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ABSTRACT

Adversarial training is an important topic in robust deep learning, but the com-
munity lacks attention to its practical usage. In this paper, we aim to resolve a
real-world challenge, i.e., training a model on an imbalanced and noisy dataset
to achieve high clean accuracy and adversarial robustness, with our proposed
Omnipotent Adversarial Training (OAT) strategy. OAT consists of two innovative
methodologies to address the imperfection in the training set. We first introduce
an oracle into the adversarial training process to help the model learn a correct
data-label conditional distribution. This carefully-designed oracle can provide
correct label annotations for adversarial training. We further propose logits adjust-
ment adversarial training to overcome the data imbalance issue, which can help the
model learn a Bayes-optimal distribution. Our comprehensive evaluation results
show that OAT outperforms other baselines by more than 20% clean accuracy
improvement and 10% robust accuracy improvement under complex combinations
of data imbalance and label noise scenarios.

1 INTRODUCTION

How to enhance the adversarial robustness of deep learning models has constantly attracted attention
from both industry and academia. Adversarial robustness refers to the ability of a deep learning
model to resist against adversarial attacks. Madry et al. (2018) proposed adversarial training (AT), a
popular strategy to improve the model’s robustness. Due to its high computational cost, numerous
works further proposed computation-friendly AT methods (Shafahi et al., 2019; Zheng et al., 2020)
which are scalable to large datasets. Although significant efforts have been devoted to making AT
more efficient and practical, there still exists a gap for real-world applications. The main obstacle is
that these works idealize the training dataset as completely clean and uniformly distributed. However,
in reality, annotations are often noisy (Whitehill et al., 2009; Xiao et al., 2015) and datasets tend to
be long-tailed (Lin et al., 2017; Wang et al., 2017), making these methods less effective.

Specifically, label noise is a common occurrence in real-world datasets due to variations in the
experience and expertise of data annotators. For example, as reported in (Song et al., 2022), the
Clothing1M dataset (Xiao et al., 2015) contains about 38.5% noise, and the WebVision dataset (Li
et al., 2017) was found to have around 20.0% noise. Although some crowdsourcing platforms, like
Amazon Mechanical Turk (MTu, 2022), can provide mechanisms like voting to reduce the ratio of
noisy labels in the datasets, it remains challenging to guarantee completely clean label mapping.
Consequently, label noise is still an open problem in deep learning model training. On the other hand,
data imbalance can occur when it is difficult to collect sufficient samples for several specific classes
(Wang et al., 2017). Typically, we call a dataset long-tailed if most of the data belong to several
classes, called head classes, and fewer data belong to other classes, known as tail classes (Wang et al.,
2017). Given that this is the natural property of the data distribution, it is challenging to create a
perfectly balanced dataset in practice. Additionally, label noise can exacerbate data imbalance by
introducing additional noise to the tail classes. Thus, it is important to consider both label noise and
data imbalance together when developing a robust deep learning model.

Challenges arise when we train a robust model on a noisy and imbalanced dataset. First, in AT,
generating adversarial examples (AEs) relies on the gradients, which are calculated with the label and
model’s prediction, to update the perturbation for the target model. With noisy labels, the generated
AEs become less reliable, reducing the effectiveness of AT. Additionally, incorrect annotations
prevent the model from learning the correct mapping between data and labels, which harms the clean
accuracy of the model. Second, an imbalanced dataset decreases the model’s generalizability and
makes the model lean to classify a sample into head classes (Lin et al., 2017). This can result in poor
performance on tail classes and lower overall robustness of the model.
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Most of existing AT solutions only consider clean and balanced datasets. To the best of our knowledge,
only two works have examined label noise in the context of AT (Dong et al., 2022b; Huang et al.,
2020). However, they aim at addressing the overfitting issue rather than robustness enhancement. The
poor label refurbishment effect in these methods under massive label noise makes the models fail to
converge during AT (proved in our experiments in Section 4). For the data imbalance scenario, only
one published work studies AT on long-tailed datasets (Wu et al., 2021). Since this work pays no
attention to the joint effects of label noise and data imbalance on model robustness, it cannot work
properly without correct labels, because the label distribution can be misleading.

If we can extract data with wrong annotations in the training set and provide correct labels to them
with high probability, we will have the opportunity to mitigate the adverse effects of training models
under noisy labels. Furthermore, if we can correct the wrong labels, we will recover a correct label
distribution, which is helpful to address the overfitting problem caused by data imbalance. Based on
these insights, we propose a novel training strategy, named Omnipotent Adversarial Training (OAT),
which aims to obtain a robust model trained on a noisy and imbalanced dataset. The innovative idea
of OAT is to introduce an oracle to regulate the model training over imperfect data samples.

OAT is a two-step training scheme, i.e., oracle training and robust model training. Specifically, in the
first step, we set up an oracle to provide correct annotations for a noisy dataset. Unlike existing label
correction methods that rely solely on model predictions (Arazo et al., 2019; Song et al., 2019a), we
adopt a novel technique to predict labels using high-dimensional feature embeddings and a k-nearest
neighbors algorithm. To overcome the data imbalance challenge in oracle training, we propose a
dataset re-sampling technique. Moreover, to further improve the label correction process, we adopt
the self-supervised contrastive learning technique to train the oracle.

In the second step, to address the data imbalance problem, we introduce the logits adjustment
adversarial training, which can help the model learn a Bayes-optimal distribution. By obtaining
correct labels from the oracle, we can approximate the true label distribution, which is adopted to
adjust the model’s predictions, allowing the model to achieve comparable robustness to previous AT
methods (Wu et al., 2021). Furthermore, we instruct the model to interact with the oracle to obtain
high clean accuracy and robustness even on an imbalanced dataset with massive label noise. Extensive
experimental results show that OAT achieves higher clean accuracy and robustness on the noisy and
imbalanced training dataset. Overall, our contributions can be summarized as follows.

• We propose the first AT strategy, OAT, aiming to solve a real-world problem, i.e., adversarial
training on a noisy and imbalanced dataset.

• OAT outperforms previous works under various practical scenarios. Specifically, it achieves up to
80.72% clean accuracy and 42.84% robust accuracy on a heavy imbalanced dataset with massive
label noise, which is about 50% and 20% higher than SOTA methods.

• Our comprehensive experiments can inspire researchers to propose more approaches to minimize
the performance gap between ideal and practical datasets.

2 PRELIMINARIES

In the following, we provide the necessary definitions before presenting the proposed method. Due to
the paper limitation, we leave the discussions of related works and baseline methods in Appendix A.

For a supervised learning algorithm, we consider a dataset with two basic components, i.e., the set of
data and the label mapping. We give a formal definition of a dataset1 as follows:

Definition 1 Suppose a set S and a mapping A satisfy A(x) ∈ [C], where x ∈ S. The tuple (S,A)
is called a dataset D(S,A). C represents the number of classes. A(x) is the label of data x.

Clearly, given a set S with the cardinality |S| and the number of classes C, where |S| > C, there are
C + |S|!

∑C
i=2(

(
C
i

)(|S|−1
i−1

)
(i)!) different mappings, where |S|! and (i)! are the factorial of |S| and i.

We introduce a set A to represent all possible label mappings A:

Definition 2 Given a set S and the number of classes C, A contains all mappings A, satisfying
A(x) ∈ [C] for x ∈ S.

1We leave the open-set problem (Wang et al., 2018) as future work. In this paper, all data with incorrect
labels have correct labels within the label set of the dataset (Han et al., 2018a).
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Figure 1: Overview of OAT. We alternately train the oracle and AT-model. The oracle provides the
AT-model with new annotations, to overcome the challenges in long-tailed and noisy label learning.

With set A, we can give a special label mapping Agt under certain culture knowledge K. Every
person with knowledge K will agree with the output of Agt for every x ∈ S. Then, we call the
dataset D(S,Agt) a clean dataset without label noise. Otherwise, any A ∈ A that is not Agt

constructs a noisy dataset D(S,A). So, whether a dataset contains label noise is depended on
A and independent of S. Formally, we can define the noise ratio (NR) of a dataset D(S,A) as
NR =

∑
x∈S 1(A(x)!=Agt(x))

|S| , where |S| is the number of the data in set S . With previous definitions,
we can give a formal definition of label distribution for a given dataset D(S,A).

Definition 3 Given a dataset D(S,A), Ni =
∑

x∈S 1(A(x) = i) representing the number of data
in the set S mapped into class i by A.

In Definition 3, we count the number of data for each class i based on the output of A. So, given a
dataset D(S,A), we can calculate its imbalanced ratio (IR) under A: IR = min(Ni)

max(Ni)
, and the true

imbalanced ratio (IRgt) under Agt. Usually, if A ≠ Agt, the label distributions will be different for
the clean dataset and noisy datasets. We use D to represent a dataset if there is no ambiguity.

In practice, obtaining the mapping Agt requires lots of additional effort, so the dataset owner usually
adopts a plausible mapping A to approximate the correct mapping, which will introduce label
noise into the dataset. Under this situation, both the mapping Agt and the corresponding correct
label distribution are unknown. So, for AE generation and loss backpropagation in AT, we require
reconstructing a more precise label mapping A′ from the known one A to decrease the label noise in
the dataset and calculating the correct label distribution.

3 OMNIPOTENT ADVERSARIAL TRAINING

To address the label noise and imbalanced data distribution problems, we introduce an oracle O into
the training process to improve the robustness of the AT-model M. This idea is realized with a new
training framework, named Omnipotent Adversarial Training (OAT). Figure 1 illustrates the overall
workflow of OAT, which consists of two key processes: oracle training (OT) and adversarial training
(AT). OAT aims to leverage the oracle O to provide correct annotations to train an AT-model M on
the dataset D. The oracle can be represented as O(·) = OC(OF (·)), where OF is the feature encoder,
and OC is the classification layer. The AT-model can be represented as M(·) = MC(MF (·)), where
MF is the feature encoder, and MC is the classification layer. We use the same architecture for O
and M. In every training epoch, we first train the oracle, then adopt it to predict the labels for the
dataset D, and finally use the predictions as annotations to generate AEs and train the AT-model M.
Below, we present the details of the OT and AT processes.

3.1 ORACLE TRAINING

Unlike the traditional model training process that focuses on achieving strong generalizability on test
data, oracle training aims to optimize the oracle’s ability to predict training samples as accurately
as the ground-truth set Agt. This unique objective motivates us to develop an effective approach
to training the oracle. If the oracle is trained under the annotations from the label mapping A,
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the training set D can be both noisy and imbalanced, hindering the oracle’s ability to approximate
the target mapping Agt. To address these issues, we introduce four main techniques, i.e., dataset
re-sampling, label refurbishment, dataset split, and contrastive self-supervised learning.

Dataset Re-sampling ( 1 in Figure 1). Training a model to fit an imbalanced label distribution is
more challenging than training a model on a balanced one (Lin et al., 2017). Based on this prior,
we over-sample the dataset D(S,A) to make the number of data for every class equal. Specifically,
we first find out the largest number of data among all classes Nmax = max(Ni). For each class
i, we fix all data x, satisfying A(x) = i. So, there will be Ni data in class i. Then, we randomly
and repeatedly select Nmax −Ni data from the fixed data with replacement and add them into the
set S for class i. This process yields Nmax samples for every class, and we refer to the resulting
balanced dataset as D′(S ′,A). The dataset re-sampling process is only launched for the firs time the
OT process runs, and the generated set S ′ will be used for the following procedure.

Label Refurbishment and Dataset Split ( 2 in Figure 1). This technique is introduced to improve
the prediction accuracy of the oracle O. It has been found that the model first learns samples with
correct labels from the noisy dataset (Arpit et al., 2017; Song et al., 2019b). So, in the early training
phase, the model gives higher confidence scores for correctly labeled data. Due to the model’s
generalizability, the samples with incorrect labels will be classified into correct classes with high
confidence. Our idea is to use a threshold θr to refurbish labels as follows:

Ar(x) =

{A(x), max(σ(O(x))) < θr

argmax(σ(O(x))), max(σ(O(x))) ≥ θr

where O(x) is the logits output of data x and σ(·) is the softmax function. After label refurbishment,
we obtain a dataset D′(S ′,Ar), which contain less label noise.

To train our oracle as meticulously as possible, we split the dataset D′(S ′,Ar) into a clean one and
a noisy one. Previous works adopt the loss function values (Arazo et al., 2019; Li et al., 2020) or
predicted confidence scores (Malach & Shalev-Shwartz, 2017; Song et al., 2019a) to judge whether the
data have correct annotations or not, which is not stable and can fail under massive label noise (Feng
et al., 2022). Different from them, we adopt a non-parametric k-nearest neighbors (k-NN) model
K to split the dataset. The insight behind our technique is that models trained in a contrastive
self-supervised manner will automatically map the data belonging to the same class into the neighbor
feature embedding (Kang et al., 2021), which indicates that data in the same class will have more
similar features than data from different classes. Therefore, we first adopt K to find the k-nearest
neighbors for each data x in the feature space. Then, we calculate the predicted label LK

x from K by
finding the class which contains most of the neighbors for each data x. If the label LK

x is the same as
Ar(x), we add x into the clean set S ′

C . Otherwise, we add x into the noisy set S ′
N . After the label

refurbishment and dataset split, we have two new datasets: D′(S ′
C ,Ar) containing less label noise

and D′(S ′
N ,Ar) containing more label noise, which are named D′

C and D′
N , respectively.

Contrastive Self-Supervised Learning ( 3 in Figure 1). In prior works, models trained in a self-
supervised manner are proved to be more robust against label noise (Feng et al., 2022; Karim et al.,
2022; Li et al., 2022) and data imbalance (Kang et al., 2021). So, we borrow a contrastive learning
approach, BYOL (Grill et al., 2020), but removing the momentum encoder, for two reasons. First,
Chen & He (2021) proved that using a shared feature encoder to replace the momentum encoder can
also achieve good results. Second, using a shared encoder can improve the efficiency and reduce
the training cost. We introduce additional two modules OH and OP to participate in the contrastive
learning part. Because the contrastive learning does not require the labels, we directly adopt the full
dataset D′ to train the oracle, and the loss can be represented as:

LCOS = −Ex∽D′
OH(OF (τ1(x))) ∗ OP (OH(OF (τ2(x))))

∥OH(OF (τ1(x)))∥2 ∗ ∥OP (OH(OF (τ2(x))))∥2
,

where τ1 is a weak data augmentation strategy (only cropping and flipping) and τ2 is a strong data
augmentation strategy based on the AutoAugment (Cubuk et al., 2019).

For the supervised learning part, we only adopt the samples in the previously separated clean dataset
D′

C , and the loss is:

LCE = Ex,Ar(x)∽D′
C
cross-entropy(O(x),Ar(x)).
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Furthermore, to better leverage the knowledge from the oracle, we expect that it can provide the
AT-model M more different prediction distributions from M. So, we adopt a penalty term as follows:

LMSE = −Ex∽D′
C
MSE(σ(O(x)), σ(M(x)))

Overall, the loss function for the oracle training is LO = LCOS + LCE + LMSE.

3.2 ADVERSARIAL TRAINING

Although we adopt an oracle to correct the wrong annotations, it is not enough to train a robust
model on a dataset with unknown label distributions. Based on a previous study (Wu et al., 2021), it
is important to design specific approaches to addressing the dataset imbalance, because the model
trained over the long-tailed dataset can badly overfit the head classes. In the AT stage of OAT, we
combine two techniques, i.e., label distribution estimation and logits adjustment AT, to address the
challenges together.

Label Distribution Estimation ( 4 in Figure 1). As the considered training set can be both noisy
and imbalanced, it is important to infer the correct label annotations and label distribution. To obtain
a relatively precise label distribution, we first ask the oracle O to predict the label for each sample in
D. To make it clear, we define a new label mapping based on the oracle as follows:

AO(x) = argmax(σ(O(x))), x ∈ S.

So, the label distribution predicted by the oracle is NO
i =

∑
x∈S 1(AO(x) = i), i ∈ [C], where C is

the number of classes in the dataset D.

Logits Adjustment AT ( 5 in Figure 1). To overcome the over-confidence issue in long-tailed
recognition, we apply the previous logits adjustment approach (Menon et al., 2021) with the label
distribution NO

i . Specifically, we adjust M’s output logits during training in the following way:

l = M(x) + log([NO
1 , NO

2 , . . . , NO
C ]).

Whether the label distribution is a uniform one or a long-tailed one, the logits adjustment translates
the model’s confidence scores into Bayes-optimal predictions (Menon et al., 2021) under the current
label distribution, making it a universal solution for all possible label distributions.

The logits adjustment AT can be divided into two steps, i.e., AE generation and model training. In the
AE generation step, we simply follow PGD-AT (Madry et al., 2018) to generate AEs. This step can
be formulated as xadv = PGD(M, x,AO(x)), where the PGD attack accepts as input a classifier
model M, a clean sample x and its corresponding label AO(x), and returns an AE xadv. We adjust
the output logits during the AE generation.

In the model training step, we consider the oracle as a soft label generator, and adopt its confidence
scores as labels to train the AT-model M. It can be seen as a strong and adaptive label smoothing
method (Müller et al., 2019), which further addresses the robust overfitting issue (Rice et al., 2020).
The loss function is written as

LCE = −Ex∽D

C∑
i=1

log(σ(M(xadv) + log([NO
1 , NO

2 , . . . , NO
C ]))i) ∗ σ(O(x))i.

To further leverage the feature embedding generated by the oracle, we add a contrastive learning
loss into the model training step. This loss has the same formula as the contrastive loss in the oracle
training process:

LCOS = −Ex∽D
OH(OF (x)) ∗ OP (OH(MF (xadv)))

∥OH(OF (x))∥2 ∗ ∥OP (OH(MF (xadv)))∥2
,

where we consider the PGD attack as a very strong data augmentation strategy.

Overall, the loss function for adversarial training is LM = LCE + LCOS. In our experiment, we
consider LMSE in LO and LCOS in LM are two terms under the oracle-model interactions. We
explore their effectiveness through ablation studies in Section 4.2.
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4 EXPERIMENTS

4.1 CONFIGURATIONS

Datasets and models. We adopt two datasets to evaluate OAT, i.e., CIFAR-10 and CIFAR-
100 (Krizhevsky et al., 2009). We generate imbalanced datasets based on the exponential method (Cao
et al., 2019), which is widely used in previous papers (Cui et al., 2019; Ren et al., 2020; Wu et al.,
2021). For the label noise generation, we consider two types of label noise, i.e., symmetric noise
and asymmetric noise, which are common settings in previous works (Feng et al., 2022; Li et al.,
2020; Karim et al., 2022). Specifically, symmetric noise means the noisy label is uniformly selected
from all possible labels except the ground-truth one. Asymmetric noise simulates a more practical
scenario, where the ground-truth label can only be changed into a new one with similar semantic
information, e.g., truck → automobile, bird → airplane, deer → horse, and cat → dog. We only apply
the asymmetric noise to CIFAR-10, as we cannot find prior works studying the asymmetric noise in
CIFAR-100. When generating a label-noisy and imbalanced dataset, we first build a dataset under the
given NR and then use the exponential method on the noisy labels to sample it to obtain a long-tailed
dataset under this IR, which can guarantee that all classes contain at least one correct sample. In
some cases, the ground-truth label distribution can be a balanced one and the noisy label distribution
is badly imbalanced, which increases the difficulty of adversarial training. For the model structure, as
the oracle and AT-model in OAT are based on ResNet-18 (He et al., 2016), to make a fair comparison,
we implement all baseline methods on ResNet-18.

Baselines. We consider five baseline methods, i.e., PGD-AT (Madry et al., 2018), TRADES (Zhang
et al., 2019), SAT (Huang et al., 2020), TE (Dong et al., 2022b) and RoBal (Wu et al., 2021).
Specifically, PGD-AT and TRADES are two representative AT strategies, which are proposed to
improve the model’s robustness on balanced and clean datasets. SAT and TE study the memorization
of AT under random labels. Some of their experimental results are obtained from datasets with
random noise and achieve good performance. So we consider that they can be adopted to train models
on noisy datasets. In order to make a fair comparison, we adopt the PGD version of SAT and TE,
based on their official implementations. RoBal is proposed to solve the long-tailed AT challenge. We
compare OAT with these baseline methods under various settings.

Implementation details. For OAT, we adopt the same k-NN structure as SSR+ (Feng et al., 2022)
with k = 200, and follow the hyperparameter setup in its implementation, i.e., θr = 0.8. OH and
OP are two MLPs with one hidden layer, whose hidden dimension is 256 and output dimension is
128. We discuss the training cost overhead in Section 4.6.

To evaluate the robustness and clean accuracy of baselines and OAT, we follow the training strategy
proposed in (Rice et al., 2020), except for RoBal, which follows a different training setting for long-
tailed datasets (Wu et al., 2021). All other hyperparameters in baseline methods are set following
their official implementations. Specifically, for all methods, we use SGD as the optimizer, with the
initial learning rate 0.1, momentum 0.9, weight decay 0.0005, and batch size 128. For RoBal, the
total number of training epochs is 80, and we decay the learning rate at the 60-th and 75-th epoch
with a factor 0.1. For others, the total number of training epochs is 200, and the learning rate decays
at the 100-th and 150-th epoch with a factor 0.1. Note that the learning rate decay is only for the
AT-model in OAT, while the oracle does not need to adjust the learning rate, because we observe a
larger learning rate can slow down the convergence speed of the oracle and improve the AT-model’s
robustness by introducing uncertainty in the oracle’s predictions. For adversarial training, except
for TRADES, we adopt l∞-norm PGD (Madry et al., 2018), with a maximum perturbation size
ϵ = 8/255 for 10 iterations, and step length α = 2/255 in each iteration. For TRADES, we follow its
official implementation, with a maximum perturbation size ϵ = 8/255 for 10 iterations, step length
α = 2/255 in each iteration, and robust loss scale β = 6.0.

Metrics. We mainly report the clean accuracy (CA) and robust accuracy (RA) under AutoAt-
tack (Croce & Hein, 2020). The results under other different attacks can be found in Appendix D.
We save the “Best” model with the highest robustness on the test set under PGD-20 and the “Last”
model at the end of training. Due to page limit, some results of the “Last” models are in Appendix B.

4.2 ABLATION STUDY

We first explore the effectiveness of different components proposed in OAT, including the oracle-
model interactions and logits adjustment. Table 1 presents the results on a balanced and imbalanced
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Method Best Last Best Last
CA RA CA RA CA RA CA RA

Setup IR = 1.0; NR = 0.0 IR = 0.02; NR = 0.0
O +M 82.73 48.74 85.01 46.11 - - - -

w/ interaction 83.15 48.80 85.10 47.44 63.10 29.96 63.95 27.68
w/ logits adjustment 83.49 48.49 85.44 47.25 74.46 31.33 68.70 24.60

Table 1: Ablation of components in OAT on CIFAR-10.

Noise Type =
symmetric

NR = 0.0 NR = 0.2 NR = 0.4 NR = 0.6 NR = 0.8
Best Last Best Last Best Last Best Last Best Last

CA RA CA RA CA RA CA RA CA RA CA RA CA RA CA RA CA RA CA RA
PGD-AT 82.92 47.83 84.44 41.90 79.90 46.83 78.10 32.78 74.80 44.88 73.09 32.44 66.97 40.70 64.21 32.65 - - - -
TRADES 82.88 48.63 82.84 46.45 79.89 45.56 78.40 40.76 76.95 42.40 73.47 31.72 72.66 37.62 64.54 18.06 - - - -

SAT 72.79 45.39 70.61 44.37 69.82 44.54 67.89 43.18 65.50 43.26 63.21 40.34 50.91 36.30 47.43 31.79 - - - -
TE 82.49 50.37 83.00 49.33 80.71 49.12 81.09 47.42 77.32 46.80 77.57 44.75 65.51 42.50 66.45 38.90 - - - -

RoBal 81.73 46.92 84.58 46.54 76.18 45.90 80.23 45.31 70.66 43.89 74.70 43.50 51.88 36.17 51.63 35.95 - - - -
OAT 83.49 48.49 85.44 47.25 83.99 48.13 85.16 47.05 83.69 48.58 85.40 47.57 83.00 48.57 84.81 46.91 82.24 48.14 84.44 46.91

Table 2: Results on balanced CIFAR-10 with asymmetric label noise. The best results are in bold. “-”
means the model does not converge under this setting.

Noise Type =
asymmetric

NR = 0.2 NR = 0.4 NR = 0.6
CA RA CA RA CA RA

PGD-AT 80.84 46.99 76.22 45.59 51.83 35.01
TRADES 78.83 45.96 69.14 39.99 50.37 34.29

SAT 67.88 43.77 59.25 38.88 52.41 34.94
TE 79.41 49.39 71.59 43.52 51.69 35.57

RoBal 80.78 45.58 77.74 45.19 70.73 39.97
OAT 83.47 48.56 83.65 48.82 71.99 43.06

Table 3: Results from “Best” models on balanced CIFAR-10 with the asymmetric label noise.

Noise Type =
symmetric

NR = 0.0 NR = 0.2 NR = 0.4 NR = 0.6 NR = 0.8
CA RA CA RA CA RA CA RA CA RA

PGD-AT 57.01 24.76 51.81 23.08 46.28 21.44 33.83 17.86 - -
TRADES 56.65 22.75 52.82 20.40 48.00 17.30 42.22 14.18 - -

SAT 41.37 21.29 38.77 20.44 34.46 18.74 26.68 15.48 - -
TE 57.06 24.91 51.66 23.43 46.21 21.43 33.86 18.01 - -

RoBal 56.17 24.18 51.37 23.22 45.10 20.76 34.79 17.39 - -
OAT 59.14 25.79 58.75 25.72 57.82 25.72 56.95 25.01 53.89 24.73

Table 4: Results from “Best” models on balanced CIFAR-100 with asymmetric label noise.

clean dataset, respectively. It is clear that with the oracle-model interaction, both clean accuracy and
robust accuracy are improved. Furthermore, the results indicate that the interaction can mitigate robust
overfitting. On the other hand, the logits adjustment will harm the clean accuracy and robustness of
models trained on the balanced dataset and cause some robust overfitting on the imbalanced dataset,
because the estimated label distribution from the oracle is not as exact as the ground-truth distribution.
However, when we train models on an imbalanced dataset, the clean accuracy and robustness of
the best model indicate that the effectiveness of the logits adjustment is significant. Overall, both
oracle-model interaction and logits adjustment are essential components.

4.3 RESULTS UNDER LABEL NOISE

We evaluate the models trained on balanced but noisy datasets. Tables 2 and 3 show the results of
the balanced CIFAR-10 dataset containing symmetric and asymmetric noise, respectively. Table 4
illustrates the results of models trained on the balanced CIFAR-100 dataset with symmetric noise.
Symmetric noise can harm the clean accuracy of baseline models to a bigger degree than harming
the robustness. Clearly, decreasing the clean accuracy will reduce the robust accuracy. So when
the noise ratio reaches 0.8, we observe models trained with baseline methods do not converge, and
the robustness is close to zero. Based on the results, it is clear that OAT achieves consistent high
clean accuracy and robust accuracy under different settings. Specifically, SAT adopts the model’s
confidence scores to refurbish the labels, and achieves lower clean accuracy, as the model trained
with AEs will be less overconfident of the data (Wen et al., 2020) and have slower convergence speed,
making the label refurbishment fail. On the other hand, TE only works under less label noise and
fails when there are massive noise in the dataset. For example, on CIFAR-10 and NR = 0.6, the clean
accuracy of the model with the best robust accuracy of OAT is about 32% higher than that of SAT.
The robustness of this model is about 6% higher than that of TE. Besides, with the increasing noise
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NR = 0.0
CIFAR-10 CIFAR-100

IR = 0.1 IR = 0.05 IR = 0.02 IR = 0.1 IR = 0.05 IR = 0.02
CA RA CA RA CA RA CA RA CA RA CA RA

PGD-AT 72.27 35.31 65.88 31.79 - - 42.59 14.85 38.47 12.89 - -
TRADES 64.46 34.65 55.84 30.63 - - 39.41 16.23 34.38 14.03 - -

SAT 66.32 34.95 56.31 29.99 - - 34.42 17.60 30.63 15.56 - -
TE 67.38 35.93 57.58 32.16 - - 42.58 14.83 38.14 12.94 - -

RoBal 75.93 38.54 71.71 36.71 65.89 32.01 43.43 16.94 39.19 14.59 34.31 12.18
OAT 79.42 41.69 75.82 38.15 74.46 31.33 50.10 19.10 46.88 16.66 41.82 14.18

Table 5: Results from “Best” models on clean but imbalanced CIFAR-10 and CIFAR-100.
Noise Type =

symmetric
CA RA CA RA CA RA CA RA CA RA CA RA

IR=0.1
NR=0.4

IR=0.1
NR=0.6

IR=0.05
NR=0.4

IR=0.05
NR=0.6

IR=0.02
NR=0.4

IR=0.02
NR=0.6

PGD-AT 48.97 28.87 31.42 20.97 36.58 24.60 - - - - - -
TRADES 44.44 23.91 30.93 20.22 33.06 21.65 - - - - - -

SAT 37.99 26.94 18.69 16.70 28.12 22.71 - - - - - -
TE 45.04 28.56 20.62 17.10 33.78 24.11 - - - - - -

RoBal 55.13 37.00 32.14 25.20 52.25 34.17 28.96 22.61 47.29 30.04 28.06 22.01
OAT 80.07 42.86 80.72 42.84 79.07 41.25 79.10 40.64 76.13 37.48 73.54 35.60

Table 6: Results from “Best” models on imbalanced and noisy CIFAR-10 (symmetric).
Noise Type =

symmetric
CA RA CA RA CA RA CA RA CA RA CA RA

IR=0.1
NR=0.4

IR=0.1
NR=0.6

IR=0.05
NR=0.4

IR=0.05
NR=0.6

IR=0.02
NR=0.4

IR=0.02
NR=0.6

PGD-AT 23.24 10.26 19.98 9.38 18.59 8.95 13.53 8.02 - - - -
TRADES 22.27 8.67 16.95 7.21 22.27 7.30 14.42 6.20 - - - -

SAT 25.37 13.41 17.01 10.25 21.63 11.53 14.44 9.33 - - - -
TE 23.40 10.05 19.68 8.97 18.53 9.04 14.14 7.90 - - - -

RoBal 28.83 12.50 16.59 8.52 24.35 10.61 12.29 6.29 19.25 7.87 10.58 4.20
OAT 49.99 19.86 48.50 18.83 46.53 17.06 42.79 16.20 39.77 13.71 35.68 12.67

Table 7: Results from “Best” models on imbalanced and noisy CIFAR-100 (symmetric).

ratio, both clean accuracy and robustness face the overfitting challenge. Among all methods, OAT
achieves the best results to alleviate overfitting, due to the adaptive label smoothing from the oracle.

4.4 RESULTS UNDER DATA IMBALANCE

We then assess the models trained on imbalanced clean datasets. In long-tailed recognition, the main
challenge is the overfitting problem, where the model gives high confidence scores to head classes.
Table 5 displays the performance of models trained on long-tailed CIFAR-10 and CIFAR-100. In
this setting, the training algorithms only need to address the long-tailed challenges. Hence, RoBal,
which is specifically designed for long-tailed AT, achieves competitive results compared with OAT.
On the other hand, OAT outperforms RoBal in two aspects: consistency and generalization. First,
OAT achieves better clean accuracy and robust accuracy on different datasets and different IR values.
For example, on CIFAR-10 and IR = 0.05, the clean and robust accuracy of the “Best” model from
OAT is about 4% and 1% higher than the ones from RoBal. On CIFAR-100 and IR = 0.02, our “Best”
model achieves 41.82% clean accuracy and 14.18% robust accuracy, which are 7% and 2% higher
than that of RoBal. Second, RoBal requires different hyperparameters for CIFAR-10 and CIFAR-100,
but OAT does not require changing the hyperparameters. Overall, for the long-tailed AT task, OAT is
more advanced than RoBal.

4.5 RESULTS UNDER LABEL NOISE AND DATA IMBALANCE

Finally, we study the models trained on imbalanced and noisy datasets. Tables 6 and 7 present the
results on imbalanced datasets containing symmetric noise. Table 8 shows the results on imbalanced
CIFAR-10 with asymmetric noise. We consider various combinations of IR (selected from {0.1, 0.05,
0.02}) and NR (selected from {0.4, 0.6}). Results of other setups are in Appendix C and E.

We observe that OAT outperforms other baselines in both clean accuracy and robustness under various
setups and datasets. One important reason is that previous methods cannot correctly predict the
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Noise Type =
asymmetric

CA RA CA RA CA RA CA RA CA RA CA RA
IR=0.1
NR=0.4

IR=0.1
NR=0.6

IR=0.05
NR=0.4

IR=0.05
NR=0.6

IR=0.02
NR=0.4

IR=0.02
NR=0.6

PGD-AT 59.69 31.36 55.96 29.24 54.17 28.97 47.36 26.55 - - - -
TRADES 55.54 28.26 51.30 27.07 47.54 25.27 43.13 23.69 - - - -

SAT 53.88 30.75 51.01 29.39 50.78 28.15 45.90 26.32 - - - -
TE 58.68 31.34 53.66 29.06 52.22 28.85 47.36 26.56 - - - -

RoBal 69.05 35.84 65.86 33.14 63.62 31.96 57.90 29.99 56.16 27.82 56.35 27.87
OAT 79.03 42.09 69.44 37.88 76.71 38.96 66.19 35.00 70.67 30.83 62.39 29.06

Table 8: Results from “Best” models on imbalanced and noisy CIFAR-10 (asymmetric).

label distribution for an imbalanced and noisy dataset, which hinders the AE generation process.
Without valid AEs and corresponding labels to train the model, either clean accuracy or robustness
will significantly decrease. In contrast, the oracle in OAT can naturally predict the label distribution
because of the four techniques we propose in the oracle training process. As a result, OAT can achieve
both higher clean accuracy and robust accuracy. For example, on CIFAR-10, IR = 0.05, NR = 0.6 of
symmetric noise, the clean accuracy and robust accuracy of the “Best” model from OAT are about
27% and 7% higher than the ones of RoBal, respectively.

Asymmetric noise can transform the dataset from a balanced one into an imbalanced one. For
example, under asymmetric noise, the number of samples in class “truck” will be significantly smaller
than that in class “automobile”. RoBal achieves better results than other baselines. However, because
of the label distribution estimation and logits adjustment in OAT, it outperforms RoBal in both clean
accuracy and robustness, which proves that OAT is the best choice for different types of label noise.

4.6 TRAINING COST OVERHEAD

We compare the training time cost between OAT and PGD-AT on one RTX 3090 GPU card. We
implement our code with Pytorch version 1.12, and Cuda version 11.6. When we train a model on
CIFAR-10, the training time per epoch is 110 seconds for PGD-AT. For OAT, the oracle training
time per epoch is 39 seconds, and the adversarial training time per epoch is 116 seconds. So, the
total training time for one epoch is 155 seconds, which is only 45 seconds longer than the PGD-AT.
Considering the clean accuracy and robustness we obtain with OAT, the training cost is acceptable.

4.7 LABEL DISTRIBUTION CORRECTION
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Figure 2: Label distribution predicted on the noisy
and imbalanced CIFAR-10 dataset.

To evaluate the quality of the estimated label
distribution, Figure 2 illustrates the oracle’s pre-
dicted labels in the 10th, 50th, and 100th training
epoch, respectively. Here “Prior” denotes the
label distribution of the known dataset, and “GT”
denotes the ground-truth distribution of clean
labels, which is unknown for a noisy dataset.
We consider a complex case, where both clean
labels and noisy labels are long-tailed. Other
cases can be found in Appendix F. The results
prove that our oracle can correctly produce the
label distribution in this scenario, which facili-
tates the significant improvement of clean accuracy and robustness.

5 CONCLUSION AND FUTURE WORK

We propose a new training strategy, OAT, to solve real-world adversarial training challenges, including
label noise and data imbalance. By introducing an oracle, OAT achieves state-of-the-art results under
different evaluation setups. We hope the dataset re-sampling, logits adjustment AT and other proposed
techniques can inspire researchers to explore more effective training strategies for practical usage.

The main limitation of OAT is the performance drop under massive asymmetric noise, although it
is much better than prior works. From the results, we can find that models trained on a dataset
containing massive asymmetric label noise will have lower clean accuracy and become easier to
overfit the training set. It is important to address this challenge as future work.
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Ekin D. Cubuk, Barret Zoph, Dandelion Mané, Vijay Vasudevan, and Quoc V. Le. AutoAugment:
Learning Augmentation Strategies From Data. In Proc. of the CVPR, pp. 113–123, 2019.

Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge J. Belongie. Class-Balanced Loss Based
on Effective Number of Samples. In Proc. of the CVPR, pp. 9268–9277, 2019.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
hierarchical image database. In Proc. of the CVPR, pp. 248–255, 2009.

Chengyu Dong, Liyuan Liu, and Jingbo Shang. Label noise in adversarial training: A novel
perspective to study robust overfitting. In NeurIPS, 2022a.

Yinpeng Dong, Ke Xu, Xiao Yang, Tianyu Pang, Zhijie Deng, Hang Su, and Jun Zhu. Exploring
Memorization in Adversarial Training. In Proc. of the ICLR, 2022b.

Chen Feng, Georgios Tzimiropoulos, and Ioannis Patras. SSR: An Efficient and Robust Framework
for Learning with Unknown Label Noise. In Proc. of the BMVC, 2022.

Aritra Ghosh, Himanshu Kumar, and P. S. Sastry. Robust Loss Functions under Label Noise for Deep
Neural Networks. In Proc. of the AAAI, pp. 1919–1925, 2017.

Jacob Goldberger and Ehud Ben-Reuven. Training deep neural-networks using a noise adaptation
layer. In Proc. of the ICLR, 2017.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H. Richemond, Elena
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A RELATED WORKS

Noisy Label Recognition. Label noise is a common threat in practice because the data annotation
process heavily depends on the knowledge of the workers. Recently, numerous works aim to
address the label noise in image recognition from different perspectives, including new model
architectures (Sukhbaatar & Fergus, 2015), robust loss functions (Wang et al., 2019; Zhang &
Sabuncu, 2018), label correction (Huang et al., 2020; Reed et al., 2015) and sample selection (Han
et al., 2018b). Specifically, Goldberger & Ben-Reuven (2017) proposed a noise adaptation layer
to model the label transition pattern with a noise transition matrix. However, the estimation error
between the adaptation layer and real label noise distribution is large when the noise rate is high in the
training set, causing worse results. For the robust loss functions, Ghosh et al. (2017) proved that the
Mean Absolute Error (MAE) loss is robust to the label noise, but it harms the model’s generalizability.
Label correction (Huang et al., 2020; Reed et al., 2015) is another way to address the label noise
problem. Existing methods aim to learn the correct label mapping and then correct the wrong labels.
Li et al. (2020) proposed a sample selection method, adopting two models to adaptively choose
samples with smaller loss values as clean data and samples with larger loss values as noisy data.
Then, each model predicts a label for the noisy data and provides them to its peer model to learn
together with clean data.

Long-tailed Recognition. Data imbalance is common in collected large datasets, since data belonging
to some categories are naturally rare, e.g., special diseases in medical datasets (Skin-7 (Codella et al.,
2018)), endangered species in animal datasets (iNaturalist 2018 (iNa, 2018)). Such imbalanced data
distribution will harm the model’s generalizability (Buda et al., 2018). Long-tailed recognition is
proposed to solve this real-world problem and train models on imbalanced datasets. A straightforward
approach is to re-sample the training distribution to make it more balance, such as random under-
sampling head classes (Liu et al., 2009) and random over-sampling tail classes (Han et al., 2005).
Recently, a logits adjustment method is proposed (Menon et al., 2021; Ren et al., 2020), solving the
dilemma that models lean to classify samples into head classes with high probability.

Adversarial Training. Adversarial training (AT) (Madry et al., 2018; Zhang et al., 2019) is one of
the most famous approaches to increase the robustness of models. It generates on-the-fly AEs to train
the models. Recently, several works are proposed to promote AT in real-world applications. Zheng
et al. (2020) proposed an efficient AT method based on the transferability of AEs to reduce the AE
generation cost, making it possible to adopt AT on large datasets, such as ImageNet (Deng et al.,
2009). Dong et al. (2022a) study the label shifting in adversarial training to address the overfitting
problem. However, their work is not related to the topic in this paper, and we do not consider
it as a baseline method. Researchers also studied the behaviors of models trained on randomly
labeled datasets with AT and found that models trained with AT can memorize those random labels
(Dong et al., 2022b; Huang et al., 2020). Based on the observation, they proposed new training
algorithms to address the overfitting problem, which can also be adopted to train models on noisy
datasets. For another practical problem, RoBal (Wu et al., 2021) is proposed to meet the imbalanced
dataset scenario. To the best of our knowledge, there is no work focusing on training models on
both imbalanced and noisy datasets with AT. We step forward to real-world applications and
explore this threat model in this paper. Our method combines label refurbishment and distribution
re-balancing, achieving state-of-the-art results under different combinations of label noise and data
imbalance settings.

B FULL TABLES OF MAIN PAPER

Due to the page limit, we cannot show the whole tables in our main paper. So, we give the full results
in this supplementary materials for readers’ further reference. These tables contain more results under
different configurations, and the results prove the advantages of OAT in both clean accuracy and
robustness. Specifically, we show the full results of models trained on balanced but noisy datasets in
Tables 9, and 10. The results in Tables 11 and 12 are for models trained on clean but imbalanced
datasets. In Tables 13, 14, and 15, the models are trained on imbalanced and noisy datasets for further
evaluation of the complex scenarios.
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Noise Type = symmetric

Method

NR = 0.0 NR = 0.2 NR = 0.4 NR = 0.6 NR = 0.8
Best Last Best Last Best Last Best Last Best Last

CA RA CA RA CA RA CA RA CA RA CA RA CA RA CA RA CA RA CA RA
PGD-AT 57.01 24.76 57.03 19.27 51.81 23.08 46.65 12.93 46.28 21.44 35.90 7.32 33.83 17.86 22.98 3.42 - - - -
TRADES 56.65 22.75 54.44 22.13 52.82 20.40 48.29 17.15 48.00 17.30 40.16 11.63 42.22 14.18 28.35 5.44 - - - -

SAT 41.37 21.29 36.99 20.00 38.77 20.44 34.30 18.93 34.46 18.74 28.74 17.32 26.68 15.48 18.17 12.00 - - - -
TE 57.06 24.91 57.05 20.34 51.66 23.43 47.56 14.32 46.21 21.43 37.65 9.10 33.86 18.01 24.41 4.47 - - - -

RoBal 56.17 24.18 58.29 22.98 51.37 23.22 52.49 20.30 45.10 20.76 45.81 17.94 34.79 17.39 34.68 17.30 - - - -
OAT 59.14 25.79 58.89 24.69 58.75 25.72 58.51 24.40 57.82 25.72 57.88 24.65 56.95 25.01 56.80 24.63 53.89 24.73 54.49 23.88

Table 9: Results on balanced CIFAR-100 dataset, in which the label noise is symmetric.
Noise Type = asymmetric

Method

NR = 0.2 NR = 0.4 NR = 0.6
Best Last Best Last Best Last

CA RA CA RA CA RA CA RA CA RA CA RA
PGD-AT 80.84 46.99 80.56 39.91 76.22 45.59 75.84 38.27 51.83 35.01 53.23 31.54
TRADES 78.83 45.96 78.94 42.85 69.14 39.99 67.84 36.37 50.37 34.29 53.64 33.77

SAT 67.88 43.77 64.22 42.25 59.25 38.88 51.06 37.61 52.41 34.94 47.35 33.81
TE 79.41 49.39 80.17 47.75 71.59 43.52 64.32 40.51 51.69 35.57 50.70 34.37

RoBal 80.78 45.58 82.70 45.22 77.74 45.19 80.37 44.30 70.73 39.97 72.11 40.03
OAT 83.47 48.56 84.85 46.61 83.65 48.82 85.03 47.14 71.99 43.06 73.94 42.36

Table 10: Results on balanced CIFAR-10 dataset, in which the label noise is asymmetric.

Method
IR = 1.0 IR = 0.1 IR = 0.05 IR = 0.02

Best Last Best Last Best Last Best Last
CA RA CA RA CA RA CA RA CA RA CA RA CA RA CA RA

PGD-AT 82.92 47.83 84.44 41.90 72.27 35.31 73.91 29.70 65.88 31.79 67.18 26.81 - - - -
TRADES 82.88 48.63 82.84 46.45 64.46 34.65 69.88 32.30 55.84 30.63 62.26 28.62 - - - -

SAT 72.79 45.39 70.61 44.37 66.32 34.95 51.06 31.94 56.31 29.99 43.12 28.46 - - - -
TE 82.49 50.37 83.00 49.33 67.38 35.93 67.29 34.85 57.58 32.16 57.73 30.97 - - - -

RoBal 81.73 46.92 84.58 46.54 75.93 38.54 77.80 36.70 71.71 36.71 73.64 32.78 65.89 32.01 68.41 29.17
OAT 83.49 48.49 85.44 47.25 79.42 41.69 79.96 36.76 75.82 38.15 77.83 32.71 74.46 31.33 68.70 24.60

Table 11: Results on clean but imbalanced CIFAR-10 dataset.

Method
IR = 1.0 IR = 0.1 IR = 0.05 IR = 0.02

Best Last Best Last Best Last Best Last
CA RA CA RA CA RA CA RA CA RA CA RA CA RA CA RA

PGD-AT 57.01 24.76 57.03 19.27 42.59 14.85 42.78 13.06 38.47 12.89 37.94 11.97 - - - -
TRADES 56.65 22.75 54.44 22.13 39.41 16.23 40.46 14.47 34.38 14.03 36.20 13.09 - - - -

SAT 41.37 21.29 36.99 20.00 34.42 17.60 31.80 16.63 30.63 15.56 28.53 14.85 - - - -
TE 57.06 24.91 57.05 20.34 42.58 14.83 41.83 13.26 38.14 12.94 37.97 11.83 - - - -

RoBal 56.17 24.18 58.29 22.98 43.43 16.94 44.34 14.99 39.19 14.59 40.70 13.58 34.31 12.18 36.32 11.53
OAT 59.14 25.79 58.89 24.69 50.10 19.10 49.93 18.42 46.88 16.66 46.30 16.02 41.82 14.18 41.27 14.05

Table 12: Results on clean but imbalanced CIFAR-100 dataset.

Best Last Best Last Best Last Best Last Best Last Best Last
CA RA CA RA CA RA CA RA CA RA CA RA CA RA CA RA CA RA CA RA CA RA CA RA

Noise Type = symmetric

Method IR = 0.1; NR = 0.4 IR = 0.1; NR = 0.6 IR = 0.05; NR = 0.4 IR = 0.05; NR = 0.6 IR = 0.02; NR = 0.4 IR = 0.02; NR = 0.6
PGD-AT 48.97 28.87 46.57 13.28 31.42 20.97 30.38 17.02 36.58 24.60 37.42 13.74 - - - - - - - - - - - -
TRADES 44.44 23.91 46.00 16.62 30.93 20.22 32.42 11.70 33.06 21.65 38.13 16.33 - - - - - - - - - - - -

SAT 37.99 26.94 27.32 21.77 18.69 16.70 15.08 12.71 28.12 22.71 22.94 19.28 - - - - - - - - - - - -
TE 45.04 28.56 42.25 25.67 20.62 17.10 20.75 16.98 33.78 24.11 32.40 22.14 - - - - - - - - - - - -

RoBal 55.13 37.00 60.20 35.88 32.14 25.20 32.14 25.20 52.25 34.17 54.64 33.29 28.96 22.61 27.70 21.23 47.29 30.04 48.56 29.39 28.06 22.01 26.96 21.19
OAT 80.07 42.86 80.24 39.16 80.72 42.84 81.04 39.66 79.07 41.25 79.28 36.64 79.10 40.64 79.14 37.17 76.13 37.48 75.89 32.65 73.54 35.60 71.67 30.16

Table 13: Results on imbalanced and noisy CIFAR-10 dataset, in which the label noise is symmetric.

Best Last Best Last Best Last Best Last Best Last Best Last
CA RA CA RA CA RA CA RA CA RA CA RA CA RA CA RA CA RA CA RA CA RA CA RA

Noise Type = symmetric

Method IR = 0.1; NR = 0.4 IR = 0.1; NR = 0.6 IR = 0.05; NR = 0.4 IR = 0.05; NR = 0.6 IR = 0.02; NR = 0.4 IR = 0.02; NR = 0.6
PGD-AT 23.24 10.26 23.55 5.14 19.98 9.38 13.95 2.45 18.59 8.95 21.16 4.49 13.53 8.02 12.58 2.07 - - - - - - - -
TRADES 22.27 8.67 25.63 6.37 16.95 7.21 16.88 3.36 22.27 7.30 22.12 5.70 14.42 6.20 15.01 2.99 - - - - - - - -

SAT 25.37 13.41 22.99 12.70 17.01 10.25 14.00 9.45 21.63 11.53 19.64 11.06 14.44 9.33 12.95 8.42 - - - - - - - -
TE 23.40 10.05 24.23 5.15 19.68 8.97 13.97 2.69 18.53 9.04 21.50 4.83 14.14 7.90 12.62 2.24 - - - - - - - -

RoBal 28.83 12.50 29.72 9.02 16.59 8.52 18.01 7.66 24.35 10.61 25.85 8.82 12.29 6.29 13.53 5.79 19.25 7.87 21.74 6.93 10.58 4.20 10.61 3.78
OAT 49.99 19.86 49.38 18.64 48.50 18.83 46.96 18.44 46.53 17.06 45.40 16.57 42.79 16.20 42.16 15.45 39.77 13.71 39.60 13.61 35.68 12.67 35.62 12.27

Table 14: Results on imbalanced and noisy CIFAR-100 dataset, in which the label noise is symmetric.

C OTHER SETUPS FOR IMBALANCED AND NOISY DATASETS

Besides the settings discussed in our main paper, i.e., the IR is selected from {0.1, 0.05, 0.02} and the
NR is selected from {0.4, 0.6}, we show the results of NR is 0.2 under different IRs. The results in
Tables 16, 17, and 18 are for CIFAR-10 with symmetric noise, CIFAR-10 with asymmetric noise, and
CIFAR-100 with symmetric noise, respectively. The results prove that OAT outperforms all baselines
under various setups.
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Best Last Best Last Best Last Best Last Best Last Best Last
CA RA CA RA CA RA CA RA CA RA CA RA CA RA CA RA CA RA CA RA CA RA CA RA

Noise Type = asymmetric

Method IR = 0.1; NR = 0.4 IR = 0.1; NR = 0.6 IR = 0.05; NR = 0.4 IR = 0.05; NR = 0.6 IR = 0.02; NR = 0.4 IR = 0.02; NR = 0.6
PGD-AT 59.69 31.36 60.40 23.35 55.96 29.24 54.96 22.09 54.17 28.97 55.09 21.69 47.36 26.55 50.33 20.15 - - - - - - - -
TRADES 55.54 28.26 58.54 25.57 51.30 27.07 52.42 24.22 47.54 25.27 51.48 23.02 43.13 23.69 47.23 21.59 - - - - - - - -

SAT 53.88 30.75 44.08 27.96 51.01 29.39 39.13 25.32 50.78 28.15 37.46 25.15 45.90 26.32 30.37 21.80 - - - - - - - -
TE 58.68 31.34 56.20 30.33 53.66 29.06 51.21 27.66 52.22 28.85 48.90 27.68 47.36 26.56 43.20 24.26 - - - - - - - -

RoBal 69.05 35.84 71.23 32.52 65.86 33.14 64.68 29.63 63.62 31.96 65.71 28.78 57.90 29.99 61.06 27.63 56.16 27.82 59.28 26.01 56.35 27.87 56.28 24.97
OAT 79.03 42.09 80.01 38.21 69.44 37.88 69.68 33.57 76.71 38.96 76.98 33.82 66.19 35.00 66.77 29.83 70.67 30.83 70.35 26.60 62.39 29.06 61.52 21.42

Table 15: Results on imbalanced and noisy CIFAR-10 dataset, in which the label noise is asymmetric.

Noise Type = symmetric

Method

Best Last Best Last Best Last
CA RA CA RA CA RA CA RA CA RA CA RA

IR = 0.1; NR = 0.2 IR = 0.05; NR = 0.2 IR = 0.02; NR = 0.2
PGD-AT 63.39 32.35 60.80 18.78 53.75 28.91 51.74 18.13 - - - -
TRADES 54.06 27.91 58.24 23.79 46.22 25.31 49.95 21.72 - - - -

SAT 54.65 30.36 40.46 27.25 43.67 27.15 33.30 24.33 - - - -
TE 61.61 32.40 57.29 30.14 51.42 28.73 45.86 26.86 - - - -

RoBal 66.79 38.93 70.70 36.47 62.04 36.04 66.80 33.44 56.15 31.93 60.24 29.87
OAT 79.57 42.69 80.58 38.57 77.93 39.75 78.82 36.39 74.03 36.09 76.13 31.99

Table 16: Results on imbalanced and noisy CIFAR-10 dataset, in which the label noise is symmetric.

Noise Type = asymmetric

Method

Best Last Best Last Best Last
CA RA CA RA CA RA CA RA CA RA CA RA

IR = 0.1; NR = 0.2 IR = 0.05; NR = 0.2 IR = 0.02; NR = 0.2
PGD-AT 64.49 32.24 64.12 24.64 55.98 29.30 58.18 22.59 - - - -
TRADES 58.24 30.77 60.33 27.82 50.43 27.47 54.78 24.75 - - - -

SAT 58.03 31.70 46.11 29.00 53.15 29.27 38.88 26.39 - - - -
TE 58.81 32.81 58.31 31.37 54.50 29.43 51.05 28.51 - - - -

RoBal 72.88 37.02 74.04 35.07 67.63 35.05 70.99 31.96 62.10 31.09 64.95 28.58
OAT 79.50 41.87 80.39 37.88 75.56 38.66 77.70 34.40 73.32 33.49 73.28 29.52

Table 17: Results on imbalanced and noisy CIFAR-10 dataset, in which the label noise is asymmetric.

Noise Type = symmetric

Method

Best Last Best Last Best Last
CA RA CA RA CA RA CA RA CA RA CA RA

IR = 0.1; NR = 0.2 IR = 0.05; NR = 0.2 IR = 0.02; NR = 0.2
PGD-AT 28.52 12.17 33.09 8.77 22.69 10.26 29.52 8.02 - - - -
TRADES 33.26 12.35 32.87 10.53 28.92 11.45 28.71 9.14 - - - -

SAT 30.10 15.79 27.97 15.04 26.93 13.95 25.14 13.39 - - - -
TE 28.52 12.18 32.72 8.82 22.83 10.06 29.24 7.71 - - - -

RoBal 37.72 15.04 37.37 12.22 32.84 12.88 33.61 10.76 28.21 10.62 28.86 8.97
OAT 50.34 19.23 50.36 18.72 46.50 17.10 46.58 16.59 40.78 14.32 40.48 13.95

Table 18: Results on imbalanced and noisy CIFAR-100 dataset, in which the label noise is symmetric.

D OTHER ATTACKS

Besides AutoAttack (Croce & Hein, 2020), we consider other L∞-norm and L2-norm attacks to
evaluate the robustness of the models trained with OAT. Specifically, in Tables 19, 21, and 23, we
show the results of models under four L∞-norm attacks, i.e., PGD-20, PGD-100 (Madry et al., 2018),
CW-100 (Carlini & Wagner, 2017) and AutoAttack (AA) (Croce & Hein, 2020). For CW attacks, we
replace the CE loss in PGD attacks with CW loss. The attack settings are ϵ = 8/255 and η = 2/255.
The number of attack steps is 20 for PGD-20, and 100 for PGD-100 and CW-100. In Tables 20, 22,
and 24, we show the results of models under three L2-norm attacks. For the PGD attacks, the max
perturbation size is ϵ = 0.5, and the step length is α = 0.1. We consider the 20-step attack, PGD-20,
and the 100-step attack, PGD-100. For the CW attack, we replace the CE loss in PGD attack with CW
loss. Overall, under both L∞-norm and L2-norm attacks, the models trained with OAT achieving high
clean accuracy and robust accuracy, which proves that OAT is an advanced strategy for addressing
the data imbalance and label noise challenges in adversarial training.
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Method CA RA CA RA CA RA
PGD-20 PGD-100 CW-100 AA PGD-20 PGD-100 CW-100 AA PGD-20 PGD-100 CW-100 AA

OAT
IR = 1.0; NR = 0.0 IR = 1.0; NR = 0.2 IR = 1.0; NR = 0.4

83.49 52.73 52.33 50.36 48.49 83.99 52.31 51.97 50.41 48.13 83.69 52.72 52.31 50.57 48.58

OAT
IR = 0.1; NR = 0.0 IR = 0.1; NR = 0.2 IR = 0.1; NR = 0.4

79.42 45.15 44.94 43.37 41.69 79.57 46.04 45.60 44.40 42.69 80.07 46.77 46.57 44.77 42.86

OAT
IR = 0.05; NR = 0.0 IR = 0.05; NR = 0.2 IR = 0.05; NR = 0.4

75.82 42.22 42.02 39.86 38.15 77.93 43.67 43.42 41.60 39.75 79.07 44.50 44.19 43.02 41.25

OAT
IR = 0.02; NR = 0.0 IR = 0.02; NR = 0.2 IR = 0.02; NR = 0.4

74.46 35.50 35.11 32.83 31.33 74.03 40.29 40.05 37.83 36.09 76.13 40.97 40.59 39.45 37.48

Table 19: Results under L∞ attacks on CIFAR-10 dataset, in which the label noise is symmetric.
Results are from “Best” models.

Method CA RA CA RA CA RA
PGD-20 PGD-100 CW-100 PGD-20 PGD-100 CW-100 PGD-20 PGD-100 CW-100

OAT
IR = 1.0; NR = 0.0 IR = 1.0; NR = 0.2 IR = 1.0; NR = 0.4

83.49 64.13 63.43 61.81 83.99 64.10 63.56 61.45 83.69 63.60 62.99 61.28

OAT
IR = 0.1; NR = 0.0 IR = 0.1; NR = 0.2 IR = 0.1; NR = 0.4

79.42 58.39 57.89 56.12 79.57 57.99 57.65 56.45 80.07 59.65 59.21 57.63

OAT
IR = 0.05; NR = 0.0 IR = 0.05; NR = 0.2 IR = 0.05; NR = 0.4

75.82 54.90 54.64 52.80 77.93 57.15 56.74 55.08 79.07 57.10 56.63 55.32

OAT
IR = 0.02; NR = 0.0 IR = 0.02; NR = 0.2 IR = 0.02; NR = 0.4

74.46 51.08 50.72 48.69 74.03 53.78 53.55 51.69 76.13 54.77 54.38 53.11

Table 20: Results under L2 attacks on CIFAR-10 dataset, in which the label noise is symmetric.
Results are from “Best” models.

Method CA RA CA RA CA RA
PGD-20 PGD-100 CW-100 AA PGD-20 PGD-100 CW-100 AA PGD-20 PGD-100 CW-100 AA

OAT
IR = 1.0; NR = 0.0 IR = 1.0; NR = 0.2 IR = 1.0; NR = 0.4

83.49 52.73 52.33 50.36 48.49 83.47 52.66 52.31 50.50 48.56 83.65 52.84 52.48 51.04 48.82

OAT
IR = 0.1; NR = 0.0 IR = 0.1; NR = 0.2 IR = 0.1; NR = 0.4

79.42 45.15 44.94 43.37 41.69 79.50 45.60 45.08 43.79 41.87 79.03 45.83 45.56 43.88 42.09

OAT
IR = 0.05; NR = 0.0 IR = 0.05; NR = 0.2 IR = 0.05; NR = 0.4

75.82 42.22 42.02 39.86 38.15 75.56 42.36 42.06 40.64 38.66 76.71 42.63 42.40 41.00 38.96

OAT
IR = 0.02; NR = 0.0 IR = 0.02; NR = 0.2 IR = 0.02; NR = 0.4

74.46 35.50 35.11 32.83 31.33 73.32 37.66 37.31 35.37 33.49 70.67 34.92 34.61 33.07 30.83

Table 21: Results under L∞ attacks on CIFAR-10 dataset, in which the label noise is asymmetric.
Results are from “Best” models.

Method CA RA CA RA CA RA
PGD-20 PGD-100 CW-100 PGD-20 PGD-100 CW-100 PGD-20 PGD-100 CW-100

OAT
IR = 1.0; NR = 0.0 IR = 1.0; NR = 0.2 IR = 1.0; NR = 0.4

83.49 64.13 63.43 61.81 83.47 63.61 63.10 61.23 83.65 63.95 63.45 61.64

OAT
IR = 0.1; NR = 0.0 IR = 0.1; NR = 0.2 IR = 0.1; NR = 0.4

79.42 58.39 57.89 56.12 79.50 58.19 57.80 56.49 79.03 59.06 58.59 56.92

OAT
IR = 0.05; NR = 0.0 IR = 0.05; NR = 0.2 IR = 0.05; NR = 0.4

75.82 54.90 54.64 52.80 75.56 55.30 55.11 53.33 76.71 56.34 56.09 54.45

OAT
IR = 0.02; NR = 0.0 IR = 0.02; NR = 0.2 IR = 0.02; NR = 0.4

74.46 51.08 50.72 48.69 73.32 51.66 51.38 49.60 70.67 48.77 48.46 46.42

Table 22: Results under L2 attacks on CIFAR-10 dataset, in which the label noise is asymmetric.
Method CA RA CA RA CA RA

PGD-20 PGD-100 CW-100 AA PGD-20 PGD-100 CW-100 AA PGD-20 PGD-100 CW-100 AA

OAT
IR = 1.0; NR = 0.0 IR = 1.0; NR = 0.2 IR = 1.0; NR = 0.4

59.14 30.37 30.20 27.80 25.79 58.75 30.05 29.84 27.67 25.72 57.82 29.92 29.67 27.57 25.72

OAT
IR = 0.1; NR = 0.0 IR = 0.1; NR = 0.2 IR = 0.1; NR = 0.4

50.10 23.45 23.40 20.59 19.10 50.34 23.60 23.42 20.78 19.23 49.99 23.70 23.63 21.29 19.86

OAT
IR = 0.05; NR = 0.0 IR = 0.05; NR = 0.2 IR = 0.05; NR = 0.4

46.88 20.60 20.50 18.18 16.66 46.50 21.05 20.92 18.73 17.10 46.53 21.14 20.98 18.44 17.06

OAT
IR = 0.02; NR = 0.0 IR = 0.02; NR = 0.2 IR = 0.02; NR = 0.4

41.82 17.60 17.53 15.35 14.18 40.78 17.45 17.34 15.27 14.32 39.77 17.39 17.39 14.82 13.71

Table 23: Results under L∞ attacks on CIFAR-10 dataset, in which the label noise is symmetric.
Results are from “Best” models.

E OAT UNDER EXTREME SETTINGS

Besides the experimental setups discussed in our main paper, we further consider more challenging
and extreme label noise and data imbalance configurations. In Table 25, we consider that the 80%
labels in datasets are incorrect. The results prove that OAT can still achieve high clean accuracy and
robustness under various data imbalance ratios, while other baseline methods cannot converge under
such massive label noise.
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Method CA RA CA RA CA RA
PGD-20 PGD-100 CW-100 PGD-20 PGD-100 CW-100 PGD-20 PGD-100 CW-100

OAT
IR = 1.0; NR = 0.0 IR = 1.0; NR = 0.2 IR = 1.0; NR = 0.4

59.14 39.95 39.64 37.43 58.75 40.12 39.77 37.32 57.82 39.34 39.15 36.93

OAT
IR = 0.1; NR = 0.0 IR = 0.1; NR = 0.2 IR = 0.1; NR = 0.4

50.10 32.93 32.78 29.98 50.34 33.01 32.89 30.21 49.99 33.29 33.11 30.48

OAT
IR = 0.05; NR = 0.0 IR = 0.05; NR = 0.2 IR = 0.05; NR = 0.4

46.88 29.54 29.41 27.18 46.50 30.45 30.37 27.87 46.53 30.61 30.46 27.97

OAT
IR = 0.02; NR = 0.0 IR = 0.02; NR = 0.2 IR = 0.02; NR = 0.4

41.82 26.22 26.10 23.96 40.78 25.32 25.18 23.25 39.77 24.68 24.61 22.39

Table 24: Results under L2 attacks on CIFAR-100 dataset, in which the label noise is symmetric.
Results are from “Best” models.

Method
CIFAR-10 CIFAR-100

CA RA CA RA
PGD-20 PGD-100 CW-100 AA PGD-20 PGD-100 CW-100 AA

OAT
IR = 1.0; NR = 0.8 IR = 1.0; NR = 0.8

82.24 51.98 51.82 50.03 48.14 53.89 28.60 28.45 26.42 24.73

OAT
IR = 0.1; NR = 0.8 IR = 0.1; NR = 0.8

78.18 45.98 45.69 44.21 42.26 39.78 19.73 19.75 17.61 16.62

OAT
IR = 0.05; NR = 0.8 IR = 0.05; NR = 0.8

70.51 38.40 38.16 36.37 34.47 31.45 14.43 14.32 12.46 11.64

OAT
IR = 0.02; NR = 0.8 IR = 0.02; NR = 0.8

54.68 30.16 30.16 27.48 26.56 25.56 11.15 11.13 9.49 8.97

Table 25: Results of OAT under massive (symmetric) label noise settings. All attacks are in L∞-norm.
Results are from “Best” models.

F LABEL DISTRIBUTION CORRECTION

To evaluate the quality of the estimated label distribution, we illustrate the oracle’s predicted labels
in Figure 3. We use “Prior” to represent the label distribution of the known dataset, and “GT” to
represent the ground-truth distribution of clean labels, which is unknown for a noisy dataset. We plot
the estimated label distribution in the 10th, the 50th, and the 100th training epoch, respectively. In
Figure 3a and Figure 3b, we show the estimated distribution for clean datasets. The results prove that
our oracle can correctly predict balanced and imbalanced label distribution. On the other hand, in
Figure 3c and Figure 3d, we plot the label distribution of noisy datasets. Specifically, in Figure 3c, the
ground-truth labels are almost balanced, and the noisy labels are long-tailed. In Figure 3d, both clean
labels and noisy labels are long-tailed. The results prove that our oracle can correctly produce the
label distribution under complex scenarios. So, OAT outperforms other baselines in various settings.
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(a) Label distribution predicted on the clean and bal-
anced dataset.

(b) Label distribution predicted on the clean and im-
balanced dataset.

(c) Label distribution predicted on the noisy and bal-
anced dataset.

(d) Label distribution predicted on the noisy and im-
balanced dataset.

Figure 3: The estimated label distribution in the 10-th, the 50-th, and the 100-th epoch from the
oracle.
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