 7.71% 7.40 % 7.00 % 5.37 % 8.60 % 7.22%
IPR−2tok 76.22 % 75.82 % 76.01 % 28.25 % 66.42 % 64.54 %

Java → IPR−1tok 90.07 % 92.37 % 91.63 % 44.31 % 81.32 % 79.94 %
C++ IPR 91.41 % 94.12 % 92.73 % 60.27 % 83.21 % 84.35 %

IPR+1tok 91.57 % 94.77 % 94.01 % 65.05 % 87.30 % 86.54 %
IPR+2tok 91.63 % 94.97 % 93.81 % 65.99 % 86.62 % 86.60 %
baseline 10.65% 11.35 % 9.85 % 5.00 % 10.45 % 9.46 %
IPR−2tok 50.24 % 48.22 % 49.77 % 9.73 % 58.33 % 43.26 %

Java → IPR−1tok 67.81 % 71.69 % 67.46 % 18.37 % 65.48 % 58.16 %
Python IPR 70.52 % 76.54 % 73.56 % 39.80 % 74.70 % 67.02 %

IPR+1tok 74.83 % 80.78 % 79.41 % 33.11 % 80.25 % 69.68 %
IPR+2tok 79.15 % 82.88 % 82.73 % 39.54 % 83.93 % 73.65 %
baseline 9.05% 5.36 % 7.64 % 6.13 % 10.58 % 7.75 %
IPR−2tok 47.07 % 46.41 % 40.63 % 18.33 % 37.96 % 38.08 %

Python IPR−1tok 68.40 % 68.47 % 62.57 % 29.06 % 53.28 % 56.36 %
→ C++ IPR 71.31 % 72.95 % 64.94 % 39.26 % 58.39 % 61.37 %

IPR+1tok 75.62 % 76.88 % 71.30 % 45.15 % 67.88 % 67.37 %
IPR+2tok 75.10 % 78.02 % 73.57 % 48.23 % 69.71 % 68.93 %
baseline 5.03% 9.07 % 7.22% 1.83 % 10.55 % 6.74%
IPR−2tok 46.07 % 41.86 % 39.96 % 7.07 % 32.66 % 33.52 %

Python IPR−1tok 65.05 % 68.21 % 64.83 % 11.65 % 42.21 % 50.39 %
→ Java IPR 67.09 % 70.10 % 66.04 % 32.46 % 49.75 % 57.09 %

IPR+1tok 70.48 % 74.32 % 73.03 % 20.00 % 57.79 % 59.12 %
IPR+2tok 70.85 % 73.75 % 71.96 % 30.26 % 62.31 % 61.83 %

* baseline: Randomly select 12 tokens from the pre-target input.
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Table 7: The Impact of the Number of High-Information Tokens on Next-Token Prediction in Code
Correction Tasks.

Task Type CodeLlama-
7b-Instruct

CodeLlama-
13b-Instruct

CodeLlama-
34b-Instruct

gpt-3.5-
turbo

gpt-4-
turbo

Ave 1

baseline 8.05% 6.61% 7.79 % 3.00% 6.05 % 6.30 %
IPR−2tok 76.34 % 72.98 % 70.50 % 30.34 % 47.67 % 59.57 %
IPR−1tok 90.21 % 90.06 % 90.50 % 42.41 % 69.04 % 76.44 %

C++ IPR 91.86 % 93.70 % 92.60 % 56.77 % 69.69 % 80.92 %
IPR+1tok 92.34 % 94.15 % 91.54 % 62.55 % 80.11 % 84.14 %
IPR+2tok 91.05 % 94.98 % 91.69 % 66.41 % 79.04 % 84.63 %
baseline 7.43% 7.30% 9.19 % 2.39% 7.93 % 6.85 %
IPR−2tok 74.61 % 73.15 % 69.95 % 31.56 % 48.04 % 59.46 %
IPR−1tok 88.92 % 91.98 % 90.52 % 40.91 % 65.87 % 75.64 %

Java IPR 92.41 % 94.13 % 93.00 % 52.55 % 72.50 % 80.92 %
IPR+1tok 92.57 % 94.42 % 92.65 % 58.35 % 78.91 % 83.38 %
IPR+2tok 92.52 % 94.07 % 92.75 % 63.89 % 82.08 % 85.06 %
baseline 12.94% 13.00% 13.79 % 3.76% 9.40 % 10.58%
IPR−2tok 79.10 % 71.90 % 74.24 % 37.73 % 51.20 % 62.83 %
IPR−1tok 92.64 % 92.36 % 93.10 % 44.44 % 69.91 % 78.49 %

Python IPR 92.21 % 92.79 % 92.82 % 54.05 % 73.25 % 81.02 %
IPR+1tok 93.68 % 93.90 % 93.62 % 61.24 % 82.41 % 84.97 %
IPR+2tok 93.73 % 94.59 % 93.65 % 64.36 % 82.03 % 85.67 %

* baseline: Randomly select 12 tokens from the pre-target input.

Table 8: The Impact of IPR-Based Code Snippets on Next-Token Prediction in Code Translation
Tasks

Task Type CodeLlama-
7b-Instruct

CodeLlama-
13b-Instruct

CodeLlama-
34b-Instruct

gpt-3.5-
turbo

gpt-4-
turbo

Ave 1

C++ → IPR 86.43 % 92.19 % 92.38 % 55.33 % 78.56 % 80.98 %
Java IPRremove 1.99 % 1.98 % 2.20 % 2.91 % 1.88 % 2.19 %

IPRcorrupt 3.23 % 2.97 % 3.48 % 2.18 % 1.23 % 2.62 %
C++ → IPR 74.01 % 80.00 % 73.52 % 49.15 % 76.03 % 70.54 %
Python IPRremove 5.75 % 6.20 % 6.59 % 6.82 % 5.74 % 6.22 %

IPRcorrupt 5.01 % 4.23 % 3.88 % 3.94 % 5.08 % 4.43 %
Java → IPR 91.41 % 94.12 % 92.73 % 60.27 % 83.21 % 84.35 %
C++ IPRremove 2.19 % 2.13 % 2.13 % 2.97 % 3.88 % 2.66 %

IPRcorrupt 2.66 % 2.65 % 2.80 % 1.33 % 2.02 % 2.29 %
Java → IPR 70.52 % 76.54 % 73.56 % 39.80 % 74.70 % 67.02 %
Python IPRremove 4.62 % 6.68 % 5.92 % 7.84 % 7.74 % 6.56 %

IPRcorrupt 5.71 % 3.57 % 3.59 % 3.27 % 4.46 % 4.12 %
Python IPR 71.31 % 72.95 % 64.94 % 39.26 % 58.39 % 61.37 %
→ C++ IPRremove 3.85 % 2.90 % 3.14 % 5.00 % 6.27 % 4.23 %

IPRcorrupt 4.86 % 6.81 % 5.91 % 2.84 % 3.28 % 4.74 %
Python IPR 67.09 % 70.10 % 66.04 % 32.46 % 49.75 % 57.09 %
→ Java IPRremove 4.39 % 4.21 % 2.99 % 4.46 % 2.78 % 3.77 %

IPRcorrupt 6.27 % 5.36 % 2.99 % 1.32 % 0.50 % 3.29 %
* IPR: IPR-based code snippet= (x∗

max{i−4,1}:min{i+4,M}, y
∗
max{j−3,1}:j−1).

* IPRremove represents the code snippets that remove the IPR-based code snippet ⟨src frag, tgt frag⟩ from ⟨src func, tgt pref⟩.
* IPRcorrupt represents the code snippets that corrupt the IPR-based code snippet ⟨src frag, tgt frag⟩ from ⟨src func, tgt pref⟩.
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Table 9: The Impact of IPR-Based Code Snippets on Next-Token Prediction in Code Correction
Tasks

Task Type CodeLlama-
7b-Instruct

CodeLlama-
13b-Instruct

CodeLlama-
34b-Instruct

gpt-3.5-
turbo

gpt-4-
turbo

Ave 1

IPR 91.86 % 93.70 % 92.60 % 56.77 % 69.69 % 80.92 %
C++ IPRremove 1.39 % 2.34 % 2.08 % 3.50 % 2.72 % 2.41 %

IPRcorrupt 3.05 % 3.29 % 3.16 % 1.82 % 1.81 % 2.63 %
IPR 92.41 % 94.13 % 93.00 % 52.55 % 72.50 % 80.92 %

Java IPRremove 3.14 % 3.28 % 3.00 % 4.61 % 4.23 % 3.65 %
IPRcorrupt 2.99 % 2.92 % 3.23 % 2.08 % 1.74 % 2.59 %
IPR 92.21 % 92.79 % 92.82 % 54.05 % 73.25 % 81.02 %

Python IPRremove 2.73 % 2.64 % 2.20 % 3.36 % 3.45 % 2.88 %
IPRcorrupt 1.86 % 1.41 % 1.47 % 1.62 % 2.25 % 1.72 %
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(a) Case 1.1: Setting target token = “ /” (b) Case 1.2: Next generated token = “ /” ? YES

(c) Case 2.1: Setting target token = “ * ” (d) Case 2.2: Next generated token = “ * ” ? YES

(e) Case 3.1: Setting target token = “power” (f) Case 3.2: Next generated token = “power” ? YES

(g) Case 4.1: Setting target token = “>>” (h) Case 4.2: Next generated token = “>>” ? YES

Figure 6: Examples of IPR-based Code Snippets for Next-Token Prediction. In the left sub-
figures, we randomly select a token in tgt pref as the target token and extract the corresponding
IPR-based code snippet. In right subfigures, we attempt to predict the next token using the IPR-
based code snippets. Furthermore, since gpt-3.5/4-turbo can only be accessed via the API, we
employ prompt engineering by including the instruction “Please generate the next java token.” in
the prompt to guide the model to generate the next token directly.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 10: Java-Python Language Pair and Its Unit Test Cases Example
Type Details

Source Java function public static int getLineSize(int x1, int x2, int y1, int y2) {
if (x1 == x2) {

return Math.abs(y1 - y2);
} else {

return Math.abs(x1 - x2);
}

}

Python function def get_line_size(x1, x2, y1, y2):
if x1 == x2:

return abs(y1 - y2)
else:

return abs(x1 - x2)

Java unit tests /*
* This file was automatically generated by EvoSuite

* Wed Dec 07 08:44:05 GMT 2022

*/

import org.junit.Test;
import static org.junit.Assert.*;
import org.evosuite.runtime.EvoRunner;
import org.evosuite.runtime.EvoRunnerParameters;
import org.junit.runner.RunWith;

@RunWith(EvoRunner.class)
@EvoRunnerParameters(mockJVMNonDeterminism = true, useVFS = true, useVNET = true,

resetStaticState = true, separateClassLoader = true)
public class CLASS_a59109abfc5d_ESTest extends CLASS_a59109abfc5d_ESTest_scaffolding {

@Test(timeout = 4000)
public void test0() throws Throwable {

int int0 = CLASS_a59109abfc5d.getLineSize(0, 0, (-11228), (-26867));
assertEquals(15639, int0);

}

@Test(timeout = 4000)
public void test1() throws Throwable {

int int0 = CLASS_a59109abfc5d.getLineSize(14804, (-1), 1, 113128);
assertEquals(14805, int0);

}

@Test(timeout = 4000)
public void test2() throws Throwable {

int int0 = CLASS_a59109abfc5d.getLineSize(1, 1, 1, 1);
assertEquals(0, int0);

}

@Test(timeout = 4000)
public void test3() throws Throwable {

int int0 = CLASS_a59109abfc5d.getLineSize(0, 48313, 0, 12019);
assertEquals(48313, int0);

}

@Test(timeout = 4000)
public void test4() throws Throwable {

CLASS_a59109abfc5d cLASS_a59109abfc5d_0 = new CLASS_a59109abfc5d();
}}

Python unit tests import numpy as np
import math
from math import *
import collections
from collections import *
import heapq
import itertools
import random
import sys
import unittest

#TOFILL
class CLASS_a59109abfc5d(unittest.TestCase):

def test0(self):
int0 = f_filled(0, 0, (-11228), (-26867))
assert 15639 == int0

def test1(self):
int0 = f_filled(14804, (-1), 1, 113128)
assert 14805 == int0

def test2(self):
int0 = f_filled(1, 1, 1, 1)
assert 0 == int0

def test3(self):
int0 = f_filled(0, 48313, 0, 12019)
assert 48313 == int0

if __name__ == ’__main__’:
unittest.main() 23
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Table 11: Examples of Similarities Between the Internal Representations of Pre-Target Inputs
and Code Snippets Surrounding Core Tokens.

Type Similarity ⟨src func, tgt pref⟩ and ⟨src frag, tgt frag⟩

C++ →
Java

0.7746

0.7083

0.7007

0.7880

[EX 1]: ⟨ ‘ double mul ( const int a , double b ) { return ( a ) * b ; } ’, ‘public static double mul ( final int a , final double b ) {
return (’ ⟩ → a
[EX 1]∗: ⟨ ‘ ) { return ( a ) * b ; ’, ‘{ return (’ ⟩ → a

[EX 2]: ⟨ ‘ int sum ( int * a ) { int result = 0 ; for ( int i = 0 ; i < sizeof ( a ) / sizeof ( int ) ; i ++ ) result += a [ i ] ; return result ;
} ’, ‘public static int sum ( int [ ] a ) { int result = 0 ; for (’ ⟩ → int
[EX 2]∗: ⟨ ‘ 0 ; for ( int i = 0 ; ’, ‘; for (’ ⟩ → int

[EX 3]: ⟨ ‘ int clamp ( int x , int a , int b ) { if ( a > b ) return x ; if ( x < a ) return a ; else if ( x > b ) return b ; else return x ; }
’, ‘public static int clamp ( int x , int a , int b ) { if ( a > b ) return x ; if ( x < a ) return a ;’ ⟩ → else
[EX 3]∗: ⟨ ‘ return a ; else if ( x > ’, ‘return a ;’ ⟩ → else

[EX 4]:⟨ ‘ bool gt ( double number , double actual ) { return actual > number ; } ’, ‘public static boolean greaterThan ( double
number , double actual ) { return’ ⟩ → actual
[EX 4]∗: ⟨ ‘ actual ) { return actual > number ; } ’, ‘) { return’ ⟩ → actual

C++ →
Python

0.7781

0.7454

0.8218

0.7109

[EX 1]:⟨ ‘ int max ( int a , int b ) { return a > b ? a : b ; } ’, ‘def gt ( a , b ) : return a if a’ ⟩ →>

[EX 1]∗: ⟨ ‘ ) { return a > b ? a : ’, ‘a if a’ ⟩ →>

[EX 2]:⟨ ‘ int sign ( int b0 ) { return ( b0 < 0 ) ? - 1 : ( b0 > 0 ) ? 1 : 0 ; } ’, ‘def sign ( b0 ) : return np .’ ⟩ → sign

[EX 2]∗: ⟨ ‘ b0 < 0 ) ? - 1 : ( ’, ‘return np .’ ⟩ → sign

[EX 3]∗: ⟨ ‘ double distance ( double * p1 , double * p2 ) { double sum = 0 ; for ( int i = 0 ; i < sizeof ( * p1 ) / sizeof ( * p1 ) ; i
++ ) { const double dp = * p1 - * p2 ; sum += dp * dp ; } return sqrt ( sum ) ; } ’, ‘def distance ( p1 , p2 ) : sum = 0 for i in range (
len ( p1 ) ) : dp = p1 [ i ] - p2 [ i ] sum += dp * dp return math .’ ⟩ → sqrt
[EX 3]:⟨ ‘ dp ; } return sqrt ( sum ) ; ’, ‘return math .’ ⟩ → sqrt

[EX 4]:⟨ ‘ float trunc ( float number , int precision ) { return float ( floor ( number * pow ( 10 , precision ) ) / pow ( 10 , precision )
) ; } ’, ‘def trunc ( number , prec ) : return float ( math .’ ⟩ → floor
[EX 4]∗: ⟨ ‘ { return float ( floor ( number * pow ’, ‘( math .’ ⟩ → floor

Java →
C++

0.7856

0.8468

0.7672

0.7356

[EX 1]:⟨ ‘ public static double mul ( final int a , final double b ) { return ( a ) * b ; } ’, ‘double mul ( const int a , double b ) {
return ( a’ ⟩ → )
[EX 1]∗: ⟨ ‘ { return ( a ) * b ; } ’, ‘return ( a’ ⟩ → )

[EX 2]:⟨ ‘ public static int lerp ( int a , int b , float value ) { return ( int ) ( a + ( b - a ) * value ) ; } ’, ‘int lerp ( int a , int b , float
value ) { return int ( a + ( b’ ⟩ → -
[EX 2]∗: ⟨ ‘ ( a + ( b - a ) * value ’, ‘a + ( b’ ⟩ → -

[EX 3]:⟨ ‘ public static boolean greaterThan ( double number , double actual ) { return actual > number ; } ’, ‘bool gt ( double
number , double actual ) { return actual’ ⟩ →>

[EX 3]∗: ⟨ ‘ ) { return actual > number ; } ’, ‘{ return actual’ ⟩ →>

[EX 4]:⟨ ‘ public static int test ( ) { int h = 1 ; { } int j = 2 ; return 120 + j + h ; } ’, ‘int test ( ) { int h = 1 ; { }’ ⟩ → int

[EX 4]∗: ⟨ ‘ 1 ; { } int j = 2 ; ’, ‘; { }’ ⟩ → int

Python
→ Java

0.7183

0.7946

0.8168

0.8244

[EX 1]:⟨ ‘ def clamp ( val , min , max ) : return min if val < min else max if val > max else val ’, ‘public static final int clamp (
int val , int min , int max ) { return ( val’ ⟩ →<

[EX 1]∗: ⟨ ‘ return min if val < min else max if ’, ‘return ( val’ ⟩ →<

[EX 2]:⟨ ‘ def pad ( c ) : if c >= 10 : return str ( c ) else : return ’0’ + str ( c ) ’, ‘public static String pad ( int c ) { if ( c’ ⟩ →
>=
[EX 2]∗: ⟨ ‘ if c >= 10 : return str ’, ‘if ( c’ ⟩ →>=

[EX 3]:⟨ ‘ def Min ( a , b ) : return min ( a , b ) ’, ‘public static final int min ( int a , int b ) { return Math .’ ⟩ → min

[EX 3]∗: ⟨ ‘ : return min ( a , b ’, ‘return Math .’ ⟩ → min

[EX 4]:⟨ ‘ def distance ( x1 , y1 , x2 , y2 ) : return math . sqrt ( ( pow ( x1 - x2 , 2 ) + pow ( y1 - y2 , 2 ) ) ) ’, ‘public static double
distance ( double x1 , double y1 , double x2 , double y2 ) { return Math .’ ⟩ → sqrt
[EX 4]∗: ⟨ ‘ return math . sqrt ( ( pow ( ’, ‘return Math .’ ⟩ → sqrt

Java →
Python

0.8580

0.8681

0.7808

0.8413

[EX 1]:⟨ ‘ public static final int min ( int a , int b ) { return Math . min ( a , b ) ; } ’, ‘def Min ( a , b ) : return min’ ⟩ → (

[EX 1]∗: ⟨ ‘ return Math . min ( a , b ) ’, ‘ return min’ ⟩ → (

[EX 2]:⟨ ‘ public static final int clamp ( int val , int min , int max ) { return ( val < min ) ? min : ( val > max ) ? max : val ; } ’,
‘def clamp ( val , min , max ) : return min if val’ ⟩ →<

[EX 2]∗: ⟨ ‘ { return ( val < min ) ? min ’, ‘min if val’ ⟩ → <

[EX 3]:⟨ ‘ public static String right ( String s , int count ) { if ( s == null ) { return null ; } count = s . length ( ) - count ; return s .
substring ( ( count < 0 ) ? 0 : ( count < s . length ( ) ) ? count : s . length ( ) ) ; } ’, ‘def right ( s , count ) : if s is’ ⟩ → None
[EX 3]∗: ⟨ ‘ if ( s == null ) { return null ’, ‘if s is’ ⟩ → None

[EX 4]:⟨ ‘ public static double distance ( double x1 , double y1 , double x2 , double y2 ) { return Math . sqrt ( ( Math . pow ( x1 -
x2 , 2 ) + Math . pow ( y1 - y2 , 2 ) ) ) ; } ’, ‘def distance ( x1 , y1 , x2 , y2 ) : return math .’ ⟩ → sqrt
[EX 4]∗: ⟨ ‘ { return Math . sqrt ( ( Math . ’, ‘return math .’ ⟩ → sqrt

Python
→ Java

0.7135

0.7773

0.8405

0.7745

[EX 1]:⟨ ‘ def dst ( x1 , y1 , z1 , x2 , y2 , z2 ) : a = x2 - x1 b = y2 - y1 c = z2 - z1 return float ( math . sqrt ( a * a + b * b + c * c ) )
’, ‘float dst ( float x1 , float y1 , float z1 , float x2 , float y2 , float z2 ) { float a = x2 - x1 ; float b = y2 - y1 ; float c = z2 - z1 ; return
( float ) sqrt ( a’ ⟩ → *
[EX 1]∗: ⟨ ‘ . sqrt ( a * a + b * ’, ‘sqrt ( a’ ⟩ → *

[EX 2]:⟨ ‘ def gt ( a , b ) : return a if a > b else b ’, ‘int max ( int a , int b ) { return a’ ⟩ →>

[EX 2]∗: ⟨ ‘ return a if a > b else b ’, ‘{ return a’ ⟩ →>

[EX 3]:⟨ ‘ def trunc ( number , prec ) : return float ( math . floor ( number * pow ( 10 , prec ) ) / pow ( 10 , prec ) ) ’, ‘float trunc (
float number , int precision ) { return float ( floor ( number *’ ⟩ → pow
[EX 3]∗: ⟨ ‘ . floor ( number * pow ( 10 , prec ’, ‘( number *’ ⟩ → pow

[EX 4]:⟨ ‘ def odd ( ) : if 0 > : return math . floor ( ( - 1 ) / 2 ) * 2 + 1 else : return math . ceil ( ( + 1 ) / 2 ) * 2 - 1 ’, ‘double
odd ( double number ) { if ( 0 ) return’ ⟩ → floor
[EX 4]∗: ⟨ ‘ return math . floor ( ( - ’, ‘0 ) return’ ⟩ → floor

* ⟨·, ·⟩ → ‘* ’ : ⟨·, ·⟩: It represents the decision-making basis for each generated token ‘* ’ in the corrected Python function.
* [EX i]: It represents the process of ⟨src func, tgt pref⟩→ target token.
* [EX i]∗: It represents the process of ⟨src frag, tgt frag⟩→ target token.
* C: It represents the corrupted token.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 7: Target Token Ranking Across Layers in CodeLlama-7b-Instruct via Logit Lens.

Table 12: Detailed Sample Size of IPR-Based Code Snippets for Next-Token Prediction in Code
Translation Task. It includes the evaluation of various models, including CodeLlama-7b-Instruct,
CodeLlama-13b-Instruct, CodeLlama-34b-Instruct, gpt-3.5-turbo, and gpt-4-turbo, in the context of
code translation. The evaluation encompasses interactive translations among three programming
languages: Java, Python, and C++.

CL-7b-Instruct CL-13b-Instruct CL-34b-Instruct gpt-3.5-turbo gpt-4-turbo
succ total succ total succ total succ total succ total

C++ → Java 1032 1194 1298 1408 1383 1497 374 676 535 681
C++ → Python 393 531 480 600 372 506 174 354 314 413
Java → C++ 1372 1501 1457 1548 1390 1499 584 969 783 941
Java → Python 311 441 336 439 345 469 121 304 251 336
Python → C++ 343 481 418 573 350 539 106 270 160 274
Python → Java 210 313 354 505 350 530 74 228 99 199

Table 13: Detailed Sample Size of IPR-Based Code Snippets for Next-Token Prediction in Code
Correction Task. It provides details of the test sets used for CodeLlama-7b-Instruct, CodeLlama-
13b-Instruct, CodeLlama-34b-Instruct, gpt-3.5-turbo, and gpt-4-turbo, specifically focusing on code
correction tasks in Java, Python, and C++.

CL-7b-Instruct CL-13b-Instruct CL-34b-Instruct gpt-3.5-turbo gpt-4-turbo
succ total succ total succ total succ total succ total

C++ 1366 1487 1472 1571 1363 1472 482 849 538 772
Java 1194 1292 1283 1363 1196 1286 433 824 667 920
Python 1479 1604 1505 1622 1513 1630 467 864 619 845

Table 14: Detailed Sample Size of IPR-Based Code Snippets for Next-Token Prediction
in Code Completion Task. There are two types of code snippets: i) a 3-token snippet
{yj−3, yj−2, yj−1}, which focuses on a few tokens preceding the target token, and ii) an 8-token
snippet {yj−8, . . . , yj−1}, which incorporates a broader context from the prefix.

CL-7b-Instruct CL-13b-Instruct CL-34b-Instruct gpt-3.5-turbo gpt-4-turbo
succ total succ total succ total succ total succ total

C++ tok3 262 966 272 956 259 966 69 251 55 243
Java tok3 306 900 251 900 254 871 62 277 74 260
Python tok3 245 874 250 888 290 959 49 228 78 252
C++ tok8 646 1022 643 1015 628 1004 116 284 120 275
Java tok8 639 956 599 967 581 928 109 282 123 278
Python tok8 460 915 454 894 507 988 88 232 119 266
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