
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

A CONSISTENT PATTERN FOR IDENTIFYING DECISIVE
CODE SNIPPETS FOR LLM-BASED CODE INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Which parts of pre-target input1 are most influential for next-token prediction
in the context of programming languages? In this paper, we present evidence
that code snippets at specific locations in pre-target inputs play a decisive role
in large language model (LLM) inference, and these snippets exhibit a consistent
pattern. Firstly, we introduce a novel causal tracing method to identify tokens,
so-called high-information tokens, that significantly contribute to next-token pre-
diction. Building on this, we propose a multi-phase causal tracing process to ana-
lyze the importance distribution of high-information tokens, revealing a consistent
pattern, named the Important Position Rule (IPR). To further validate this hypoth-
esis, we assess the role of IPR across various LLMs, languages, and tasks. Our
extensive evaluations for code translation, code correction and code completion
tasks (Java, Python, C++) on models CodeLlama-7b/13b/34b-Instruct (Roziere
et al., 2023) and gpt-3.5/4-turbo (Ouyang et al., 2022), confirm this hypothesis.
Furthermore, we observe that IPR exhibits structural and semantic properties sim-
ilar to the ⟨subject, relation, object⟩ paradigm in natural language. Leveraging
this insight, we successfully combine IPR with the knowledge editing method
ROME (Meng et al., 2023) in order to repair translation errors, achieving a cor-
rection rate of 62.73% to 75.31%. To our knowledge, this is the first application
of knowledge editing in the context of programming languages.

1 INTRODUCTION

Recently, researchers have delved into the internal mechanisms of large language models. The inher-
ent syntactic structures in natural language, such as ⟨subject, relation, object⟩, provide solid support
for interpretable inference (Kim et al., 2024; Stolfo et al., 2023; Katz et al., 2024; Haviv et al.,
2023) and knowledge editing (Meng et al., 2022; Zhang et al., 2024; Meng et al., 2023; Gupta et al.,
2024). However, the existence of analogous mechanisms in code-based LLMs remains uncertain,
which poses challenges for the aforementioned research in programming language contexts. In this
paper, we demonstrate that code snippets located at specific positions play a crucial role in guiding
LLM-based code inference, and that these snippets exhibit a consistent pattern.

In the field of natural language processing (NLP), GPT models have exhibited a remarkable ability
to learn and utilize syntactic structures, which are essential for establishing internal correlations
between words (Petroni et al., 2019; Rai et al., 2024; Bajpai et al., 2024). For example, given the
prompt “The Eiffel Tower is located in”, GPT can accurately predict “Paris”. It underscores the
importance of syntactic structures in guiding inference and enhancing predictions (Mikolov et al.,
2013; Touvron et al., 2023; Ouyang et al., 2022; Roziere et al., 2023). This leads us to the Core
Research Question: Is there a consistent pattern that significantly contributes to LLM-based code
inference? To address this question, we first quantify the information content of individual tokens
to assess their contribution to the inference process. Subsequently, we discover the importance
distribution pattern of high-information tokens and examine how this pattern influences the inference
process, ultimately providing new insights into the inner workings of LLM-based code inference.

Existing tracing methods primarily focus on perturbing the training or test datasets to identify high-
information tokens based on changes in generated tokens. However, relying solely on target token

1Pre-target input: It refers to the combination of an input sequence and a generated output prefix, which
together provide the contextual basis for generating a target token.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

changes to determine the impact of input tokens is a rather crude approach (Dong et al., 2019;
Brown et al., 2020; Devlin et al., 2018). On the one hand, the output of the Transformer model is a
probability distribution over multiple tokens in the vocabulary. Therefore, this approach overlooks
other input tokens that have a relatively high influence (Adler et al., 2016; Hao et al., 2021; Geva
et al., 2022). On the other hand, the generation of the target token is determined by both the source
input sequence and the generated output prefix (i.e., pre-target input), yet existing research typically
perturbs only the input sequence while neglecting the latter (Liu et al., 2023; Cho et al., 2014).
In this paper, we propose introducing perturbations to the tokens in both the input sequence and
the generated prefix. By analyzing the resulting fluctuations in the internal representations, we can
effectively quantify the information content of individual tokens.

In recent years, knowledge editing has garnered widespread attention in the field of natural language
processing (Mazzia et al., 2023; Wei et al., 2023). Meng et al. (2023) highlights that fine-tuning
the middle layer weights of GPT models enables them to rapidly learn new knowledge, such as
“The Eiffel Tower is located in Berlin”. We argue that the success of knowledge editing stems from
the properties of the latent space. After extensive training, the frequent ⟨subject, relation, object⟩
structures in the training samples establish a robust association between the tokens “Eiffel Tower”
and “Paris”. Therefore, when editing at the position of “Eiffel Tower”, effective information sub-
stitution can be achieved. However, existing knowledge editing techniques primarily rely on the
⟨subject, relation, object⟩ structure, which is typically limited to the natural language. In this paper,
we find that code snippets identified by IPR in the input sequence and the output prefix exhibit strong
semantic and syntactic correlations, similar to the close relationship between phrases of “subject”
and “object” in natural language. Building on this observation, we apply IPR in knowledge editing
to rectify errors in Java to Python translation. The main contributions of this paper are the following:

• We propose a causal tracing method that interacts the low-dimensional text sequence with
the high-dimensional internal representation. This approach quantifies the information
content of individual tokens in both the input sequence and the generated output prefix,
enabling an assessment of each token’s contribution to the next-token prediction.

• We introduce a multi-phase causal tracing process, revealing a consistent pattern of high-
information tokens, named the important position rule.

• We validate the role of IPR in code inference across diverse models, tasks, and program-
ming languages, including code translation, code correction, and code completion, utiliz-
ing CodeLlama-7b/13b/34b-Instruct and gpt-3.5/4-turbo with Java, Python, and C++. Our
evaluation shows that code snippets identified by IPR play a critical role in next-token
prediction. We also confirmed their robust generalization capabilities, providing valuable
interpretability for LLM-based code inference.

• We combine IPR with ROME in the context of programming languages, generalizing this
knowledge editing beyond the NLP context. Our approach effectively corrected errors in
Java to Python translation, with a correction rate of 62.73% to 75.31%.

2 RELATED WORK

Currently, mainstream methods for interpreting large language models include causal mediation
analysis (Hicks & Tingley, 2011; Imai et al., 2010), influence function (Cook & Weisberg, 1980),
knowledge attribution (Powell et al., 2015; Bricker, 2020), and counterfactual analysis (Keohane,
2009; Hernán & Robins, 2010), etc.

One straightforward yet effective method for interpreting LLMs involves locally perturbing inputs.
This approach allows for a detailed analysis of which components of the input sequence are most
influential in guiding the model’s predictions (Lundberg & Lee, 2017; Wiegreffe & Pinter, 2019a;
Ribeiro et al., 2016). Li et al. (2023) introduced a selective context method, which enhances the
LLM inference efficiency by identifying and pruning redundancies in the input context, resulting in
a more concise input. Parallel to these efforts, Jiang et al. (2023) proposed a coarse-to-fine prompt
compression method, LLMLingua, which effectively captures the interdependencies among com-
pressed content. From a causal perspective, Feder et al. (2021a) introduced CausaLM, a framework
that utilizes counterfactual language to produce interpretations of causal models (Simon & Rescher,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: Exploration and Application Workflow of the Important Position Rule. First, we
employed the causal tracing method and a multi-phase causal tracing process to investigate the
importance distribution pattern of high-information tokens, leading to the IPR hypothesis. Next,
we validate the role and generalization of IPR across various programming languages, LLMs, and
code tasks. Finally, we integrate IPR with ROME, successfully performing knowledge editing in the
code-based LLM. After thorough evaluation, IPR demonstrates significant potential in enhancing
interpretable inference and facilitating knowledge editing in the context of programming languages.

1966; Hernán & Robins, 2010; Feder et al., 2021b). Then, Kramár et al. (2024) proposed the attri-
bution patching method, which employs linear approximation at the corrupted prompt to evaluate
the impact of local changes in the model. To identify which training points contribute to the specific
prediction, Koh & Liang (2017) leveraged the influence function (Hampel, 1974) to trace model pre-
dictions from a robustness perspective, revealing insights about how models rely on and infer from
training data. Building on this, Geva et al. (2022) presented LM-Debugger, providing a granular ex-
planation of the model’s internal prediction processes (Wallace et al., 2019). By observing the effects
of erasing components of the representation (e.g. input word vector dimensions, intermediate hid-
den units, or input words), Li et al. (2017) analysed and explained the decisions of the neural model.
Furthermore, some researchers have investigated the role of intermediate representations from at-
tention modules in explaining model predictions. Wiegreffe & Pinter (2019b) introduced four tests
to assess when/whether attention can serve as an explanation, providing insights into model reason-
ing. Following this, Wu et al. (2021) introduced a parameter-free probing technique for analyzing
pre-trained language models that eliminates the need for direct supervision and avoids incorporating
extra parameters during the probing process.

The central idea in existing research is to perturb input sequences and observe changes in the gen-
erated tokens, thereby identifying correlated internal components, input tokens, or training samples
relevant to the model predictions (Lundberg & Lee, 2017; Wiegreffe & Pinter, 2019a; Dai et al.,
2022; Ribeiro et al., 2016). However, since the output of Transformer models is a probability dis-
tribution over multiple tokens, relying solely on changes in the target token is a crude approach that
risks overlooking other input tokens with relatively higher influence. Moreover, the output of target
tokens is dominated by both the source input sequence and the generated output prefix, yet existing
studies have neglected the influence of the output prefix.

3 TRACING IMPACTFUL INFORMATION SOURCE FOR CODE INFERENCE

In this section, we combine the causal tracing method with the multi-phase causal tracing process,
revealing a consistent pattern among high-information tokens.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(a) Predicting target token y4. (b) Predicting target token y8.

(c) Predicting target token y12. (d) Predicting target token y17.

Figure 2: Importance Distribution of High-Information Tokens in Small Samples. We focus
on target tokens yj∈4,8,12,17 at various positions to explore whether next-token predictions depend
on tokens with specific positions. For each token yj , we randomly select seven pre-target inputs
⟨src func, tgt pref⟩, denoted as {s1, s2, . . . , s7}. Then, we systematically corrupt individual tokens
in sequence and employ the causal tracing method to evaluate the information content of each to-
ken. Here, A1 and A2 represent the clustered regions of high-information tokens, and the x-axis
represents the positions of the tokens.

3.1 DEFINITIONS AND NOTATION

In the code correction scenario, a potentially incorrect source code x (referred to as src func) is
mapped to a corrected code y through LLM. Both x and y are functions in the considered program-
ming language like Python, and each is represented by a sequence of tokens x = [x1, x2, . . . , xM]
and y = [y1, y2, . . . , yN].

Consider an autoregressive Transformer language model (Irie et al., 2019), where all previously
generated tokens y1:j−1 are treated as additional input when generating the next token yj∈[1,N]

(Vaswani et al., 2017; Dou & Gales, 2022; Goodman et al., 2020). We designate yj as a target token
and y1:j−1 as tgt pref (i.e. a target prefix). For a target token yj , since the output distribution
p(yj |x, y1:j−1) is conditioned on both the src func x and the tgt pref y1:j−1, we define the pre-target
input as ⟨src func,tgt pref⟩ or cj = (x, y1:j−1).

Inspired by Khandelwal et al. (2020), we use the mapping f from the pre-target input to an inter-
mediate representation of the Transformer decoder (i.e. the output of the final layer of a Trans-
former before the linear layer, see (Vaswani et al., 2017)) to obtain a vector representation of
⟨src func, tgt pref⟩. For the pre-target input cj , this mapping yields a internal representation kj
= f(x, y1:j−1).

Definition 1: Given two tokens xi, yj across different contexts, if both exhibit analogous function-
ality and purpose, we define xi to be the counterpart2 of yj .

Definition 2: Given the target token yj , we define its counterpart xi in src func and the preceding
token yj−1 as the core tokens of ⟨src func, tgt pref⟩, denoted as x∗

i and y∗j−1, respectively.

Definition 3: Consider a token in ⟨src func, tgt pref⟩, we define the function p() to capture the
position of the token. Specifically, if the token belongs to src func, then p(xi) = i; and if the token
belongs to tgt pref, then p(yj) = −j.

2In this paper, we consider only cases where a counterpart of the target token exists in the src func.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(a) sim < 0.8 (b) sim < 0.75 (c) sim < 0.7 (d) sim < 0.65

(e) sim < 0.8 (f) sim < 0.75 (g) sim < 0.7 (h) sim < 0.65

Figure 3: Cluster Analysis of High-Information Tokens in ⟨src func, tgt pref⟩. We utilize two
normalization methods to examine whether high-information tokens exhibit clustering in large sam-
ples. Building upon this, we further investigate the importance distribution pattern of these high-
information tokens with varying levels of information content.

3.2 CAUSAL TRACING METHOD

Large language models can be viewed as intermediaries that transform low-dimensional text se-
quences into high-dimensional internal representations. In this section, we introduce a causal trac-
ing method designed to quantify the information content of individual tokens. This method involves
perturbing individual tokens in ⟨src func, tgt pref⟩ and employs the dot product similarity to analyze
fluctuations in the internal representation.

• Clean representation: Given a pre-target input cj , we utilize the Transformer model to
convert this clean pre-target input into an internal representation, denoted as kj .

• Corrupted representation: We corrupt an individual token in ⟨src func, tgt pref⟩, result-
ing in a corrupted pre-target input c′j . We then apply the Transformer model to convert this
corrupted pre-target input c′j into an internal representation, denoted as k′j .

• To assess the contribution of the corrupted token to the internal representation, we employ
dot product similarity sim() to measure the difference between kj and k′j . This method
provides a metric for quantifying the information content of the token (Luo et al., 2018).
A lower similarity score indicates higher information content for the token, suggesting
that the corrupted token has lost more critical information, as the perturbation significantly
distorts the internal representation. In contrast, a higher score reflects lower information
content, implying a smaller impact on the internal representation.

sim(cj , c
′
j) =

kj · k′j
∥ kj ∥∥ k′j ∥

We performed single-token perturbations on 3,650 samples and calculated the similarity between
these corrupted representations and clean representations. As illustrated in Figure 4, we observe a
distinct clustering phenomenon, with the majority of samples exhibiting similarity scores between
0.8 and 1, while only a small fraction displays scores below 0.8. Based on this, we refer to a token
with a similarity score below 0.8 as a high-information token, while a token with a score above 0.8
is referred to as a low-information token.

3.3 MULTI-PHASE CAUSAL TRACING PROCESS

Based on the causal tracing method, we propose a multi-phase causal tracing process to analyze the
importance distribution pattern of high-information tokens. This process consists of three phases:
A) Observation of the distribution pattern of high-information tokens in small samples; B) Assess-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(a) tgt pref. (b) src func.

Figure 4: High-Information Tokens Cluster Around Core Tokens. We performed an extensive
analysis on 3,650 samples, utilizing two core tokens from src func and tgt pref as reference points.
We found that high-information tokens tend to cluster around the x = 0 axis (i.e., core token), with
their density gradually decreasing as the distance from this axis increases.

ment of whether high-information tokens exhibit clustering phenomena in large samples; and C)
Evaluation of cluster centers for high-information tokens in large samples.

A) High-Information Tokens Cluster Around Core Tokens in Small Samples. In this section,
we employ the causal tracing method to evaluate the contribution of each token, observing the
importance distribution of high- and low-information tokens. Initially, we focus on target tokens
yj∈4,8,12,17 at various positions, aiming to investigate whether next-token predictions depend on to-
kens from specific positions in the pre-target input. Then, for each target token yj , we randomly
select seven pre-target inputs ⟨src func, tgt pref⟩. We systematically corrupt individual tokens in
sequence and apply the causal tracing method to evaluate the information content of each token,
analyzing the importance distribution of high- and low-information tokens.

As shown in Figure 2, we observe a distinct clustering phenomenon in the importance distribution of
high-information tokens. For the target tokens yj∈4,8,12,17, high-information tokens tend to cluster
around the x = j and x = −(j − 1) axes. By examining the source documents, we find that these
clustered points typically correspond to core tokens, and the associated code snippets often exhibit
functional equivalence.

B) Clustering Phenomena of High-Information Tokens in Large Samples. As illustrated in
Figure 2, we observed clustering of high-information tokens in both src func and tgt pref. In
this section, we will further explore the existence of clustering phenomena in a large dataset.
Specifically, we systematically corrupt individual tokens in ⟨src func, tgt pref⟩ and then em-
ploy a causal tracing method to assess the information content of each token across 3,650
samples. Following this, we identify high-information tokens with similarity scores below
the thresholds of {0.8, 0.75, 0.7, 0.65}, denoting their positions as the set P. For example, if
high-information tokens in a pre-target input are {x3, x4, x5, x6, y4, y5}, the position set P =
{p(x3), p(x4), p(x5), p(x6), p(y4), p(y5)}. To analyze the importance distribution pattern of these
tokens in ⟨src func, tgt pref⟩, we standardized their positions using the following formulas:

P1 =
P

median(|P|)
, P2 =

P
mean(|P|)

The standardized positions P1 and P2 facilitate a clearer observation of the distribution pattern by
normalizing their positional data. It allows for more meaningful comparisons across different pre-
target inputs and mitigates the effects of varying sequence lengths and token positions. As shown in
Figure 3, high-information tokens with varying information content exhibit clear clustering behavior
under both criteria, P1 and P2, with noticeable concentrations along the y = 1 and y = −1 axes.
This non-random clustering phenomenon suggests that there may be intrinsic associations among
high-information tokens.

C) Clustering of High-Information Tokens Around Core Tokens in Large Samples. Based on
Part B, we identified a remarkable clustering phenomenon among high-information tokens, which
consistently cluster around the y = 1 and y = −1 axes (as shown in Figure 3), indicating the
existence of cluster centers. In Part A, we found that high-impact tokens cluster around core tokens

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

in small samples. To further investigate this relationship, we conducted an extensive analysis of
3,650 samples, utilizing two specific clustering centers, p(x∗

i) and p(y∗j−1), as coordinate origins to
examine the distribution characteristics of the surrounding tokens. The goal of this analysis was to
examine the concentration of high-information tokens around the core tokens and to assess how this
information density varies with distance.

In Figure 4, we observe that high-information tokens tend to cluster around the x = 0 axis (i.e., core
tokens), with the density gradually decreasing as the distance increases. Specifically, in src func,
high-information tokens are densely packed within a radius of four tokens from the core token, while
in tgt pref, high-information tokens cluster within a radius of three tokens from the core token.

3.4 IMPACTFUL INFORMATION SOURCE HYPOTHESIS: IMPORTANT POSITION RULE

Building upon the multi-phase causal tracing process, we uncover a consistent pattern of the high-
information tokens: Given a target token yj , high-information tokens cluster within a 4-token radius
around the core token x∗

i in src func and within a 2-token radius around the core token y∗j−1 in
tgt pref. This pattern can be expressed as (x∗

max{i−4,1}:min{i+4,M}, y
∗
max{j−3,1}:j−1), known as

the Important Position Rule (IPR).

Hypothesis: In LLM-based code inference, code snippets identified by the importance position rule
are decisive for next-token prediction.

Based on the importance position rule, we define the code snippets extracted from the pre-target
inputs ⟨src func, tgt pref⟩ as IPR-based code snippets (also referred to as decisive code snip-
pets), denoted as ⟨src frag,tgt frag⟩. Specifically, src frag= x∗

max{i−4,1}:min{i+4,M} and
tgt frag= y∗max{j−3,1}:j−1.

4 ANALYSIS OF IPR IN CODE INFERENCE

To validate that IPR-based code snippets are decisive for LLM-based code inference, we consider the
following two questions: Q1: Can only code snippets identified by IPR reliably predict the target to-
ken? Q2: Does IPR exhibit strong generalization, making it applicable across diverse programming
languages, tasks, and LLMs? (See Section 4.2 for the answer)

4.1 EXPERIMENTAL DETAILS

Methods. For Q1, we extract the IPR-based code snippet and use it to generate the next token.
Specifically, given a target token yj , we extract IPR-based code snippets ⟨src frag, tgt frag⟩ =
(x∗

max{i−4,1}:min{i+4,M}, y
∗
max{j−3,1}:j−1) from pre-target inputs ⟨src func, tgt pref⟩ = (x, yj−1).

Then, we use these short code snippets as inputs to the LLM, calculating the success rate by com-
paring the next generated token y

′

j with the original target token yj .

Success Rate =

∑N
i=1 I(y′i = yi)

N

Where, N denotes the total number of samples. yi represents the original target token, which gener-
ated by ⟨src func, tgt pref⟩. y′

j represents the predicted token generated by IPR-based code snippets
⟨src frag, tgt frag⟩. A match yj = y

′

j is considered a success, indicating the significance of the
IPR-based code snippet in next-token prediction. Conversely, a mismatch suggests the model relied
on broader context rather than the IPR-based code snippet.

For Q2, based on the above method, we evaluate the generalizability of IPR across various models,
tasks, and programming languages. Specifically, we assessed the next-token prediction performance
of IPR-based code snippets across three distinct tasks: code correction, code translation, and code
completion. These tasks utilize models such as CodeLlama-7b-Instruct, CodeLlama-13b-Instruct,
CodeLlama-34b-Instruct, gpt-3.5-turbo3, and gpt-4-turbo4, covering programming languages in-
cluding C++, Java, and Python (Roziere et al., 2023; Ouyang et al., 2022).

3https://platform.openai.com/docs/models#gpt-3-5-turbo
4https://platform.openai.com/docs/models#gpt-4-turbo-and-gpt-4

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Test Dataset. Different models interpret and handle context in distinct ways during model infer-
ence, leading to variations in the inference results (i.e., tgt pref) for the same src func. Therefore,
it is necessary to construct model-specific ⟨src func, tgt pref⟩ language pairs for each model. Based
on this, we created specialized IPR-based snippet datasets for CodeLlama-7b-Instruct, CodeLlama-
13b-Instruct, CodeLlama-34b-Instruct, gpt-3.5-turbo, and gpt-4-turbo, enabling the analysis of dif-
ferent models’ inference performance. (See Appendix A.2 for details on test dataset generation.)

4.2 RESULTS AND DISCUSSION

Evaluating IPR: Code Correction. In this phase, we validated the role of the important position
rule in code correction tasks across various large language models in the contexts of Java, C++, and
Python. As shown in Table 1, models such as CodeLlama-7b-Instruct, CodeLlama-13b-Instruct,
and CodeLlama-34b-Instruct demonstrated remarkable success rates in matching the original target
token, attaining rates between 91.86% and 94.13% while utilizing only 12 high-information tokens.
In comparison, the performance of gpt-3.5/4-turbo was relatively lower. This difference can be
attributed to their design focus: both models are primarily optimized for natural language processing
tasks, emphasizing the understanding and generation of natural language rather than reasoning and
generation in programming languages. Compared to gpt-3.5-turbo, researchers enhanced gpt-4-
turbo’s capabilities in code generation tasks (OpenAI et al., 2024), which contributes to the higher
success rate. These results indicate that in code correction, the next-token prediction largely relies
on high-information tokens derived from the important position rule. Furthermore, the consistently
high success rates of IPR-based code snippets across various programming languages and LLMs
highlight the strong generalization capability of IPR.

Table 1: Performance of IPR-Based Code Snippets for Next-Token Prediction in Code Correction.
CodeLlama-7b-

Instruct
CodeLlama-13b-

Instruct
CodeLlama-34b-

Instruct
gpt-3.5-

turbo
gpt-4-
turbo

Ave 1

C++ 91.86% 93.70 % 92.60 % 56.77 % 69.69 % 80.92 %
Java 92.41 % 94.13% 93.00 % 52.55 % 72.50 % 80.92 %
Python 92.21 % 92.79 % 92.82 % 54.05 % 73.25 % 81.02 %
Ave 2 92.16 % 93.54 % 92.81 % 54.46 % 71.81 % -

Evaluating IPR: Code Translation. We evaluate the contribution of IPR-based code snippets in
the following translation tasks: C++ → Python, C++ → Java, Java → Python, Java → C++, Python
→ Java, and Python → C++. As illustrated in Table 2, we found that even using code snippets with
only 12 tokens for next-token prediction, all models achieve significant success rates in matching the
original target token. Specifically, CodeLlama-7b-Instruct, CodeLlama-13b-Instruct, CodeLlama-
34b-Instruct, and gpt-4-turbo attain success rates ranging from 80.98% to 70.11%. Furthermore,
we observed that all models performed particularly well in the C++ → Java and Java → C++ tasks.
This is because Java is developed based on C++, retaining much of its syntax and core programming
paradigms. In contrast, despite the significant differences in structure, keywords, and syntax between
Python and C++/Java, specialized code LLMs such as CodeLlama-7b-Instruct, CodeLlama-13b-
Instruct, and CodeLlama-34b-Instruct still achieved success rates ranging from 64.94% to 80.00%.
These results indicate that LLM inference in code translation tasks heavily relies on IPR-based code
snippets, further highlighting the strong generalization capability of IPR in code translation tasks.

Table 2: Performance of IPR-Based Code Snippets for Next-Token Prediction in Code Translation.
CodeLlama-
7b-Instruct

CodeLlama-
13b-Instruct

CodeLlama-
34b-Instruct

gpt-3.5-
turbo

gpt-4-
turbo

Ave 1

C++ → Java 86.43 % 92.19 % 92.38 % 55.33 % 78.56 % 80.98 %
C++ → Python 74.01 % 80.00% 73.52 % 49.15 % 76.03 % 70.54 %
Java → C++ 91.41 % 94.12 % 92.73 % 60.27 % 83.21 % 84.35 %
Java → Python 70.52 % 76.54 % 73.56 % 39.80 % 74.70 % 67.02 %
Python → C++ 71.31 % 72.95 % 64.94% 39.26 % 58.39 % 61.37 %
Python → Java 67.09 % 70.10 % 66.04 % 32.46 % 49.75 % 57.09 %
Ave 2 76.80 % 80.98% 77.20 % 46.05 % 70.11% -

Evaluating IPR: Code Completion. In this section, we tested the role of IPR in code completion
tasks. Here, we will consider only the impact of tgt frag on the inference process. As illustrated in

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Performance of IPR-Based Code Snippets for Next-Token Prediction in Code Completion.
CodeLlama-7b-

Instruct
CodeLlama-13b-

Instruct
CodeLlama-34b-

Instruct
gpt-3.5-

turbo
gpt-4-
turbo

C++ tok3 27.12% 28.45% 26.81% 27.49% 22.63%
C++ tok8 63.21% 63.35% 62.55% 40.85% 43.64%
Java tok3 34.00% 27.89% 29.16% 22.38% 28.46%
Java tok8 66.84% 61.94% 62.61% 38.65% 44.24%
Python tok3 28.03% 28.15% 30.24% 21.49% 30.95%
Python tok8 50.27% 50.78% 51.32% 37.93% 44.74%
Ave tok3 29.72% 28.16% 28.74% 23.79% 27.35%
Ave tok8 60.11% 58.69% 58.82% 39.14% 44.21%

Figure 4, we observe a clear trend: the closer a token is to the core token, the greater its information
content, which plays a more significant role in guiding the model’s inference. Building on this ob-
servation, we evaluated the inference performance using two different configurations of the tgt frag:
i) a 3-token snippet {yj−3, yj−2, yj−1}, which focuses on a few tokens preceding the target token,
and ii) an 8-token snippet {yj−8, ..., yj−1}, which includes a broader context from the prefix. As
shown in Table 3, with only 3 tokens, the success rate ranges from 23.79% to 29.72%, indicating
that even a limited number of high-information tokens can still contribute to code inference. When
the context is expanded to 8 tokens, the success rate increases significantly. For the CodeLlama-
7b-Instruct, CodeLlama-13b-Instruct, and CodeLlama-34b-Instruct models, the success rate rises
to between 58.69% and 60.11%, while the gpt-3.5-turbo and gpt-4-turbo models exhibit lower but
still notable success rates, ranging from 39.14% to 44.21%. These results highlight the key role of
IPR-based code snippets in LLM inference, demonstrating their remarkable generalization capabil-
ities across multi-language and multi-model scenarios, thereby providing meaningful insights into
next-token prediction.

5 APPLICATION: IPR-BASED KNOWLEDGE EDITING

In this section, we introduce an application of IPR: knowledge editing for LLMs in the context of
programming languages. We integrate IPR with the ROME approach (Meng et al., 2023), effectively
correcting errors in Java to Python translations by updating middle layer weights.

5.1 IPR-BASED ROME APPROACH

Existing knowledge editing techniques are constrained by the inherent ⟨subject, relation, object⟩
structure of natural language. In this paper, we elucidate the crucial role of IPR in next-token predic-
tion, where IPR-based code snippets, src frag and tgt frag, exhibit significant semantic and syntactic
correlations. Furthermore, the core token in src frag exhibits analogous functionality and purpose
to the target token, similar to the relationship between “subject” and “object”. This finding indicates
the potential of IPR to support knowledge editing in the context of programming languages.

Building on this, we integrate ROME with IPR to perform knowledge editing on the mid-layer feed-
forward module of the CodeLlama-7b-Instruct model, thereby correcting errors in Java to Python
translation. Specifically, for a failed Java-Python translation pair, we consider the error as the target
token and employ the IPR to extract the corresponding code snippets ⟨src frag, tgt frag⟩ as the basis
for knowledge editing. For the tuple ⟨src frag, tgt frag, corrected error⟩, we treat the core token of
src frag as the “subject” and the corrected error as the “new object”, thereby generating a new key-
value pair (k∗, v∗). This key-value pair allows us to update the weight matrix using the equation
Wk∗ = v∗, where k∗ and v∗ are defined as follows:

k∗ =
1

N

∑N

j=1
σ(W

(l∗)
fc · γ(a(l

∗)
[x],i + h

(l∗−1)
[x],i)),

v∗ = argmin
z

(
1

N

∑N

j=1
− logPG(ml∗

i′ :=z)[o
∗|xj + p] +DKL(PG(ml∗

i′ :=z)[x|p′]∥PG[x|p′])

where N represents the sample size, σ denotes the activation function, W (l∗)
fc and W (l∗)

prof refer
to the weight matrices of the fully connected layer at layer l∗, γ is the feature extraction function,
a[x],i

(l∗) indicates the activation value of input x at layer l∗, h[x],i
(l∗−1) represents the activation

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

value of input x at the previous layer. − logPG(ml∗
i′ :=z)[o

∗|xj +p] aims to find a vector z that, when
substituted as the output of the MLP at the i-th token in the subject part, enables the network to
predict the target object o∗ given the factual prompt p. DKL(PG(ml∗

i′ :=z)[x|p′]∥PG[x|p′]) minimizes
the KL divergence between the predictions for the prompt p′ and the original model’s predictions.

5.2 RESULTS AND DISCUSSION

Details. First, we utilized a dataset of 25,227 Java functions as input to CodeLlama-7b-Instruct and
collected 2,975 incorrect Python translations through unit testing. We then categorized these errors
based on specific tokens and selected two main errors: indexOf (Java) → index (Python), accounting
for 5.41%; and equals (Java) → equals (Python), accounting for 2.72%. Based on this, we created
specialized Java datasets targeting these two error types to evaluate the effectiveness of knowledge
editing. The main reason for selecting these errors is that their corresponding correct translations are
both single tokens, allowing for correction through a one-time knowledge edit, which is applicable
to the ROME method. Next, we consider performing knowledge editing on the 19th MLP layer
of CodeLlama-7b-Instruct, primarily for two reasons: (1) Meng et al. (2023) proposed that the
mid-layer feed-forward module plays an important role in storing factual associations, and (2) our
analysis using Logit Lens (nostalgebraist, 2020) indicated that the 19th MLP layer has a greater
impact on the final output (see Appendix Figure 7).

Table 4: Performance of Knowledge Editing for Correcting Translation Errors (Java → Python).
Generation of (k∗, v∗) Succ Total Succ Rate

[A]1
⟨src frag, tgt frag⟩: idx = uri . [indexOf] (“ : ” python = uri .
corrected error: find 101 161 62.73%

[B]1
⟨src frag, tgt frag⟩: idx = uri . indexOf (“ [:] ” python = uri .
corrected error: find 42 161 26.09%

[C]1
⟨src frag, tgt frag⟩: idx [=] uri . indexOf (“ : ” python = uri .
corrected error: find 45 161 27.95%

[A]2
⟨src frag, tgt frag⟩: null : s1 . [equals] (s2) ; python : return s1
corrected error: ==

61 81 75.31%

[B]2
⟨src frag, tgt frag⟩: null : s1 . equals (s2 [)] ; python : return s1
corrected error: ==

20 81 24.69%

[C]2
⟨src frag, tgt frag⟩: [null] : s1 . equals (s2) ; python : return s1
corrected error: ==

25 81 30.86%

* [·]1 indicates the model editing performed on the error: indexOf (java) → index (python). Here, the error “index” should be corrected to “find”.
* [·]2 indicates the model editing performed on the error: equals (java) → equals (python). Here, the error “equals” should be corrected to “==”.
* [·] indicates the editing position.

Evaluation. For these two types of errors, we performed model editing and assessed the correction
performance through unit testing. As shown in Table 4, we select core tokens in src func as editing
points. To validate the effectiveness of core tokens, we also included two additional comparison
positions: the core token in src func [A], the token following the core token [B], and the token
preceding the core token [C]. In Table 4, the results indicate that editing at position [A] significantly
enhanced the correction rates for both errors, achieving rates of 62.73% and 75.31%, respectively.
In contrast, the correction rates for edits at positions [B] and [C] were limited, ranging only from
24.69% to 30.86%. We speculate that position [A] functions similarly to the subject in syntactic
structures, demonstrating a strong association with the object and profoundly influencing the flow
and guidance of information. This suggests that the important position rule can provide valuable
support for knowledge editing in the context of programming languages.

6 CONCLUSION

In this paper, we introduce a causal tracing method to identify high-information tokens, enabling a
precise understanding of how Transformer models extract information from pre-target inputs in the
context of programming languages. Based on this, we reveal a consistent pattern of high-information
tokens, named the important position rule. Then, we thoroughly evaluated the performance of IPR
across various models, tasks, and programming languages. Furthermore, we successfully applied
IPR to knowledge editing, proving that IPR can provide support for knowledge editing and inter-
pretable inference.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Philip Adler, Casey Falk, Sorelle A. Friedler, Gabriel Rybeck, Carlos Scheidegger, Brandon Smith,
and Suresh Venkatasubramanian. Auditing black-box models for indirect influence, 2016.

David J Agans. Debugging: The 9 indispensable rules for finding even the most elusive software
and hardware problems. HarperChristian+ ORM, 2002.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models, 2021. URL https://arxiv.org/abs/2108.07732.

Ashutosh Bajpai, Aaryan Goyal, Atif Anwer, and Tanmoy Chakraborty. Temporally consistent fac-
tuality probing for large language models, 2024. URL https://arxiv.org/abs/2409.
14065.

Adam Michael Bricker. The neural and cognitive mechanisms of knowledge attribution: An eeg
study. Cognition, 203:104412, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, and Dave Cummings et.al. Evaluating large
language models trained on code, 2021. URL https://arxiv.org/abs/2107.03374.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

R. Dennis Cook and Sanford Weisberg. Characterizations of an empirical influence function for
detecting influential cases in regression. Technometrics, 22(4):495–508, 1980. ISSN 00401706.
URL http://www.jstor.org/stable/1268187.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons in
pretrained transformers, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou,
and Hsiao-Wuen Hon. Unified language model pre-training for natural language understanding
and generation, 2019.

Qingyun Dou and Mark Gales. Parallel attention forcing for machine translation, 2022.

Amir Feder, Nadav Oved, Uri Shalit, and Roi Reichart. Causalm: Causal model explanation through
counterfactual language models. Computational Linguistics, pp. 1–54, May 2021a. ISSN 1530-
9312. doi: 10.1162/coli a 00404. URL http://dx.doi.org/10.1162/coli_a_00404.

Amir Feder, Nadav Oved, Uri Shalit, and Roi Reichart. Causalm: Causal model explanation through
counterfactual language models. Computational Linguistics, 47(2):333–386, 2021b.

Mor Geva, Avi Caciularu, Guy Dar, Paul Roit, Shoval Sadde, Micah Shlain, Bar Tamir, and Yoav
Goldberg. Lm-debugger: An interactive tool for inspection and intervention in transformer-based
language models, 2022.

Sebastian Goodman, Nan Ding, and Radu Soricut. Teaforn: Teacher-forcing with n-grams, 2020.

11

https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2409.14065
https://arxiv.org/abs/2409.14065
https://arxiv.org/abs/2107.03374
http://www.jstor.org/stable/1268187
http://dx.doi.org/10.1162/coli_a_00404

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Akshat Gupta, Dev Sajnani, and Gopala Krishna Anumanchipalli. A unified framework for model
editing. ArXiv, abs/2403.14236, 2024. URL https://api.semanticscholar.org/
CorpusID:268553573.

Frank R. Hampel. The influence curve and its role in robust estimation. Journal of the American
Statistical Association, 69(346):383–393, 1974. ISSN 01621459. URL http://www.jstor.
org/stable/2285666.

Yaru Hao, Li Dong, Furu Wei, and Ke Xu. Self-attention attribution: Interpreting information
interactions inside transformer, 2021.

Adi Haviv, Ido Cohen, Jacob Gidron, Roei Schuster, Yoav Goldberg, and Mor Geva. Understanding
transformer memorization recall through idioms, 2023. URL https://arxiv.org/abs/
2210.03588.

Miguel A Hernán and James M Robins. Causal inference, 2010.

Raymond Hicks and Dustin Tingley. Causal mediation analysis. The Stata Journal, 11(4):605–619,
2011.

Kosuke Imai, Luke Keele, and Dustin Tingley. A general approach to causal mediation analysis.
Psychological methods, 15(4):309, 2010.

Kazuki Irie, Albert Zeyer, Ralf Schlüter, and Hermann Ney. Language modeling with deep trans-
formers. arXiv preprint arXiv:1905.04226, 2019.

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. Llmlingua: Compressing
prompts for accelerated inference of large language models, 2023. URL https://arxiv.
org/abs/2310.05736.

Shahar Katz, Yonatan Belinkov, Mor Geva, and Lior Wolf. Backward lens: Projecting language
model gradients into the vocabulary space, 2024. URL https://arxiv.org/abs/2402.
12865.

Robert O Keohane. Counterfactuals and causal inference: Methods and principles for social re-
search. Social Forces, 88(1):466–467, 2009.

Urvashi Khandelwal, Angela Fan, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. Nearest neigh-
bor machine translation. CoRR, abs/2010.00710, 2020. URL https://arxiv.org/abs/
2010.00710.

Geonhee Kim, Marco Valentino, and André Freitas. A mechanistic interpretation of syllogistic
reasoning in auto-regressive language models. ArXiv, abs/2408.08590, 2024. URL https:
//api.semanticscholar.org/CorpusID:271892176.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
International conference on machine learning, pp. 1885–1894. PMLR, 2017.

János Kramár, Tom Lieberum, Rohin Shah, and Neel Nanda. Atp*: An efficient and scalable method
for localizing llm behaviour to components, 2024. URL https://arxiv.org/abs/2403.
00745.

Jiwei Li, Will Monroe, and Dan Jurafsky. Understanding neural networks through representation
erasure, 2017. URL https://arxiv.org/abs/1612.08220.

Yucheng Li, Bo Dong, Chenghua Lin, and Frank Guerin. Compressing context to enhance inference
efficiency of large language models, 2023. URL https://arxiv.org/abs/2310.06201.

Zhiyuan Liu, Yankai Lin, and Maosong Sun. Representation learning for natural language process-
ing. Springer Nature, 2023.

Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predictions. CoRR,
abs/1705.07874, 2017. URL http://arxiv.org/abs/1705.07874.

12

https://api.semanticscholar.org/CorpusID:268553573
https://api.semanticscholar.org/CorpusID:268553573
http://www.jstor.org/stable/2285666
http://www.jstor.org/stable/2285666
https://arxiv.org/abs/2210.03588
https://arxiv.org/abs/2210.03588
https://arxiv.org/abs/2310.05736
https://arxiv.org/abs/2310.05736
https://arxiv.org/abs/2402.12865
https://arxiv.org/abs/2402.12865
https://arxiv.org/abs/2010.00710
https://arxiv.org/abs/2010.00710
https://api.semanticscholar.org/CorpusID:271892176
https://api.semanticscholar.org/CorpusID:271892176
https://arxiv.org/abs/2403.00745
https://arxiv.org/abs/2403.00745
https://arxiv.org/abs/1612.08220
https://arxiv.org/abs/2310.06201
http://arxiv.org/abs/1705.07874

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Chunjie Luo, Jianfeng Zhan, Xiaohe Xue, Lei Wang, Rui Ren, and Qiang Yang. Cosine normal-
ization: Using cosine similarity instead of dot product in neural networks. In Artificial Neural
Networks and Machine Learning–ICANN 2018: 27th International Conference on Artificial Neu-
ral Networks, Rhodes, Greece, October 4-7, 2018, Proceedings, Part I 27, pp. 382–391. Springer,
2018.

Vittorio Mazzia, Alessandro Pedrani, Andrea Caciolai, Kay Rottmann, and Davide Bernardi. A
survey on knowledge editing of neural networks. ArXiv, abs/2310.19704, 2023. URL https:
//api.semanticscholar.org/CorpusID:264820150.

Kevin Meng, Arnab Sen Sharma, Alex Andonian, Yonatan Belinkov, and David Bau. Mass-editing
memory in a transformer. arXiv preprint arXiv:2210.07229, 2022.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt, 2023.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representa-
tions of words and phrases and their compositionality. Advances in neural information processing
systems, 26, 2013.

nostalgebraist. interpreting gpt: the logit lens. 2020. URL https://www.lesswrong.com/
posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-
mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher
Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,
Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis,
Derek Chen, Sully Chen, and Ruby Chen et.al. Gpt-4 technical report, 2024. URL https:
//arxiv.org/abs/2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Fabio Petroni, Tim Rocktäschel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, Alexander H. Miller,
and Sebastian Riedel. Language models as knowledge bases? In Conference on Empirical
Methods in Natural Language Processing, 2019. URL https://api.semanticscholar.
org/CorpusID:202539551.

Derek Powell, Zachary Horne, N Ángel Pinillos, and Keith J Holyoak. A bayesian framework for
knowledge attribution: Evidence from semantic integration. Cognition, 139:92–104, 2015.

Daking Rai, Yilun Zhou, Shi Feng, Abulhair Saparov, and Ziyu Yao. A practical review of mecha-
nistic interpretability for transformer-based language models. ArXiv, abs/2407.02646, 2024. URL
https://api.semanticscholar.org/CorpusID:270924412.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ”why should i trust you?”: Explaining
the predictions of any classifier, 2016.

Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanussot, and Guillaume Lample. Unsupervised
translation of programming languages. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan,
and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 20601–
20611. Curran Associates, Inc., 2020.

Baptiste Roziere, Jie M. Zhang, Francois Charton, Mark Harman, Gabriel Synnaeve, and Guillaume
Lample. Leveraging automated unit tests for unsupervised code translation, 2022. URL https:
//arxiv.org/abs/2110.06773.

13

https://api.semanticscholar.org/CorpusID:264820150
https://api.semanticscholar.org/CorpusID:264820150
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://api.semanticscholar.org/CorpusID:202539551
https://api.semanticscholar.org/CorpusID:202539551
https://api.semanticscholar.org/CorpusID:270924412
https://arxiv.org/abs/2110.06773
https://arxiv.org/abs/2110.06773

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023.

Robert Sedgewick and Kevin Wayne. Introduction to programming in Java: an interdisciplinary
approach. Addison-Wesley Professional, 2017.

Herbert A Simon and Nicholas Rescher. Cause and counterfactual. Philosophy of science, 33(4):
323–340, 1966.

Alessandro Stolfo, Yonatan Belinkov, and Mrinmaya Sachan. A mechanistic interpretation of arith-
metic reasoning in language models using causal mediation analysis. In Conference on Empirical
Methods in Natural Language Processing, 2023. URL https://api.semanticscholar.
org/CorpusID:258865170.

David Thomas and Andrew Hunt. The Pragmatic Programmer: your journey to mastery. Addison-
Wesley Professional, 2019.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Eric Wallace, Jens Tuyls, Junlin Wang, Sanjay Subramanian, Matt Gardner, and Sameer Singh.
Allennlp interpret: A framework for explaining predictions of nlp models. In Confer-
ence on Empirical Methods in Natural Language Processing, 2019. URL https://api.
semanticscholar.org/CorpusID:202712654.

Yifan Wei, Xiaoyan Yu, Huanhuan Ma, Fangyu Lei, Yixuan Weng, Ran Song, and Kang Liu. As-
sessing knowledge editing in language models via relation perspective. ArXiv, abs/2311.09053,
2023. URL https://api.semanticscholar.org/CorpusID:265213377.

Sarah Wiegreffe and Yuval Pinter. Attention is not not explanation, 2019a.

Sarah Wiegreffe and Yuval Pinter. Attention is not not explanation, 2019b. URL https://
arxiv.org/abs/1908.04626.

Zhiyong Wu, Yun Chen, Ben Kao, and Qun Liu. Perturbed masking: Parameter-free probing for
analyzing and interpreting bert, 2021. URL https://arxiv.org/abs/2004.14786.

Ningyu Zhang, Yunzhi Yao, Bo Tian, Peng Wang, Shumin Deng, Meng Wang, Zekun Xi, Shengyu
Mao, Jintian Zhang, Yuansheng Ni, Siyuan Cheng, Ziwen Xu, Xin Xu, Jia-Chen Gu, Yong Jiang,
Pengjun Xie, Fei Huang, Lei Liang, Zhiqiang Zhang, Xiao-Jun Zhu, Jun Zhou, and Huajun Chen.
A comprehensive study of knowledge editing for large language models. ArXiv, abs/2401.01286,
2024. URL https://api.semanticscholar.org/CorpusID:266725300.

14

https://api.semanticscholar.org/CorpusID:258865170
https://api.semanticscholar.org/CorpusID:258865170
https://api.semanticscholar.org/CorpusID:202712654
https://api.semanticscholar.org/CorpusID:202712654
https://api.semanticscholar.org/CorpusID:265213377
https://arxiv.org/abs/1908.04626
https://arxiv.org/abs/1908.04626
https://arxiv.org/abs/2004.14786
https://api.semanticscholar.org/CorpusID:266725300

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 DATASET

We first downloaded raw source code datasets for Java, Python, and C++ from Google BigQuery5.
Referring to the work of Roziere et al. (2020)6, we then performed data preprocessing and obtained
a dataset consisting of 11.98 million Java functions, 8.83 million Python functions, and 6.54 million
C++ functions. All subsequent datasets used in our study were generated from this initial dataset.

A.1.1 IPR-BASED SNIPPET DATASETS

Different models interpret context and preferences in distinct ways, leading to varying tgt pref out-
puts for the same src func. Therefore, it is necessary to construct dedicated IPR-based snippet
datasets for each model. Based on this, we respectively construct specialized IPR-based snip-
pet dataset for CodeLlama-7b-Instruct, CodeLlama-13b-Instruct, CodeLlama-34b-Instruct, gpt-3.5-
turbo, and gpt-4-turbo, targeting tasks such as code translation, code correction, and code comple-
tion.

Code Translation: We randomly sample subdatasets of Java, Python, and C++ from the initial
dataset. These subdatasets serve as input sequence datasets, representing the src func in the pre-
target inputs. (In Figure 5, we show the length distribution of the input sequences in the dataset.)

• Performing Code Translation on Input Sequence Datasets: First, we feed the input
sequence datasets for C++, Java, and Python into the models, including CodeLlama-
7b/13b/34b-Instruct and gpt-3.5/4-turbo. We then translate each input into the other two
target languages (e.g., translating the C++ into Python and Java), collecting pairs of (input
sequence, output sequence), denoted as (x, y). In this step, we follow the natural output of
each model without requiring verification of the output’s correctness.

• Extracting Pre-Target Inputs and Target Tokens: For each (x, y), we set tgt pref as the
first half of the output sequence. Based on this, we extract a collection of target tokens
and their corresponding pre-target inputs, where pre-target input ⟨src func, tgt pref⟩ =
(x, y1:len(y)/2), and the target token is ylen(y)/2+1.

• IPR-Based Snippet Identification: Finally, we collect target tokens ylen(y)/2+1 along
with the IPR-based code snippets ⟨src frag, tgt frag⟩ extracted from pre-target inputs
(x, y1:len(y)/2), and then perform a deduplication process. This approach allows us to con-
struct specialized IPR-based snippet datasets, each tailored to a specific model, such as
CodeLlama-7b-Instruct, CodeLlama-13b-Instruct, CodeLlama-34b-Instruct, gpt-3.5-turbo,
and gpt-4-turbo.

Code Correction: We randomly extract subdatasets of Java, Python, and C++ from the initial
dataset. Using these subdatasets, we construct input sequence datasets for the code correction task.

• Building input sequence datasets: In existing literature and within the knowledge base of
LLMs Thomas & Hunt (2019); Sedgewick & Wayne (2017); Agans (2002), there is a com-
prehensive and extensive collection of common programming errors across different lan-
guages. For the above Java, Python, and C++ subdatasets, we leverage the LLM to simulate
realistic coding mistakes, injecting 2 ∼ 3 typical errors into each sample, thereby gener-
ating error Java/Python/C++ datasets. These datasets correspond to the input sequences
src func in the pre-target inputs. This process involves deliberately introducing common
syntactical, logical, or runtime errors specific to each language, such as incorrect variable
assignments, misplaced parentheses, or improper function calls. (Figure 5 shows the length
distribution of input sequences in the dataset.)

• Performing Code Correction on Input Sequence Datasets: Next, we feed the input sequence
datasets into models such as CodeLlama-7b/13b/34b-Instruct and gpt-3.5/4-turbo for code
correction. For each model, we collect pairs of (input sequence, output sequence), denoted
as (x, y).

5https://cloud.google.com/blog/products/gcp/github-on-bigquery-analyze-all-the-open-source-code
6https://github.com/facebookresearch/TransCoder

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 5: Length Distribution of Input Sequence Datasets in Code Translation and Code Cor-
rection Tasks. For both the code translation and code correction tasks, we conducted a statistical
analysis of the input sequence lengths across all models, including CodeLlama-7b/13b/34b-Instruct
and gpt-3.5/4-turbo, in the contexts of Java, Python, and C++. To provide a meaningful comparison,
we also examined the length distributions of widely used datasets, such as Humaneval and MBPP.
Our analysis reveals that the length distributions of the datasets used for code translation and code
correction tasks are closely aligned. Here, the sequence length refers to the number of tokens. The
x-axis represents len ≥ n, indicating that the sequence length is greater than or equal to n, while
the y-axis represents the proportion of samples with len ≥ n. (See Table 5 for details.)

• Extracting Pre-Target Inputs and Target Tokens: Similar to the code translation task,
for each language pair (x, y), we define tgt pref = y1:len(y)/2 and the target token
= ylen(y)/2+1. For each LLM, we generate specialized datasets consisting of pre-target in-
puts ⟨src func, tgt pref⟩ = (x, y1:len(y)/2) and their corresponding target tokens ylen(y)/2+1.

• IPR-Based Snippet Identification: Finally, we extract the target tokens ylen(y)/2+1 and
the IPR-based code snippets ⟨src frag, tgt frag⟩ from the pre-target inputs (x, y1:len(y)/2),
followed by a deduplication process. This process enables us to build IPR-based frag-
ment datasets tailored for each model, including CodeLlama-7b-Instruct, CodeLlama-13b-
Instruct, CodeLlama-34b-Instruct, gpt-3.5-turbo, and gpt-4-turbo.

Code Completion We randomly select Java, Python, and C++ subdatasets from the initial dataset.
Based on this, we construct input sequence datasets for the code completion task.

• Building input sequence datasets: We extract the first 20 tokens from the Java, Python, and
C++ subdatasets to construct the input sequence datasets for further processing.

• Performing Code Completion on Input Sequence Datasets: Subsequently, we feed the Java,
Python, and C++ input sequence datasets into models, including CodeLlama-7b/13b/34b-
Instruct and gpt-3.5/4-turbo, for code completion. For each model, we collect pairs of input
and output sequences, denoted as (x, y), where the output sequence y represents the code
continuation based on the input sequence x.

• Extracting Pre-Target Inputs and Target Tokens: For each (x, y) pair, we extract the first
20 tokens from the generated output sequence as tgt pref, where the target token is y21,
and tgt pref = y1:20. Using this method, we construct specialized datasets for each LLM,
consisting of the target token y21 and its associated pre-target input, ⟨src func, tgt pref⟩ =
(x, y1:20).

• IPR-Based Snippet Identification: In the code completion task, there is no direct func-
tional equivalence between the output sequence y and the input sequence x. Therefore,
when identifying high-information code snippets for code completion, we exclude the in-
put sequence src func and focus solely on extracting high-information snippets from the
target prefix tgt pref. Based on IPR, we collect a dataset consisting of IPR-based snip-
pets {y18, y19, y20} and the corresponding target tokens y21. Additionally, we create a
broader context dataset by extracting code snippets {y13, y14, ..., y20} and target tokens
y21 for further exploration. In this way, we build two code snippet datasets for CodeLlama-
7b/13b/34b-Instruct and gpt-3.5/4-turbo, respectively.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 5: Length Statistics of Input Sequence Datasets in Code Translation and Correction Tasks.
Length Code Translation Code Correction HumanEval MBPP
len ≥ 20 99.09% 97.19% 92.07% 88.50%
len ≥ 30 88.14% 71.28% 82.32% 62.83%
len ≥ 40 77.05% 59.48% 64.02% 44.56%
len ≥ 50 64.86% 48.93% 48.78% 31.83%
len ≥ 60 49.90% 36.90% 41.46% 23.20%
len ≥ 70 37.77% 27.38% 35.98% 17.76%
len ≥ 80 26.69% 19.11% 26.83% 13.66%
len ≥ 90 18.98% 13.47% 19.51% 10.88%
len ≥ 100 11.82% 8.79% 15.24% 8.52%

A.1.2 GENERATION OF 3,650 CORRUPTED SAMPLES

In the code correction task described in Section A.1.1, we collected specialized datasets consist-
ing of pre-target inputs ⟨src func, tgt pref⟩ = (x, y1:len(y)/2) and their corresponding target tokens
ylen(y)/2+1. Based on this, we first randomly selected one hundred Python pre-target inputs from
CodeLlama-7b-Instruct. Subsequently, using the causal tracing method, we individually corrupted
each token in the pre-target inputs, generating 3,650 corrupted samples. These samples were then
used to quantify the importance of each token in the pre-target inputs, allowing us to visualize the
importance distribution of high-information tokens.

A.1.3 JAVA-PYTHON TRANSLATION DATASET

Necessity of Building a Large-Scale Java-Python Translation Dataset: In Section 5, we aim to
collect common errors made by CodeLlama-7b-Instruct when translating Java to Python. While
CodeLlama-7b-Instruct achieves a translation accuracy of 88.21% for Java → Python, commonly
used datasets offer limited samples, with only 164 examples in HumanEval (Chen et al., 2021)
and 974 examples in MBPP (Austin et al., 2021). Relying solely on these two datasets to identify
common errors is unreliable, as their limited sample size does not support a comprehensive analysis
of main errors, which may lead to biased results.

Construction Process of the Java-Python Translation Dataset: Following the work of Roziere
et al. (2022), we built a Java-Python translation dataset7. First, we download the Java source code
from Google BigQuery and apply the TransCoder-ST preprocessing pipeline for dataset filtering.
Next, we set a maximum runtime of 20 seconds for each process and use EvoSuite to generate Java
test cases. Here, the unit test cases are created based on two criteria: a mutation score above 0.9 and
at least two assertions. Through this process, we collect 82,665 Java functions with corresponding
unit test cases. Subsequently, we feed the processed Java functions, along with their corresponding
test cases, into TransCoder-ST (Java → Python, beam size = 1).

For each Java function, we generate a corresponding Python function along with its associated unit
test cases. Then, we execute the Python unit tests to validate the correctness of the translation. If
the Python function passes all tests, we pair the Java function with the Python function to form a
translation language pair. This process ensures the accuracy of both the Python functions and their
corresponding unit tests. After removing duplicate entries from the processed dataset, we obtain a
final Java-Python translation dataset comprising 25,227 language pairs, each accompanied by unit
test cases. (See example in Table 10)

A.2 IMPACT OF HIGH-INFORMATION TOKEN COUNT ON NEXT-TOKEN PREDICTION

As shown in Figure 4, high-information tokens in src func are primarily symmetrically distributed
around the core token, with fewer high-information tokens as the distance increases. Similarly,
in tgt pref, high-information tokens are mainly concentrated around the core token, and their fre-
quency decreases with increasing distance. This observation explains the rationale for extracting
high-information code snippets using the format (x∗

max{i−a,1}:min{i+a,M}, y
∗
max{j−b,1}:j−1).

7https://github.com/facebookresearch/CodeGen

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

We further explain the reasons for choosing a = 4 and b = 3 to define the important po-
sition rule. In code correction and translation tasks, we experimented with high-information
code snippets of varying lengths, exploring different combinations of parameters, such as
(a, b) ∈ {(6, 5), (5, 4), (6, 5), (4, 3), (3, 2), (2, 1)}, which are denoted as IPR+2tok, IPR+1tok, IPR,
IPR−1tok, and IPR−2tok. Then, we use the IPR+2tok, IPR+1tok, IPR, IPR−1tok, and IPR−2tok
snippet datasets as inputs to the LLM, calculating the success rate by comparing the generated token
y

′

j with the original target token yj , respectively.

As shown in Tables 6 and 7, we systematically reduced the number of high-information tokens near
the core tokens. We found that IPR−2tok performed poorly across all tests. Although IPR−1tok

achieved good results in CodeLlama-7b/13b/34b-Instruct, its performance was suboptimal in gpt-
3.5/4-turbo, particularly in gpt-3.5-turbo. When a = 4 and b = 3, we observed that IPR-based
snippets consistently yielded strong results in relatively smaller code snippets, both in CodeLlama-
7b/13b/34b-Instruct and gpt-3.5/4-turbo for code correction and translation tasks.

A.3 ABLATION ANALYSIS —— IMPORTANCE OF IPR-BASED CODE SNIPPETS

To explore the role of IPR-based code snippets in next-token prediction, we consider the follow-
ing two methods in code completion and code correction tasks: (1) removing the IPR-based code
snippet from ⟨src func, tgt pref⟩, referred to as the IPRremove code snippet; (2) corrupting the IPR-
based code snippet in ⟨src func, tgt pref⟩, referred to as the IPRcorrupt code snippet. Then, we use
the IPRremove / IPRcorrupt snippet dataset as input to the LLM and compute the success rate by
comparing the generated token y

′

j with the original target token yj .

As shown in Tables 8 and 9, we find that when we remove or corrupt the IPR-based code snippets,
the success rate consistently drops below 8%. Further, we considered whether it stemmed from the
short length of ⟨src func, tgt pref⟩. Specifically, after removing 12 tokens (i.e., the length of the
IPR-based code snippets), the remaining valid tokens in ⟨src func, tgt pref⟩ were too few, leading to
a significant impact on next-token prediction. Based on this, we counted the length of src func in
both the code translation and code correction tasks in Table 5. We found that in the code translation
task, 88.14% of src func samples exceed 30 tokens, while in the code correction task, 71.28% of
src func samples exceed 30 tokens. It means that, despite the fact that the lengths of the IPRremove

and IPRcorrupt code snippets are significantly greater than that of ⟨src frag, tgt frag⟩, the success
rate of next-token prediction remains notably low. This result suggests that IPR-based code snippets
play a crucial role in next-token prediction during code inference.

A.4 EXTRACTION OF NEXT GENERATED TOKEN

In experiments evaluating the effect of IPR on next-token prediction, it is essential to test its
performance on CodeLlama-7b/13b/34b-Instruct models and gpt-3.5/4-turbo. For CodeLlama-
7b/13b/34b-Instruct, we can directly extract the next generated token from the model’s output.
However, since gpt-3.5/4-turbo is accessible only via the API, we leverage prompt engineering by
including the instruction, “Please generate the next java token.” in the prompt to guide the model to
directly generate the next token. (Some examples are shown in Figures ?? and 6.)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 6: The Impact of the Number of High-Information Tokens on Next-Token Prediction in Code
Translation Tasks.

Task Type CodeLlama-
7b-Instruct

CodeLlama-
13b-Instruct

CodeLlama-
34b-Instruct

gpt-3.5-
turbo

gpt-4-
turbo

Ave 1

baseline 6.27% 7.73 % 7.36 % 2.61 % 7.53 % 6.30 %
IPR−2tok 71.33 % 73.14 % 73.00 % 23.43 % 59.18 % 60.02 %

C++ → IPR−1tok 86.82 % 89.55 % 91.95 % 33.28 % 74.16 % 75.15 %
Java IPR 86.43 % 92.19 % 92.38 % 55.33 % 78.56 % 80.98 %

IPR+1tok 89.53 % 93.25 % 91.45 % 58.82 % 82.38 % 83.09 %
IPR+2tok 88.07 % 93.85 % 92.80 % 64.05 % 81.64 % 84.08 %
baseline 11.54% 10.19 % 10.56 % 5.48 % 8.96 % 9.35 %
IPR−2tok 52.35 % 52.80 % 49.69 % 14.33 % 60.58 % 45.95 %

C++ → IPR−1tok 75.24 % 73.40 % 65.08 % 32.45 % 73.54 % 63.94 %
Python IPR 74.01 % 80.00 % 73.52 % 49.15 % 76.03 % 70.54 %

IPR+1tok 80.19 % 82.39 % 76.13 % 47.73 % 82.08 % 73.70 %
IPR+2tok 83.40 % 85.12 % 81.73 % 49.01 % 83.50 % 76.55 %
baseline 7.71% 7.40 % 7.00 % 5.37 % 8.60 % 7.22%
IPR−2tok 76.22 % 75.82 % 76.01 % 28.25 % 66.42 % 64.54 %

Java → IPR−1tok 90.07 % 92.37 % 91.63 % 44.31 % 81.32 % 79.94 %
C++ IPR 91.41 % 94.12 % 92.73 % 60.27 % 83.21 % 84.35 %

IPR+1tok 91.57 % 94.77 % 94.01 % 65.05 % 87.30 % 86.54 %
IPR+2tok 91.63 % 94.97 % 93.81 % 65.99 % 86.62 % 86.60 %
baseline 10.65% 11.35 % 9.85 % 5.00 % 10.45 % 9.46 %
IPR−2tok 50.24 % 48.22 % 49.77 % 9.73 % 58.33 % 43.26 %

Java → IPR−1tok 67.81 % 71.69 % 67.46 % 18.37 % 65.48 % 58.16 %
Python IPR 70.52 % 76.54 % 73.56 % 39.80 % 74.70 % 67.02 %

IPR+1tok 74.83 % 80.78 % 79.41 % 33.11 % 80.25 % 69.68 %
IPR+2tok 79.15 % 82.88 % 82.73 % 39.54 % 83.93 % 73.65 %
baseline 9.05% 5.36 % 7.64 % 6.13 % 10.58 % 7.75 %
IPR−2tok 47.07 % 46.41 % 40.63 % 18.33 % 37.96 % 38.08 %

Python IPR−1tok 68.40 % 68.47 % 62.57 % 29.06 % 53.28 % 56.36 %
→ C++ IPR 71.31 % 72.95 % 64.94 % 39.26 % 58.39 % 61.37 %

IPR+1tok 75.62 % 76.88 % 71.30 % 45.15 % 67.88 % 67.37 %
IPR+2tok 75.10 % 78.02 % 73.57 % 48.23 % 69.71 % 68.93 %
baseline 5.03% 9.07 % 7.22% 1.83 % 10.55 % 6.74%
IPR−2tok 46.07 % 41.86 % 39.96 % 7.07 % 32.66 % 33.52 %

Python IPR−1tok 65.05 % 68.21 % 64.83 % 11.65 % 42.21 % 50.39 %
→ Java IPR 67.09 % 70.10 % 66.04 % 32.46 % 49.75 % 57.09 %

IPR+1tok 70.48 % 74.32 % 73.03 % 20.00 % 57.79 % 59.12 %
IPR+2tok 70.85 % 73.75 % 71.96 % 30.26 % 62.31 % 61.83 %

* baseline: Randomly select 12 tokens from the pre-target input.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 7: The Impact of the Number of High-Information Tokens on Next-Token Prediction in Code
Correction Tasks.

Task Type CodeLlama-
7b-Instruct

CodeLlama-
13b-Instruct

CodeLlama-
34b-Instruct

gpt-3.5-
turbo

gpt-4-
turbo

Ave 1

baseline 8.05% 6.61% 7.79 % 3.00% 6.05 % 6.30 %
IPR−2tok 76.34 % 72.98 % 70.50 % 30.34 % 47.67 % 59.57 %
IPR−1tok 90.21 % 90.06 % 90.50 % 42.41 % 69.04 % 76.44 %

C++ IPR 91.86 % 93.70 % 92.60 % 56.77 % 69.69 % 80.92 %
IPR+1tok 92.34 % 94.15 % 91.54 % 62.55 % 80.11 % 84.14 %
IPR+2tok 91.05 % 94.98 % 91.69 % 66.41 % 79.04 % 84.63 %
baseline 7.43% 7.30% 9.19 % 2.39% 7.93 % 6.85 %
IPR−2tok 74.61 % 73.15 % 69.95 % 31.56 % 48.04 % 59.46 %
IPR−1tok 88.92 % 91.98 % 90.52 % 40.91 % 65.87 % 75.64 %

Java IPR 92.41 % 94.13 % 93.00 % 52.55 % 72.50 % 80.92 %
IPR+1tok 92.57 % 94.42 % 92.65 % 58.35 % 78.91 % 83.38 %
IPR+2tok 92.52 % 94.07 % 92.75 % 63.89 % 82.08 % 85.06 %
baseline 12.94% 13.00% 13.79 % 3.76% 9.40 % 10.58%
IPR−2tok 79.10 % 71.90 % 74.24 % 37.73 % 51.20 % 62.83 %
IPR−1tok 92.64 % 92.36 % 93.10 % 44.44 % 69.91 % 78.49 %

Python IPR 92.21 % 92.79 % 92.82 % 54.05 % 73.25 % 81.02 %
IPR+1tok 93.68 % 93.90 % 93.62 % 61.24 % 82.41 % 84.97 %
IPR+2tok 93.73 % 94.59 % 93.65 % 64.36 % 82.03 % 85.67 %

* baseline: Randomly select 12 tokens from the pre-target input.

Table 8: The Impact of IPR-Based Code Snippets on Next-Token Prediction in Code Translation
Tasks

Task Type CodeLlama-
7b-Instruct

CodeLlama-
13b-Instruct

CodeLlama-
34b-Instruct

gpt-3.5-
turbo

gpt-4-
turbo

Ave 1

C++ → IPR 86.43 % 92.19 % 92.38 % 55.33 % 78.56 % 80.98 %
Java IPRremove 1.99 % 1.98 % 2.20 % 2.91 % 1.88 % 2.19 %

IPRcorrupt 3.23 % 2.97 % 3.48 % 2.18 % 1.23 % 2.62 %
C++ → IPR 74.01 % 80.00 % 73.52 % 49.15 % 76.03 % 70.54 %
Python IPRremove 5.75 % 6.20 % 6.59 % 6.82 % 5.74 % 6.22 %

IPRcorrupt 5.01 % 4.23 % 3.88 % 3.94 % 5.08 % 4.43 %
Java → IPR 91.41 % 94.12 % 92.73 % 60.27 % 83.21 % 84.35 %
C++ IPRremove 2.19 % 2.13 % 2.13 % 2.97 % 3.88 % 2.66 %

IPRcorrupt 2.66 % 2.65 % 2.80 % 1.33 % 2.02 % 2.29 %
Java → IPR 70.52 % 76.54 % 73.56 % 39.80 % 74.70 % 67.02 %
Python IPRremove 4.62 % 6.68 % 5.92 % 7.84 % 7.74 % 6.56 %

IPRcorrupt 5.71 % 3.57 % 3.59 % 3.27 % 4.46 % 4.12 %
Python IPR 71.31 % 72.95 % 64.94 % 39.26 % 58.39 % 61.37 %
→ C++ IPRremove 3.85 % 2.90 % 3.14 % 5.00 % 6.27 % 4.23 %

IPRcorrupt 4.86 % 6.81 % 5.91 % 2.84 % 3.28 % 4.74 %
Python IPR 67.09 % 70.10 % 66.04 % 32.46 % 49.75 % 57.09 %
→ Java IPRremove 4.39 % 4.21 % 2.99 % 4.46 % 2.78 % 3.77 %

IPRcorrupt 6.27 % 5.36 % 2.99 % 1.32 % 0.50 % 3.29 %
* IPR: IPR-based code snippet= (x∗

max{i−4,1}:min{i+4,M}, y
∗
max{j−3,1}:j−1).

* IPRremove represents the code snippets that remove the IPR-based code snippet ⟨src frag, tgt frag⟩ from ⟨src func, tgt pref⟩.
* IPRcorrupt represents the code snippets that corrupt the IPR-based code snippet ⟨src frag, tgt frag⟩ from ⟨src func, tgt pref⟩.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 9: The Impact of IPR-Based Code Snippets on Next-Token Prediction in Code Correction
Tasks

Task Type CodeLlama-
7b-Instruct

CodeLlama-
13b-Instruct

CodeLlama-
34b-Instruct

gpt-3.5-
turbo

gpt-4-
turbo

Ave 1

IPR 91.86 % 93.70 % 92.60 % 56.77 % 69.69 % 80.92 %
C++ IPRremove 1.39 % 2.34 % 2.08 % 3.50 % 2.72 % 2.41 %

IPRcorrupt 3.05 % 3.29 % 3.16 % 1.82 % 1.81 % 2.63 %
IPR 92.41 % 94.13 % 93.00 % 52.55 % 72.50 % 80.92 %

Java IPRremove 3.14 % 3.28 % 3.00 % 4.61 % 4.23 % 3.65 %
IPRcorrupt 2.99 % 2.92 % 3.23 % 2.08 % 1.74 % 2.59 %
IPR 92.21 % 92.79 % 92.82 % 54.05 % 73.25 % 81.02 %

Python IPRremove 2.73 % 2.64 % 2.20 % 3.36 % 3.45 % 2.88 %
IPRcorrupt 1.86 % 1.41 % 1.47 % 1.62 % 2.25 % 1.72 %

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

(a) Case 1.1: Setting target token = “ /” (b) Case 1.2: Next generated token = “ /” ? YES

(c) Case 2.1: Setting target token = “ * ” (d) Case 2.2: Next generated token = “ * ” ? YES

(e) Case 3.1: Setting target token = “power” (f) Case 3.2: Next generated token = “power” ? YES

(g) Case 4.1: Setting target token = “>>” (h) Case 4.2: Next generated token = “>>” ? YES

Figure 6: Examples of IPR-based Code Snippets for Next-Token Prediction. In the left sub-
figures, we randomly select a token in tgt pref as the target token and extract the corresponding
IPR-based code snippet. In right subfigures, we attempt to predict the next token using the IPR-
based code snippets. Furthermore, since gpt-3.5/4-turbo can only be accessed via the API, we
employ prompt engineering by including the instruction “Please generate the next java token.” in
the prompt to guide the model to generate the next token directly.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 10: Java-Python Language Pair and Its Unit Test Cases Example
Type Details

Source Java function public static int getLineSize(int x1, int x2, int y1, int y2) {
if (x1 == x2) {

return Math.abs(y1 - y2);
} else {

return Math.abs(x1 - x2);
}

}

Python function def get_line_size(x1, x2, y1, y2):
if x1 == x2:

return abs(y1 - y2)
else:

return abs(x1 - x2)

Java unit tests /*
* This file was automatically generated by EvoSuite

* Wed Dec 07 08:44:05 GMT 2022

*/

import org.junit.Test;
import static org.junit.Assert.*;
import org.evosuite.runtime.EvoRunner;
import org.evosuite.runtime.EvoRunnerParameters;
import org.junit.runner.RunWith;

@RunWith(EvoRunner.class)
@EvoRunnerParameters(mockJVMNonDeterminism = true, useVFS = true, useVNET = true,

resetStaticState = true, separateClassLoader = true)
public class CLASS_a59109abfc5d_ESTest extends CLASS_a59109abfc5d_ESTest_scaffolding {

@Test(timeout = 4000)
public void test0() throws Throwable {

int int0 = CLASS_a59109abfc5d.getLineSize(0, 0, (-11228), (-26867));
assertEquals(15639, int0);

}

@Test(timeout = 4000)
public void test1() throws Throwable {

int int0 = CLASS_a59109abfc5d.getLineSize(14804, (-1), 1, 113128);
assertEquals(14805, int0);

}

@Test(timeout = 4000)
public void test2() throws Throwable {

int int0 = CLASS_a59109abfc5d.getLineSize(1, 1, 1, 1);
assertEquals(0, int0);

}

@Test(timeout = 4000)
public void test3() throws Throwable {

int int0 = CLASS_a59109abfc5d.getLineSize(0, 48313, 0, 12019);
assertEquals(48313, int0);

}

@Test(timeout = 4000)
public void test4() throws Throwable {

CLASS_a59109abfc5d cLASS_a59109abfc5d_0 = new CLASS_a59109abfc5d();
}}

Python unit tests import numpy as np
import math
from math import *
import collections
from collections import *
import heapq
import itertools
import random
import sys
import unittest

#TOFILL
class CLASS_a59109abfc5d(unittest.TestCase):

def test0(self):
int0 = f_filled(0, 0, (-11228), (-26867))
assert 15639 == int0

def test1(self):
int0 = f_filled(14804, (-1), 1, 113128)
assert 14805 == int0

def test2(self):
int0 = f_filled(1, 1, 1, 1)
assert 0 == int0

def test3(self):
int0 = f_filled(0, 48313, 0, 12019)
assert 48313 == int0

if __name__ == ’__main__’:
unittest.main() 23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 11: Examples of Similarities Between the Internal Representations of Pre-Target Inputs
and Code Snippets Surrounding Core Tokens.

Type Similarity ⟨src func, tgt pref⟩ and ⟨src frag, tgt frag⟩

C++ →
Java

0.7746

0.7083

0.7007

0.7880

[EX 1]: ⟨ ‘ double mul (const int a , double b) { return (a) * b ; } ’, ‘public static double mul (final int a , final double b) {
return (’ ⟩ → a
[EX 1]∗: ⟨ ‘) { return (a) * b ; ’, ‘{ return (’ ⟩ → a

[EX 2]: ⟨ ‘ int sum (int * a) { int result = 0 ; for (int i = 0 ; i < sizeof (a) / sizeof (int) ; i ++) result += a [i] ; return result ;
} ’, ‘public static int sum (int [] a) { int result = 0 ; for (’ ⟩ → int
[EX 2]∗: ⟨ ‘ 0 ; for (int i = 0 ; ’, ‘; for (’ ⟩ → int

[EX 3]: ⟨ ‘ int clamp (int x , int a , int b) { if (a > b) return x ; if (x < a) return a ; else if (x > b) return b ; else return x ; }
’, ‘public static int clamp (int x , int a , int b) { if (a > b) return x ; if (x < a) return a ;’ ⟩ → else
[EX 3]∗: ⟨ ‘ return a ; else if (x > ’, ‘return a ;’ ⟩ → else

[EX 4]:⟨ ‘ bool gt (double number , double actual) { return actual > number ; } ’, ‘public static boolean greaterThan (double
number , double actual) { return’ ⟩ → actual
[EX 4]∗: ⟨ ‘ actual) { return actual > number ; } ’, ‘) { return’ ⟩ → actual

C++ →
Python

0.7781

0.7454

0.8218

0.7109

[EX 1]:⟨ ‘ int max (int a , int b) { return a > b ? a : b ; } ’, ‘def gt (a , b) : return a if a’ ⟩ →>

[EX 1]∗: ⟨ ‘) { return a > b ? a : ’, ‘a if a’ ⟩ →>

[EX 2]:⟨ ‘ int sign (int b0) { return (b0 < 0) ? - 1 : (b0 > 0) ? 1 : 0 ; } ’, ‘def sign (b0) : return np .’ ⟩ → sign

[EX 2]∗: ⟨ ‘ b0 < 0) ? - 1 : (’, ‘return np .’ ⟩ → sign

[EX 3]∗: ⟨ ‘ double distance (double * p1 , double * p2) { double sum = 0 ; for (int i = 0 ; i < sizeof (* p1) / sizeof (* p1) ; i
++) { const double dp = * p1 - * p2 ; sum += dp * dp ; } return sqrt (sum) ; } ’, ‘def distance (p1 , p2) : sum = 0 for i in range (
len (p1)) : dp = p1 [i] - p2 [i] sum += dp * dp return math .’ ⟩ → sqrt
[EX 3]:⟨ ‘ dp ; } return sqrt (sum) ; ’, ‘return math .’ ⟩ → sqrt

[EX 4]:⟨ ‘ float trunc (float number , int precision) { return float (floor (number * pow (10 , precision)) / pow (10 , precision)
) ; } ’, ‘def trunc (number , prec) : return float (math .’ ⟩ → floor
[EX 4]∗: ⟨ ‘ { return float (floor (number * pow ’, ‘(math .’ ⟩ → floor

Java →
C++

0.7856

0.8468

0.7672

0.7356

[EX 1]:⟨ ‘ public static double mul (final int a , final double b) { return (a) * b ; } ’, ‘double mul (const int a , double b) {
return (a’ ⟩ →)
[EX 1]∗: ⟨ ‘ { return (a) * b ; } ’, ‘return (a’ ⟩ →)

[EX 2]:⟨ ‘ public static int lerp (int a , int b , float value) { return (int) (a + (b - a) * value) ; } ’, ‘int lerp (int a , int b , float
value) { return int (a + (b’ ⟩ → -
[EX 2]∗: ⟨ ‘ (a + (b - a) * value ’, ‘a + (b’ ⟩ → -

[EX 3]:⟨ ‘ public static boolean greaterThan (double number , double actual) { return actual > number ; } ’, ‘bool gt (double
number , double actual) { return actual’ ⟩ →>

[EX 3]∗: ⟨ ‘) { return actual > number ; } ’, ‘{ return actual’ ⟩ →>

[EX 4]:⟨ ‘ public static int test () { int h = 1 ; { } int j = 2 ; return 120 + j + h ; } ’, ‘int test () { int h = 1 ; { }’ ⟩ → int

[EX 4]∗: ⟨ ‘ 1 ; { } int j = 2 ; ’, ‘; { }’ ⟩ → int

Python
→ Java

0.7183

0.7946

0.8168

0.8244

[EX 1]:⟨ ‘ def clamp (val , min , max) : return min if val < min else max if val > max else val ’, ‘public static final int clamp (
int val , int min , int max) { return (val’ ⟩ →<

[EX 1]∗: ⟨ ‘ return min if val < min else max if ’, ‘return (val’ ⟩ →<

[EX 2]:⟨ ‘ def pad (c) : if c >= 10 : return str (c) else : return ’0’ + str (c) ’, ‘public static String pad (int c) { if (c’ ⟩ →
>=
[EX 2]∗: ⟨ ‘ if c >= 10 : return str ’, ‘if (c’ ⟩ →>=

[EX 3]:⟨ ‘ def Min (a , b) : return min (a , b) ’, ‘public static final int min (int a , int b) { return Math .’ ⟩ → min

[EX 3]∗: ⟨ ‘ : return min (a , b ’, ‘return Math .’ ⟩ → min

[EX 4]:⟨ ‘ def distance (x1 , y1 , x2 , y2) : return math . sqrt ((pow (x1 - x2 , 2) + pow (y1 - y2 , 2))) ’, ‘public static double
distance (double x1 , double y1 , double x2 , double y2) { return Math .’ ⟩ → sqrt
[EX 4]∗: ⟨ ‘ return math . sqrt ((pow (’, ‘return Math .’ ⟩ → sqrt

Java →
Python

0.8580

0.8681

0.7808

0.8413

[EX 1]:⟨ ‘ public static final int min (int a , int b) { return Math . min (a , b) ; } ’, ‘def Min (a , b) : return min’ ⟩ → (

[EX 1]∗: ⟨ ‘ return Math . min (a , b) ’, ‘ return min’ ⟩ → (

[EX 2]:⟨ ‘ public static final int clamp (int val , int min , int max) { return (val < min) ? min : (val > max) ? max : val ; } ’,
‘def clamp (val , min , max) : return min if val’ ⟩ →<

[EX 2]∗: ⟨ ‘ { return (val < min) ? min ’, ‘min if val’ ⟩ → <

[EX 3]:⟨ ‘ public static String right (String s , int count) { if (s == null) { return null ; } count = s . length () - count ; return s .
substring ((count < 0) ? 0 : (count < s . length ()) ? count : s . length ()) ; } ’, ‘def right (s , count) : if s is’ ⟩ → None
[EX 3]∗: ⟨ ‘ if (s == null) { return null ’, ‘if s is’ ⟩ → None

[EX 4]:⟨ ‘ public static double distance (double x1 , double y1 , double x2 , double y2) { return Math . sqrt ((Math . pow (x1 -
x2 , 2) + Math . pow (y1 - y2 , 2))) ; } ’, ‘def distance (x1 , y1 , x2 , y2) : return math .’ ⟩ → sqrt
[EX 4]∗: ⟨ ‘ { return Math . sqrt ((Math . ’, ‘return math .’ ⟩ → sqrt

Python
→ Java

0.7135

0.7773

0.8405

0.7745

[EX 1]:⟨ ‘ def dst (x1 , y1 , z1 , x2 , y2 , z2) : a = x2 - x1 b = y2 - y1 c = z2 - z1 return float (math . sqrt (a * a + b * b + c * c))
’, ‘float dst (float x1 , float y1 , float z1 , float x2 , float y2 , float z2) { float a = x2 - x1 ; float b = y2 - y1 ; float c = z2 - z1 ; return
(float) sqrt (a’ ⟩ → *
[EX 1]∗: ⟨ ‘ . sqrt (a * a + b * ’, ‘sqrt (a’ ⟩ → *

[EX 2]:⟨ ‘ def gt (a , b) : return a if a > b else b ’, ‘int max (int a , int b) { return a’ ⟩ →>

[EX 2]∗: ⟨ ‘ return a if a > b else b ’, ‘{ return a’ ⟩ →>

[EX 3]:⟨ ‘ def trunc (number , prec) : return float (math . floor (number * pow (10 , prec)) / pow (10 , prec)) ’, ‘float trunc (
float number , int precision) { return float (floor (number *’ ⟩ → pow
[EX 3]∗: ⟨ ‘ . floor (number * pow (10 , prec ’, ‘(number *’ ⟩ → pow

[EX 4]:⟨ ‘ def odd () : if 0 > : return math . floor ((- 1) / 2) * 2 + 1 else : return math . ceil ((+ 1) / 2) * 2 - 1 ’, ‘double
odd (double number) { if (0) return’ ⟩ → floor
[EX 4]∗: ⟨ ‘ return math . floor ((- ’, ‘0) return’ ⟩ → floor

* ⟨·, ·⟩ → ‘* ’ : ⟨·, ·⟩: It represents the decision-making basis for each generated token ‘* ’ in the corrected Python function.
* [EX i]: It represents the process of ⟨src func, tgt pref⟩→ target token.
* [EX i]∗: It represents the process of ⟨src frag, tgt frag⟩→ target token.
* C: It represents the corrupted token.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 7: Target Token Ranking Across Layers in CodeLlama-7b-Instruct via Logit Lens.

Table 12: Detailed Sample Size of IPR-Based Code Snippets for Next-Token Prediction in Code
Translation Task. It includes the evaluation of various models, including CodeLlama-7b-Instruct,
CodeLlama-13b-Instruct, CodeLlama-34b-Instruct, gpt-3.5-turbo, and gpt-4-turbo, in the context of
code translation. The evaluation encompasses interactive translations among three programming
languages: Java, Python, and C++.

CL-7b-Instruct CL-13b-Instruct CL-34b-Instruct gpt-3.5-turbo gpt-4-turbo
succ total succ total succ total succ total succ total

C++ → Java 1032 1194 1298 1408 1383 1497 374 676 535 681
C++ → Python 393 531 480 600 372 506 174 354 314 413
Java → C++ 1372 1501 1457 1548 1390 1499 584 969 783 941
Java → Python 311 441 336 439 345 469 121 304 251 336
Python → C++ 343 481 418 573 350 539 106 270 160 274
Python → Java 210 313 354 505 350 530 74 228 99 199

Table 13: Detailed Sample Size of IPR-Based Code Snippets for Next-Token Prediction in Code
Correction Task. It provides details of the test sets used for CodeLlama-7b-Instruct, CodeLlama-
13b-Instruct, CodeLlama-34b-Instruct, gpt-3.5-turbo, and gpt-4-turbo, specifically focusing on code
correction tasks in Java, Python, and C++.

CL-7b-Instruct CL-13b-Instruct CL-34b-Instruct gpt-3.5-turbo gpt-4-turbo
succ total succ total succ total succ total succ total

C++ 1366 1487 1472 1571 1363 1472 482 849 538 772
Java 1194 1292 1283 1363 1196 1286 433 824 667 920
Python 1479 1604 1505 1622 1513 1630 467 864 619 845

Table 14: Detailed Sample Size of IPR-Based Code Snippets for Next-Token Prediction
in Code Completion Task. There are two types of code snippets: i) a 3-token snippet
{yj−3, yj−2, yj−1}, which focuses on a few tokens preceding the target token, and ii) an 8-token
snippet {yj−8, . . . , yj−1}, which incorporates a broader context from the prefix.

CL-7b-Instruct CL-13b-Instruct CL-34b-Instruct gpt-3.5-turbo gpt-4-turbo
succ total succ total succ total succ total succ total

C++ tok3 262 966 272 956 259 966 69 251 55 243
Java tok3 306 900 251 900 254 871 62 277 74 260
Python tok3 245 874 250 888 290 959 49 228 78 252
C++ tok8 646 1022 643 1015 628 1004 116 284 120 275
Java tok8 639 956 599 967 581 928 109 282 123 278
Python tok8 460 915 454 894 507 988 88 232 119 266

25

	Introduction
	Related work
	Tracing impactful information source for code inference
	Definitions and Notation
	Causal Tracing Method
	Multi-Phase Causal Tracing Process
	impactful information source hypothesis: Important Position Rule

	analysis of IPR in code inference
	Experimental details
	Results and discussion

	Application: IPR-based knowledge editing
	IPR-Based ROME approach
	Results and Discussion

	Conclusion
	Appendix
	 Dataset
	 IPR-based snippet datasets
	 Generation of 3,650 corrupted samples
	 Java-Python translation dataset

	 Impact of High-Information Token Count on Next-Token Prediction
	 Ablation analysis —— importance of IPR-based code snippets
	 Extraction of Next Generated Token

