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Abstract

In sequential decision-making problems, the information structure describes the
causal dependencies between system variables, encompassing the dynamics of the
environment and the agents’ actions. Classical models of reinforcement learning
(e.g., MDPs, POMDPs) assume a restricted and highly regular information struc-
ture, while more general models like predictive state representations do not explic-
itly model the information structure. By contrast, real-world sequential decision-
making problems typically involve a complex and time-varying interdependence of
system variables, requiring a rich and flexible representation of information struc-
ture. In this paper, we formalize a novel reinforcement learning model which ex-
plicitly represents the information structure. We then use this model to carry out an
information-structural analysis of the statistical complexity of general sequential
decision-making problems, obtaining a characterization via a graph-theoretic quan-
tity of the DAG representation of the information structure. We prove an upper
bound on the sample complexity of learning a general sequential decision-making
problem in terms of its information structure by exhibiting an algorithm achiev-
ing the upper bound. This recovers known tractability results and gives a novel
perspective on reinforcement learning in general sequential decision-making prob-
lems, providing a systematic way of identifying new tractable classes of problems.

1 Introduction

The information structure of a sequential decision-making problem is a description of the causal
dependencies between system variables. In particular, the information structure specifies the subset
of past events that causally influence the present state. This includes information affecting system
dynamics and information available to each agent when choosing an action. The control community
has long recognized the importance of information structure, leading to the development of the
celebrated Witsenhausen intrinsic model [1], and extensive study since the 1970s [e.g., 2–14].

In general, sequential decision-making problems with arbitrary causal dependencies between system
variables can be computationally and statistically intractable in both control and learning settings [3,
15]. In response, early research has identified classes of tractable information structures. For example,
Markov Decision Processes (MDP) and Markov teams/games assume an observable Markovian state,
which serves as a sufficient statistic for the system’s evolution. These structural assumptions enable
practical planning and learning algorithms, for example based on dynamic programming [16, 17].
Although such restricted model classes can enable more fruitful analysis, they lack the expressiveness
needed to naturally capture the causal structures of complex real-world sequential decision-making
problems, where each event in the system may depend arbitrarily on past events.
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The concept of information structure is also fundamental to studying the phenomenon of partial
observability. In general, partial observability refers to situations where a system’s evolution depends
on a potentially large number of sequential events, but only a subset of these events is observable
by the learning agent. However, commonly studied models capture only a restrictive form of this
phenomenon. For example, in a Partially-Observable Markov Decision Process (POMDP)—the
standard model of partial observability —it is assumed that a Markovian state exists and that each
observation is a noisy measurement of the current state. This assumption is often unrealistic, as general
systems may not have clearly defined “states”, and observations may be generated by more complex
dependencies. Information structure provides a more powerful framework for understanding partial
observability, capturing a general notion in which system variables evolve with an arbitrary causal
structure (not necessarily Markovian), and the set of observables is any subset of all system variables.

The highly-regular information structures of classical models make analysis more tractable, enabling
favorable theoretical results [e.g., 18–22] and driving notable empirical success across a wide range
of domains [e.g., 23–28]. Despite this empirical success, a general theory addressing the role
of information structure in the statistical aspects of reinforcement learning is missing. We argue
for the perspective that information structure is an important component of analyzing and solving
reinforcement learning problems. A rich and flexible representation of information structure is
essential to faithfully capture real-world sequential decision-making problems, where the system
evolves according to a complex and time-varying dependence on the past, and different agents have
different information available to them at different points in time.

In this work, we formulate a general model of sequential decision-making with an explicit rep-
resentation of information structure, and study the role of information structure in the statisti-
cal complexity of reinforcement learning. Explicitly modeling information structure allows us to
identify a broader class of tractable decision-making problems and ultimately develop more tailored
reinforcement learning approaches that leverage this structure.
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Figure 1: A depiction of the
generality of our proposed mod-
els. POSTs and POSGs capture
MDPs, POMDPs, Dec-POMDPs,
and POMGs as special cases.

Summary of Contributions
A model for representing information structure. We propose
partially-observable sequential teams (POST) and partially-
observable sequential games (POSG) as general models that
contain an explicit representation of information structure as
part of the problem specification. This forms a unifying frame-
work that enables an analysis of the role of information struc-
ture in RL and captures commonly studied RL models as spe-
cial cases, including MDPs, Markov teams/games, POMDPs,
and Dec-POMDPs/POMGs (Figure 1). The models introduced
in this work draw inspiration from Witsenhausen’s intrinsic
model [1] and its variants from the control literature [29, 30],
with added elements to model partial observability in the con-
text of reinforcement learning.

Theoretical analysis of sequential decision-making through
information structure. We characterize the complexity of the
observable dynamics of any sequential decision-making prob-
lem through a graph-theoretic analysis of the information struc-
ture. Moreover, we propose a generalization of predictive state representations—which may be of
independent interest—and construct such a representation for POSTs/POSGs by exploiting informa-
tion structure. This provides a robust and efficient parameterization amenable to learning.

Learning theory & information-structural analysis of statistical complexity. We prove an upper
bound on the sample complexity of learning general sequential decision-making problems, expressed
as a function of information structure. In particular, the dependence is on an interpretable quantity
derived from a graphical representation that can be thought of as an effective “information-structural
state”, generalizing the typical notion of a Markovian state. We prove this result by exhibiting an
algorithm achieving this upper bound, making use of the generalized predictive state representation
constructed earlier which provides a robust representation amenable to learning. In doing so, we
identify a larger class of statistically tractable reinforcement learning problems.

Related Work. We provide a detailed discussion of related work in Appendix B.
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2 Background & Preliminaries

What follows is an abridged description of the relevant background and preliminaries. We refer the
reader to Appendix C for a more detailed treatment, and to Appendix A for a summary of notations.

2.1 Generic Sequential Decision Making Problems

Consider a controlled stochastic process (X1, . . . , XH), whereXh is a random variable corresponding
to the variable at time h. At each time h ∈ [H], the variable Xh may be either an ‘observation’ (i.e.,
observable system variable) or an ‘action’. The dynamics of this stochastic process are described
by a tuple (H, {Xh}h,O,A,P), where H is the time horizon, Xh is the variable space at time
h, O ⊂ [H] is the index set of observations (i.e., Xh is an observation if h ∈ O), A ⊂ [H]
is the index set of actions, and P = {Ph}h∈O is a set of probability kernels which describes
the probability of any trajectory x1, . . . , xH given the actions, P [{xs : s ∈ O} | {xs : s ∈ A}] =∏

h∈O Ph [xh | x1, . . . , xh−1]. A choice of policy π induces a probability distribution Pπ on X1 ×
· · · × XH . The objective of the agent(s) is to choose a policy which maximizes their expected reward
V R(π) = Eπ [R(X1, . . . , XH)].

Let Hh =
∏

s∈1:h Xs denote the space of histories at time h and Fh =
∏

s∈h+1:H Xs denote the space
futures at time h. Similarly, let Ho

h = obs(Hh) =
∏

s∈O1:h
Xs denote the observation component of

histories and let Ha
h = act(Hh) =

∏
s∈A1:h

Xs denote the action component. The observation and
action components of the futures, Fo

h and Fa
h respectively, are defined similarly. Here, obs(·) and

act(·) extract the observation and action components, respectively, of any trajectory.

We define the system dynamics matrix Dh ∈ R|Hh|×|Fh| as the matrix giving the probability of
each possible pair of history and future at time h given the execution of the actions, [Dh]τh,ωh

:=

P [τh, ωh] ≡ P [τoh , ω
o
h | do(τah , ωa

h)], where τh is the history, ωh is the future, and τoh , τ
a
h , ω

o
h, ω

a
h

separate the history and future into observation components and action components.

The rank of the dynamics of a sequential decision-making problem is a measure of its complexity. It
is defined as the maximal rank of its dynamics matrices.
Definition 1 (Rank of dynamics). The rank of the dynamics {Dh}h∈[H] is r = maxh∈[H] rank(Dh).

2.2 Generalized Predictive State Representations

Predictive state representations (PSR) [31, 32] are a representation of dynamical systems and sequen-
tial decision-making problems based on predicting future observations given the past, without explic-
itly modeling a latent state. In this section, we propose and formalize a generalization of standard
PSRs which allows for an arbitrary order of observations and actions. This generalization is neces-
sary to capture POSTs/POSGs (introduced in Section 3), but may also be of independent interest.

The “PSR rank” of a sequential decision-making problem coincides with the rank of its dynamics
(Definition 1). Denote rh := rank(Dh). At the heart of predictive state representations is the concept
of “core test sets.” A core test set at time h is a set of futures such that the vector of probabilities of
those futures conditioned on the past encodes all the information that the past contains about the future.
Definition 2 (Core test sets). A core test set at time h is a subset of dh ≥ rh futures, Qh :=
{q1h, . . . , q

dh

h } ⊂ Fh, such that the submatrix Dh[Qh] ∈ R|Hh|×dh is full-rank.

The dh-dimensional vector ψh(τh) := (P[τh, q1h], . . . ,P[τh, q
dh

h ]) serves as a sufficient statistic for
computing the probability of any future conditioned on τh. Intuitively, core test sets relate the rank of
the dynamics to a representation based on predicting future outcomes. A PSR parameterization of the
system dynamics represents the probability of any trajectory using the sufficient statistics ψh via a set
of operators that iteratively update the predictive representations at each step as new observations
come in. We proceed to formally define our generalized predictive state representation.
Definition 3 (Generalized Predictive State Representations). Consider a sequential decision-making
problem (Xh)h∈[H] where A,O partition [H] into actions and observations, respectively. Then, a
generalized predictive state representation for this sequential decision-making problem is a tuple
({Qh}0≤h≤H−1, ϕH , {Mh}1≤h≤H−1, ψ0) satisfying

P [x1, . . . , xH ] = ϕH(xH)⊤MH−1(xH−1) · · ·M1(x1)ψ0 (1)
ψh(x1, . . . , xh) =Mh(xh) · · ·M1(x1)ψ0, ∀h, (2)
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where Mh : Xh → Rdh×dh−1 , ϕH : XH → RdH−1 , and ψ0 = ψ(∅).

An important condition for the learnability of PSR models, which was used in prior work [including
33–35], is the so-called “well-conditioning assumption”. We state the analogous assumption for our
generalized PSR model below. For a core test set Qh, let QA

h = act(Qh) be the set of core action
sequences, let QA = maxh|QA

h | be the number of core action sequences, and let d = maxh dh.
Assumption 1 (γ-well-conditioned generalized PSR). A generalized PSR model is said to be γ-well
conditioned for γ > 0 if, for any h ∈ [H] and any π, it satisfies

max
z∈Rdh

∥z∥1≤1

∑
ωh∈Fh

π(ωh)
∣∣mh(ωh)

⊤z
∣∣ ≤ 1

γ
, max

z∈Rdh

∥z∥1≤1

∑
xh∈Xh

∥Mh(xh)z∥1 π(xh) ≤
∣∣QA

h+1

∣∣
γ

,

where mh(ωh)
⊤ = ϕH(xH)⊤MH−1(xH−1) · · ·Mh+1(xh+1) and ∀ωa

h,
∑

ωo
h
π(ωo

h, ω
a
h) = 1.

To understand this condition, recall that mh(ωh)
⊤ψh(τh) = P [τh, ωh]. Thus, we can interpret z as

the error in estimating the prediction features ψh. This condition ensures that the error in estimating
the probability of system trajectories remains controlled when the estimation error of ψh is small.

Although we focus on finite spaces Xh in this work, we briefly discuss possible extensions to
continuous spaces. In finite settings, the core tests q ∈ Qh are represented by future trajectories
q = (xh+1, ..., xH) ∈ Fh. In continuous spaces, the core tests become trajectories over subsets of the
underlying continuous space: q = (Xh+1, . . . ,XH) ⊂ Fh, where each Xk ⊂ Xk is a measureable
subset. We point to [33] for more discussion on how to extend (standard) PSRs to continuous spaces.

3 Information Structure

The “information structure” of a sequential decision-making problem defines the causal dependencies
between events in the system occurring at different points time, whether those events are observable
by the learning agent or not. In this section, we will introduce a novel reinforcement learning model
that explicitly represents information structure. We demonstrate that this enables a rich analysis of the
system’s dynamics and is crucial for characterizing the statistical complexity of general RL problems.

3.1 Partially-Observable Sequential Teams

We propose a model of sequential decision-making problems that includes an explicit representation
of information structure, which we call partially-observable sequential teams (POST). A POST is a
controlled stochastic process consisting of a sequence of variables, where each variable is either a
“system variable” or an “action variable”. POSTs also model the observability of each system variable
with respect to the learning algorithm (i.e., which system variables are available to the learning
algorithm). The information structure of a POST describes the causal dependence between these
variables. The information set of each system variable describes the subset of past variables that are
coupled to it in the dynamics. The information set of an action variable describes the information
available to the agent when choosing an action, hence defining the policy class they optimize over.
Definition 4 (POST). A partially-observable sequential team is a controlled stochastic process
that specifies the joint distribution of T variables (Xt)t∈[T ], together with a specification of the
observability of each variable. Here each Xt is either a system variable or an action variable, and is
either observable by the learning agent or not. A POST is specified by the following components.

1. Variable Structures. The variables {Xt}t∈[T ] are partitioned into two disjoint subsets — system
variables and action variables. S ⊂ [T ] indexes system variables and A ⊂ [T ] indexes action
variables, with S ∩ A = ∅, S ∪ A = [T ].

2. Information Structure. For t ∈ [T ], the “information set” It ⊂ [t − 1] of the variable Xt is
the set of past variables that are coupled to Xt in the dynamics. That is, the transition to Xt

depends on the value of It := (Xs : s ∈ It). We call It the “information variable” at time t,
and call It =

∏
s∈It

Xs the “information space”.
3. System Kernels. For any t ∈ S, Tt ∈ P(Xt|It) is kernel from It to Xt that specifies the

conditional distribution of a system variable Xt given the information variable It.
4. Decision Kernels. Each agent chooses a decision kernel πt : It → P(Xt), specifying a

(potentially randomized) policy for choosing an action at time t ∈ A.
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5. Observability. We denote the observable system variables by O ⊂ S. We require that the
information sets of the action variables are observable to the learning algorithm: O ⊃ ∪t∈A(It∩
S). We define U := O ∪A, and let H := |U| be the time-horizon of the observable variables.

6. Reward Function. At the end of an episode, the team receives a reward determined by the
function R :

∏
s∈U Xs → [0, 1].

With the above components, any set of decision kernels (i.e., joint policy) π = (πt : t ∈ A) induces
a unique probability measure over X1 × · · · × XT , which is given by

Pπ [x1, . . . , xT ] =
∏
t∈S
Tt(xt| {xs : s ∈ It})

∏
t∈A

πt(xt| {xs : s ∈ It}). (3)

We will be interested in modeling the observable dynamics of the POST. We index the observable vari-
ables by their position among the observables h ∈ [H] rather than their position among all variables, as
follows: (Xt)t∈U = (Xt(1), . . . , Xt(H)), where t : [H]→ U ⊂ [T ] maps the index over observables
to the index over all variables. The distribution of the observables is obtained by marginalizing over
the unobservable variables, Pπ

[
xt(1), . . . , xt(H)

]
=
∑

s∈O∁

∑
xs∈Xs

Pπ [X1 = x1, . . . XT = xT ].

The value of a policy is given by its expected reward V (π) := Eπ
[
R(Xt(1), . . . , Xt(H))

]
, where Eπ

is the expectation associated with the probability measure Pπ . The objective of a POST is to learn a
policy π = (πt)t∈A which maximizes the expected reward, supπ V (π). When the variable spaces
Xt are finite, this supremum is attained by a deterministic policy, πt : It → Xt, t ∈ A.

Representation of the information structure as a directed acyclic graph. The information structure
of a POST can be naturally represented as a labeled directed acyclic graph (DAG). Given the variable
structure and information structure of a POST, (S,A, {It}t), its DAG representation is given by
G(V, E ,L). The nodes of the graph are the set of variables, V = [T ] = S ∪A. The edges E ⊂ V ×V
of the DAG are given by E = {(i, t) : t ∈ [T ], i ∈ It}. That is, there exists an edge from i to t if i is
in the information set of t. Finally, L contains labels for each node as being a system variable (in S)
or an action variable (in A). Further, the observability of system variables (in O) is also labeled.

This DAG represents a directed graphical model for the POST. In particular, the probability distribu-
tion on X1 × · · · × XT factors according to G,

P [X1, . . . , XT ] =
∏
t∈V

P [Xt | pa(Xt)] , (4)

where pa(Xt) is the set of parents of Xt in G (which are It). This representation of the information
structure as a DAG will be crucial for our analysis of the dynamics of sequential teams in Section 3.2.

Partially observable sequential games. We define partially-observable sequential games (POSGs)
in a similar manner. The main difference is that, in the game setting, there exists an expanded reward
structure with N different reward objectives R1, ..., RN , with different agents pursuing different
objectives. The action index set is partitioned into N subsets A = A1 ∪ · · ·AN , where Ai ⊂ A
denotes the action index set associated with the agent(s) optimizing for objective Ri. The extension
to the game setting is treated in detail in Appendix F.

3.2 Information Structure Determines the Rank of POSTs/POSGs

POSTs and POSGs form a highly general framework that captures any sequential decision-making
problem that can be described by a controlled stochastic process, subsuming classical models such as
MDPs, POMDPs, Dec-POMDPs, and POMGs. By introducing a model with an explicit representation
of information structure, we gain the ability to perform a richer analysis of sequential decision-making
problems. In particular, we will show that the rank of the dynamics, and ultimately the statistical
complexity of reinforcement learning, can be characterized as a function of the information structure.

We begin by defining the central quantity in our analysis, which we call the “information-structural
state”, hinting at the role it will play. The information structural state is defined for each point in time
as a subset of the past (whether observed or latent) which forms a sufficient statistic for the future.
Definition 5 (Information-structural state). Let G† be the DAG obtained from G by removing all
edges directed towards actions. That is, it consists of the edges E† := E \ {(x, a) : x ∈ N , a ∈
A}. For each h ∈ [H], let I†h ⊂ [t(h)] be the minimal set of past variables (observed or unob-
served) which d-separates the past observations (Xt(1), . . . , Xt(h)) from the future observations
(Xt(h+1), . . . , Xt(H)) in the DAG G†. Define I†h :=

∏
s∈I†

h
Xs as the joint space of those variables.
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The following theorem, whose proof is given in Appendix H, states that the rank of the observable
system dynamics of POSTs and POSGs is bounded by the cardinality of I†h.
Theorem 1. The rank of the observable system dynamics of a POST or POSG is bounded in terms of
its information structure by r ≤ maxh∈[H]|I†h|.

This result shows that the complexity of the observable system dynamics is characterized by the
information structure through I†h. In particular, i†h ∈ I†h describes a set of system variables, either
observable or latent, which provide a sufficient statistic of the past at time h for predicting future
observations—I†h “separates” the past from the future. Hence, the quantity |I†h| admits an interpre-
tation as the size an effective state space at time h. This is a generalization of the standard notion
of a latent state. For example, in the case of POMDPs or Dec-POMDPs, the information-structural
state indeed coincides with the latent Markovian state (Figure 2a). We emphasize that I†h may contain
observable variables as well as unobservable system variables. In fact, unobservable system variables
can introduce crucial structure that simplifies the observable system dynamics.

3.3 Examples of Information Structures and their Rank

In this section, to provide some intuition, we present examples of information structures and ap-
ply Theorem 1 to obtain a bound the rank of their observable system dynamics. We see that classical
models such as MDPs, POMDPs, and POMGs are special cases of the POST/POSG framework, and
known results about their rank [31] are recovered by the generalized graph-theoretic analysis of their
information structure. For notational convenience, we adopt a modified notation in this section where
information sets I are indexed by the symbol of the variable rather than its time-index. For example,
in an MDP, we write I(st) = {st−1, at−1} for the information set of the state variable st.

Decentralized POMDPs and POMGs. At each time t, the system variables of a decentralized
POMDP (or POMG) consists of a latent state st, observations for each agent o1t , . . . , o

N
t , and actions

of each agent a1t , . . . , a
N
t . The latent state transitions are Markovian and depend on the agents’ joint

action. The observations are sampled via a kernel conditioned on the latent state. Each agent can use
their own history of observations to choose an action. Thus, the information structure is given by

I(st) =
{
st−1, a

1
t−1, . . . , a

N
t−1

}
, I(oit) = {st} , I(ait) =

{
oi1:t−1, a

i
1:t−1

}
.

Here, the observable variables are U = {oi1:T , ai1:T , i ∈ [N ]}. By Theorem 1, we have I†(oit) =
I†(ait) = {st}, ∀t, i, as shown in Figure 2a. Thus, the rank of a Dec-POMDP is bounded by |S|,
where S is the state space. Note that in the case of models with a true latent state (e.g., POMDPs, Dec-
POMDPs, and POMGs), the information-structural state coincides with the Markovian latent state.

Point-to-Point Real-Time Communication with Feedback. Consider the following model of real-
time communication with feedback. Let xt be a Markov source. At time t, the encoder receives the
source xt ∈ X and sends an encoded symbol zt ∈ Z. The symbol is sent through a memoryless
noisy channel which outputs yt to the receiver. The decoder produces the estimate x̂t. The output
of the noisy channel is also fed back to the encoder. The encoder and decoder have full memory of
their observations and previous “actions”. The observation variables are O = {x1:T , y1:T } and the
“actions” are A = {z1:T , x̂1:T }. Hence, the information structure is given by the following,

I(xt) = {xt−1} , I(zt) = {x1:t, y1:t−1, z1:t−1} , I(yt) = {zt} , I(x̂t) = {y1:t} .
By Theorem 1, we have that,

I†(xt) = {xt} , I†(zt) = {xt} , I†(yt) = {xt, zt} , I†(x̂t) = {xt} .
Hence, the rank is bounded by |X||Z|. This is depicted in Figure 2c.

Limited-memory information structures. Consider a sequential decision making problem with
variables ot, at, t ∈ [T ] and an information structure with length-m “memory”. That is, observations
do not directly depend on variables more than m steps in the past. That is, the information structure is

I(ot) = {ot−m:t−1, at−m:t−1} , I(at) = {o1:t, a1:t−1} .

The observables consist of all observations and actions, U = {o1:T , a1:T }. By Theorem 1 we have
that I†(ot) = {ot−m:t−1, at−m:t−1}, as shown in Figure 2d. Hence, the rank of this sequential
decision-making problem is bounded by |O|m|A|m.
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(a) Decentralized POMDP/POMG information-structure.
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(e) Fully connected information structure.

Figure 2: DAG representation of various information structures. Solid edges indicate the edges in E†
and light edges indicate the information sets of action variables. Grey nodes represent unobservable
variables, blue nodes represent past observable variables, green nodes represent future observable
variables, and red nodes represent I†h. To find I†h, as per Theorem 1, we first remove the incoming
edges into the action variables, then we find the minimal set among all past variables (both observable
and unobservable) which d-separates the past observations from the future observations.

The examples above show that the complexity of the dynamics of a sequential decision-making
problem depends directly on its information structure. An expanded version of this discussion is
provided in Appendix D. Next, we use an information-structural analysis to construct a generalized
PSR representation for a class of POSTs/POSGs, which we will ultimately use to prove an upper
bound on the statistical complexity of reinforcement learning as a function of information structure.

4 Constructing a PSR Parameterization for POSTs and POSGs

A key challenge in reinforcement learning is constructing representations which enable ro-
bustly and efficiently modeling probabilities of system trajectories (i.e., probabilities of the form
P [future | history]). In this section, we will construct a generalized predictive state representa-
tion for a class of POSTs/POSGs, ultimately enabling sample-efficient reinforcement learning.

4.1 Core test sets for POSTs/POSGs

Recall that a core test set is a set of futures such that the probabilities of those futures given the past
encode all the information that the past contains about the future. For systems with a simple and

7



Observables

Unobservables

ℎ

𝐺ℎ ∈ ℝℚℎ
𝑚×𝕀ℎ

†𝑞ℎ ∈ ℚℎ
𝑚

𝑚-step future

𝑖ℎ
† ∈ 𝕀ℎ

†

ഥℙ 𝑞ℎ 𝑖ℎ
†)

Information-structural state

𝑀ℎ 𝑥𝑡 ℎ : =

𝐺ℎ
† ⊤

 ഥℙ 𝑥𝑡(ℎ), 𝑞ℎ+1
1 𝑖ℎ

†

𝑖ℎ
†∈𝕀ℎ

†

⋮

𝐺ℎ
† ⊤

 ഥℙ 𝑥𝑡(ℎ), 𝑞ℎ+1
𝑑ℎ+1 𝑖ℎ

†

𝑖ℎ
†

∈𝕀ℎ
†

Figure 3: A depiction of the construction of a generalized generalized predictive state representation
for POST/POSG models.

regular information structure, a core test set may be simple to obtain. For example, undercomplete
POMDPs with a full-rank emission matrix admit the 1-step observation futures as core test sets.

For POSTs/POSGs with arbitrary information structures, obtaining a core test set is much more
challenging without knowing the system dynamics. In this section, we identify a condition in terms
of the information structure under which m-step futures are a core test set for POSTs/POSGs. Let us
denote the candidate core test set of m-step futures at time h by Qm

h :=
∏

s∈Uh+1:min(h+m,H)
Xs. We

define the matrix Gh as encoding the probability of observing each m-step future conditioned on the
information-structural state i†h ∈ I†h:

Gh :=
[
P
[
q | i†h

]]
q,i†h

∈ R|Qm
h |×|I†h|, q ∈ Qm

h , i
†
h ∈ I†h. (5)

The operational meaning of Gh is depicted in Figure 3. Next, we formulate a condition in terms of
information structure that we will show implies that the m-step futures are core test sets.
Definition 6 (m-step I†-weakly revealing). We say that a sequential team is m-step I†-weakly
revealing if for all h ∈ [H], rank(Gh) = |I†h|. Furthermore, we say that the sequential team is α-
robustly m-step I†-weakly revealing if for all h ∈ [H −m+ 1], σ|I†h|(Gh) ≥ α.

The I†-weakly revealing condition is essentially a statistical identifiability condition. If a
POST/POSG is I†-weakly revealing, then, for any two mixtures of the information-structural
state, the distributions of the m-step futures are distinct. Formally, for any ν1, ν2 ∈ P(I†h) with
supp(ν1)∩ supp(ν2) = ∅, we have Ghν1 ̸= Ghν2. That is, the future observations contain informa-
tion that can distinguish between mixtures of the latent information-structural state. The α-robust
version of the I†-weakly revealing condition requires that Gh is not only full rank, but that its |I†h|-th
singular value is bounded away from zero, so that ∥Ghν1 −Ghν2∥ ≥ α∥ν1 − ν2∥.
The condition holds whenever there exists a sequence of actions within the m-step futures such that
executing these actions results in a sequence of observations that is informative about the information-
structural state i†h ∈ I†h. In general, this condition will be harder to satisfy when I†h is large since it
would require them-step future observations to encode more information. In particular, Gh cannot be
full rank when |Qm

h | < |I
†
h|. As a heuristic, when we don’t have prior knowledge about the dynamics

(e.g., in the learning setting), we can choose m such that |Qm
h | ≥ |I

†
h|. In general, it will be possible

to find a smaller core test set when the d-separating set I†h is small. This happens when the system
dynamics contain state-like variables that are low-dimensional.

The I†-weakly-revealing condition is a generalization of the “weakly-revealing” condition for
POMDPs introduced by Liu et al. [36]. Liu et al. [37] proposed an algorithm for learning weakly-
revealing POMGs. Our analysis here recovers weakly-revealing POMGs as a special case and enables
learning a much more general class of problems. We note that such an identifiability condition is
necessary, and is reflective of the fundamental difficulty of the partially-observable setting. For
example, in the case of POMDPs, there exist hardness results that state that if an analogous condition
does not hold, the statistical complexity can scale exponentially with the relevant quantities [36].

We now proceed to show that under the I†-weakly-revealing condition, m-step futures are core test
sets for POSTs/POSGs which can be used to construct a generalized PSR representation amenable
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to learning. Recall that the vector of core test set probabilities for the history τh is given by the
mappings ψh, ψh : Hh → R|Qm

h |,

ψh(τh) = [P [qo, τoh | do(τah ), do(qa)]]q∈Qm
h
, ψh(τh) = [P [qo | τoh ; do(τah ), do(qa)]]q∈Qm

h
.

Define the mapping mh : Fh → R|Qm
h | as,

mh(ωh) := (G†
h)

⊤
[
P[ωh | i†h]

]
i†h∈I†h

. (6)

The following lemma, whose proof is given in Appendix I, shows that the m-step futures Qm
h are core

test sets for any m-step I†-weakly revealing POST/POSG. In particular, given any future ωh ∈ Fh

and history τh ∈ Hh, the conditional probability P [ωh | τh] can be written as a linear combination of
the core test probabilities ψh(τh), with weights given by mh(ωh), depending only on the future ωh.

Lemma 1 (Core test set for POSTs). Suppose that the POST is m-step I†-weakly revealing. Then,
Qm

h is a core test set for all h ∈ [H]. Furthermore, we have P [τh, ωh] = ⟨mh(ωh), ψh(τh)⟩ and
P [ωh | τh] =

〈
mh(ωh), ψh(τh)

〉
.

4.2 Generalized PSR parameterization of POST/POSG

Consider a POST/POSG which is m-step I†-weakly revealing. Lemma 1 shows that the m-step
futures Qm

h are core test sets. In this section, we will explicitly construct a generalized PSR
parameterization for this class of sequential decision-making problems. Moreover, we will show that
this generalized PSR representation is well-conditioned when the weakly revealing condition is robust.

Let dh := |Qm
h |. The key observation that allows us to construct the generalized PSR representation is

that the vector mappings mh : Fh → Rdh and ψh : Hh → Rdh can be used to derive a recursive form
of the dynamics of the POST/POSG. We define the operator mapping Mh : Xt(h) → Rdh×dh−1 by[

Mh(xt(h))
]
q,· = mh−1(xt(h), q)

⊤, q ∈ Qh. (7)

That is, Mh(xt(h)) is the matrix whose rows are indexed by the core tests at the h-th observable
step, where the row corresponding to each q ∈ Qh is the weights returned by the mapping mh−1

when applied to the future consisting of xt(h) followed by core test q. The operator map Mh allows
us to update the probabilities of the core test sets after receiving an additional observation xt(h):
ψh(xt(1), ..., xt(h)) = Mh(xt(h))ψh−1(xt(1), ..., xt(h−1)). The following result, whose proof is
given in Appendix I, states that the set of operators {Mh}h forms a generalized PSR.

Theorem 2. Consider an m-step I†-weakly revealing POST/POSG. Let {Mh}h∈[H−1] be defined
as above, and let ψ0 =

[
P [q]

]
q∈Qm

0
, ϕH(xt(H)) = ext(H)

. Then, ({Qm
h }h, ϕH , {Mh}h∈[H−1], ψ0)

forms a generalized predictive state representation. Moreover, if the weakly-revealing property is
α-robust, then this PSR is γ-well-conditioned with γ = α/maxh|I†h|1/2.

Thus, we have constructed a robust parameterization of the sequential decision-making problem,
making use of its information structure, that will enable us to design an efficient learning algorithm.

5 Characterizing the Statistical Complexity of General Reinforcement
Problems via Information Structure

In this section, we establish an upper bound on the achievable sample complexity of general rein-
forcement learning problems in terms of their information structure. In plain language, this is a result
that roughly says “any sequential decision-making problem with an information structure I can be
learned with a sample complexity at most f(I)”. This identifies a class of sequential decision-making
problems that are statistically tractable via conditions on the information structure, expanding the set
of known-tractable problems while recovering existing tractability results as a special case.

We will prove this result by exhibiting an algorithm that achieves this upper bound. Our approach will
be to use the generalized predictive state representation constructed for POSTs/POSGs in Section 4,
which provides a robust representation amenable to learning. We will introduce an algorithm for
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learning generalized PSRs and prove a corresponding sample complexity result, which will in turn
imply a bound on the sample complexity of learning POST/POSG models via the information-
structural characterization of the rank of observable dynamics established in Section 3.2.

There exist several works in the literature which study learning in PSRs [e.g. 33–35, 38, 39]. Using
the technical tools developed in this paper, most of these algorithms can be directly extended to
our generalization of PSRs. With such an algorithm, Theorems 1 and 2 then imply a bound on the
achievable sample complexity for learning general sequential decision-making problems in terms
of their information structure. In this work, we will adapt the model-based UCB-type algorithm
of Huang et al. [35], extending it to generalized PSRs to obtain a bound on the achievable sample
complexity for POSTs/POSGs. We will defer the details of the algorithm to Appendix E and formally
verify the proof in Appendix J. Here, we will focus on discussing the role of information structure in
determining the statistical complexity of reinforcement learning.

The following result states that the size of the information-structural state, |I†h|, characterizes an upper
bound on the statistical complexity of learning a sequential decision-making problem.
Theorem 3. Suppose a sequential decision-making problem described by a POST is α-robustly m-
step I†-weakly revealing. Let Qm := maxh|Qm

h | be the size of the m-step observable trajectories,
and let A = maxs∈A|Xs| be the size of largest action space. Then, there exists an algorithm that can
learn an ϵ-optimal policy with a sample complexity (omitting log factors) bounded by

1

ϵ2
× poly

(
1

α
,max

h

∣∣∣I†h∣∣∣ , Qm, A,H

)
.

Under the game setting, the same assumption implies the existence of a self-play algorithm that learns
an ϵ (Nash or coarse-correlated) equilibrium with the same sample complexity.

This result identifies I†-weakly revealing POSTs/POSGs as a class of statistically tractable sequential
decision-making problems. The sample complexity is polynomial in the size of the information-
structural state space maxh|I†h|, the size of the action space A, and the time horizon H . Further, it
depends on Qm, the size of m-step observable trajectories, and the robustness parameter α−1, which
corresponds to the m-step I†-weakly revealing identifiability condition. We note that the algorithm
constructed to prove Theorem 3 only needs to know the parameters of the I†-weakly revealing
condition (i.e., m and α), and does not need to know the full information structure.

This result shows that the size of the information-structural state is a fundamental measure of the
statistical complexity of reinforcement learning. As a result, learning is tractable when maxh|I†h| is of
modest size, and the information structural state is strongly coupled to the observable system variables.

One notable special case of POSTs/POSGs is POMDPs. Learning in POMDPs has been studied
extensively in the literature. Theorem 3 implies a poly(S,O,A,H, α−1) · ϵ−2 bound on the sample
complexity of learning in α-weakly POMDPs and poly(S, (OA)m, H, α−1) · ϵ−2 for learning m-
step weakly revealing POMDPs. This recovers a similar sample complexity as was shown by more
specialized analysis tailored to POMDPs [e.g., 36, 40].

6 Conclusion

Summary. This paper examines the role of information structure in general reinforcement learning
problems. We introduced novel models that explicitly represent information structure, and proved
an upper bound on the sample complexity of general reinforcement learning problems in terms
of information structure. The central quantity in this upper bound is derived from a graphical
representation of the information structure, and admits an interpretation as an effective information-
structural state, generalizing the typical notion of a Markovian state.

Limitations. The results of this paper are theoretical in nature, and the algorithm proposed to prove
our main result is not computationally practical. Current SOTA algorithms for partially-observable
algorithms are based on recurrent neural networks or other deep learning models, which create
internal representations of latent states based on the history, akin to belief states. Our theory may
offer insights into the design of improved architectures in such deep learning-based algorithms. For
example, the information structure can be incorporated as an inductive bias of the neural network.
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based Markov perfect equilibria for stochastic games with asymmetric information: Finite
games”. In: IEEE Transactions on Automatic Control (2013) (cited on page 17).

12

https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1610.03295
https://arxiv.org/abs/2209.14997
https://arxiv.org/abs/2206.12020
https://arxiv.org/abs/2307.00405
https://arxiv.org/abs/2204.08967
https://arxiv.org/abs/2206.01315
https://arxiv.org/abs/2209.14990
https://arxiv.org/abs/2209.14990
https://arxiv.org/abs/2207.05738
https://arxiv.org/abs/2006.12484
https://arxiv.org/abs/2006.12484


[44] Ashutosh Nayyar, Aditya Mahajan, and Demosthenis Teneketzis. “Decentralized stochastic
control with partial history sharing: A common information approach”. In: IEEE Transactions
on Automatic Control (2013) (cited on page 17).

[45] Yi Ouyang, Hamidreza Tavafoghi, and Demosthenis Teneketzis. “Dynamic games with asym-
metric information: Common information based perfect bayesian equilibria and sequential
decomposition”. In: IEEE Transactions on Automatic Control (2016) (cited on page 17).

[46] Aditya Dave, Nishanth Venkatesh, and Andreas A Malikopoulos. “Decentralized Control of
Two Agents with Nested Accessible Information”. In: 2022 American Control Conference
(ACC). IEEE. 2022 (cited on page 17).

[47] Yue Guan, Mohammad Afshari, and Panagiotis Tsiotras. “Zero-Sum Games between Mean-
Field Teams: A Common Information and Reachability based Analysis”. 2023. arXiv: 2303.
12243 [eess.SY] (cited on page 17).

[48] Serdar Yuksel and Tamer Basar. “Stochastic Teams, Games and Control under Information
Constraints”. Springer, 2023 (cited on page 17).

[49] Joseph A Tatman and Ross D Shachter. “Dynamic programming and influence diagrams”. In:
IEEE transactions on systems, man, and cybernetics (1990) (cited on page 17).

[50] Daphne Koller and Brian Milch. “Multi-agent influence diagrams for representing and solving
games”. In: Games and economic behavior (2003) (cited on page 17).

[51] Ian Osband and Benjamin Van Roy. “Near-optimal reinforcement learning in factored mdps”.
In: Advances in Neural Information Processing Systems (2014) (cited on page 17).

[52] Peter Auer, Thomas Jaksch, and Ronald Ortner. “Near-Optimal Regret Bounds for Reinforce-
ment Learning”. In: Advances in neural information processing systems (2008) (cited on
page 17).

[53] Shipra Agrawal and Randy Jia. “Optimistic Posterior Sampling for Reinforcement Learning:
Worst-Case Regret Bounds”. In: Advances in Neural Information Processing Systems (2017)
(cited on page 17).

[54] Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. “Minimax Regret Bounds for
Reinforcement Learning”. In: International Conference on Machine Learning. PMLR, 2017
(cited on page 17).

[55] Paria Rashidinejad, Banghua Zhu, Cong Ma, Jiantao Jiao, and Stuart Russell. “Bridging
Offline Reinforcement Learning and Imitation Learning: A Tale of Pessimism”. In: Advances
in Neural Information Processing Systems (2021) (cited on page 17).

[56] Martin Mundhenk, Judy Goldsmith, Christopher Lusena, and Eric Allender. “Complexity of
Finite-Horizon Markov Decision Process Problems”. In: Journal of the ACM (JACM) (2000)
(cited on page 17).

[57] Nikos Vlassis, Michael L. Littman, and David Barber. “On the Computational Complexity
of Stochastic Controller Optimization in POMDPs”. In: ACM Transactions on Computation
Theory (TOCT) (2012) (cited on page 17).

[58] Elchanan Mossel and Sébastien Roch. “Learning Nonsingular Phylogenies and Hidden Markov
Models”. In: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Com-
puting. 2005 (cited on page 17).

[59] Akshay Krishnamurthy, Alekh Agarwal, and John Langford. “PAC Reinforcement Learning
with Rich Observations”. In: Advances in Neural Information Processing Systems (2016) (cited
on page 17).

[60] Yonathan Efroni, Chi Jin, Akshay Krishnamurthy, and Sobhan Miryoosefi. “Provable Rein-
forcement Learning with a Short-Term Memory”. In: International Conference on Machine
Learning. PMLR, 2022 (cited on page 17).

[61] Jiacheng Guo, Zihao Li, Huazheng Wang, Mengdi Wang, Zhuoran Yang, and Xuezhou Zhang.
“Provably Efficient Representation Learning with Tractable Planning in Low-Rank POMDP”.
2023. arXiv: 2306.12356 [cs.LG] (cited on page 17).

[62] Hongming Zhang, Tongzheng Ren, Chenjun Xiao, Dale Schuurmans, and Bo Dai. “Provable
Representation with Efficient Planning for Partially Observable Reinforcement Learning”.
2023. arXiv: 2311.12244 [cs.LG] (cited on page 17).

[63] Noah Golowich, Ankur Moitra, and Dhruv Rohatgi. “Learning in observable pomdps, without
computationally intractable oracles”. In: Advances in Neural Information Processing Systems
(2022) (cited on page 17).

13

https://arxiv.org/abs/2303.12243
https://arxiv.org/abs/2303.12243
https://arxiv.org/abs/2306.12356
https://arxiv.org/abs/2311.12244


[64] Noah Golowich, Ankur Moitra, and Dhruv Rohatgi. “Planning in Observable POMDPs in
Quasipolynomial Time”. 2022. arXiv: 2201.04735 [cs.LG] (cited on page 17).

[65] Noah Golowich, Ankur Moitra, and Dhruv Rohatgi. “Planning and Learning in Partially
Observable Systems via Filter Stability”. In: Proceedings of the 55th Annual ACM Symposium
on Theory of Computing. 2023 (cited on page 17).

[66] Qi Cai, Zhuoran Yang, and Zhaoran Wang. “Reinforcement learning from partial observation:
Linear function approximation with provable sample efficiency”. In: International Conference
on Machine Learning. PMLR. 2022 (cited on page 17).

[67] Lingxiao Wang, Qi Cai, Zhuoran Yang, and Zhaoran Wang. “Embed to Control Partially
Observed Systems: Representation Learning with Provable Sample Efficiency”. 2022. arXiv:
2205.13476 [cs, eess, stat] (cited on page 17).

[68] Satinder P. Singh, Michael L. Littman, Nicholas K. Jong, David Pardoe, and Peter Stone.
“Learning Predictive State Representations”. In: Proceedings of the 20th International Confer-
ence on Machine Learning (ICML-03). 2003 (cited on page 17).

[69] Satinder Singh, Michael R James, and Matthew R Rudary. “Predictive State Representations: A
New Theory for Modeling Dynamical Systems”. In: Proceedings of the Twentieth Conference
on Uncertainty in Artificial Intelligence (UAI2004) (2004) (cited on page 17).

[70] Michael R. James, Satinder Singh, and Michael L. Littman. “Planning with Predictive State
Representations”. In: 2004 International Conference on Machine Learning and Applications,
2004. Proceedings. IEEE, 2004 (cited on page 17).

[71] Peter McCracken and Michael Bowling. “Online Discovery and Learning of Predictive State
Representations”. In: Advances in neural information processing systems (2005) (cited on
page 17).

[72] Byron Boots, Sajid M. Siddiqi, and Geoffrey J. Gordon. “Closing the Learning-Planning Loop
with Predictive State Representations”. In: The International Journal of Robotics Research
(2011) (cited on page 17).

[73] Nan Jiang, Alex Kulesza, and Satinder Singh. “Completing State Representations Using
Spectral Learning”. In: Advances in Neural Information Processing Systems (2018) (cited on
page 17).

[74] Zhi Zhang, Zhuoran Yang, Han Liu, Pratap Tokekar, and Furong Huang. “Reinforcement
Learning under a Multi-agent Predictive State Representation Model: Method and Theory”. In:
International Conference on Learning Representations. 2021 (cited on page 17).

[75] Ahmed Hefny, Carlton Downey, and Geoffrey J. Gordon. “Supervised Learning for Dynamical
System Learning”. In: Advances in neural information processing systems (2015) (cited on
page 17).

[76] Han Zhong, Wei Xiong, Sirui Zheng, Liwei Wang, Zhaoran Wang, Zhuoran Yang, and Tong
Zhang. “GEC: A Unified Framework for Interactive Decision Making in MDP, POMDP, and
Beyond”. 2023. arXiv: 2211.01962 [cs, math, stat] (cited on pages 17, 18, 48).

[77] Shuang Qiu, Ziyu Dai, Han Zhong, Zhaoran Wang, Zhuoran Yang, and Tong Zhang. “Posterior
Sampling for Competitive RL: Function Approximation and Partial Observation”. 2023. arXiv:
2310.19861 [cs.LG] (cited on pages 17, 18, 48).

[78] Zhihan Liu, Miao Lu, Wei Xiong, Han Zhong, Hao Hu, Shenao Zhang, Sirui Zheng, Zhuoran
Yang, and Zhaoran Wang. “Maximize to explore: One objective function fusing estimation,
planning, and exploration”. In: Advances in Neural Information Processing Systems (2024)
(cited on pages 17, 18).

[79] Richard S Sutton and Andrew G Barto. “Reinforcement learning: An introduction”. MIT press,
2018 (cited on page 18).

[80] Noam Brown and Tuomas Sandholm. “Superhuman AI for Multiplayer Poker”. In: Science
(2019) (cited on page 18).

[81] Ronen I. Brafman and Moshe Tennenholtz. “R-Max-a General Polynomial Time Algorithm
for near-Optimal Reinforcement Learning”. In: Journal of Machine Learning Research (2002)
(cited on page 18).

[82] Yu Bai, Chi Jin, and Tiancheng Yu. “Near-Optimal Reinforcement Learning with Self-Play”.
In: Advances in Neural Information Processing Systems. Ed. by H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin. Curran Associates, Inc., 2020 (cited on page 18).

[83] Ziang Song, Song Mei, and Yu Bai. “When Can We Learn General-Sum Markov Games with
a Large Number of Players Sample-Efficiently?” In: (2021). arXiv: 2110.04184 (cited on
page 18).

14

https://arxiv.org/abs/2201.04735
https://arxiv.org/abs/2205.13476
https://arxiv.org/abs/2211.01962
https://arxiv.org/abs/2310.19861
https://arxiv.org/abs/2110.04184


[84] Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo Piccione. “Regret
Minimization in Games with Incomplete Information”. In: Advances in neural information
processing systems (2007) (cited on page 18).

[85] Tadashi Kozuno, Pierre Ménard, Rémi Munos, and Michal Valko. “Model-Free Learning for
Two-Player Zero-Sum Partially Observable Markov Games with Perfect Recall”. In: (2021).
arXiv: 2106.06279 (cited on page 18).

[86] Gabriele Farina and Tuomas Sandholm. “Model-Free Online Learning in Unknown Sequential
Decision Making Problems and Games”. In: Proceedings of the AAAI Conference on Artificial
Intelligence. 2021 (cited on page 18).

[87] Xiangyu Liu and Kaiqing Zhang. “Partially Observable Multi-agent RL with (Quasi-
)Efficiency: The Blessing of Information Sharing”. 2024. arXiv: 2308.08705 [cs.LG] (cited
on page 18).

[88] Jayakumar Subramanian, Amit Sinha, Raihan Seraj, and Aditya Mahajan. “Approximate
information state for approximate planning and reinforcement learning in partially observed
systems”. In: The Journal of Machine Learning Research (2022) (cited on page 18).

[89] Weichao Mao, Kaiqing Zhang, Erik Miehling, and Tamer Başar. “Information state embedding
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A Summary of Notation

Generic Sequential Decision-Making Problems
Xt Space that the variable Xt lies in within the stochastic process (X1, . . . , XH).
O O ⊂ [H] denotes the set of observations among the variables (X1, . . . , XH).
A A ⊂ [H] denotes the set of actions among the variables (X1, . . . , XH).
Hh The space of histories at time h. Hh :=

∏h
s=1 Xs.

Fh The space of futures at time h. Fh :=
∏H

s=h+1 Xs.
obs(·) The observation component of a trajectory. obs(xi, . . . , xj) := (xs : s ∈ Oi:j).
act(·) The action component of a trajectory. act(xi, . . . , xj) := (xs : s ∈ Ai:j).
H{o,a}

h The space of observation (resp., action) histories. E.g., Ho
h :=

∏
s∈O1:h

Xs = obs(Hh).
F{o,a}
h The space of observation (resp., action) histories. E.g., Fo

h :=
∏

s∈Oh+1:H
Xs = obs(Fh).

P [τh] The probability of a trajectory given actions are executed. P [τh] :=
P [obs(τh) | do(act(τh))].

Dh Dynamics matrix at time h. Dh ∈ R|Hh|×|Fh|, [Dh]τh,ωh
:= P [τh, ωh]. rh := rank(Dh).

π(τh) For τh = (x1, . . . , xh) and policy π, π(τh) :=
∏

s∈A1:h
π(xs | x1, . . . , xs−1).

π(ωh | τh) For τh = (x1, . . . , xh), ωh = (xh+1, . . . , xh′), π(ωh | τh) =∏
s∈Ah+1:h′ π(xs | x1, . . . , xs−1).

POSTs and POSGs
Xt Space that the variable Xt lies in within the stochastic process (X1, . . . , XT ).
S S ⊂ [T ] denotes the set of system variables among the variables (X1, . . . , XT ).
A A ⊂ [T ] denotes the set of action variables among the variables (X1, . . . , XT ).
O O ⊂ S denotes the subset of system variables which are observable.
U The union of observable system variables and action variables. U := O∪A. Let H := |U|.
t(h) For h ∈ [H] indexing the order among observables, t(h) ∈ U denotes the order among all

variables.
It The information set of the t-th variable.
It It :=

∏
s∈It

Xs denotes the information space at time t.
I†h The minimal d-separating set at the h-th observable. See Definition 5.
I†h I†h :=

∏
s∈I†

h
Xs denotes the “information-structural state”.

Generalized PSRs
Qh Core test set at time h. Let dh := |Qh| and d = maxh dh.
QA

h Action component of core test set at time h. QA
h = act(Qh).

QA Maximum size of the action component of core test sets. QA := maxh|QA
h |.

Mh Observable operators of PSR representation mapping Mh : Xh → Rdh×dh−1 .
ψh Prediction features. ψh(τh) :=

(
P [τh, q]

)
q∈Qh

. In PSR, ψh(x1, . . . , xh) =

Mh(xh) · · ·M1(x1)ψ0.
mh Prediction coefficients. mh(ωh)

⊤ := ϕH(xH)⊤MH−1(xH−1) · · ·Mh+1(xh+1).
ψh Normalized prediction features. ψh(τh) := ψh(τh)/P [τh] =

(
P [q | τh]

)
q∈Qh

.
General Mathematical Notation
DTV (p, q) Total variation distance. DTV (p, q) :=

∑
x∈X|p(x)− q(x)|.

D2H (p, q) Hellinger squared distance. D2H (p, q) :=
1
2

∑
x∈X(

√
p(x)−

√
q(x))2.

σk(A) k-th largest singular value of the matrix A.
∥A∥p The matrix p-norm. ∥A∥p := max∥x∥p=1 ∥Ax∥p.
∥x∥A The vector norm induced by the positive semi-definite matrix A. ∥x∥A :=

√
x⊤Ax.

A† Moore-Penrose pseudoinverse.
P(A) Space of probability distributions over A. P(B|A) is the space of kernels from A to B.
Ni:j For an index set N ⊂ [H], Ni:j = N ∩ {i, . . . , j}.
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B Related Work

The study of information structure in the control literature. In stochastic control, the construct of
the “information structure” is used to model the structural properties of a system which may restrict
the flow, storage, and processing of information. The role of information structure in decentralized
control has been extensively studied since Witsenhausen [15] and Ho and Chu [3] began investigating
information structures in the context of team decision theory. For example, early work showed that
the information structure can determine the tractability of optimal decentralized control problems [15,
41]. More generally, information structure plays an important role in the analysis of multi-agent
team decision problems and games, as well as in the design of efficient algorithms, especially in the
decentralized setting. See, e.g., Mahajan et al. [11], Nayyar et al. [42–44], Ouyang et al. [45], Dave et
al. [46], and Guan et al. [47] and the references therein. We also refer the reader to Yuksel and Basar
[48] for a comprehensive overview of the interaction between information and control, including
recent progress in the field. The models we propose in this paper are closely related to Witsenhausen’s
intrinsic model [1], but with some added elements to model partial-observability in the context of
reinforcement learning. Related to this is the framework of multi-agent influence diagrams [e.g., 49,
50] which allow for an explicit representation of dependence relations among variables in games.
Whereas the above-mentioned work studies the role of information structure in planning and control,
we study the the role of information structure in reinforcement learning (i.e., statistical estimation
and sample complexity). We note that specific types of structural assumptions related to information
structure have been studied in the learning setting as well. For example, previous work has studied
factored MDPs [51], which assume an information structure where the state transitions and the reward
function are factored, enabling improved learning results. In the present work, we study the role of
information structure in reinforcement learning in greater generality, focusing particularly on the
partially-observable setting.

Learning under partial observations. In an MDP, where the system dynamics obey a Markovian
property and are fully observable, reinforcement learning has been shown to be both computationally
and statistically efficient [e.g., 52–55]. However, under partial observability, reinforcement learning
can be computationally and statistically intractable in the worst case, even when assuming a Marko-
vian latent state. Such worst-case hardness results are well-known. For example, [41, 56, 57] show
that planning is computational intractable and [58, 59] show that learning is statistically intractable, in
the worst-case. In these worst cases, the hardness comes from instances where the observations reveal
little information about the latent state, which causes errors in learned representations to be uncontrol-
lable. Accordingly, sub-classes of POMDPs have been identified in recent work where added struc-
tural conditions make efficient learning possible. One such condition is decodability [see e.g., 59–62],
which assumes that the latent state can be decoded from the current observation (i.e., Block MDP), or
an m-step history of observations. Another set of conditions is the “observability” condition [63–65]
and its cousin the “weakly revealing” condition [36, 40] which require different belief states to induce
distinguishable distributions over observations. These conditions are further extended to POMDP mod-
els in the function approximation setting, where the state or observation spaces are large and function
approximators (e.g., linear functions) are used to represent the model. See, e.g., Uehara et al. [34], Guo
et al. [61], Zhang et al. [62], Cai et al. [66], and Wang et al. [67]. In our work, we build on the above
by identifying a class of POSTs/POSGs which can be learned efficiently. This is significant since
POSTs/POSGs are much more general than POMDPs and do not assume the existence of a latent state.

Predictive state representations. Predictive state representations were introduced by Littman and
Sutton [31] building on prior work on observable operator models by Jaeger [32] which proposed
the idea of predictive representations as an alternative to belief states for modeling HMMs and
POMDPs [see also 68–71]. PSRs are a way to represent the dynamics of a sequential decision-making
problem by modeling the (conditional) probabilities of a small set of future trajectories, typically
called “core tests”. In a PSR, the probability of any future trajectory is a deterministic function of the
conditional probabilities of the core tests. That is, the probabilities of the core tests encode all the
information that the past contains about the future. Littman and Sutton [31] showed that any POMDP
can be represented as a PSR. Various reinforcement learning methods for PSRs have been proposed
under the assumption that data distribution is explorative, including spectral algorithms [72–74] and
supervised learning approaches [75]. In addition, when it comes to the online setting where the
algorithm needs to explore, there is a line of work that extends the theory and algorithms for online
POMDP learning to PSRs. Moreover, some of these works propose generic theory and algorithms
that can be applied to a large class of models including MDPs, POMDPs, and two-player zero-sum
dynamic games with partial observability. See, e.g., Liu et al. [33], Huang et al. [35], Liu et al. [36],
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Chen et al. [38], Zhan et al. [39], Zhong et al. [76], Qiu et al. [77], and Liu et al. [78]. Our work is
particularly related to the works that combine the idea of optimism in the face of uncertainty [79] and
maximum likelihood model estimation [33, 35, 36, 38, 39]. Specifically, our algorithm extends the
UCB-type algorithm proposed by Huang et al. [35] for standard PSRs to learn a generalization of
PSRs which captures POSTs/POSGs.

Learning in multi-agent systems. Most applications of interest in reinforcement learning involve
the participation of multiple agents in the same environment. Empirical research has achieved
striking success in several domains, including for example in the games of Go [26], Starcraft [28],
and Poker [80], as well as in robotic control [24] and autonomous driving [27]. There also exists
a growing literature of theoretical work. For example, Brafman and Tennenholtz [81], Bai et al.
[82], and Song et al. [83] tackle learning in Markov games (MGs)—a generalization of single-agent
MDPs that assumes the existence of a Markovian state which is observable by all agents. Another
model which has been explored in the literature is imperfect-information extensive-form games
(IIEFG), which assumes tree-structured transitions and deterministic emission, and can be viewed
as a subclass of partially-observable Markov games (POMGs). Learning under this model has been
studied in Zinkevich et al. [84], Kozuno et al. [85], and Farina and Sandholm [86]. More recently, Liu
et al. [37] studied reinforcement learning in POMGs using an MLE-based algorithm building on
their previous work in the single-agent setting [36]. To address the computational intractability of
the planning step for such model-based algorithms, Liu and Zhang [87] proposed a quasi-efficient
algorithm for multi-agent POMGs that runs in quasi-polynomial time with quasi-polynomial sample
complexity. Their proposed algorithm leverages the common information approach [see 12] to
construct an approximate Markov game where the state space of this new game corresponds to the
space of approximate common information among agents. The idea of leveraging an information-
sharing structure in multi-agent reinforcement learning has also appeared in Subramanian et al. [88],
Mao et al. [89], Kara and Yuksel [90], Kao and Subramanian [91], and Tang et al. [92].

In each of the above-mentioned models (e.g., MDP, POMDP, MG, IIEFG, POMG, etc.), a particular
fixed information structure is assumed. We emphasize that the POST/POSG model proposed in our
work allows the information structure to be specified arbitrarily and hence captures these models
as special cases within a unifying framework. Moreover, our analysis and proposed algorithm
significantly expand the class of multi-agent sequential decision-making problems that can be
efficiently learned.

C Preliminaries

C.1 Generic Sequential Decision-Making Problems

Consider a controlled stochastic process (X1, . . . , XH), whereXh is a random variable corresponding
to the variable at time h. At each time h ∈ [H], the variable Xh may be either an ‘observation’ (i.e.,
observable system variable) or an ‘action’. The dynamics of this stochastic process are described by
a tuple (H, {Xh}h ,O,A,P), where H is the time horizon, Xh is the variable space at time h (i.e.,
Xh ∈ Xh), O ⊂ [H] is the index set of observations (i.e., Xh is an observation if h ∈ O), A ⊂ [H]
is the index set of actions, and P = {Ph}h∈O is a set of probability kernels which describes the the
probability of any trajectory x1, . . . , xH given that the actions are executed,

P [{xs : s ∈ O} | {xs : s ∈ A}] =
∏
h∈O

Ph [xh | x1, . . . , xh−1] . (8)

A choice of policy π = {πh}h∈A induces a probability distribution on X1 × · · · × XH as follows

Pπ (x1, . . . , xH) =
∏
h∈O

Ph (xh | x1, . . . , xh−1) ·
∏
h∈A

πh (xh | x1, . . . , xh−1) . (9)

We now define some notation. Let Hh =
∏

s∈1:h Xs denote the space of histories at time h and
Fh =

∏
s∈h+1:H Xs denote the space futures at time h. Similarly, let Ho

h = obs(Hh) =
∏

s∈O1:h
Xs

denote the observation component of histories and let Ha
h = act(Hh) =

∏
s∈A1:h

Xs denote the
action component. Here, Oi:j denotes O ∩ {i, . . . , j}, and similarly for Ai:j . The observation and
action components of the futures, Fo

h and Fa
h respectively, are defined similarly.
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We define the system dynamics matrix Dh ∈ R|Hh|×|Fh| as the matrix giving the probability of each
possible pair of history and future at time h given the execution of the actions,

[Dh]τh,ωh
= P [τh, ωh] = P [τoh , ω

o
h | do(τah , ωa

h)] , τh ∈ Hh, ωh ∈ Fh, (10)

where ωo
h = obs(ωh) are is the observation component of the future ωh, ωa

h = act(ωh) is the action
component, and similarly for τoh , τ

a
h . Note that the actions are actively executed via the do-operation.

Hence, the system dynamics matrices are independent of any action-selection criteria. Note that
DH ∈ R|HH |×1 is defined as [DH ]τH = P [τH ], and D0 = D⊤

H .

We introduce the notion of the rank of the dynamics. The rank of such a controlled stochastic process
is the maximal rank of its dynamics matrices. This is a measure of the complexity of the dynamics.

Definition (Rank of dynamics; Definition 1). The rank of the dynamics {Dh}h∈[H] is r =

maxh∈[H] rank(Dh).

This defines the dynamics of the system. A sequential decision-making problem is such a controlled
stochastic process together with an objective. The objective is defined by a reward function R :
X1 × · · · × XH → [0, 1] mapping a trajectory to a reward in [0, 1]. The agent(s) can affect the
dynamics of the system through their choice of actions or policies. Each action Xh, h ∈ A may be
chosen by either a single agent or one of several agents (e.g., a team). The policy at time h ∈ A
is a mapping πh : Hh−1 → P(Xh) from previous observations to an action (or a distribution over
actions, if randomized). The collection of policies at all time steps is denoted π = (πh : h ∈ A), and
induces a probability distribution over trajectories, denoted Pπ . Then, the value of a policy π is the
expected value of the reward under the measure Pπ , V R(π) := Eπ [R(X1, . . . , XH)], where Eπ is
the expectation associated with Pπ .

The formalism of sequential decision-making problems introduced in this section is highly generic,
but does not explicitly model the information structure. In the next section, we introduce the models
of partially observable sequential teams/games, which explicitly represent information structures.
We then show that the information structure characterizes the rank of a sequential decision-making
problem as per Definition 1.

C.2 (Generalized) Predictive State Representations

Predictive state representations (PSR) [31, 32] are a model of dynamical systems and sequential
decision-making problems based on predicting future observations given the past, without explicitly
modeling a latent state. In this section, we propose and formalize a generalization of standard PSRs.

In the standard formulation of sequential decision-making and predictive state representations, the
sequence of variables is such that observations and actions always occur in an alternating manner
(i.e., oh, ah, oh+1, ah+1, . . .). The POST/POSG models we will propose are more general, and hence
require a more flexible formalization of PSRs which allows for arbitrary order of observations and
actions as well as arbitrary variable spaces at each time point. This generalization of PSRs will be
used in our reinforcement learning algorithms.

The “PSR rank” of a sequential decision-making problem coincides with the rank of its dynamics, as
defined in Definition 1. Recall that the system dynamics matrix Dh ∈ R|Hh|×|Fh| is indexed by all
possible observable histories τh and futures ωh. Denote the rank of the system dynamics at time h by
rh := rank(Dh).

Consider a sequential decision-making problem as defined in Section 2.1 (i.e., with an arbitrary
order of observations and actions, and arbitrary variable spaces). At the heart of predictive state
representations is the concept of “core test sets.” A core test set at time h is a set of futures such that
the set of probabilities of those futures conditioned on the past encodes all the information that the
past contains about the future. This is formalized in the definition below as a set of futures such that
the submatrix of the full dynamics matrix restricted to those futures is full rank.

Definition (Core test sets). A core test set at time h is a subset of dh ≥ rh futures, Qh :={
q1h, . . . , q

dh

h

}
⊂ Fh, such that the submatrix Dh[Qh] ∈ R|Hh|×dh is full-rank, rank(Dh[Qh]) =

rank(Dh) = rh.

A core test set implies the existence of a matrix Wh ∈ R|Fh|×dh such that Dh = Dh[Qh] ·W⊤
h .
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Denote the τh-th row of Dh[Qh] by,

ψh(τh) :=
(
P
[
τh, q

1
h

]
, . . . ,P

[
τh, q

dh

h

])
∈ Rdh . (11)

The vector ψh(τh) is a sufficient statistic for the history τh in predicting the probabilities of all futures
conditioned on τh. This is sometimes called the prediction features of a history τh.

For any integer dh ≥ rh, there exists a core test set of size dh. In particular, for any low-rank
sequential decision-making problem, there exists a minimal core test set of size rh at each h. However,
the minimal core test set depends on the system dynamics matrix Dh, which is unknown in the
learning setting. In the literature on reinforcement learning in PSRs, it is typically assumed that a core
test set is known. We address the problem of constructing a PSR representation for POSTs/POSGs
in Section 4.

For a core test set Qh, let QA
h = {act(q) : q ∈ Qh}, where act(q) denotes the action components of

the test q ∈ Qh. Let QA = maxh
∣∣QA

h

∣∣ and d = maxh dh.

With core test sets defined, we are now ready to present the definition of a generalized predictive
state representation. The essential element in a PSR is a set of operators Mh : Xh → Rdh×dh−1 for
each time point h ∈ [H]. Given the prediction features at time h− 1, ψh−1(x1, . . . , xh−1) ∈ Rdh−1 ,
the linear map Mh(xh) computes the prediction features at time h, incorporating the additional
observation xh. That is, ψh(x1, . . . , xh) =Mh(xh)ψh−1(x1, . . . , xh−1). The full definition is given
below.
Definition (Generalized Predictive State Representations; Definition 3). Consider a sequential
decision-making problem (Xh ∈ Xh) where A,O partition [H] into actions and observations, re-
spectively. Then, a predictive state representation of this sequential decision-making problem is a
tuple θ = ({Qh}0≤h≤H−1, ϕH ,M , ψ0) given by

1. {Qh}0≤h≤H−1 are core test sets, including for h = 0, where Q0 = {q10 , . . . , q
d0
0 } ⊂ F0

are core tests before the system begins.

2. ψ0 ∈ Rd0 is the vector ψ(∅) = (P[q10 ], . . . ,P[q
d0
0 ]).

3. M = {Mh}1≤h≤H−1 is a set of mappings Mh : Xh → Rdh×dh−1 , from an observa-
tion/action to a matrix of size dh × dh−1.

4. ϕH : XH → RdH−1 is a mapping from the final observation to a dH−1-dimensional vector.

This tuple satisfies,

P [x1, . . . , xH ] = ϕH(xH)⊤MH−1(xH−1) · · ·M1(x1)ψ0 (12)
ψh(x1, . . . , xh) =Mh(xh) · · ·M1(x1)ψ0, ∀h (13)

To obtain a probability for a trajectory τh = (x1, . . . , xh), with h < H , note that∑
ωh∈Fh

P [τh, ωh] = |Fa
h|P [τh]. Hence

P [τh] =
1

|Fa
h|
∑
ωh

P [τh, ωh]

=
1∏

s∈h+1:H |Xs|1{s∈A}

∑
xH

· · ·
∑
xh+1

ϕ⊤HMH(xH) · · ·Mh+1(xh+1)ψh(τh).

Thus, if we recursively define ϕh, h < H via
1

|Xh|1{h∈A}

∑
xh

ϕ⊤hMh(xh) = ϕ⊤h−1, (14)

with ϕH as the terminating condition, then, we can obtain P [τh] for any h < H , via an inner product
between ϕh and ψh(τh),

P [τh] = ϕ⊤h ψh(τh). (15)
Finally, if we define ψh(τh) = ψh(τh)/P[τh], then we obtain the conditional probability of the
core tests given the history, ψh(τh) = (P[q1h | τh], . . . , P[q

dh

h | τh]) ∈ Rdh . ψh(τh) is known as the
(normalized) prediction feature of the history τh [31].
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Remark 1 (Generality and difference from standard PSRs). In standard PSRs, observations and
actions are assumed to occur in an alternating manner, and hence observable operators are defined
on pairs of observations and actions (i.e., Mh(oh, ah)). This structure leads to a somewhat simpler
description compared to the above. However, our formulation is more general, as it allows each
variable to be treated independently, and allows for an arbitrary sequence of variables with arbitrary
spaces. This generality will be needed when modeling problems with an explicit representation of
information structure.

An important condition for the learnability of PSR models, which was used in prior work [including
33, 35], is the so-called “well-conditioning assumption”. We state the analogous assumption for our
generalized PSR model below.
Assumption (γ-well-conditioned generalized PSR; Assumption 1). A PSR model θ =(
{Qh}0≤h≤H−1 , ϕH ,M , ψ0

)
, as defined in Definition 3, is said to be γ-well conditioned for γ > 0

if it satisfies

1. For any h ∈ [H],

max
z∈Rdh

∥z∥1≤1

max
π

∑
ωh∈Fh

π(ωh|τh)
∣∣mh(ωh)

⊤z
∣∣ ≤ 1

γ
, (16)

where mh(ωh)
⊤ = ϕH(xH)⊤MH−1(xH−1) · · ·Mh+1(xh+1) with ωh =

(xh+1, . . . , xH) ∈ Fh. The maximization is over policies π such that for any fixed future
observations ωo

h,
∑

ωa
h
π(ωo

h, ω
a
h) = 1.

2. For any h ∈ [H − 1],

max
z∈Rdh

∥z∥1≤1

∑
xh∈Xh

∥Mh(xh)z∥1 π(xh) ≤
∣∣QA

h+1

∣∣
γ

,

where π(xh) = 1 when h /∈ A and
∑

xh
π(xh) = 1 when h ∈ A.

To understand this condition, recall that mh(ωh)
⊤ψh(τh) = P [τh, ωh]. We may think of z in As-

sumption 1 as representing the error in estimating ψh(τh), the probabilities of core tests at time h
given the history τh. The γ-well-conditioned assumption ensures that the error in estimating the over-
all PSR (i.e., the probability of a particular trajectory) does not blow up when the estimation error of
ψh(τh) is small.

The following result states that any sequential decision-making problem of the form described
in Section 2.1 admits a generalized PSR representation. The proof and explicit construction are given
in Appendix G.
Proposition 1. Let (X1, . . . , XH) be any sequential decision-making problem with observation index
set O, action index set A, and variable spaces {Xh}h∈[H]. Let rh = rank(Dh), where Dh, h ∈ [H]

are the system dynamics matrices. Then, there exists a PSR representation ψ0, ϕH : XH → RrH−1 ,
Mh : Xh → Rrh+1×rh , h ∈ [H − 1], satisfying Definition 3.

Proof. The proof is given in Appendix G.

D Examples of Information Structures and their Rank

The analysis in Section 3 and Theorem 1 characterizes the rank of any sequential decision-making
problem as a function of its information structure. In this section, we illustrate this on several
sequential decision-making problems, characterizing the information-structural complexity of their
dynamics. The procedure is as follows: 1) formulate the sequential decision-making problem as a
POST/POSG; 2) represent the information structure as a labeled directed acyclic graph G; 3) remove
incoming edges into the action variables to produce G†; 4) apply Theorem 1 to find the information
structural state at each point in time through a d-separation analysis.

Illustration: translating to the POST/POSG framework. We begin by illustrating how an arbitrary
sequential decision-making problem can be formulated in the POST/POSG framework. Consider
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Figure 4: An illustrative example of the information-structural state for POMDPs. Left. The DAG
representation of the information structure G. Right. The DAG G† is depicted by drawing the edges
corresponding to the information sets of the action variables with dotted lines. The information-
structural state coincides with the Markovian state st, and is depicted in red. Future observables are
drawn in green, and past observables are drawn in blue.

a POMDP with variables (s1, o1, a1, s2, o2, a2, ...). This can be formulated as a POST/POSG by a
simple relabelling of variables as follows.

s1
↓
x1

o1
↓
x2

a1
↓
x3

s2
↓
x4

o2
↓
x5

a2
↓
x6

· · ·
st
↓

x3t−2

ot
↓

x3t−1

at
↓
x3t

· · ·

Here, the system variables S are the s-type and o-type variables, with system index set S =
{1, 2, 4, 5, 7, 8, ...}, and the action variables are the a-type variables with action index set A =
{3, 6, 9, ...}. The observable system variables are the o-type variables only, with index set O =
{2, 5, 8, ...} ⊂ S. This can be done for any sequential decision-making problem.

To ease notation, let us not explicitly write the indices in this section, but rather use the original
notation for the variables in the problem formulation. For example, we’ll write S = {st, ot, t ∈ [T ]}.
Similarly, we use the notation I(x) to mean the information set corresponding to the variable x.
Similarly, I†(x) denotes the information-structural state at the time when x occurs. For example, in
a POMDP I(st) = {st−1, at−1}, I(ot) = {st}, and I(at) = {o1:t, a1:t}.
Below, we will consider several examples of sequential decision-making problems, and apply the
information-structural analysis of Theorem 1 to obtain a bound on the rank of the observable dynamics
(which in turn implies a bound on the sample complexity, by Theorem 3).

Decentralized POMDPs and POMGs. At each time t, the system variables of a decentralized
POMDP (or POMG) consist of a latent state st, observations for each agent o1t , . . . , o

N
t , and actions

of each agent a1t , . . . , a
N
t . The latent state transitions are Markovian and depend on the agents’ joint

action. The observations are sampled via a kernel conditional on the latent state. Each agent can use
their own history of observations to choose an action. Thus, the information structure is given by,

I(st) =
{
st−1, a

1
t−1, . . . , a

N
t−1

}
, I(oit) = {st} , I(ait) =

{
oi1:t−1, a

i
1:t−1

}
.

Here, the observable variables are U =
{
oi1:T , a

i
1:T , i ∈ [N ]

}
. By Theorem 1, we have I†(oit) =

{st} , ∀t, i, as shown in Figure 5a. Thus, the rank of a Dec-POMDP is bounded by |S|, where S is
the state space. Note that in the case of models with a true latent state (e.g., POMDPs, Dec-POMDPs,
and POMGs), the information-structural state coincides with the true latent state.

Limited-memory information structures. Consider a sequential decision making problem with
variables ot, at, t ∈ [T ] and an information structure with m-length memory. That is, observations
can only depend directly on at most m of the most recent observations and actions. That is, the
information structure is

I(ot) = {ot−m:t−1, at−m:t−1} , I(at) = {o1:t, a1:t−1} .

The observables are all observations and actions, U = {o1:T , a1:T }. By Theorem 1 we have that
I†(ot) = {ot−m:t−1, at−m:t−1}, as shown in Figure 5d. Hence, the rank of this sequential decision-
making process is bounded by |O|m |A|m.
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(a) Decentralized POMDP/POMG information-structure.
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(b) “Mean-field” information structure.
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(c) Point-to-point real-time communica-
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(d) Limited-memory (m = 2) information
structures.

o1 o2

a1

o3

a2

o4

a3

o5

a4

o6

a5

o7

a6 a7

(e) Fully connected information structure.

Figure 5: DAG representation of various information structures. Solid edges indicate the edges in E†
and light edges indicate the information sets of action variables. Grey nodes represent unobservable
variables, blue nodes represent past observable variables, green nodes represent future observable
variables, and red nodes represent the information structural state I†h. To find I†h, as per Theorem 1,
we first remove the incoming edges into the action variables, then we find the minimal set among all
past variables (both observable and unobservable) which d-separates the past observations from the
future observations.

Symmetric / “Mean-field” Information Structures. Consider a sequential decision-making problem
with N agents. Each agent has their own local state, sit ∈ Slocal. Similarly, at each time point, each
agent takes an action ati ∈ Aloc. The global state st = (s1t , . . . , s

N
t ) ∈ SNloc =: S is composed by

of all agents’ local states. Similarly, the joint action space is A := AN
loc. Consider a symmetric

information structure where the evolution of each agent’s local state depends only on a symmetric
aggregation of all agents’ states and actions, rather than on the local state/action of any particular
agent. That is, the identity of who is in what state or takes which action does not matter—only
the distribution of states and actions. This is often referred to as a “mean-field” setting (in the
limit). Here, the transition depends only on the distribution of local states and actions, defined as
smf
t = dist(st) :=

1
N δsit , amf

t = dist(at) :=
1
N δai

t
, for st ∈ S, at ∈ A. Different agents can have

different transition kernels for their local state. Hence, by introducing dist(st),dist(at) as auxiliary
unobserved variables at each time t, we obtain the following information structure,

I(sit) = {dist(st−1),dist(at−1)} , I(ait) =
{
sit
}
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and an application of Theorem 1 bounds the rank by∣∣I†(sit)∣∣ < |Sloc||Aloc|
(

N

|Sloc| − 1
+ 1

)|Sloc|−1(
N

|Aloc| − 1
+ 1

)|Aloc|−1

.

This is compared to |Sloc|N · |Aloc|N (e.g., if we modeled this as an MDP with the state st), which
is much larger when the number of agents is large. The information structure and d-separation
decomposition are depicted in Figure 5b.

Point-to-Point Real-Time Communication with Feedback. Consider the following model of real-
time communication with feedback. Let xt be the Markov source. At time t, the encoder receives
the source xt ∈ X and encodes sending a symbol zt ∈ Z. The symbol is sent through a memoryless
noisy channel which outputs yt to the receiver. The decoder produces the estimate x̂t. The output
of the noisy channel is also fed back to the encoder. The encoder and decoder have full memory of
their observations and previous “actions”. The observation variables are O = {x1:T , y1:T } and the
“actions” are A = {z1:T , x̂1:T }. Hence, the information structure is given by the following,

I(xt) = {xt−1} , I(zt) = {x1:t, y1:t−1, z1:t−1} , I(yt) = {zt} , I(x̂t) = {y1:t} .
By Proposition 1, we have that,

I†(xt) = {xt} , I†(zt) = {xt} , I†(yt) = {xt, zt} , I†(x̂t) = {xt} .
Hence, the rank is bounded by |X||Z|. This is depicted in Figure 5c.

Fully-Connected Information Structures. Consider a sequential decision making problem with
variables ot, at, t ∈ [T ] and a fully-connected information structure. That is, each observation directly
depends on the entire history of observations and actions. Thus, the information structure is

I(ot) = {o1:t−1, a1:t−1} , I(at) = {o1:t, a1:t−1}
The observables are all observations and actions, U = {o1:T , a1:T }. By Theorem 1 we have that
I†(ot) = {o1:t−1, a1:t−1}, as shown in Figure 5e. Hence, the rank of this sequential decision-making
process can be exponential in the time horizon.

The examples above show that the tractability of a sequential decision-making problem in terms
of the complexity of its dynamics depends directly on its information structure. This gives an
interpretation of why certain models, like POMDPs, are more tractable than those with arbitrary
information structures. Previous work primarily considers particular problem classes with fixed and
highly regular information structures. In this work we argue for the importance of explicitly modeling
the information structure of a sequential decision-making problem.
Remark 2 (Necessity of generalized PSRs). The formalization of generalized PSRs in Section 2.2
was necessary to enable the study of information structure through POSTs/POSGs. An alternative
(naive) solution to construct PSR representations for models with non-alternating observations and
actions is to aggregate consecutive observations and actions to force them to obey the standard
formulation of PSRs. This approach results in a loss of “resolution” in the information structure. That
is, when you aggregate consecutive system variables, you also aggregate the DAG which represents
the information structure, losing potentially important structure. In particular, in the worst case, such
aggregation could result in an exponential increase in the rank of the dynamics. The examples given
above elucidate this. Consider for example the “mean-field” information structure. If we aggregated
local states and actions into a combined global state and joint action, the PSR rank would indeed be
|Sloc|N |Aloc|N . By comparison, by considering each local state separately without aggregation, we
are able to obtain a decomposition with a much smaller PSR rank.

E UCB-Type Reinforcement Learning Algorithm for Generalized PSRs

We will adapt the model-based UCB-type algorithm of Huang et al. [35], extending it to generalized
PSRs, including those representing POSTs. The algorithm involves the estimation of an upper
confidence bound which captures the uncertainty in the estimated model and drives exploration so as
to minimize this uncertainty. The UCB-based approach has the advantage of providing a last-iterate
guarantee and requiring a weaker notion of planning oracle (a standard planning oracle instead of an
optimistic planning oracle as required by similar algorithms). The technical contribution of this section
is to extend the algorithm and its theoretical guarantees to generalized PSRs. The tools developed in
doing so can be used to directly extend any other PSR-based algorithm to generalized PSRs.
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When learning generalized PSRs, we suppose that the core test sets {Qh}0≤h≤H−1 are known by the
algorithm. For example, if the sequential decision-making problem is a POST, Section 4 provides
conditions under which m-step futures form core test sets. Let Θ be the set of γ-well-conditioned
generalized PSR representations with {Qh}0≤h≤H−1 as core test sets. Denote by Θϵ an optimistic
ϵ-cover of Θ (defined formally in Appendix G).

Recall that dh := |Qh| and d = maxh dh. Moreover, QA
h := act(Qh) are the action components

of the core test sets and QA := maxh
∣∣QA

h

∣∣ is the maximal size of those action components. We
define the exploration action sequences at time h to be Qexp

h−1 = act(Xh ×Qh ∪Qh−1). Moreover,
we define uexph−1 as the policy, defined from time h − 1 onwards, in which each selection of action
sequences in Qexp

h−1 are chosen uniformly at random. For a model θ and reward function R, we define
the value of a policy under this model and reward as V R

θ (π) :=
∑

τH
R(τH)Pπ

θ (τH).

The algorithmic description is given in Algorithm 1. At each iteration k, the learner collects a
trajectory τk,hH for each time index h ∈ [H] by using a particular policy that drives exploration so
as to better estimate the parameters associated with the h-th time step. To collect the trajectory
τk,hH , the learner executes the policy at the previous iteration, πk−1, until time h − 1 collecting
the trajectory τk,hh−1 then executes u

exp
h−1 which samples action sequences from Qexp

h−1 uniformly.
The particular choice of the exploratory action sequences Qexp

h−1 comes out of the proof (see proof
of Lemma 5 in the appendix). Intuitively, act(Qh−1) allows us to estimate the prediction features
ψ
∗
(τk,hh−1) = [P(q | τk,hh−1)]q∈Qh−1

, and act(Xh ×Qh) allows us to estimate M∗
h(xh)ψ

∗
(τk,hh−1).

The collected trajectories are added to the dataset, together with the policies used to collect them.
The next step is model estimation via (constrained) maximum likelihood estimation. The algorithm
estimates a model θ̂k by selecting any model in a constrained set Bk defined as

Θk
min =

{
θ ∈ Θ : ∀h, (τh, π) ∈ Dk

h, Pπ
θ (τh) ≥ pmin

}
,

Bk =

θ ∈ Θk
min :

∑
(τH ,π)∈Dk

logPπ
θ (τH) ≥ max

θ′∈Θk
min

∑
(τH ,π)∈Dk

logPπ
θ′(τH)− β

 .
(17)

The introduction of Θk
min ensures that Pπk−1

θ∗ (τk,hh−1) is not too small so that the estimates of the
prediction features ψ

∗
(τk,hh−1) = [P(q | τk,hh−1)]q∈Qh−1

are accurate. This design differs from other
MLE-based estimators [e.g., 33, 36, 38] due to the estimation of parameters capturing conditional
probabilities.

Next, the algorithm chooses a policy which drives the algorithm to trajectories τh whose prediction
features have so far been unexplored. To do this, Algorithm 1 constructs an upper confidence bound
on the total variation distance between the estimated model and the true model. This is done via a
bonus function b̂k(τH),

b̂k(τH) = min

α
√√√√H−1∑

h=0

∥∥∥ψ̂(τh)∥∥∥2
(Ûk

h )−1
, 1

 , where,

Ûk
h = λI +

∑
τh∈D

hk

ψ̂
k

(τh)ψ̂
k

(τh)
⊤,

(18)

where λ and α are pre-specified parameters to the algorithm. Thus, the bonus function captures the
degree of uncertainty in the estimated prediction features ψ̂(τh). In particular, the bonus b̂(τH) will

be large for trajectories whose prediction feature ψ̂(τh) lie far away from the empirical distribution of
prediction features sampled in the dataset Dk

h. This is captured by computing the norm with respect
to the covariance Ûk

h .

The algorithm then chooses an exploration policy for the next iteration which maximizes this upper
confidence bound, hence collecting trajectories that have high uncertainty in their prediction features.
When the estimated model is sufficiently accurate on all trajectories, the algorithm terminates and
returns the optimal policy with respect to the reward function R under the estimated model.
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Algorithm 1: Learning Generalized PSRs (e.g., POSTs) via MLE and Exploration with UCB
for k ← 1, . . . ,K do

for h← 1, . . . ,H do
Collect τk,hH = (ωk,h

h−1, τ
k,h
h−1) using ν(πk−1, u

exp
h−1).

Dk
h−1 ← D

k−1
h−1 ∪

{(
τk,hH , ν

(
πk−1, u

exp
h−1

))}
.

end
Dk =

{
Dk

h

}H−1

h=0

Compute MLE θ̂ ∈ Bk, where

Θk
min =

{
θ : ∀h, (τh, π) ∈ Dk

h,Pπ
θ (τh) ≥ pmin

}
,

Bk =

θ ∈ Θk
min :

∑
(τH ,π)∈Dk

logPπ
θ (τH) ≥ max

θ′∈Θk
min

∑
(τH ,π)∈Dk

logPπ
θ′(τH)− β

 .

Define the bonus function, b̂k(τH) = min

{
α

√∑H−1
h=0

∥∥∥ψ̂(τh)∥∥∥2
(Ûk

h )−1
, 1

}
, where

Ûk
h = λI +

∑
τh∈D

hk
ψ̂
k

(τh)ψ̂
k

(τh)
⊤.

Solve the planning problem to maximize the bonus function πk = argmaxπ V
b̂k

θ̂k
(π).

if V b̂k

θ̂k
(πk) ≤ ϵ/2 then

θϵ = θ̂k. break.
end

end
return π = argmaxπ V

R
θϵ (π)

We extend Huang et al.’s theoretical guarantees to show that Algorithm 1 enjoys polynomial sample
complexity for generalized PSRs (Definition 3).
Theorem 4. Suppose Assumption 1 holds. Suppose the parameters pmin, λ, α, β are chosen appro-
priately. In particular, let

pmin ≤
δ

KH
∏H

h=1 |Xh|
, λ =

γmaxs∈A|Xs|2QAβmax{
√
r,QA

√
H/γ}√

dH
,

α = O

(
QA

√
dHλ

γ2
+

maxs∈A |Xs|QA

√
β

γ

)
, β = O

(
log
∣∣Θε

∣∣) , ε ≤ pmin

KH
.

Then, with probability at least 1− δ, Algorithm 1 returns a model θϵ and a policy π that satisfy

V R
θϵ (π∗)− V R

θϵ (π) ≤ ε, and ∀π̃, DTV
(
Pπ̃
θϵ(τH),Pπ

θ∗(τH)
)
≤ ε.

In addition, the algorithm terminates with a sample complexity of,

Õ

((
r +

Q2
AH

γ2

)
· rdH

3 ·maxs∈A |Xs|2 ·Q4
Aβ

γ4ϵ2

)
.

Proof. The proof is given in Appendix J.

This result shows that the sample complexity of learning a generalized PSR depends on the problem
size through a few key quantities. In particular, the sample complexity scales polynomially in the
underlying rank r, the dimension of the PSR parameterization d, the size of the action component of
the core tests QA, the time horizon H , the conditioning number γ−1, the size of the action spaces
maxs∈A|Xs|, the log covering number log|Θϵ|, and the desired suboptimality error ϵ. Note that Õ
omits logarithmic dependence.
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To apply this algorithm to a POST, we can use the generalized PSR parameterization constructed
in Section 4. By Theorem 1 the PSR rank is bounded by r ≤ maxh|I†h|. If this POST is α-
robustly I†-weakly revealing, then by Theorem 2 it admits a γ-well-conditioned generalized PSR
parameterization with γ = α/maxh|I†h|1/2 and the m-step futures as core test sets. Moreover, we
have d = maxh dh = maxh |Qm

h |. The following corollary states that Algorithm 1 can learn a
partially-observable sequential team with a sample complexity which is polynomial in the size of the
information-structural state space maxh|I†h|.
Corollary 1. Suppose a partially-observable sequential team is m-step α-robustly I†-weakly re-
vealing as per Definition 6. Applying Algorithm 1 to this PSR representation, with parameters
pmin, λ, α, β chosen as in Theorem 4, returns a ε-optimal policy with a sample complexity of,

Õ

((
1 +

Q2
AH

α2

)
maxh|I†h|7 ·maxh |Qm

h | ·H5 ·maxs∈A |Xs|2 ·maxs∈U |Xs| ·Q4
A

α4ϵ2

)
.

We can interpret this result as saying that the information structure of a sequential decision-making
problem, through the quantity maxh|I†h|, is fundamentally a measure of the complexity of the
dynamics which need to be modeled. As a result, learning is tractable when maxh|I†h| is of modest
size, and intractable otherwise. Recall that maxh|I†h| is small when there exists “state-like” variables,
whether they are observable or unobservable. In this sense, maxh|I†h| is a fundamental quantity which
generalizes the notion of a “state”. For example, in the case of anm-step α-weakly revealing POMDP,
our algorithm has a sample complexity of poly(S, (OA)m, H, α−1) · ϵ−2, where S is the size of the
state space, O is the size of the observation space, and A is the size of the action space. This is similar
to the sample complexity of [36, 37], which designed an algorithm tailored specifically for weakly-
revealing POMDPs. Our algorithms, together with the POST/POSG models, enable sample-efficient
reinforcement learning for a much broader class of models all within a unified framework.

In this section, we extended the algorithm in Huang et al. [35] to generalized PSRs, enabling sample-
efficient learning of POSTs. We emphasize that other PSR-based algorithms can be extended in a
similar manner. In the next section, we tackle the problem of learning in the game setting where
different agents have different objectives.

F Extension to the game setting

F.1 Partially Observable Sequential Games

In a POST, all agents share the same objective. In the game setting, different agents may have
different objectives which compete with each other in interesting ways. Information structures play a
crucial role in the study of games. The information available to one agent when making its decisions,
compared to the information available to competing agents, determines how well it can achieve its
objective. In particular, the information structure of a problem determines the set of equilibria it
admits. There has been a plethora of work in the game theory community studying such problems.

Analogously to partially-observable sequential teams, we define partially-observable sequential games
(POSGs). The dynamics of a POSG are identical to a POST, with the same formalization of variable
structure, variable spaces, information structure, system kernels, and decision kernels. In contrast to
a POST, agents in a POSG may have different objectives. In a POSG, there exists N agents, with
agent i ∈ [N ] deciding the actions at times t ∈ Ai, where Ai ⊂ A. Each agent has its own objective
defined by a reward function Ri. This is defined formally below.
Definition 7 (Partially-Observable Sequential Game Model). A partially-observable sequential
game (POSG) is a controlled stochastic process consisting of the following components: variable
structure, variable spaces, information structure, system kernels, decision kernels, and observability.
These are defined in an identical manner to Definition 4. Additionally, POSGs define a reward
structure as follows. Let N be the number of agents. Each agent may act several times. Denote by
Ai ⊂ A the index of action variables associated to agent i ∈ [N ]. Each agent has a reward function
Ri :

∏
t∈U Xt → [0, 1] which they aim to maximize.

Denote by πi = (πt : t ∈ Ai) the collection of decision kernels belonging to agent i, one for each
action they take. Denote by π = (π1, . . . , πN ) the collection of all agents’ policies. Fixing π induces
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a probability distribution over X1 × · · ·XT in the same way as in the team setting,

Pπ [X1 = x1, . . . XT = xt] =
∏
t∈S
Tt(xt| {xs : s ∈ It})

∏
t∈A

πt(xt| {xs : s ∈ It}). (19)

The value of a policy π for agent i ∈ [N ] is defined as the expected value of their rewardRi under Pπ ,

V i(π) ≡ V i(πi,π−i) := Eπ
[
Ri(Xt(1), . . . , Xt(H))

]
, (20)

where π−i = (πj : j ̸= i).

The nature of randomization in agents’ policies is crucial to the analysis of solution concepts in the
game setting. To model randomized policies, which are potentially correlated, we introduce a random
seed ω ∈ Ω which is sampled at the beginning of an episode. Then, the policy at time t ∈ A can
be modeled as a deterministic function mapping the seed ω and information variable it ∈ It to an
action Xt. That is, πt : Ω× It → Xt. To model independently randomized policies with each agent
having private randomness, we consider the special case where the seed has the product structure
ω = (ω1, . . . , ωN ) ∈ Ω1 × · · · × ΩN , and ωi is the seed belonging to agent i ∈ [N ]. Then, for
t ∈ Ai, πt : Ωi × It → Xt. For each agent i ∈ [N ], define the three policy spaces,

1. Deterministic policies, Γi
det =

{
πi : πi =

(
πt : It → Xt, t ∈ Ai

)}
,

2. Independently-randomized policies, Γi
ind =

{
πi : πi =

(
πt : Ωi × It → Xt, t ∈ Ai

)}
,

3. Correlated randomized policies, Γi
cor =

{
πi : πi =

(
πt : Ω× It → Xt, t ∈ Ai

)}
.

Define the joint deterministic policy space, as Γdet = Γ1
det × · · · × ΓN

det, and similarly for the
independently-randomized policy space Γind, and the correlated randomized policy space Γcor.

When studying games, a common question is to find an equilibrium within a particular policy space.
At a high-level, an equilibrium is a joint policy where no agent can do better by deviating from their
policy when the other agents keep their policies fixed. We will consider several notions of equilibrium.
We begin by defining the notion of a best-response. Suppose that agent i’s policy space is Γi (e.g.,
Γi
det, Γ

i
ind, or Γi

cor). Then, we say that agent i’s policy πi is a best response to π−i if there is no
policy in Γi which achieves a higher value. This is formalized in the definition below.
Definition 8 (Best response). For a joint policy π, πi is said to be a best-response to π−i in the
policy space Γi (e.g., Γi

det, Γ
i
ind, or Γi

cor), if V i(πi,π−i) = maxπ̃i∈Γi V i(π̃i,π−i) =: V i,†(π−i).

This leads to the definition of two notions of equilibria. A Nash Equilibrium (NE) is a joint policy
where all agents are best-responding in the space of independently-randomized policies. A Coarse
Correlated Equilibrium (CCE) is a joint policy where all agents are best-responding in the space of
correlated randomized policies. The difference between NE and CCE is that the randomness in the
joint policy must be independent in an NE but can be correlated in a CCE. Since Γind ⊂ Γcor, coarse
correlated equilibria are a generalization of Nash equilibria. We define them formally below.
Definition 9 (Nash Equilibrium). A joint policy π ∈ Γind is said to be a Nash equilibrium if for all
agents i ∈ [N ], V i(π) = maxπ̃i∈Γi

ind
V i(π̃i,π−i) =: V i,†(π−i). A joint policy π ∈ Γind is said to

an ε-approximate Nash equilibrium if V i(π) ≥ V i,†(π−i)− ε for all i ∈ [N ].
Definition 10 (Coarse Correlated Equilibrium). A joint policy π ∈ Γcor is said to be a coarse
correlated equilibrium if for all agents i ∈ [N ], V i(π) = maxπ̃i∈Γi

cor
V i(π̃i,π−i) =: V i,†(π−i). A

joint policy π ∈ Γcor is said to an ε-approximate Nash equilibrium if V i(π) ≥ V i,†(π−i)− ε for
all i ∈ [N ].

Since we consider finite-space sequential games, an equilibrium is guaranteed to exist [93].
Remark 3 (Notion of equilibrium can be represented through information structure). The policy
classes defined above (i.e., deterministic, independently-randomized, correlated randomized) can
be directly modeled by the information structure. For example, to represent correlated randomized
policies, the random seed ω ∈ Ω can be modeled as an observable variable at time t = 0 which is in
all agents’ information sets. Similarly, independently randomized policies can be represented through
a different random seed for each agent at time t = 0, and including the appropriate random seed in
each action’s information set. Hence, the information structure itself can decide which equilibrium
notion we are interested in. Moreover, this allows us to consider additional notions of equilibrium
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where, for example, only subsets of agents can be correlated with each other (e.g., this may be useful
in modeling multi-team problems). Note that adding random seeds in order to model randomized
policies does not affect the information-structural state I†h since the seeds don’t appear in G†. For
concreteness, we focus on NE and CCE in our presentation.

F.2 Characterizing the Sample Complexity of Learning an Equilibrium via a Self-Play
Algorithm as a function of the Information Structure

We now introduce a sample-efficient reinforcement learning algorithm for learning well-conditioned
generalized predictive state representations in the game setting with each agent having their own
objective. In particular, since partially-observable sequential games with a I†-weakly revealing
information structure admit a well-conditioned generalized PSR representation, they can also be
learned sample-efficiently by this algorithm.

The algorithm we propose is a self-play algorithm for learning an equilibrium of the dynamic game
problem. That is, the algorithm specifies the policies of all agents during the learning phase, collecting
the trajectory of observables at each episode to improve its estimate of the system dynamics. This
can be thought of as a centralized agent playing against itself. We will propose an algorithm which
can find a Nash equilibrium or coarse correlated equilibrium in a sample-efficient manner. We begin
with some preliminaries.

Game setting. Recall that a sequential decision-making problem falls within the game setting
if each agent has their own objective. Following Section 2.1, we consider a sequential decision-
making problem (X1, . . . , XH) where O denotes the index set of (observable) system variables and
A denotes the set of action variables. We suppose the game involves N agents, and denote the action
index set of each agent by Ai ⊂ A, where {Ai}i∈[N ] partitions A. Each agent has their own reward
function Ri(X1, . . . , XH). Note that POSGs as defined in Definition 7 are structured models which
fall within this framework.

Equilibria and policy classes. Recall that in the game setting, the type of randomization in
each agent’s policy affects the set of equilibria in the game. In Appendix F.1, we formalized this
randomization by introducing a random seed ω ∈ Ω and allowing each agent’s policy to be a function
of their information set and this seed. If the seed has a product structure ω = (ω1, . . . , ωN ) with each
agent observing their own seed, this results in independently-randomized policies, denoted by Γi

ind.
If all agents use the same seed, this results in correlated randomized policies, which we denote by
Γi
cor. An equilibrium among independently randomized policies is called a Nash equilibrium and an

equilibrium among correlated randomized policies is called a coarse correlated equilibrium.

Estimating probabilities in the planner. The probability of any trajectory under a joint policy
π is given by Pπ(τH) =

∑
ω P [τH ]π(τH |ω)P [ω], where P [τH ] = P [τoH | τaH ] as before, and

π(τH |ω) =
∏

h∈A 1{xh = πh(τh−1, ω)}. Recall that the probabilities P [τH ] are estimated by the
generalized PSR model θ̂. We assume that the planner has knowledge of the randomization, P [ω].
Hence, the planner in the self-play algorithm is able to compute the probability of any trajectory for
each choice of policy.

Algorithm. The algorithmic description is presented in Algorithm 2. In the first stage of the algorithm,
the centralized learning agent has a unified goal: to explore the environment. This is done by executing
policies which maximize the bonus function b̂k(τH) by visiting trajectories with imprecise estimates
of their probability, as measured by the upper confidence bound on the total variation distance. This
part is identical to Algorithm 1. Once the algorithm is sufficiently confident about the estimated
probabilities of all trajectories, it computes the equilibrium using the estimated model directly. That is,
ComputeEquilibrium computes either NE or CCE. The only difference in the exploration stage of
the algorithm compared to Algorithm 1 is that the termination condition involves ε/4 rather than ε/2
in order to guarantee an ε-approximate equilibrium under the added complications of the game setting.

Theorem 5. Suppose Assumption 1 holds. Suppose the parameters pmin, λ, α, β are chosen as
in Theorem 4. Then, with probability at least 1− δ, Algorithm 2 returns a model θϵ and a policy π
which is an ε-approximate equilibrium (either NE or CCE). That is,

V i
θ∗(π) ≥ V i,†

θ∗ (π−i)− ε, ∀i ∈ [N ].
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Algorithm 2: Self-play UCB Algorithm for Sequential Games
for k ← 1, . . . ,K do

for h← 1, . . . ,H do
Collect τk,hH = (ωk,h

h−1, τ
k,h
h−1) using ν(πk−1, u

exp
h−1).

Dk
h−1 ← D

k−1
h−1 ∪

{(
τk,hH , ν

(
πk−1, u

exp
h−1

))}
.

end
Dk =

{
Dk

h

}H−1

h=0

Compute MLE θ̂ ∈ Bk, where

Θk
min =

{
θ : ∀h, (τh, π) ∈ Dk

h,Pπ
θ (τh) ≥ pmin

}
,

Bk =

θ ∈ Θk
min :

∑
(τH ,π)∈Dk

logPπ
θ (τH) ≥ max

θ′∈Θk
min

∑
(τH ,π)∈Dk

logPπ
θ′(τH)− β

 .

Define the bonus function, b̂k(τH) = min

{
α

√∑H−1
h=0

∥∥∥ψ̂(τh)∥∥∥2
(Ûk

h )−1
, 1

}
, where

Ûk
h = λI +

∑
τh∈D

hk
ψ̂
k

(τh)ψ̂
k

(τh)
⊤.

Solve the planning problem πk = argmaxπ V
b̂k

θ̂k
(π).

if V b̂k

θ̂k
(πk) ≤ ϵ/4 then

θϵ = θ̂k. break.
end

end
return π = ComputeEquilibrium(θϵ,

{
R1, . . . , RN

}
)

In addition, the algorithm terminates with a sample complexity of,

Õ

((
r +

Q2
AH

γ2

)
· rdH

3 ·maxs∈A |Xs|2 ·Q4
Aβ

γ4ϵ2

)
.

Proof. The proof is given in Appendix K.

To apply this algorithm to a partially-observable sequential game, we can use the generalized PSR
parameterization constructed in Section 4.
Corollary 2. Suppose a partially-observable sequential game is m-step α-robustly I†-weakly
revealing as per Definition 6. Applying Algorithm 2 to this PSR representation, with parameters
pmin, λ, α, β chosen as in Theorem 5, returns a ε-approximate equilibrium π with a sample complexity
of,

Õ

((
1 +

Q2
AH

α2

)
·
maxh |I†h|7 ·maxh |Qm

h | ·H5 ·maxs∈A |Xs|2 ·maxs∈U |Xs| ·Q4
A

α4ϵ2

)
.

G Existence of Generalized PSR representations and their covering number

In this section we show that any rank-r sequential decision-making problem (as per Section 2.1) can
be represented via a rank-r generalized PSR (Definition 3). Next, we bound the covering number of
the class of rank r PSRs, which will be important for our MLE analysis. Similar results have been
established in previous work for sequential decision-making problems with alternating observations
and actions [e.g., 33]. Recall that our formulation of the generic sequential decision-making problem
and generalized PSRs is more general than the standard formulation since it allows for an arbitrary
sequence of variables. Here, we follow a similar procedure to prove a slightly generalized result.

30



Proposition 2 (Existence of Generalized PSR representation). Consider a sequential decision-making
problem with rank(Dh) = rh, h ∈ 0 : H − 1. There exists a generalized PSR representation (i.e,
observable operator model) b0, {Bh(xh)}h∈[H],xh∈Xh

, {vh}h∈0:H such that,

1. Bh(xh) ∈ Rrh×rh−1 and ∥Bh(xh)∥2 ≤ 1 for any xh.

2. |b0| ≤
√
|Ha

H |.

3. ∥vh∥2 ≤
√
|Fo

h| / |Fa
h|.

4. For any h, 1
|Xh|1{h∈A} v

⊤
h

∑
xh∈Xh

Bh(xh) = v⊤h−1.

5. For any τh ∈ Hh, P [τh] = v⊤h Bh(xh) · · ·B1(x1)b0.

Proof. We construct the representation via the singular value decomposition of the matrix D⊤
h . Let

Uh ∈ R|Fh|×rh ,Σh ∈ Rrh×rh , V ⊤
h ∈ Rrh×|Hh| be the SVD such that D⊤

h = UhΣhV
⊤
h . Define

b0, Bh, v
⊤
h as follows,

b0 = ∥D0∥2 , Bh(xh) = U⊤
h [Uh−1](xh,Fh),:

, v⊤h =
1

|Fa
h|
1⊤Uh.

Here, [Uh−1](xh,Ωh),:
denotes an |Fh| by rh−1 submatrix of Uh−1 consisting of the rows

(xh, ωh), ωh ∈ Fh (i.e., the set of futures where the variable at time h is xh). Note that |Fa
H | = 1 by

convention, a product over an empty set. We verify each property in turn.

First, ∥Bh(xh)∥2 = ∥U⊤
h [Uh−1](xh,Fh),:∥2 ≤ 1 since Uh, Uh−1 are unitary matrices. Second,

|b0| = ∥D0∥2 =

√∑
τH

P [τH ]
2

≤
√∑

τH

P [τH ] =

√∑
τa
H

∑
τo
H

P [τoH | τaH ] =

√∑
τa
H

1 =

√∏
s∈A
|Xs|,

where the inequality is since P [τH ] ∈ [0, 1]. For property 3, we have

∥vh∥2 =
1

|Fa
h|
∥∥1⊤Uh

∥∥
2

≤ 1

|Fa
h|
∥1∥2 =

√
|Fh|
|Fa

h|
=
√
|Fo

h| / |Fa
h|,

where the inequality is since Uh is unitary, and the final equality is since |Fh| = |Fo
h| |Fa

h|.
Next, to prove properties 4 and 5, we first show the following claim.

Claim. For any history τh = (x1, . . . , xh) ∈ Hh, h ∈ 0 : H , we have Bh(xh) · · ·B1(x1)b0 =
U⊤
h

[
D⊤

h

]
:,τh

.

Proof of claim. We prove the claim by induction. In the base case, h = 0, D⊤
0 is a vector in RF0

(note that F0 = HH ). Hence, U0 is simply the normalized vector U0 = D⊤
0 /∥D⊤

0 ∥2, and hence
U⊤
0 D⊤

0 = D0D
⊤
0 /∥D0∥2 = ∥D0∥2 = b0. Proceeding by induction, suppose the claim holds for

h− 1. Then, we have,

Bh(xh) · · ·B1(x1)b0 = Bh(xh)U
⊤
h−1

[
D⊤

h−1

]
:,τh−1

= U⊤
h [Uh−1](xh,Fh),:

U⊤
h−1

[
D⊤

h−1

]
:,τh−1

= U⊤
h

[
Uh−1U

⊤
h−1D

⊤
h−1

]
(xh,Fh),τh−1

= U⊤
h

[
D⊤

h−1

]
(xh,Fh),τh−1

= U⊤
h

[
D⊤

h

]
:,τh

,

31



where the final equality is because
[
D⊤

h−1

]
(xh,ωh),τh−1

= P [τh−1, xh, ωh] = P [τh, ωh] =[
D⊤

h

]
ωh,τh

.

Using this fact, we can now show property 5 as follows,

v⊤h Bh(xh) · · ·B1(x1)b0 =
1

|Fa
h|
1⊤UhU

⊤
h

[
D⊤

h

]
:,τh

=
1

|Fa
h|
1⊤ [D⊤

h

]
:,τh

=
1

|Fa
h|
∑

ωh∈Fh

P [τh, ωh] =
1

|Fa
h|
∑

ωa
h∈Fa

h

∑
ωo

h∈Fo
h

P [τoh , ω
o
h | τah , ωa

h]

=
1

|Fa
h|
P [τoh | τah ]

∑
ωa

h∈Fa
h

∑
ωo

h∈Fo
h

P [ωo
h | ωa

h, τ
a
h , τ

o
h ]

=
1

|Fa
h|
P [τoh | τah ]

∑
ωa

h∈Fa
h

1

= P [τoh | τah ] .

Finally, it remains to show property 4. Consider the linear equation x⊤U⊤
h D⊤

h = |Fa
h|

−1
1⊤D⊤

h .
Note that U⊤

h D⊤
h ∈ Rrh×|Hh| is rank rh. Thus, this equation has a unique solution. Our strategy

is to show that v⊤h and v⊤h+1

∑
xh+1

Bh+1(xh) are both solutions to this linear equation, and hence
v⊤h = v⊤h+1

∑
xh+1

Bh+1(xh). That v⊤h is a solution is clear by definition of vh, v⊤h U
⊤
h D⊤

h =

|Fa
h|

−1
1⊤UhU

⊤
h D⊤

h = |Fa
h|

−1
1⊤D⊤

h . First, recall by the calculation above that |Fa
h|

−1
1⊤D⊤

h is
a vector in RHh where the τh-th entry is P [τoh | τah ]. We will calculate the τh-th entry of the vector
x⊤U⊤

h Dh when x⊤ = v⊤h+1

∑
xh+1

Bh+1(xh+1),v⊤h+1

∑
xh+1

Bh+1(xh+1)

[U⊤
h D

⊤
h

]
:,τh

=
1∣∣Fa
h+1

∣∣ ∑
xh+1

1⊤Uh+1U
⊤
h+1 [Uh](xh+1,Fh+1),:

[
U⊤
h D

⊤
h

]
:,τh

=
1∣∣Fa
h+1

∣∣ ∑
xh+1

1⊤Uh+1U
⊤
h+1

[
UhU

⊤
h D

⊤
h

]
(xh+1,Fh+1),τh

=
1∣∣Fa
h+1

∣∣ ∑
xh+1

[
1⊤D⊤

h

]
(xh+1,Fh+1),τh

=
1∣∣Fa
h+1

∣∣ ∑
xh+1

∑
ωh+1

P [τh, xh+1, ωh+1] =
1∣∣Fa
h+1

∣∣ ∑
ωh∈Fh

P [τh, ωh]

=
1∣∣Fa
h+1

∣∣P [τoh | τah ]
∑

ωa
h∈Fa

h

∑
τo
h∈Fo

h

P [ωo
h | τh, ωa

h]

=
1∣∣Fa
h+1

∣∣P [τoh | τah ]
∑

ωa
h∈Fa

h

1 =
1∣∣Fa
h+1

∣∣ |Fa
h|P [τoh | τah ]

=
1

|Xh+1|1{h+1∈A}P [τoh | τah ] ,

where the final inequality is since |Fa
h| =

∏
s∈h+1:H(|Xs|1{s∈A}

).

Corollary 3. Consider a sequential decision-making problem with rank(Dh) ≤ r. Then, there exists
a generalized PSR b0 ∈ Rr, {Bh(xh)}h∈[H],xh∈Xh

⊂ Rr×r, vH ∈ Rr such that,

1. ∥Bh(xh)∥2 ≤ 1, ∀h, xh ∈ Xh, ∥b0∥2 ≤
√
|Ha

H |, and ∥vH∥2 ≤ 1.

2. For any τH ∈ HH , P [τH ] = v⊤HBH(xH) · · ·B1(x1)b0.
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Proof. In Proposition 2 we constructed such a representation with dimensions in terms of rh instead
of r. Since rh ≤ r, we can pad this representation with dummy columns and/or rows filled with zeros
to obtain a representation with dimensions in terms of r.

An important part of maximum likelihood analysis is the notion of a “bracketing number” which
controls the complexity of the model class Θ [e.g., 94]. In our analysis, the model class is the set
of generalized PSRs of a given rank. As shown in the results above, rank-r generalized PSRs can
represent any rank-r sequential decision-making problem, with operators whose norm is bounded. In
the next result, we will consider a closely related notion to the bracketing number which crucially
incorporates optimism. Θε is said to be an “optimistic ε-cover” for Θ if for each θ ∈ Θ, there exists
θ̂ ∈ Θε with an associated probability measure Pε

θ̂ such that,

∀h, τh, P
ε

θ̂(τh) ≥ Pθ [τh] ,

∀h, τh,
∑
τh

∣∣∣Pε

θ̂(τh)− Pθ [τh]
∣∣∣ ≤ ε.

The first condition ensures optimism and the second condition ensures that Θε ε-covers Θ, in the
sense that the probability of any trajectory is approximated within an error ε. Recall that the parameter
β in Algorithms 1 and 2, which appears in the sample complexity results in Theorems 4 and 5, is
defined in terms of |Θε|. The next proposition bounds the size of

∣∣Θε

∣∣.
Proposition 3 (Optimistic cover of sequential decision making problems). Let M be the set of
all rank-r sequential decision-making problems with a horizon of length H , observation index
set O ⊂ [H], action index set A ⊂ [H], and variable spaces X1, . . . ,XH . Then, there exists an
optimistic ε-cover Θε of Θ with cardinality bounded by,

log
∣∣Θε

∣∣ ≤ O(r2 max
h
|Xh|H2 log

(
maxh |Xh|

ϵ

))
.

Proof. Define the set of generalized PSR representations constructed in Corollary 3,

Θ :=

{
b0 ∈ Rr, {Bh(xh)}h,xh

, vH ∈ Rr : ∥Bh(xh)∥2 ≤ 1, ∀h, xh, ∥b0∥2 ≤
√
|Ha

H |, ∥vH∥2 ≤ 1,

and ∀ τH ∈ HH , Pm [τH ] = v⊤HBH(xH) · · ·B1(x1)b0,

where m is a sequential decision making problem in M

}
.

Let Cδ be a δ-cover of the above set with respect to the ℓ∞-norm. For θ̂ = (b0, {Bh(xh)} , vH) ∈ Cδ ,
define the ε-optimistic probabilities as,

Pε

θ̂(τH) := v⊤HBH(xh) · · ·B1(x1)b0 + ε/2

We will show that for an appropriate choice of δ, Cδ is an optimistic ε-cover. In particular, for each
θ ∈ Θ, there exists θ̂ ∈ Cδ such that,

∀h, τh, P
ε

θ̂(τh) ≥ Pθ [τh] ,

∀h, τh,
∑
τh

∣∣∣Pε

θ̂(τh)− Pθ [τh]
∣∣∣ ≤ ε.
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To choose the value of δ for which the above holds, observe that∑
τH

∣∣∣v̂⊤HB̂H(xH) · · ·B1(x1)̂b0 − v⊤HBH(xH) · · ·B1(x1)b0

∣∣∣
≤

H∑
h=1

∑
τH

∣∣∣v̂⊤HB̂H(xH) · · · B̂h+1(xh+1)(B̂h(xh)−Bh(xh))Bh−1(xh−1) · · ·B1(x1)b0

∣∣∣
+
∑
τH

∣∣∣v̂⊤HBH(xH) · · ·B1(x1)(̂b0 − b0)
∣∣∣

≤
∑
h

∑
τH

r
∥∥∥B̂h(xh)−Bh(xh)

∥∥∥
max

√
|Ha

H |+
∑
τH

√
r
∥∥∥b̂0 − b0∥∥∥

∞

≤ Hmax
h
|Xh|H+|A|/2

rδ +max
h
|Xh|H

√
rδ,

where the second inequality uses ∥v̂H∥2 = ∥vH∥2 = ∥Bh(xh)∥2 = 1, ∥B̂h(xh) − Bh(xh)∥2 ≤
r∥B̂h(xh)−Bh(xh)∥max ≤ rδ, ∥b0∥2 ≤

√
|Ha

H |, and ∥b̂0−b0∥2 ≤
√
r∥b̂0−b0∥∞ ≤

√
rδ. Hence,

choosing δ := ε · maxh |Xh|−cH for c an absolute constant large enough achieves a ε-optimistic
covering of Θ. Hence, we let Θε = Cδ , with δ = ε ·maxh · |Xh|−cH . It remains to bound the size of
|Θε|.
Recall that ∥·∥∞ ≤ ∥·∥2 and that an interval [−x, x] in R admits a δ-cover of size bounded by 2x/δ.
Now, observe that maxij |[Bh(xh)]ij | ≤ ∥Bh(xh)∥2 ≤ 1. Hence, for a fixed h, {Bh(xh)}xh

admits
a cover of size bounded by (2/δ)r

2|Xh|. Considering all h, the cover is bounded by (2/δ)r
2 ∑

h|Xh| ≤
(2/δ)r

2 maxh|Xh|H . For, b0, we have ∥b0∥∞ ≤ ∥b0∥2 ≤
√
|Ha

H |, hence the covering number is
bounded by (2

√
|Ha

H |/δ)r. Finally for vH , we have ∥vH∥∞ ≤ ∥vH∥2 ≤ 1, hence the covering
number is bounded by (2/δ)r. Thus, we have,

log
∣∣Θε

∣∣ ≤ O(r2 max
h
|Xh|H log

(
1

δ

))
.

Recalling that δ = εmaxs |Xs|−cH , we obtain that,

log
∣∣Θε

∣∣ ≤ O(r2 max
h
|Xh|H2 log

(
maxh |Xh|

ϵ

))
.

H Proofs of Section 3.2

Theorem (Restatement of Theorem 1). The rank of the observable system dynamics of a POST or
POSG is bounded by

r ≤ max
h∈[H]

∣∣∣I†h∣∣∣.
Proof. We have
[Dh]τh,ωh

= P [τoh , ω
o
h | do(τah , τah )]

= P [τoh | do (τah )]P [ωo
h | τoh ; do (τah , ωa

h)]

(a)
= P [τoh | do (τah )]

∑
xk∈Xk

k∈I†
h

P
[{
xk, k ∈ I†h

} ∣∣∣ τoh ; do (τah , ωa
h)
]
P
[
ωo
h

∣∣∣ {xk, k ∈ I†h} , τoh ; do (τah , ωa
h)
]

(b)
=

∑
xk∈Xk

k∈I†
h

P [τoh | do (τah )]P
[{
xk, k ∈ I†h

} ∣∣∣ τoh ; do (τah )]P [ωo
h

∣∣∣ {xk, k ∈ I†h} , τoh ; do (τah , ωa
h)
]

(c)
=

∑
xk∈Xk

k∈I†
h

P [τoh | do (τah )]P
[{
xk, k ∈ I†h

} ∣∣∣ τoh ; do (τah )]P [ωo
h

∣∣∣ {xk, k ∈ I†h} ; do (ωa
h)
]
,
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where step (a) is simply the law of total probability, step (b) is that {xk, k ∈ I†h} is conditionally
independent of do(ωa

h) (future actions) given (τoh ; do(τ
a
h )) (the past), and step (c) is that ωo

h is
conditionally independent of (τoh ; do(τ

a
h )) given {xk, k ∈ I†h}. This is due to a result by Verma and

Pearl [95] which states: for three sets of variables A,B,C in a directed graphical model, if A and B
are d-separated by C, then A ⊥ B |C. Recall that I†h is defined as the minimal set which d-separates
(Xt(1), . . . , Xt(h)) from (Xt(h+1), . . . , Xt(H)).

As a technical remark, note that i†h = (xk, k ∈ I†h) may include actions and hence,

P
[{
xk, k ∈ I†h

} ∣∣∣ τoh ; do (τah )] = P
[{
xk, k ∈ I†h ∩ S

} ∣∣∣ τoh ; do (τah )]1{(xk, k ∈ I†h ∩ A) matches τah
}
,

since the action components of i†h are contained in the history τh.

Now define two matrices

Dh,1 :=
[
P [τoh | do (τah )]P

[{
xk, k ∈ I†h

} ∣∣∣ τoh ; do (τah )]]
τh,i

†
h

, τh ∈ Hh, i
†
h ≡

(
xk, k ∈ I†h

)
∈ I†h,

Dh,2 :=
[
P
[
ωo
h

∣∣∣ {xk, k ∈ I†h} ; do (ωa
h)
]]

i†h,ωh

, i†h ≡
(
xk, k ∈ I†h

)
∈ I†h, ωh ∈ Fh.

We have that Dh = Dh,1Dh,2, where both Dh,1 and Dh,2 have rank upper bounded by |I†h| =∏
s∈I†

h
|Xs|. Hence, rank(Dh) ≤ |I†h|, and the result follows.

I Proofs of Section 4

Lemma (Restatement of Lemma 1). Suppose that the POST/POSG is m-step I†-weakly revealing.
Then, Qm

h is a core test set for all h ∈ [H]. Furthermore, we have

P [τh, ωh] = ⟨mh(ωh), ψh(τh)⟩ , and P [ωh | τh] =
〈
mh(ωh), ψh(τh)

〉
. (21)

Proof. Let τh ∈ Hh, ωh ∈ Fh be any history and future, respectively. By Theorem 1, recall that we
have

P[ωh | τh] =
∑
i†h∈I†h

P
[
ωh

∣∣∣ i†h]P [i†h ∣∣∣ τh] . (22)

Recall that i†h may overlap with τh. In particular, the action component of i†h is contained in τh.
Thus, P[i†h | τh] = P[{xk, k ∈ I†h \ U1:h} | τh] · 1{(xk, k ∈ I

†
h ∩ U1:h) matches τh}. Note that

I†h \ U1:h ⊂ S does not contain any actions. Hence, the summation over I†h is equivalent to summing
over its unobservable components with the restriction that its observable components match τh.

Define the mappings m̃h : Fh → R|I
†
h| and ph : Hh → R|I

†
h| by

m̃h(ωh) =
[
P
[
ωh

∣∣∣ i†h]]
i†h∈I†h

, ph(τh) =
[
P
[
i†h

∣∣∣ τh]]
i†h∈I†h

.

Then, we have that the conditional probability of the future ωh given the past τh is given
by the inner product of the above mappings, P [ωh | τh] = ⟨m̃h(ωh), ph(τh)⟩. Recall that
the vector of (conditional) core test set probabilities for the history τh is given by ψh(τh) =
[P [qo | τoh ; do(τah ), do(qa)]]q∈Qm

h
∈ R|Qm

h |. By the definition of Gh and Equation (22), we have
Gh ph(τh) = ψh(τh), since, for q ∈ Qm

h ,

(Gh ph(τh))q =
∑
i†h

(Gh)q,i†h
(ph(τh))i†h

=
∑
i†h

P
[
qo
∣∣∣ i†h; do(qa)]P [i†h ∣∣∣ τh]

= P [qo | τoh ; do(τah ),do(qa)]
=:
[
ψh(τh)

]
q
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Since by assumption rank(Gh) =
∣∣∣I†h∣∣∣, its pseudo-inverse G†

h is a left inverse of Gh (i.e., G†
hGh =

I). Hence, multiplying on the left by G†
h, we obtain ph(τh) = G†

hψh(τh). Hence,

P [ωh | τh] =
〈
m̃h(ωh),G

†
hψh(τh)

〉
=

〈(
G†

h

)⊤
m̃h(ωh)︸ ︷︷ ︸

mh(ωh)

, ψh(τh)

〉
.

That P [τh, ωh] = ⟨mh(ωh), ψh(τh)⟩ follows directly by noting the definition of ψh(τh) :=
ψh(τh)/P [τh].

Hence, we have shown that for the test set Qm
h , the probability of each future ωh given a history τh

is a linear combination of the probabilities of each test in the core test set with weights mh(ωh) :=

(G†
h)

⊤m̃h(ωh) ∈ R|Qm
h | depending only on the future and not the history.

Theorem (Restatement of Theorem 2). Suppose a POST/POSG is α-robustly m-step I†-weakly
revealing. Then, the corresponding generalized PSR as constructed in Section 4 is γ-well-conditioned
with γ = α/maxh|I†h|1/2.

We will first show that ({Qm
h }h, ϕH , {Mh}h, ψ0) indeed forms a PSR through a series of simple

calculations.

A direct corollary of Lemma 1 is the following.
Lemma 2. For any h ∈ [H], τh−1 ∈ Hh−1, xt(h) ∈ Xt(h), ωh ∈ Fh, we have

P
[
τh−1, xt(h), ωh

]
=
〈
mh−1(xt(h), ωh), ψh(τh−1)

〉
. (23)

Hence, given a history τh−1 = (xt(1), . . . , xt(h−1)), having observed another variable xt(h), we
can update our predictions of the future and obtain the probability of trajectories of the form
(τh−1, xt(h), ωh) for any future ωh ∈ Fh. Note that xt(h) may be either an observation or an action.
Hence, we can update our prediction of the future after deciding an action, and before receiving
the next observation. This is in contrast to the standard PSR formulation where predictions of the
future can only be updated with a pair of observation and action. Our formulation provides additional
flexibility, which is crucial for the general information structures modeled by POSTs and POSGs.

This means that, after observing xt(h), we can use the mh : Fh → Rdh mapping constructed
in Lemma 1 to update the probability of any candidate future ωh. We are particularly interested in
updating the probabilities of the futures corresponding to the core test set at the next time point, since
this provides a sufficient statistic of the past. Thus, we define the matrix mapping Mh : Xt(h) →
Rdh×dh−1 by, [

Mh(xt(h))
]
q,· = mh−1(xt(h), q)

⊤, q ∈ Qh. (24)

That is, Mh(xt(h)) is the matrix whose rows are indexed by the core tests at the h-th observable step,
where the q ∈ Qh row is the weights given by the mh−1 mapping for the future consisting of xt(h)
followed by q. This mapping enables us to update the probabilities of the core test sets.
Lemma 3. For any h ∈ [H − 1], τh ∈ Hh, xt(h+1) ∈ Xt(h+1), we have

ψh(τh−1, xt(h)) =Mh(xt(h))ψh−1(τh−1). (25)

Hence, for a history τh =
(
xt(1), . . . , xt(h)

)
∈ Hh, we have

ψh(τh) =Mh(xt(h))Mh−1(xt(h−1)) · · ·M1(xt(1))ψ0, (26)

where ψ0 = ψ0(∅).

Finally, observe that Qm
H−1 = Xt(H). Hence,

ψH−1(τH−1) =
(
P
[
τh−1, xt(H)

])
xt(H)∈Xt(H)

∈ R|Xt(H)|.
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Thus, letting ϕH : Xt(H) → R|Xt(H)| be ϕH(xt(H)) = ext(H)
(the canonical basis vector), yields

P
[
xt(h) : h ∈ [H]

]
= ϕH(xt(H))

⊤MH−1(xt(H−1)) · · ·M1(xt(1))ψ0. (27)

Hence, Equation (27) together with Equation (26) imply that (M , ϕH , ψ0) is a valid generalized PSR
representation for the POST/POSG (as per Definition 3).

What remains is to show that if the POST/POSG is α-robustly I†-weakly revealing, then the PSR
constructed above is well-conditioned.

Theorem (Restatement of Theorem 2). Suppose a POST/POSG is α-robustly m-step I†-weakly
revealing. Then, the corresponding generalized PSR as constructed in Section 4 is γ-well-conditioned
with γ = α/maxh|I†h|1/2.

Proof. We first show condition (1) in Assumption 1. Suppose h > H−m and hence the core tests are
the full futures, which have length smaller than m. Then for any x ∈ Rdh , dh =

∏H
s=h |Xs|, we have

max
π

∑
ωh

∣∣mh(ωh)
⊤x
∣∣ · π(ωh) = max

π

∑
ωh

|x[ωh]|π(ωh) ≤ ∥x∥1 ,

where x[ωh] indexes the component of the vector x corresponding to the future ωh.

Now suppose h ≤ H −m (and hence the core tests consist of m-step futures). Then, we have,

max
π

∑
ωh

∣∣mh(ωh)
⊤x
∣∣π(ωh) = max

π

∑
ωh

∣∣∣m(ωh)
⊤GhG

†
hx
∣∣∣ · π(ωh)

≤ max
π

∑
ωh

∑
i†∈I†h

∣∣m(ωh)
⊤Ghei†

∣∣ ∣∣∣e⊤i†G†
hx
∣∣∣ · π(ωh).

Now observe that for any policy π and any i† ∈ I†h, we have∑
ωh

∣∣m(ωh)
⊤Ghei†

∣∣ · π(ωh) =
∑
ωh

∣∣∣m̃(ωh)
⊤G†

hGhei†
∣∣∣ · π(ωh)

=
∑
ωh

P
[
ωh

∣∣ i†]π(ωh)

=
∑
ωh

Pπ
[
ωh

∣∣ i†] = 1,

where we used the definition of mh(ωh) := m̃h(ωh)
⊤G†

h, and [m̃h(ωh)]i† := P[ωh | i†]. Recall that
π(ωh) is such that for any fixed sequence of observations ωo

h,
∑

ωa
h
π(ωo

h, ω
a
h) = 1.

Putting this observation together with the preceding inequality yields

max
π

∑
ωh

∣∣mh(ωh)
⊤x
∣∣π(ωh)

≤
∑
i†∈I†h

∣∣∣e⊤i†G†
hx
∣∣∣

=
∥∥∥G†

hx
∥∥∥
1
≤
∥∥∥G†

h

∥∥∥
1
· ∥x∥1

≤

√∣∣∣I†h∣∣∣
α
∥x∥1 ,

where the final inequality is from the relation between the one-norm and two-norm
∥∥∥G†

h

∥∥∥
1
≤√∣∣∣I†h∣∣∣ ∥∥∥G†

h

∥∥∥
2
, and

∥∥∥G†
h

∥∥∥
2
≤ 1

α , by the assumption on its singular values.
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Now we show condition (2) in Assumption 1. For ease of notation, we denote xt(h) by xh. When
h > H − m, note that [Mh(xh)]qh+1,qh

= 1{qh = (xh, qh+1)}, for all qh ∈ Qh, qh+1 ∈ Qh+1.
Hence,we have

max
π

∑
xh

∥Mh(xh)z∥1 π(xh) = ∥z∥1 .

Now, when h ≤ H −m, by a similar line of reasoning to the proof for condition (1), we have,

max
π

∑
xh

∥Mh(xh)z∥1 π(xh|τh−1) ≤ max
π

∑
(xh,qh+1)∈Xh×Qh+1

∑
i†∈I†h

∣∣∣e⊤qh+1
Mh(xh)Ghei†

∣∣∣ · ∣∣∣ei†G†
hz
∣∣∣π(xh|τh−1)

(a)
= max

π

∑
(xh,qh+1)∈Xh×Qh+1

∑
i†∈I†h

∣∣mh(xt(h), qh+1)Ghei†
∣∣ · ∣∣∣ei†G†

hz
∣∣∣π(xh|τh−1)

(b)
= max

π

∑
i†

 ∑
(xh,qh+1)

P
[
xh, qh+1

∣∣ i†]π(xh|τh−1)

∣∣∣e⊤i†G†
hz
∣∣∣

where step (a) uses the definition ofMh and step (b) uses the definition ofmh(ωh)
⊤ := m̃h(ωh)

⊤G†
h

and [m̃h(ωh)]i† := P[ωh | i†]. Now note that,∑
(xh,qh+1)

P
[
xh, qh+1

∣∣ i†]π(xh|τh−1) =
∑
xh

∑
act(qh+1)

∑
obs(qh+1)

P
[
xh, obs(qh+1)

∣∣ i†, act(qh+1)
]
π(xh)

=
∑

act(qh+1)

1

=
∣∣QA

h+1

∣∣ ,
where the second line is since for any fixed action sequence, the sum over the probabilities of all
observation sequences is 1.

Thus, putting this together, we obtain the following,

max
π

∑
xh

∥Mh(xh)z∥1 π(xh|τh−1) ≤
∣∣QA

h+1

∣∣ · ∥∥∥G†
hz
∥∥∥
1

≤

√∣∣∣I†h∣∣∣ ∣∣QA
h+1

∣∣
α

∥z∥1 ,

where the last line again follows by the assumption on the singular values of Gh.

J Proof of Theorem 4: UCB Algorithm for Generalized PSRs (Team Setting)

In this section, we prove Theorem 4 which states that Algorithm 1 returns a near-optimal policy
in a polynomial number of iterations. The proof is adapted from [35] and generalized to our
setting with generalized PSRs (Definition 3). The proof is organized into several subsections.
In Appendix J.1, we show that the total variation distance between trajectories under the true model
and the estimated model can be bounded in terms of the estimation error of the observable operators
{Mh}h. In Appendix J.2 we state some general results on maximum likelihood estimation which
show that the MLE model has small error on the collected dataset. In Appendix J.3 we prove that the
bonus term is an upper confidence bound for the total variation distance. In Appendix J.4 we show that
the estimation error is sublinear in the number of iterations (i.e., O(

√
K)). Finally, in Appendix J.5

we put this all together to prove the theorem.

J.1 Properties of Generalized PSRs

Recall that a PSR model θ = (M , ψ0, ϕH) consists of operators M = {Mh}H−1
h=1 , Mh : Xh →

Rdh×dh−1 , ϕH : XH → RdH−1 (assumed to be the identity mapping), and ψ0 (assumed to be known
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for the purposes of presentation). Recall that, for any trajectory τh−1 = (x1, . . . , xh−1), under model
θ, we have

Mh(xh)ψh−1(τh−1) =
ψh(τh)

Pθ (τh−1)

=
ψh(τh)

Pθ (xh | τh−1)Pθ (τh−1)
Pθ (xh | τh−1)

= ψh(τh)Pθ (xh | τh−1)

(28)

Here, the notation Pθ (xh | τh−1) means the probability of xh conditioned on the history τh−1,
with all actions executed. In particular, if xh is an action, then Pθ (xh | τh−1) = 1 and
Mh(xh)ψh−1(τh−1) = ψh(τh).

The following proposition shows that the total variation distance between the distribution of trajecto-
ries of two PSR models can be bounded in terms of the difference in their observable operators.

Proposition 4. For any policy π and θ, θ̂ ∈ Θ, we have,

DTV

(
Pπ
θ̂
, Pπ

θ

)
≤

H∑
h=1

∑
τH∈HH

π(τh)
∣∣∣m̂h(ωh)

⊤
(
M̂h(xh)−Mh(xh)

)
ψh−1(τh−1)

∣∣∣ ,
DTV

(
Pπ
θ̂
, Pπ

θ

)
≤

H∑
h=1

∑
τH∈HH

π(τh)
∣∣∣mh(ωh)

⊤
(
M̂h(xh)−Mh(xh)

)
ψ̂h−1(τh−1)

∣∣∣ ,

Proof. The probability of any trajectory τH = (x1, . . . , xH) can be written in terms of products of
the observable operators Mh(xh) of a PSR model (Equation (1)). Hence, we have,

DTV

(
Pπ
θ̂
, Pπ

θ

)
=

1

2

∑
τH

∣∣∣Pπ
θ̂
(τH)− Pπ

θ (τH)
∣∣∣

=
1

2

∑
τH

π(τH) ·

∣∣∣∣∣
(

H∏
h=1

M̂h(xh)

)
ψ0 −

(
H∏

h=1

Mh(xh)

)
ψ0

∣∣∣∣∣
≤ 1

2

∑
τH

π(τH)

H∑
h=1

∣∣∣m̂h(xh+1:H)⊤
(
M̂h(xh)−Mh(xh)

)
ψh−1(τh−1)

∣∣∣ ,
where the second line follows by the triangle inequality after noting that for any trajectory τH =
x1:H ∈ HH , the following holds for any h = 1, . . . ,H ,(

H∏
h=1

M̂h(xh)

)
ψ0−

(
H∏

h=1

Mh(xh)

)
ψ0 = m̂h(xh+1:H)⊤M̂h(xh)ψ̂h−1(x1:h−1)−mh(xh+1:H)⊤Mh(xh)ψh−1(x1:h−1).

By the same argument, we obtain the second inequality,

DTV

(
Pπ
θ̂
, Pπ

θ

)
=

1

2

∑
τH

∣∣∣Pπ
θ̂
(τH)− Pπ

θ (τH)
∣∣∣

≤ 1

2

∑
τH

π(τH)

H∑
h=1

∣∣∣mh(xh+1:H)⊤
(
M̂h(xh)−Mh(xh)

)
ψ̂h−1(τh−1)

∣∣∣ .

In this result, recall that we assume ψ0 is known to the agent, to simplify the presentation. If ψ0 was
not known, there would be another term due to the estimation as ψ̂0 [see 33, Lemma C.3]. Note that
the sample complexity of estimating ψ0 is small compared to learning the other parameters.
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J.2 General Results on MLE

In this section, we state some general results on maximum likelihood estimation which ultimately
guarantee that the estimated model produced by the procedure in Algorithm 1 has a small estimation
error. The results are stated without proof. The proofs are given in [35] and use standard techniques
on MLE analysis [94]. This ultimately leads us to a lemma which states that the estimation error of
the MLE model is small on the collected data.

The first proposition states that the log-likelihood of the true model θ∗ is large compared to any other
model.
Proposition 5 (Proposition 4 of [35]). Fix ε < 1

KH . With probability at least 1− δ, for any θ ∈ Θε

and any k ∈ [K], the following holds:

∀θ ∈ Θε,
∑
h

∑
(τh,π)∈Dh

logPπ
θ
(τh)− 3 log

K
∣∣Θε

∣∣
δ

≤
∑
h

∑
(τh,π)∈Dk

h

logPπ
θ∗(τh)

∀θ ∈ Θε,
∑

(τH ,π)∈Dk

logPπ
θ
(τH)− 3 log

K
∣∣Θε

∣∣
δ

≤
∑

(τh,π)∈Dk
h

logPπ
θ∗(τh)

The second proposition provides an upper bound on the total variation distance between the distribu-
tions of futures given histories on the empirical history of trajectories. This result ensures that the
model estimated by Algorithm 1 is accurate on the sampled trajectories.
Proposition 6 (Proposition 5 in [35]). Fix pmin and ε ≤ pmin

KH . Let
Θk

min =
{
θ : ∀h, (τh, π) ∈ Dk

h, Pπ
θ (τh) ≥ pmin

}
. Then, with probability at least 1 − δ, for any

k ∈ [K], θ ∈ Θk
min, we have,∑

h

∑
(τh,π)∈Dk

h

D2TV (Pπ
θ (ωh|τh),Pπ

θ∗(ωh|τh)) ≤ 6
∑
h

∑
(τh,π)∈Dk

h

log
Pπ
θ∗(τH)

Pπ
θ (τH)

+ 31 log
K
∣∣Θε

∣∣
δ

.

The next proposition is standard in the analysis of maximum likelihood estimation. DH denotes the
Hellinger distance.
Proposition 7 (Proposition 6 of [35]). Let ε < 1

K2H2 . Then, with probability at least 1 − δ, the
following holds for all θ ∈ Θ and k ∈ [K],∑

π∈Dk

D2H (Pπ
θ (τH),Pπ

θ∗(τH)) ≤ 1

2

∑
(τH ,π)∈Dk

log
Pπ
θ∗(τH)

Pπ
θ (τH)

+ 2 log
K
∣∣Θε

∣∣
δ

.

The final proposition of this section states that when pmin is chosen as in Theorem 4, the true model
θ∗ lies in the constraint Θk

min with high probability.

Proposition 8. Fix pmin ≤ δ
KH

∏H
h=1|Xh|

. Then, with probability at least 1− δ, we have θ∗ ∈ Θk
min

∀k.

Proof. For each k ∈ [K], we have θ∗ ∈ Θk
min if Pπk

θ∗ (τkh ) ≥ pmin for all h ∈ [H], (τkh , π
k) ∈ Dk

h.
Consider the probability of θ∗ violating this constraint for some trajectory in the dataset. For each
k, h, (τkh , π

k), we have

P
[
Pπk

θ∗ (τkh ) < pmin

]
= Eπ

[
P
[
Pπk

θ∗ (τkh ) < pmin

∣∣∣ πk = π
]]

= Eπ

[ ∑
τh∈Hh

Pπ
θ∗(τkh = τh)1{Pπ

θ∗(τh) < pmin}

]
<
∑

τh∈Hh

pmin

= |Hh| pmin

≤ δ

KH
.
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In the above, the first line is by the law of total probability, where the expectation is over the policy
πk used while collecting the (h, k)-th trajectory, and the inner probability is over trajectories τkh . The
second line calculates the probability of the event {Pπk

θ∗ (τkh ) < pmin}. Taking a union bound over
k ∈ [K], h ∈ [H], and (τh, π) ∈ Dh implies that P

[
θ∗ ∈ Θk

min

]
≥ 1− δ.

In what follows, let Eω, Eπ, Emin be the events in Propositions 6 to 8, respectively. Let E = Eω ∩
Eπ ∩ Emin be the intersection of all events. Propositions 6 to 8 guarantee the event E occurs with high
probability, P [E ] ≥ 1− 3δ, by a union bound.

The following result states that the estimated model is accurate on the past exploration policies and
dataset of collected trajectories. This holds for both the conditional probabilities of futures given past
trajectories in the dataset as well as over full trajectories. The result follows from the MLE analysis
in Propositions 6 to 8.

Lemma 4. Let β = 31 log
K|Θε|

δ , and suppose ε ≤ δ
K2H2

∏
h|Xh| , where Θε is the optimistic ε-net

in Proposition 3. Then, under event E , the following holds,∑
h

∑
(τh,π)∈Dk

h

D2TV

(
Pπ
θ̂k(ωh|τh),Pπ

θ∗(ωh|τh)
)
≤ 7β, and

∑
π∈Dk

D2H

(
Pπ
θ̂k(τH),Pπ

θ∗(τH)
)
≤ 7β,

Proof. The proof follows by Propositions 6 to 8. The argument is direct and is identical to Lemma 1
of [35].

J.3 UCB for Total Variation Distance

Notation. Let m∗, {M∗
h}h be the observable operators of the true PSR θ∗, and let {M̂k

h}h be the
algorithm’s estimates of the observable operators corresponding to θ̂k.

Recall that Proposition 4 shows that the total variation distance between the distribution over trajecto-
ries of two PSRs is bounded by the estimation error of the observable operators Mh. The following
result constructs a bound on the estimation error of the observable operators Mh(xh). The proof is
adapted from [35, Lemma 2] to our setting with generalized PSRs.

Lemma 5. Under event E , for any policy π and k ∈ [K], we have,

∑
τH

∣∣∣m⋆(ωh)
⊤
(
M̂k

h (xh)−M⋆
h(xh)

)
ψ̂k
h−1(τh−1)

∣∣∣π(τH) ≤ Eπ
τh−1∼P

θ̂k

[
αk
h−1

∥∥∥∥ψ̂k

h−1(τh−1)

∥∥∥∥
(Ûk

h−1)
−1

]

where,

Ûk
h−1 = λI +

∑
τh−1∈Dk

h−1

[
ψ̂
k

h(τh−1)ψ̂
k

h(τh−1)
⊤
]

(
αk
h−1

)2
=

4λQ2
Ad

γ4
+

4maxs∈A |Xs|2Q2
A

γ2

∑
τh−1∈Dk

h−1

D2TV

(
Pu

exp

h−1

θ̂k

(
ωo
h−1

∣∣ τh−1, ω
a
h−1

)
,Pu

exp

h−1

θ∗

(
ωo
h−1

∣∣ τh−1, ω
a
h

))

Proof. To ease notation, we index the future trajectories ωh−1 = (xh, . . . , xH) ∈ Fh−1 by i and his-
tory trajectories τh−1 = (x1, . . . , xh−1) ∈ Hh−1 by j. We denote m⋆(ωh)

⊤
(
M̂k

h (xh)−M⋆
h(xh)

)
as w⊤

i , ψ̂
k

h(τh−1) as xj , and π(ωh−1|τh−1) as πi|j .
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The following bound follows from the Cauchy-Schwarz inequality,

∑
τH

∣∣∣m⋆(ωh)
⊤
(
M̂k

h (xh)−M⋆
h(xh)

)
ψ̂k
h−1(τh−1)

∣∣∣π(τH)

(a)
=
∑
ωh−1

∑
τh−1

∣∣∣∣m⋆(ωh)
⊤
(
M̂k

h (xh)−M⋆
h(xh)

)
ψ̂
k

h(τh−1)

∣∣∣∣π(ωh−1|τh−1)Pπ
θ̂k(τh−1)

=
∑
i

∑
j

∣∣w⊤
i xj

∣∣πi|jPπ
θ̂k(j)

=
∑
i

∑
j

(
πi|j · sign(w⊤

i xj)wi

)⊤
xj · Pπ

θ̂k(j)

=
∑
j

(∑
i

πi|j · sign(w⊤
i xj)wi

)⊤

xj · Pπ
θ̂k(j)

= Ej∼Pπ

θ̂k

(∑
i

πi|j · sign(w⊤
i xj)wi

)⊤

xj


(b)

≤ Ej∼Pπ

θ̂k

∥xj∥(Ûk
h−1)

−1

∥∥∥∥∥∑
i

πi|j · sign(w⊤
i xj) · wi

∥∥∥∥∥
Ûk

h−1

 .

Step (a) follows from the fact that ψ̂k
h−1(τh−1) = ψ̂

k

h(τh−1) · (ϕ̂kh−1)
⊤ψ̂k

h−1(τh−1) = ψ̂
k

h(τh−1) ·
Pθ̂k [τh−1] and Pθ̂k [τh−1] · π(τH) = π(ωh−1|τh−1) · Pπ

θ̂k
(τh−1). Step (b) is the Cauchy-Schwarz

inequality.

Fix τh−1 = j0. Let I1 :=
∥∥∑

i πi|j0 · sign(w⊤
i xj0) · wi

∥∥2
Ûk

h−1

, which we bound next. By the

definition of Ûk
h−1, we partition this term into two parts,

I1 = λ

∥∥∥∥∥∑
i

πi|j0 · sign(w
⊤
i xj0) · wi

∥∥∥∥∥
2

2︸ ︷︷ ︸
I2

+
∑

j∈Dτ
h−1

(∑
i

πi|j0 · sign(w
⊤
i xj0) · wi

)⊤

xj

2

︸ ︷︷ ︸
I3

.

We bound I2 and I3 separately. By the triangle inequality,
√
I2 is bound by a sum of two terms,

√
I2 =

√
λ max

z∈Rdh−1 :∥z∥2=1

∣∣∣∣∣∑
i

πi|j0 · sign(w
⊤
i xj0) · w⊤

i z

∣∣∣∣∣
(a)

≤
√
λ max

∥z∥2=1

∑
ωh−1

∣∣∣m⋆(ω⊤
h )
(
M̂k

h (xh)−M⋆
h(xh)

)
z
∣∣∣π(ωh−1|j0)

(b)

≤
√
λ max

∥z∥2=1

∑
ωh−1

∣∣∣m⋆(ωh)
⊤M̂k

h (xh)z
∣∣∣π(ωh−1|j0)

+
√
λ max

∥z∥2=1

∑
ωh−1

∣∣m⋆(ωh)
⊤M⋆

h(xh)z
∣∣π(ωh−1|j0),

where step (a) is by the definition of w⊤
i , πi|j0 and the triangle inequality, and step (b) is by the

triangle inequality.
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Consider the first term. It can be bound via the definition of γ-well-conditioning as follows,

max
∥z∥2=1

∑
ωh−1

∣∣∣m⋆(ωh)
⊤M̂k

h (xh)z
∣∣∣π(ωh−1|j0)

= max
∥z∥2=1

∑
xh

(∑
ωh

∣∣∣m⋆(ωh)
⊤M̂k

h (xh)z
∣∣∣π(ωh|j0, xh)

)
π(xh|j0)

(a)

≤ 1

γ
max

∥z∥2=1

∑
xh

∥∥∥M̂k
h (xh)z

∥∥∥
1
π(xh|j0)

(b)

≤ 1

γ
max

∥z∥2=1

∣∣QA
h+1

∣∣ ∥z∥1
γ

(c)

≤
√
dQA

γ2

where step (a) is by the first condition in Assumption 1, step (b) is by the second condition of Assump-
tion 1, and step (c) is by the fact that maxz∈Rdh−1 :∥z∥2=1 ∥z∥1 =

√
dh−1 ≤

√
d and

∣∣QA
h+1

∣∣ ≤ QA.

In the above, note that we used the γ-well-conditioning of PSR θ̂k in step (a) and the γ-well-
conditioning of PSR θ∗ in step (b). The second term in

√
I2 admits an identical bound, simply by

using the well-conditioning of the PSR θ∗ in both steps. Hence, we have that

I2 ≤ 4
λdQ2

A

γ4
. (29)

Now we upper bound I3,

I3 ≤
∑

τh−1∈Dk
h−1

∑
ωh−1

∣∣∣∣m⋆(ωh)
⊤
(
M̂k

h (xh)−M⋆
h(xh)

)
ψ̂
k

(τh−1)

∣∣∣∣π(ωh−1|j0)

2

≤
∑

τh−1∈Dk
h−1

(∑
ωh−1

∣∣∣∣m⋆(ωh)
⊤
(
M̂k

h (xh)ψ̂
k

(τh−1)−M⋆
h(xh)ψ

⋆
(τh−1)

)∣∣∣∣π(ωh−1|j0)︸ ︷︷ ︸
I4

+
∑
ωh−1

∣∣∣∣m⋆(ωh)
⊤M⋆

h(xh)

(
ψ̂
k

(τh−1)− ψ
⋆
(τh−1)

)∣∣∣∣π(ωh−1|j0)︸ ︷︷ ︸
I5

)2

=:
∑

τh−1∈Dk
h−1

(I4 + I5)
2

where the second equality follows from the triangle inequality by adding and subtracting
m∗(ωh)

⊤M∗
h(xh)ψ

∗
(τh−1) inside the absolute value. We now bound each of I4 and I5.
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I4 :=
∑
ωh−1

∣∣∣∣m⋆(ωh)
⊤
(
M̂k

h (xh)ψ̂
k

(τh−1)−M⋆
h(xh)ψ

⋆
(τh−1)

)∣∣∣∣π(ωh−1|j0)

(a)
=
∑
ωh−1

∣∣∣m⋆(ωh)
⊤
(
Pθ̂k [xh | τh−1] ψ̂h(τh)− Pθ∗ [xh | τh−1]ψ

∗
h(τh)

)∣∣∣π(ωh−1|j0)

(b)
=
∑
xh

(∑
ωh

∣∣∣m⋆(ωh)
⊤
(
Pθ̂k [xh | τh−1] ψ̂h(τh)− Pθ∗ [xh | τh−1]ψ

∗
h(τh)

)∣∣∣π(ωh|j0, xh)

)
π(xh|j0)

(c)

≤ 1

γ

∑
xh

∥∥∥Pθ̂k [xh | τh−1] ψ̂h(τh)− Pθ∗ [xh | τh−1]ψ
∗
h(τh)

∥∥∥
1
π(xh|j0)

(d)
=

1

γ

∑
xh

∑
qh∈Qh

∣∣Pθ̂k [xh, qh | τh−1]− Pθ∗ [xh, qh | τh−1]
∣∣π(xh|j0)

where step (a) is by the fact that Mh(xh)ψh−1(τh−1) = P [xh | τh−1]ψ(τh), as shown in Equa-
tion (28), step (b) uses ωh−1 = (xh, ωh) and π(ωh−1|j0) = π(xh|j0)π(ωh|j0, xh), step (c) is by As-
sumption 1, and step (d) follows by the definition ψh,

[
ψh(τh)

]
l
= Pθ

[
qlh
∣∣ τh].

Now, we turn to bound the I5 term. We have

I5 =
∑
ωh

∑
xh

∣∣∣∣m⋆
h(ωh)

⊤M⋆
h(xh)

(
ψ̂
k

(τh−1)− ψ
⋆
(τh−1)

)∣∣∣∣π(ωh|j0, xh)π(xh|j0)

(a)
=
∑
ωh−1

∣∣∣∣m⋆
h−1(ωh−1)

⊤
(
ψ̂
k

(τh−1)− ψ
⋆
(τh−1)

)∣∣∣∣π(ωh−1|j0)

(a)

≤ 1

γ

∥∥∥∥ψ̂k

(τh−1)− ψ
⋆
(τh−1)

∥∥∥∥
1

=
1

γ

∑
qh−1∈Qh−1

∣∣Pθ̂k [qh−1 | τh−1]− Pθ∗ [qh−1 | τh−1]
∣∣ ,

where step (a) is since m∗
h(ωh)

⊤M∗
h(xh) = m∗

h−1(ωh−1)
⊤, step (b) is by the first condition of As-

sumption 1, and the final equality is again by the definition of ψ.

Combining the above, we have that,

I3 ≤
∑

τh−1∈Dk
h−1

(I4 + I5)
2

≤
∑

τh−1∈Dk
h−1

(
1

γ

∑
xh∈Xh

∑
qh∈Qh

∣∣Pθ̂k [xh, qh | τh−1]− Pθ∗ [xh, qh | τh−1]
∣∣π(xh|τh−1)

+
1

γ

∑
qh−1∈Qh−1

∣∣Pθ̂k [qh−1 | τh−1]− Pθ∗ [qh−1 | τh−1]
∣∣)2

≤ 1

γ2
·

∑
τh−1∈Dk

h−1

( ∑
(xh,qh)∈Xh×Qh

∣∣Pθ̂k [xh, qh | τh−1]− Pθ∗ [xh, qh | τh−1]
∣∣π(xh|τh−1)

+
∑

qh−1∈Qh−1

∣∣Pθ̂k [qh−1 | τh−1]− Pθ∗ [qh−1 | τh−1]
∣∣)2

Now, we decompose the summations above over Xh ×Qh and Qh−1 into separate summations over
observation futures and action futures. That is, (xh, qh) is decomposed into (ωa

h−1, ω
o
h−1), where

ωa
h−1 = act(xh, qh) and ωo

h−1 = obs(xh, qh), and the summations are over ωa
h−1 ∈ act(Xh×Qh)
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and ωo
h−1 ∈ obs(Xh ×Qh). Similarly, qh−1 can be decomposed into (qoh−1, q

a
h−1) ∈ obs(Qh−1)×

act(Qh−1). Hence, the bound on I3 can be written as,

I3 ≤
1

γ2
·

∑
τh−1∈Dk

h−1

( ∑
ωa

h−1

∑
ωo

h−1

∣∣Pθ̂k

[
ωo
h−1

∣∣ τh−1, ω
a
h−1

]
− Pθ∗

[
ωo
h−1

∣∣ τh−1, ω
a
h

]∣∣π(xh|τh−1)

+
∑
qah−1

∑
qoh−1

∣∣Pθ̂k

[
qoh−1

∣∣ τh−1, q
a
h−1

]
− Pθ∗

[
qoh−1

∣∣ τh−1, q
a
h−1

]∣∣)2

≤ 1

γ2
·

∑
τh−1∈Dk

h−1

 ∑
ωa

h−1∈Qexp
h−1

∑
ωo

h−1

∣∣Pθ̂k

[
ωo
h−1

∣∣ τh−1, ω
a
h−1

]
− Pθ∗

[
ωo
h−1

∣∣ τh−1, ω
a
h−1

]∣∣2

=
1

γ2
∣∣Qexp

h−1

∣∣2 · ∑
τh−1∈Dk

h−1

D2TV

(
Pu

exp

h−1

θ̂k

(
ωo
h−1

∣∣ τh−1, ω
a
h−1

)
,Pu

exp

h−1

θ∗

(
ωo
h−1

∣∣ τh−1, ω
a
h−1

))
.

Where the second inequality is by the definition of Qexp
h−1 = act (Xh ×Qh ∪Qh−1). Here, the

second summation is over ωo
h−1 ∈ obs (Xh ×Qh ∪Qh−1). The final equality uses the fact the under

the policy u
exp
h−1 the probability of each action sequence ωo

h−1 is 1/
∣∣Qexp

h−1

∣∣. Note that
∣∣Qexp

h−1

∣∣ ≤
|act (Xh ×Qh)|+ |act (Qh−1)|, and hence we have

∣∣Qexp
h−1

∣∣ ≤ 2maxs∈A |Xs|QA for all h. Hence,
we have,

I3 ≤ 4max
s∈A
|Xs|2Q2

A

1

γ2

∑
τh−1∈Dk

h−1

D2TV

(
Pu

exp

h−1

θ̂k

(
ωo
h−1

∣∣ τh−1, ω
a
h−1

)
,Pu

exp

h−1

θ∗

(
ωo
h−1

∣∣ τh−1, ω
a
h

))
.

(30)

Putting this together with the bounds on I2 and I3, we get that,

I1 ≤
4λQ2

Ad

γ4
+ 4max

s∈A
|Xs|2Q2

A

1

γ2

∑
τh−1∈Dk

h−1

D2TV

(
Pu

exp

h−1

θ̂k

(
ωo
h−1

∣∣ τh−1, ω
a
h−1

)
,Pu

exp

h−1

θ∗

(
ωo
h−1

∣∣ τh−1, ω
a
h

))
=:
(
αk
h−1

)2
,

completing the proof.

Using the above bound on the difference between the observable operators of the true model and the
estimated model, we now bound the total variation distance between the distributions of trajectories
through Proposition 4.

Lemma 6. Under even E , the total variation distance between the estimated model at iteration k, θ̂k,
and the true model θ∗, is bounded by,

DTV

(
Pπ
θ̂k(τH),Pπ

θ∗(τH)
)
≤ α · EτH∼Pπ

θ̂k


√√√√H−1∑

h=0

∥∥∥∥ψ̂k

(τh)

∥∥∥∥2
(Ûk

h )−1

 , (31)

for any policy π, where

α2 =
4λHQ2

Ad

γ4
+ 28max

s∈A
|Xs|2Q2

A

1

γ2
β

Proof. Consider αk
h−1 in the previous lemma. We have that,

H∑
h=1

(
αk
h−1

)2
=

4λHQ2
Ad

γ4
+ 4max

s∈A
|Xs|2Q2

A

1

γ2

H∑
h=1

∑
τh−1∈Dk

h−1

D2TV

(
Pu

exp

h−1

θ̂k

(
ωo
h−1

∣∣ τh−1, ω
a
h−1

)
,Pu

exp

h−1

θ∗

(
ωo
h−1

∣∣ τh−1, ω
a
h

))

≤ 4λHQ2
Ad

γ4
+ 4max

s∈A
|Xs|2Q2

A

1

γ2
7β =: α2,
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where the inequality is by the bound on the total variation distance established in Lemma 4.

Now, by Proposition 4, the total variation distance is bounded by the estimation error:

DTV

(
Pπ
θ̂k(τH),Pπ

θ∗(τH)
)

(a)

≤
H∑

h=1

∑
τH

∣∣∣m⋆(ωh)
⊤
(
M̂k

h (xh)−M⋆
h(xh)

)
ψ̂k
h−1(τh−1)

∣∣∣π(τH)

(b)

≤
H∑

h=1

Eπ
τh−1∼P

θ̂k

[
αk
h−1

∥∥∥∥ψ̂k

h−1(τh−1)

∥∥∥∥
(Ûk

h−1)
−1

]

(c)

≤ α · EτH∼Pπ

θ̂k


√√√√H−1∑

h=0

∥∥∥∥ψ̂k

(τh)

∥∥∥∥2
(Ûk

h )−1

 ,
where step (a) is by Proposition 4, step (b) is by Lemma 5, and step (c) is by the Cauchy-Schwarz
inequality and the calculation above bounding

∑
h

(
αk
h−1

)2
.

A direct corollary is the following bound on the error in the estimated value function, which establishes
that the bonus term b̂k gives an upper confidence bound.
Corollary 4 (Upper confidence bound). Under the event E , for any k ∈ [K], any reward function
R :

∏
h∈[H] Xh → [0, 1], and any policy π, we have,∣∣∣V R

θ̂k(π)− V R
θ∗(π)

∣∣∣ ≤ V b̂k

θ̂k ,

where b̂k(τH) = min

{
α

√∑
h

∥∥∥∥ψ̂k

(τh)

∥∥∥∥2
(Ûk

h )−1

, 1

}
.

Proof. By a direct calculation,∣∣∣V R
θ̂k(π)− V R

θ∗(π)
∣∣∣ = ∣∣∣∣∣∑

τH

R(τH)Pπ
θ̂k(τH)−

∑
τH

R(τH)Pπ
θ∗(τH)

∣∣∣∣∣
(a)

≤
∑
τH

∣∣∣Pπ
θ̂k(τH)− Pπ

θ∗(τH)
∣∣∣

= DTV

(
Pπ
θ̂k(τH),Pπ

θ∗(τH)
)

(b)

≤ α · EτH∼Pπ

θ̂k


√√√√H−1∑

h=0

∥∥∥∥ψ̂k

(τh)

∥∥∥∥2
(Ûk

h )−1


(c)

≤ α
∑
τH

b̂k(τH)Pπ
θ̂k(τH)

=: V b̂k

θ̂k

where step (a) is by the triangle inequality and the fact that R(τH) ∈ [0, 1], step (b) is by Lemma 6,
and step (c) is by the definition of b̂k.

J.4
∑K

k=1 V
b̂k

θ̂k
is sublinear

The next step is to prove that
∑K

k=1 V
b̂k

θ̂k
= O(

√
K). To do that, we first prove that the estimated

prediction features and the ground-truth prediction features can be related through the total-variation
distance between the estimated model and the true model.
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Lemma 7. Under event E , for any k ∈ [K], we have:

EτH∼Pπ
θ∗


√√√√H−1∑

h=0

∥∥∥∥ψ̂k(τh)

∥∥∥∥2
(Ûk

h )−1


≤ 2HQA√

λ
DTV

(
Pπ
θ∗(τh),Pπ

θ̂k(τh)
)
+

(
1 +

2maxs∈A |Xs|QA

√
7rβ√

λ

)H−1∑
h=0

Eτh∼Pπ
θ∗

∥∥ψ∗(τh)
∥∥
(Uk

h )−1

Proof. First, we recall the definition of Ûk
h , and we define its ground-truth counterpart replacing

estimated features with true features,

Ûk
h = λI +

∑
τ∈Dk

h

ψ̂k(τh)ψ̂k(τh)
⊤,

Uk
h = λI +

∑
τ∈Dk

h

ψ∗(τh)ψ∗(τh)
⊤.

For any trajectory τH ∈ HH , we have,√√√√H−1∑
h=0

∥∥∥∥ψ̂k(τh)

∥∥∥∥2
(Ûk

h )−1

(a)

≤
H−1∑
h=0

∥∥∥∥ψ̂k(τh)

∥∥∥∥
(Ûk

h )−1

≤ 1√
λ

H−1∑
h=0

∥∥∥∥ψ̂k(τh)− ψ∗(τh)

∥∥∥∥
2

+

H−1∑
h=0

1 +

√
r

√∑
τh∈Dk

h

∥∥∥∥ψ̂k(τh)− ψ∗(τh)

∥∥∥∥2
2√

λ

∥∥ψ∗(τh)
∥∥
(Uk

h )−1 ,

where step (a) is simply using ∥x∥2 ≤ ∥x∥1 and step (b) is by the identity [35, Lemma 13]. Note that

r is the rank of the PSR and r ≥ rank({ψ̂k(τh) : τh ∈ Hh}), rank({ψ∗(τh) : τh ∈ Hh}).
Moreover, we have,∥∥∥∥ψ̂k(τh)− ψ∗(τh)

∥∥∥∥
2

≤
∥∥∥∥ψ̂k(τh)− ψ∗(τh)

∥∥∥∥
1

(a)
=

∑
qh∈Qh

∣∣Pθ̂k [q
o
h | τh, qah]− Pθ∗ [qoh | τh, qah]

∣∣
(b)

≤ 2max
s∈A
|Xs|QADTV

(
Pu

exp

h−1

θ̂k
(·|τh),P

u
exp

h−1

θ∗ (·|τh)
)
,

where we used the definition of ψ in (a) and the definition of the uexph−1 in (b).

Now, by Lemma 4, we have,

√√√√H−1∑
h=0

∥∥∥∥ψ̂k(τh)

∥∥∥∥2
(Ûk

h )−1

≤ 1√
λ

H−1∑
h=0

∥∥∥∥ψ̂k(τh)− ψ∗(τh)

∥∥∥∥
2

+

H−1∑
h=0

1 +

√
r

√∑
τh∈Dk

h

∥∥∥∥ψ̂k(τh)− ψ∗(τh)

∥∥∥∥2
2√

λ

∥∥ψ∗(τh)
∥∥
(Uk

h )−1

≤ 1√
λ

H−1∑
h=0

∥∥∥∥ψ̂k(τh)− ψ∗(τh)

∥∥∥∥
2

+

(
1 +

2maxs∈A |Xs|QA

√
7rβ√

λ

)H−1∑
h=0

∥∥ψ∗(τh)
∥∥
(Uk

h )−1 ,

where the first line is combining the calculations above and the second line is by the estimation
guarantee of Lemma 4.
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The first term can be bounded in expectation under Pπ
θ∗ for any π as follows,

H−1∑
h=0

Eτh∼Pπ
θ∗

[∥∥∥∥ψ̂k(τh)− ψ∗(τh)

∥∥∥∥
2

]
≤

H−1∑
h=0

Eτh∼Pπ
θ∗

[∥∥∥∥ψ̂k(τh)− ψ∗(τh)

∥∥∥∥
1

]

≤
H−1∑
h=0

∑
τh

∥∥∥∥ψ̂k(τh)
(
Pπ
θ∗(τh)− Pπ

θ̂k(τh)
)
+ ψ̂k(τh)Pπ

θ̂k(τh)− ψ∗(τh)Pπ
θ∗(τh)

∥∥∥∥
1

(a)

≤
H−1∑
h=0

∑
τh

∥∥∥∥ψ̂k(τh)

∥∥∥∥
1

∣∣∣Pπ
θ∗(τh)− Pπ

θ̂k(τh)
∣∣∣+ ∥∥∥∥ψ̂k(τh)Pπ

θ̂k(τh)− ψ∗(τh)Pπ
θ∗(τh)

∥∥∥∥
1

(b)

≤
H−1∑
h=0

∑
τh

(∥∥∥∥ψ̂k(τh)

∥∥∥∥
1

∣∣∣Pπ
θ∗(τh)− Pπ

θ̂k(τh)
∣∣∣+ ∥∥∥ψ̂k(τh)− ψ∗(τh)

∥∥∥
1
π(τh)

)
(c)

≤ 2QA

H−1∑
h=0

DTV

(
Pπ
θ∗(τh),Pπ

θ̂k(τh)
)

(d)

≤ 2HQADTV

(
Pπ
θ∗(τh),Pπ

θ̂k(τh)
)
,

where step (a) is the triangle inequality, step (b) is the definition of ψ(τh), step (c) is since∥∥∥∥ψ̂k(τh)

∥∥∥∥
1

≤
∣∣QA

h

∣∣ ≤ QA for any τh and the definition of ψ(τh), and step (d) is simply

DTV

(
Pπ
θ∗(τh),Pπ

θ̂k
(τh)

)
≥ DTV

(
Pπ
θ∗(τh),Pπ

θ̂k
(τh)

)
.

Putting this together concludes the proof,

EτH∼Pπ
θ∗


√√√√H−1∑

h=0

∥∥∥∥ψ̂k(τh)

∥∥∥∥2
(Ûk

h )−1


≤ 2HQA√

λ
DTV

(
Pπ
θ∗(τh),Pπ

θ̂k(τh)
)
+

(
1 +

2maxs∈A |Xs|QA

√
7rβ√

λ

)H−1∑
h=0

Eτh∼Pπ
θ∗

∥∥ψ∗(τh)
∥∥
(Uk

h )−1 .

The following lemma bounds the cumulative estimation error of the probability of trajectories. It can
be proved via an ℓ2 Eluder argument [38, 76, 77]. A significant portion of the proof is very similar to
that of Proposition 4, involving an exchange of (̂·) and (·)∗. We include the proof for completeness.
Lemma 8. Under event E , for any h ∈ {0, . . . ,H − 1}, we have

∑
k

DTV

(
Pπk

θ⋆ (τH),Pπk

θ̂k (τH)
)
≲

maxs∈A |Xs|QA

√
β

γ

√
rHK log

(
1 +

dQAK

γ4

)
.

Here, a ≲ b indicates that there is an absolute positive constant c s.t. a ≤ c · b.

Proof. Recall that, by the first inequality in Proposition 4, we have:

DTV

(
Pπk

θ⋆ (τH),Pπk

θ̂k (τH)
)
≤

H∑
h=1

∑
τH

∣∣∣m̂k(ωh)
⊤
(
M̂k

h (xh)−M⋆
h(xh)

)
ψ⋆(τh−1)

∣∣∣πk(τH)

This is very similar to the inequality in Lemma 5, with the difference being that the quantities
associated with the estimated model and the true model are exchanged. Since both correspond to a
PSR, the analysis follows a similar series of steps. We will use analogous notation to Lemma 5. We
index the future trajectory ωh−1 = (xh, . . . , xH) by i and history trajectory τh−1 = (x1, . . . , xh−1)

by j. We denote m̂k(ωh)
⊤
(
M̂k

h (xh)−M⋆
h(xh)

)
as wi, ψ

⋆
(τh−1) as xj , and π(ωh−1|τh−1) as πi|j .
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Define the matrix,

Λk
h = λ0I +

∑
t<k

E
j∼Pπt

θ⋆

[
xjx

⊤
j

]

where λ0 is a constant to be determined later.

For any policy π, using a similar calculation as in Lemma 5, we have,

∑
τH

∣∣∣m̂k(ωh)
⊤
(
M̂k

h (xh)−M⋆
h(xh)

)
ψ⋆(τh−1)

∣∣∣πk(τH)

= E
j∼Pπk

θ⋆

[∑
i

πi|j
∣∣w⊤

i xj
∣∣]

= E
j∼Pπk

θ⋆

(∑
i

πi|jsign(w
⊤
i xj)wi

)⊤

xj


≤ E

j∼Pπk

θ⋆

∥xj∥Λ†
h

∥∥∥∥∥∑
i

πi|jsign(w
⊤
i xj)wi

∥∥∥∥∥
Λh


where the last line is the Cauchy-Schwarz inequality.

Fix j = j0 and consider the term:
∥∥∑

i πi|j0sign(w
⊤
i xj0)wi

∥∥
Λh

in the above. This term can be
partitioned in the same manner as in Lemma 5 by simply using the definition of Λh and expanding,

∥∥∥∥∥∑
i

πi|j0sign(w
⊤
i xj0)wi

∥∥∥∥∥
2

Λh

= λ0

∥∥∥∥∥∑
i

πi|j0 · sign(w
⊤
i xj0) · wi

∥∥∥∥∥
2

2︸ ︷︷ ︸
I1

+
∑
t<k

E
j∼Pπk

θ⋆

(∑
i

πi|j0 · sign(w
⊤
i xj0) · w⊤

i xj

)2


︸ ︷︷ ︸
I2

.

We bound each term separately. The process is nearly identical to the proof of Lemma 5, but we show
it for completeness.
√
I1 is bounded by the sum of two terms,

√
I1 =

√
λ0 max

z∈Rdh−1 :∥z∥2=1

∣∣∣∣∣∑
i

πi|j0 · sign(w
⊤
i xj0) · w⊤

i z

∣∣∣∣∣
(a)

≤
√
λ0 max

∥z∥2=1

∑
ωh−1

∣∣∣∣∣m̂k(ωh)
⊤
(
M̂k

h (xh)−M⋆
h(xh)

)
z

∣∣∣∣∣π(ωh−1|j0)

(b)

≤
√
λ0 max

∥z∥2=1

∑
ωh−1

∣∣∣m̂k(ωh)
⊤M̂k

h (xh)z
∣∣∣π(ωh−1|j0)

+
√
λ0 max

∥z∥2=1

∑
ωh−1

∣∣m̂k(ωh)
⊤M⋆

h(xh)z
∣∣π(ωh−1|j0),

where step (a) is the definition of wi, πi|j0 , and the triangle inequality, and step (b) is the triangle
inequality.
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Both terms can be bounded by the γ-well-conditioning assumption on θ̂k and θ∗. Consider the first
term,

max
∥z∥2=1

∑
ωh−1

∣∣∣m̂k(ωh)
⊤M̂k

h (xh)z
∣∣∣π(ωh−1|j0)

= max
∥z∥2=1

∑
xh

(∑
ωh

∣∣∣m̂k(ωh)
⊤M̂k

h (xh)z
∣∣∣π(ωh|j0, xh)

)
π(xh|j0)

(a)

≤ max
∥z∥2=1

∑
xh

1

γ

∥∥∥M̂k
h (xh)z

∥∥∥
1
π(xh|j0)

(b)

≤ 1

γ
max

∥z∥2=1

∣∣QA
h+1

∣∣ ∥z∥1
γ

(c)

≤
√
dQA

γ2

where step (a) is by the first condition in Assumption 1, step (b) is by the second condition of Assump-
tion 1, and step (c) is by the fact that maxz∈Rdh−1 :∥z∥2=1 ∥z∥1 =

√
dh−1 ≤

√
d and

∣∣QA
h+1

∣∣ ≤ QA.

In the above, note that we used the γ-well-conditioning of PSR θ̂k in both step (a) and step (b). The
second term in

√
I1 admits an identical bound, simply by using the well-conditioning of the PSR θ̂k

in the first step and θ∗ in the second step. Hence, we have that

I1 ≤ 4
λ0dQ

2
A

γ4
. (32)

Now, we consider the term I2

I2 ≤
∑
t<k

E
τh−1∼Pπk

θ⋆


∑

ωh−1

∣∣∣m̂k(ωh)
⊤
(
M̂k

h (xh)−M⋆
h(xh)

)
ψ
∗
(τh−1)

∣∣∣π(ωh−1|j0)

2


≤
∑
t<k

E
j∼Pπk

θ⋆

[(∑
ωh−1

∣∣∣∣m̂k(ωh)
⊤M̂h(xh)

(
ψ
⋆
(τh−1)− ψ̂

k

(τh−1)

)∣∣∣∣π(ωh−1|j0)︸ ︷︷ ︸
I3

+
∑
ωh−1

∣∣∣∣m̂k(ωh)
⊤
(
M̂k

h (xh)ψ̂
k

(τh−1)−M⋆
h(xh)ψ

⋆
(τh−1)

)∣∣∣∣π(ωh−1|j0)︸ ︷︷ ︸
I4

)2]

=:
∑
t<k

E
j∼Pπk

θ⋆
(I3 + I4)

2

where the line follows by the fact that x ≤ |x| and the line follows from the triangle inequality by

adding and subtracting m̂h(ωh)M̂h(xh)ψ̂
k

(τh−1) inside the absolute value. We now bound each of
I3 and I4.

First, we bound I3 as follows,

I3 =
∑
ωh−1

∣∣∣∣m̂k
h(ωh)

⊤M̂h(xh)

(
ψ
⋆
(τh−1)− ψ̂

k

(τh−1)

)∣∣∣∣π(ωh−1|j0)

(a)
=
∑
ωh−1

∣∣∣∣m̂k
h−1(ωh−1)

⊤
(
ψ
⋆
(τh−1)− ψ̂

k

(τh−1)

)∣∣∣∣π(ωh−1|j0)

(b)

≤ 1

γ

∥∥∥∥ψ̂k

(τh−1)− ψ
⋆
(τh−1)

∥∥∥∥
1

=
1

γ

∑
qh−1∈Qh−1

∣∣Pθ̂k [qh−1 | τh−1]− Pθ∗ [qh−1 | τh−1]
∣∣ ,
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where step (a) is since m̂(ωh)
⊤M̂h(xh) = m̂(ωh−1)

⊤, step (b) is by Assumption 1, and the final
equality is by the definition of ψ.

I4 =
∑
ωh−1

∣∣∣∣m̂k(ωh)
⊤
(
M̂k

h (xh)ψ̂
k

(τh−1)−M⋆
h(xh)ψ

⋆
(τh−1)

)∣∣∣∣π(ωh−1|j0)

(a)
=
∑
ωh−1

∣∣∣m̂k(ωh)
⊤
(
Pθ̂k [xh | τh−1] ψ̂h(τh)− Pθ∗ [xh | τh−1]ψ

∗
h(τh)

)∣∣∣π(ωh−1|j0)

=
∑
xh

(∑
ωh

∣∣∣m̂k(ωh)
⊤
(
Pθ̂k [xh | τh−1] ψ̂h(τh)− Pθ∗ [xh | τh−1]ψ

∗
h(τh)

)∣∣∣π(ωh|j0, xh)

)
π(xh|j0)

(b)

≤ 1

γ

∑
xh

∥∥∥Pθ̂k [xh | τh−1] ψ̂h(τh)− Pθ∗ [xh | τh−1]ψ
∗
h(τh)

∥∥∥
1
π(xh|j0)

(c)
=

1

γ

∑
xh

∑
qh∈Qh

∣∣Pθ̂k [xh, qh | τh−1]− Pθ∗ [xh, qh | τh−1]
∣∣π(xh|j0)

where step (a) is by the fact that Mh(xh)ψh−1(τh−1) = P [xh | τh−1]ψ(τh), as shown in Equa-
tion (28), step (b) is by Assumption 1, and step (c) is since

[
ψh(τh)

]
l
= Pθ

[
qlh
∣∣ τh].

Combining the above, we have that,

I2 ≤
∑
t<k

E
j∼Pπk

θ⋆
(I3 + I4)

2

≤
∑
t<k

E
j∼Pπk

θ⋆

[(
1

γ

∑
qh−1∈Qh−1

∣∣Pθ̂k [qh−1 | τh−1]− Pθ∗ [qh−1 | τh−1]
∣∣

+
1

γ

∑
xh

∑
qh∈Qh

∣∣Pθ̂k [xh, qh | τh−1]− Pθ∗ [xh, qh | τh−1]
∣∣π(xh|j0))2]

=
1

γ2
·
∑
t<k

E
j∼Pπk

θ⋆

[( ∑
qh−1∈Qh−1

∣∣Pθ̂k [qh−1 | τh−1]− Pθ∗ [qh−1 | τh−1]
∣∣

+
1

γ

∑
xh

∑
qh∈Qh

∣∣Pθ̂k [xh, qh | τh−1]− Pθ∗ [xh, qh | τh−1]
∣∣π(xh|j0) )2]

(a)

≤ 1

γ2
·
∑
t<k

E
j∼Pπk

θ⋆

 ∑
ωa

h−1∈Qexp
h−1

∑
ωo

h−1

∣∣Pθ̂k

[
ωo
h−1

∣∣ τh−1, ω
a
h−1

]
− Pθ∗

[
ωo
h−1

∣∣ τh−1, ω
a
h

]∣∣2

=

∣∣Qexp
h−1

∣∣2
γ2

·
∑
t<k

E
j∼Pπk

θ⋆

[
D2TV

(
Pu

exp

h−1

θ̂k

(
ωo
h−1

∣∣ τh−1, ω
a
h−1

)
,Pu

exp

h−1

θ∗

(
ωo
h−1

∣∣ τh−1, ω
a
h

))]
(b)

≤ 4maxs∈A |Xs|2Q2
A

γ2
·
∑
t<k

D2H

(
Pνh(π

t,u
exp

h−1)

θ̂k
(τH) ,Pνh(π

t,u
exp

h−1)

θ∗ (τH)

)
,

where step (a) follows from the definition of Qexp
h−1 (same as Lemma 5), and step (b) is because

the Hellinger distance bounds the total variation distance and since
∣∣Qexp

h−1

∣∣ ≤ 2maxs∈A |Xs|QA.
Hence, we have,

I2 ≤ 4max
s∈A
|Xs|2Q2

A

1

γ2

∑
t<k

D2H

(
P
νh(π

t,uQexp
h−1

)

θ̂k
(τH) ,P

νh(π
t,uQexp

h−1
)

θ∗ (τH)

)
.
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Now, combining the bound on I1 and I2 allows us to finally bound
∥∥∑

i πi|jsign(w
⊤
i xj)wi

∥∥2
Λh

as
follows,

∥∥∥∥∥∑
i

πi|jsign(w
⊤
i xj)wi

∥∥∥∥∥
2

Λh

≤ 4λ0Q
2
Ad

γ4
+

4maxs∈A |Xs|2Q2
A

γ2
·
∑
t<k

D2H

(
Pνh(π

t,u
exp

h−1)

θ̂k
(τH) ,Pνh(π

t,u
exp

h−1)

θ∗ (τH)

)
=:
(
α̃k
h−1

)2
,

We choose λ0 = γ4

4Q2
Ad

, and bound α̃2 :=
∑

h

(
α̃k
h−1

)2
as follows,

∑
h

(
α̃k
h−1

)2
= H +

4maxs∈A |Xs|2Q2
Aβ

γ2

∑
π∈Dk

D2H

(
Pνh(π

t,u
exp

h−1)

θ̂k
(τH) ,Pνh(π

t,u
exp

h−1)

θ∗ (τH)

)

≤ H +
28maxs∈A |Xs|2Q2

Aβ

γ2

≲
maxs∈A |Xs|2Q2

Aβ

γ2
,

where the second line is by the estimation guarantee of Lemma 4.

Thus, we have,

DTV

(
Pπk

θ⋆ (τH),Pπk

θ̂k (τH)
)
≤

H∑
h=1

∑
τH

∣∣∣m̂k(ωh)
⊤
(
M̂k

h (xh)−M⋆
h(xh)

)
ψ⋆(τh−1)

∣∣∣πk(τH)

≤
H∑

h=1

E
τh−1∼Pπk

θ⋆

∥∥∥ψ∗
(τh−1)

∥∥∥
Λ†

h

∥∥∥∥∥∑
i

πi|jsign(w
⊤
i xj)wi

∥∥∥∥∥
Λh


≤ E

τh−1∼Pπk

θ⋆

 H∑
h=1

∥∥∥ψ∗
(τh−1)

∥∥∥
Λ†

h

∥∥∥∥∥∑
i

πi|jsign(w
⊤
i xj)wi

∥∥∥∥∥
Λh


(a)

≤ E
τh−1∼Pπk

θ⋆


√√√√ H∑

h=1

∥∥∥ψ∗
(τh−1)

∥∥∥2
Λ†

h

√√√√ H∑
h=1

∥∥∥∥∥∑
i

πi|jsign(w
⊤
i xj)wi

∥∥∥∥∥
2

Λh


(b)

≤ α̃ · E
τh−1∼Pπk

θ⋆


√√√√ H∑

h=1

∥∥∥ψ∗
(τh−1)

∥∥∥2
Λ†

h


≤ α̃ ·

√√√√ H∑
h=1

E
τh−1∼Pπk

θ⋆

[∥∥∥ψ∗
(τh−1)

∥∥∥2
Λ†

h

]
,

where step (a) is by the Cauchy-Schwarz inequality and step (b) is by the bound established above.
Since the total variation distance is bounded above by 2, we have

DTV

(
Pπk

θ⋆ (τH),Pπk

θ̂k (τH)
)
≤ min

α̃ ·
√√√√ H∑

h=1

E
τh−1∼Pπk

θ⋆

[∥∥∥ψ∗
(τh−1)

∥∥∥2
Λ†

h

]
, 2

 .
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Finally, the proof is completed by summing over k using the elliptical potential lemma as follows,

K∑
k=1

DTV

(
Pπk

θ⋆ (τH),Pπk

θ̂k (τH)
)
≤

K∑
k=1

min

α̃ ·
√√√√ H∑

h=1

E
τh−1∼Pπk

θ⋆

[∥∥∥ψ∗
(τh−1)

∥∥∥2
Λ†

h

]
, 2


(a)

≤
√
K

√√√√ K∑
k=1

H∑
h=1

min

{
α̃2 · E

τh−1∼Pπk

θ⋆

[∥∥∥ψ∗
(τh−1)

∥∥∥2
Λ†

h

]
, 4

}

≤
√
Kα̃

√√√√ K∑
k=1

H∑
h=1

min

{
E
τh−1∼Pπk

θ⋆

[∥∥∥ψ∗
(τh−1)

∥∥∥2
Λ†

h

]
, 4/α̃2

}
(b)

≤
√
KHα̃

√
(1 + 4/α̃2)r log(1 +K/λ0)

(c)

≲
maxs∈A |Xs|QA

γ

√
rKHβ log(1 +K/λ0)

(d)

≲
maxs∈A |Xs|QA

γ

√
rKHβ log(1 + dQAK/γ).

Here, step (a) is uses the relationship between the ℓ1 and ℓ2 norms ∥·∥1 ≤
√
d ∥·∥2. Step (b) is by

the elliptical potential lemma ([35, Lemma 14]; see also [96–98]). Step (c) uses the bound on α̃
established above and the fact that

√
1 + 4/α̃2 is bounded by an absolute constant. Step (d) uses the

definition of λ0 and the fact that
√
28(1 + 4/α̃2) is bounded by an absolute constant.

Using the two lemmas above, we are now ready to show that
∑K

k=1 V
b̂k

θ̂k
(πk) = O(

√
K). The

argument is identical to [35, Lemma 6] and does not require modification for generalized PSRs. We
recount the argument for completeness.

Lemma 9. Under the event E , with probability at least 1− δ, we have:

K∑
k=1

V b̂k

θ̂k (π
k) ≲

(
√
r +

QA

√
H

γ

)
max2s∈AQ

2
AH
√
drHβKβ0

γ2

where β0 = max{log(1 +K/λ), log(1 + dQAK/γ)}, and λ = γ maxs∈A|Xs|QAβmax{
√
r,QA

√
H/γ}√

dH

Proof. First, we note that,

V b̂k

θ̂k (π
k) =

∑
τ

Pπk

θ̂k (τ )̂b
k(τ) =

∑
τ

Pπk

θ∗ (τ )̂bk(τ)+
∑
τ

(Pπk

θ̂k (τ)−Pπk

θ∗ (τ))̂bk(τ) ≤ V b̂k

θ∗ (πk)+DTV

(
Pπk

θ̂k ,Pπk

θ∗

)
,

where we recall that b̂k(·) ∈ [0, 1]. Hence, we may focus on bounding the value of b̂k under the true
model θ∗ and use the bound on the cumulative total variation estimation error established in Lemma 8.

Recall the definition of the bonus term,

b̂k(τH) := min

{
α

√∑
h

∥∥∥∥ψ̂k

(τh)

∥∥∥∥
(Ûk

h )−1

, 1

}
,

which is defined in terms of the estimated prediction features ψ̂. Recall also that in Lemma 7
we established a bound on the expectation of the prediction features under the true model, which
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corresponds to V b̂k

θ∗ . Hence, we proceed to bound
∑

k V
b̂k

θ∗ (πk) as follows,

∑
k

V b̂k

θ∗ (πk)

=
∑
k

E
τH∼Pπk

θ∗

[
b̂k(τH)

]

=
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min

α
√√√√∑
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∥∥∥∥2, 1


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αHQA√
λ

DTV

(
Pπk

θ∗ ,Pπk

θ̂k

)
, 1

}
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√
7rβ√

λ

)H−1∑
h=0

E
τH∼Pπk

θ∗

[∥∥∥ψ∗
(τh)

∥∥∥
(Uk

h )−1

]
, 1

}
︸ ︷︷ ︸

I1

+

K∑
k=1

αHQA√
λ

DTV

(
Pπk

θ∗ ,Pπk

θ̂k

)
,

where step (a) is by Lemma 7 and step (b) is since min(a+ b, c) ≤ min(a, c) + b when a, b, c are
non-negative.

Next, we bound the term I1. Recall the definition of Uk
h := λI +

∑
τh∈Dk

h
ψ
∗
(τh)ψ

∗
(τh)

⊤. Also,
note that the process

(
E
τh∼Pπk

θ∗

[∥∥∥ψ∗
(τh)

∥∥∥
(Uk

h )−1

]
−
∥∥∥ψ∗

(τk+1,h+1
h )

∥∥∥
(Ûk

h )−1

)K

k=1

is a martingale. Hence, by the Azuma-Hoeffding inequality, we have that with probability at least 1−δ,

I1 ≤
√
2K log(2/δ) +

K∑
k=1

min

{
α
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2K log(2/δ) + α
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1 +
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√
7rβ√
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)
H
√
rK log(1 +K/λ)

where the second line is by the Elliptical potential lemma ([35, Lemma 14]; see also [96–98]).

We now return to bounding
∑K

k=1 V
b̂k

θ̂k
(πk). For convenience we define β0 := max{log(1 +

K/λ), log(1 + dQAK/γ)} and we choose λ as follows,

λ =
γmaxs∈A |Xs|2QAβmax{

√
r,QA

√
H/γ}√

dH
.
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We have,

K∑
k=1

V b̂k

θ̂k (π
k) ≤
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V b̂k
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K∑
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≲
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=
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√
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√
βγ

)(
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√
rKββ0

γ

(c)
=

1 +

√
QA max{

√
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√
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√
dH

γ
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√
rKββ0

γ

≲

1 +
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√
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r,QA

√
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}
γ

 maxs∈A |Xs|QAH
√
rKββ0

γ

≤

(
√
r +

QA

√
H

γ

)
maxs∈A |Xs|Q2

AH
√
rdHKββ0

γ2
,

where step (a) is by Lemma 8 and the bound on I1 established above, step (b) uses the definition of α
and the fact that α ≲ QA

√
Hdλ

γ2 + maxs∈A|Xs|QA

√
β

γ , and step (c) is by plugging in the choice of λ.

J.5 Proof of Theorem 4

Theorem (Restatement of Theorem 4). Suppose Assumption 1 holds. Let pmin = O
(

δ
KH

∏H
h=1|Xh|

)
,

λ =
γ maxs∈A|Xs|2QAβmax{√r,QA

√
H/γ}√

dH
, α = O

(
QA

√
Hd

γ2

√
λ+ maxs∈A|Xs|QA

√
β

γ

)
, and let β =

O(log
∣∣Θε

∣∣), where ε = O(pmin

KH ). Then, with probability at least 1− δ, Algorithm 1 returns a model
θϵ and a policy π that satisfy

V R
θϵ (π∗)− V R

θϵ (π) ≤ ε, and ∀π, DTV (Pπ
θϵ(τH),Pπ

θ∗(τH)) ≤ ε.

In addition, the algorithm terminates with a sample complexity of,

Õ

((
r +

Q2
AH

γ2

)
rdH3 maxs∈A |Xs|2Q4

Aβ

γ4ϵ2

)
.

Proof. By Propositions 6 to 8, the event E occurs with high probability, P [E ] ≥ 1− 3δ. Suppose E
holds. Then, by the upper confidence bound established in Corollary 4, if Algorithm 1 terminates,
then the following must hold,

∀π, DTV (Pπ
θϵ(τH),Pπ

θ∗(τH)) = 2max
R

∣∣V R
θϵ (π)− V R

θ∗(π)
∣∣ ≤ V b̂ϵ

θϵ (π) ≤ ϵ,

where the maximization is over reward functions R : HH → [0, 1]. The last inequality is simply the
termination condition of Algorithm 1.
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Now, the difference between the optimal value and the value of π (the policy returned by the algorithm)
can be bounded as follows,

V R
θ∗(π∗)− V R

θ∗(π) = V R
θ∗(π∗)− V R

θϵ (π∗) + V R
θϵ (π∗)− V R

θϵ (π) + V R
θϵ (π)− V R

θ∗(π)

≤ 2max
π

V b̂ϵ

θϵ (π) ≤ ϵ,

where the inequality follows from the fact that π = argmaxπ V
R
θϵ (π) and by Corollary 4.

Recall that by Lemma 9, we have,
K∑

k=1

V πk

θ̂k,b
k ≲

(
√
r +

QA

√
H

γ

)
maxs∈A |Xs|Q2

AH
√
rdHKββ0

γ2
.

By the pigeon-hole principle and the termination condition of Algorithm 1, the algorithm must
terminate within

K = Õ

((
r +

Q2
AH

γ2

)
rdH2Q4

A maxs∈A |Xs|2 β
γ4ϵ2

)
episodes. Since each episode contains H iterations, this implies a sample complexity of

K = Õ

((
r +

Q2
AH

γ2

)
rdH3Q4

A maxs∈A |Xs|2 β
γ4ϵ2

)
.

This concludes the proof of Theorem 4.

K Proof of Theorem 5: UCB Algorithm for Generalized PSRs (Game Setting)

Theorem (Restatement of Theorem 5). Suppose Assumption 1 holds. Let pmin = O
(

δ
KH

∏H
h=1|Xh|

)
,

λ =
γ maxs∈A|Xs|2QAβmax{√r,QA

√
H/γ}√

dH
, α = O

(
QA

√
Hd

γ2

√
λ+ maxs∈A|Xs|QA

√
β

γ

)
, and let β =

O(log
∣∣Θε

∣∣), where ε = O(pmin

KH ). Then, with probability at least 1− δ, Algorithm 2 returns a model
θϵ and a policy π which is an ε-approximate equilibrium (either NE or CCE). That is,

V i
θ∗(π) ≥ V i,†

θ∗ (π−i)− ε, ∀i ∈ [N ].

In addition, the algorithm terminates with a sample complexity of,

Õ

((
r +

Q2
AH

γ2

)
rdH3 maxs∈A |Xs|2Q4

Aβ

γ4ϵ2

)
.

Proof. Recall that the model-estimation portion of Algorithm 2 is identical to Algorithm 1. Hence,
by Theorem 4, the returned estimated model θε satisfies,

DTV (Pπ
θε(τH),Pπ

θ∗(τH)) ≤ ε/2,
for any collection of policies π = (πi : i ∈ [N ]). This implies that V i

θ∗(π) ≥ V i
θε(π)− ε/2 for all

i ∈ [N ].

Let Γi = Γi
ind in the case of running the algorithm to find a Nash equilibrium and Γi = Γi

cor in
the case of a coarse correlated equilibrium. Recall that the collection of policies π = (π1, . . . , πN )
returned by the algorithm are an equilibrium under θε. That is, for all i ∈ [N ],

V i
θε(π) = max

π̃i∈Γi
ind

V i
θε(π̃i, π−i) =: V i,†

θε (π−i).

Moreover, note that,∣∣∣V i,†
θε (π−i)− V i,†

θ∗ (π−i)
∣∣∣ = ∣∣∣∣max

π̃i
V i
θε(π̃i, π−i)−max

π̃i
V i
θ∗(π̃i, π−i)

∣∣∣∣
≤ max

π̃i

∣∣V i
θε(π̃i, π−i)− V i

θ∗(π̃i, π−i)
∣∣

≤ ε/2,
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where the final inequality is since DTV (Pπ
θε(τH),Pπ

θ∗(τH)) ≤ ε/2 for any π. Thus, V i,†
θε (π−i) ≥

V i,†
θ∗ (π−i)− ε/2.

Putting this together, we have,

V i
θ∗(π) ≥ V i

θε(π)− ε/2
= V i,†

θε (π−i)− ε/2
≥ V i,†

θ∗ (π−i)− ε.

Hence, π is an ε-approximate equilibrium (either NE or CCE).
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by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: N/A
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]

Justification: There is no data or code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperpa-
rameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This work conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This work is theoretical in nature and does not have immediately-foreseeable
negative or positive societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not release data or models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: We do not use any existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: We do not introduce new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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