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Abstract

Approximate inference in Bayesian deep networks exhibits a dilemma of how
to yield high fidelity posterior approximations while maintaining computational
efficiency and scalability. We tackle this challenge by introducing a novel varia-
tional structured approximation inspired by the Bayesian interpretation of Dropout
regularization. Concretely, we focus on the inflexibility of the factorized structure
in Dropout posterior and then propose an improved method called Variational
Structured Dropout (VSD). VSD employs an orthogonal transformation to learn a
structured representation on the variational Gaussian noise with plausible complex-
ity, and consequently induces statistical dependencies in the approximate posterior.
Theoretically, VSD successfully addresses the pathologies of previous Variational
Dropout methods and thus offers a standard Bayesian justification. We further
show that VSD induces an adaptive regularization term with several desirable
properties which contribute to better generalization. Finally, we conduct extensive
experiments on standard benchmarks to demonstrate the effectiveness of VSD over
state-of-the-art variational methods on predictive accuracy, uncertainty estimation,
and out-of-distribution detection.

1 Introduction

Bayesian Neural Networks (BNNs) [49, 63] offer a probabilistic interpretation for deep learning
models by imposing a prior distribution on the weight parameters and aiming to infer a posterior
distribution instead of only point estimates. By marginalizing over this posterior for prediction,
BNNs perform a procedure of ensemble learning. These principles improve the model generalization,
robustness and allow for uncertainty quantification. However, exactly computing the posterior of
non-linear BNNs is infeasible and approximate inference has been devised. The core challenge is
how to construct an expressive approximation for the true posterior while maintaining computational
efficiency and scalability, especially for modern deep learning architectures.

Variational inference is a popular deterministic approximation approach to deal with this challenge.
The first practical methods were proposed in [22, 8, 39], in which the approximate posteriors
are assumed to be fully factorized distributions, also called mean-field variational inference. In
general, the mean-field approximation family encourages several advantages in inference including
computational tractability and effective optimization with the stochastic gradient-based methods.
However, it ignores the strong statistical dependencies among random weights of neural nets, leading
to the inability to capture the complicated structure of the true posterior and to estimate the true
model uncertainty.
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To overcome this limitation, many extensive studies proposed to provide posterior approximations
with richer expressiveness. For instance, [47] treats the weight matrix as a whole via a matrix
variate Gaussian [24] and approximates the posterior based on this parametrization. Several later
works have exploited this distribution to investigate different structured representations for the
variational Gaussian posterior, such as Kronecker-factored [89, 71, 72], k-tied distribution [77], non-
centered or rank-1 parameterization [21, 15]. Another original idea to represent the true covariance
matrix of Gaussian posterior is by employing the low-rank approximation [67, 35, 80]. For robust
approximation with multimodality, [48] adopted hierarchical variational model framework [69] for
inferring an implicit marginal distribution in high dimensional Bayesian setting. Despite significant
improvements in both predictive accuracy and uncertainty calibration, some of these methods incur a
large computational complexity and are difficult to integrate into deep convolutional networks.

Motivations. In this paper, we approach the structured posterior approximation in Bayesian neural
nets from a different perspective which has been inspired by the Bayesian interpretation of Dropout
training [74, 51]. More specifically, the methods proposed in [39, 20] reinterpret Dropout regular-
ization as approximate inference in Bayesian deep models and base on this connection to learn a
variational Dropout posterior over the weight parameters. From the literature, inference approaches
based on Bayesian Dropout have shown competitive performances in terms of predictive accuracy on
various tasks, even compared to the structured Bayesian methods aforementioned, but with much
cheaper computational complexity. Moreover, with the solid and intriguing theories on effective
regularization [81, 26, 83], generalization bound [52, 59], convergence rate and robust optimiza-
tion [55, 54, 7], Dropout principle offers several potentials to further improve approximate inference
in Bayesian deep networks. However, since these Bayesian Dropout methods also employed simple
structures of the mean-field family, their approximations often fail to obtain satisfactory uncertainty
estimates [17]. In addition, Variational Dropout methods based on multiplicative Gaussian noise also
suffer from theoretical pathologies, including improper prior leading to ill-posed true posterior, and
singularity of the approximate posterior making the variational objective undefined [31].

Contributions. With the above insights, we propose a novel structured variational inference frame-
work, which rationally acquires complementary benefits of the flexible Bayesian inference and
Dropout inductive bias. Our method adopts an orthogonal approximation called Householder transfor-
mation to learn a structured representation for multiplicative Gaussian noise in Variational Dropout
method [39, 57]. As a consequence of the Bayesian interpretation, we go beyond the mean-field
family and obtain a variational Dropout posterior with structured covariance. Furthermore, to make
our framework more expressive, we deploy a hierarchical Dropout procedure, which is equivalent to
inferring a joint posterior in a hierarchical Bayesian neural nets. We name the proposed method as
Variational Structured Dropout (VSD) and summarize its advantages as follows:

1. Our structured approximation is implemented on low dimensional space of variational noise with
considerable computational efficiency. VSD can be employed for deep CNNs in a direct way while
maintaining the backpropagation in parallel and optimizing efficiently with gradient-based methods.

2. Especially, VSD has a standard Bayesian justification, in which our method can overcome the
critiques from the non-Bayesian perspective of previous Variational Dropout methods. Our inference
framework uses a proper prior, non-singular approximate posterior and derives a tractable variational
lower bound without further simplified approximation.

3. Compared with previous Bayesian Dropout methods which are relatively inflexible by some
strict conditions, VSD is more efficient on both the criteria of expressive approximation and flexible
hierarchical modeling. Therefore, VSD is promising to be a general-purpose approach for Bayesian
inference and in particular for BNNs.

4. To reinforce the complementary advantages unified in our proposal, we also investigate the
inductive biases induced by the adaptive regularization of structured Dropout noise. We further
provide an interpretation that VSD implicitly facilitates the networks to converge to a local minima
with smaller spectral norms and stable rank. This properties suggests better generalization and we
present empirical results to support this implication.

5. Finally, we carry out extensive experiments with standard datasets and different network architec-
tures to validate the effectiveness of our method on many criteria, including scalability, predictive
accuracy, uncertainty calibration, and out-of-distribution detection, in comparison to popular varia-
tional inference methods.
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Notation. For a matrix A, ‖A‖F and A> denotes the Frobenius norm and the transpose matrix,
Ai: and A:j denote the i-th row and the j-th column. For an interger i, ei is the i-th standard basis,
1i ∈ Ri is the vector of all ones. The diagonal matrix with diagonal entries as the elements of a vector
x is denoted by diag(x). The inner product between two matrices A and B is denoted by 〈A,B〉.

2 Background

Variational inference for Bayesian neural networks: Given a dataset D consisting of input-output
pairs (X,Y) := {(xn,yn)}Nn=1. In BNNs, we impose a prior distribution over random weights p(W)
whose form is in a tractable parametric family and aim to infer an intractable true posterior p(W|D).
Variational inference (VI) [30, 33] can do this by specifying a variational distribution qφ(W) with free
parameter φ and then minimizing the Kullback-Leibler (KL) divergence DKL(qφ(W)‖p(W|D)).
This optimization is equivalent to maximizing the Evidence Lower Bound (ELBO) with respect to
variational parameters φ as follows:

L(φ) = Eqφ(W) log p(D|W)− DKL(qφ(W)‖p(W)). (1)

By leveraging the reparameterization trick [40] combined with the Monte Carlo integration, we can
derive an unbiased differentiable estimation for the variational objective above. Then, this estimation
can be effectively optimized using stochastic gradient methods with the variance reduction technique
such as the local reparameterization trick [39].

Variational Bayesian inference with Dropout regularization: Given a deterministic neural net
with the weight parameter Θ of size K ×Q, training this model with stochastic regularization tech-
niques such as Dropout [29, 74] can be interpreted as approximate inference in Bayesian probabilistic
models. This is because injecting a stochastic noise into the input layer is equivalent to multiplying
the rows of subsequent deterministic weight by the same random variable, namely with each datapoint
(xn,yn) and a noise vector ξ, we have: yn = (xn � ξ)Θ = xndiag(ξ)Θ. This induces a BNN with
random weight matrix defined by W := diag(ξ)Θ. Applying VI to this Bayesian model, with some
specific choices for prior and approximate posterior, the variational lower bound (1) can resemble
the form of Dropout objective in the original deterministic network. This principle is referred to as
the KL condition [18]. Gal et al. [20], Kingma et al. [39] used this principle to propose Bayesian
Dropout inference methods such as MC Dropout (MCD) and Variational Dropout (VD).

Dropout inference is practical approximate framework especially in high dimensional setting. How-
ever, the scope of Bayesian inference in these methods is restricted in terms of flexibility of both prior
and approximate posterior. Concretely, the Dropout posteriors qφ(W) in MCD and VD both have
simple structures of mean-field approximation which often underestimate the variance of true poste-
rior, possibly leading to a poor uncertainty representation [17]. Moreover, in theory, VD employed
an improper log-uniform prior which can result in an ill-posed true posterior and generally push the
parameters towards the penalized maximum likelihood solution [31]. In addition, VD also suffers
from the singularity issue of approximate posterior that makes the KL divergence term undefined.
Our work gains an efficient remedy to these pathologies.

3 Variational Structured Dropout

We focus on Bayesian Dropout methods using multiplicative Gaussian noise with correlated parameter-
ization [39]. This procedure induces a random weight W = diag(ξ)Θ, where the Dropout noise ξ is a
multivariate Gaussian with diagonal covariance qα(ξ) = N (1K , diag(α)), and α is the droprate vec-
tor. The corresponding Dropout posterior then is given by qφ(W) = Law(diag(ξ)Θ). This distribu-
tion on each column exhibits a factorized structure with the form of q(W:j) = N (Θ:j , diag(α�Θ2

:j)),
whilst allows a correlation on each row because each Wi: is shared by the same scalar noise
ξi respectively. The parameters φ := (α,Θ) are optimized via maximizing a variational lower
bound as follows: L(φ) := Eqφ(W) log p(D|W)−DKL(qφ(W)‖p(W)) = Eqα(ξ) log p(D|ξ,Θ)−
DKL(qφ(W)‖p(W), where the later equation is derived from the change of variables formula.

3.1 The orthogonal approximation for variational structured noise

Intuitively, a richer representation for the noise distribution can enrich the expressiveness of Dropout
posterior via the Bayesian interpretation. We implement this intuition with an assumption that the
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Dropout noise could be sampled from a Gaussian distribution with a full covariance matrix instead
of a diagonal structure, namely, qΣ(ξ) = N (1K ,Σ) with Σ is a positive definite matrix of size
K ×K. To make this covariance matrix learnable, we first represent Σ in the form of the spectral
decomposition: Σ = PΛPT , where P is an orthogonal matrix with its eigenvectors in columns, Λ
is a diagonal matrix where diagonal elements are the eigenvalues. By the basis-kernel representation
theorem [6, 76], we parameterize the orthogonal matrix P as a product of Householder matrices in
the following form: P = HT∗HT∗−1...H1, where Ht = I− 2vtv

T
t /‖vt‖22, vt is the Householder

vector of size K, and T ∗ is the degree of P. This parameterization relaxes the orthogonal constraint
of matrix P, and we can then directly optimize the covariance matrix Σ via gradient-based methods.

Notably, this transformation can be interpreted as a sequence of invertible mappings. More explicitly,
we extract a zero-mean Gaussian noise η(0) from the original noise ξ(0) ∼ N (1K , diag(α)) in the
form of ξ(0) = 1 + η(0), and by successively transforming η(0) through a chain of T Householder
reflections, we obtain the induced noise and the corresponding density at each step t as follows:

ξ(t) := 1 + HtHt−1...H1η
(0) = 1 + Uη(0), and qt(ξ) := N (1K ,Udiag(α)UT ).

By injecting the structured noise ξ(t) into the deterministic weight Θ, we obtain a random weight
W(t) := diag(ξ(t))Θ and an induced Dropout posterior qt(.) = Law(diag(ξ(t))Θ) with fully
correlated representation, in which the marginal column distribution is given by: qt(W:j) =
N (Θ:j , diag(Θ:j)Udiag(α)UT diag(Θ:j)). Detailed discussion about the expressiveness of this cor-
related structure is presented in Appendix A.1. With the above derivations, we use variational
inference with approximate posterior qt(W) and optimize the variational lower bound as follows:

L(φ) := Eqt(W) log p(D|W)− DKL(qt(W)||p(W))

= Eqα(ξ) log p(D|Θ, ξ(t))− DKL(qt(W)||p(W)). (2)

Overcoming the singularity issue of approximate posterior. In Variational Dropout method with
correlated parameterization, there is a mismatch in support between the approximate posterior and
the prior, thus making the KL term DKL(q(W)||p(W)) undefined [31]. Specifically, the form
W = diag(ξ)Θ is equivalent to multiplying each row Wi: by the same scalar noise ξi, namely
Wi: = ξiΘi: with q(ξi) = N (1, αi). This means that the approximate distribution always assigns
all its mass on subspaces defined by the directions aligned with the rows of Θ. These subspaces
have Lebesgue measure zero causing the singularities in approximate posterior, and the KL term
will be undefined whenever the prior p(W) puts zero mass to these subspaces. However, in VSD
the scalar noises are not treated separately due to the structured correlation, namely VSD would
injects each ξi into the whole matrix Θ instead of some individual directions. Indeed, we have:
W(V D) := diag(ξ(0))Θ = Θ + diag(η(0))Θ = Θ +

∑K
i=1 η

(0)
i (diag(ei)Θ) = Θ +

∑K
i=1 η

(0)
i Θ(i),

and W(V SD) := diag(ξ(t))Θ = Θ + diag(Uη(0))Θ = Θ +
∑K
i=1 η

(0)
i (diag(Ui:)Θ), where Θ(i) is

the matrix Θ with only the i-th row retained. While VD causes singular components represented by
{Θ(i)}Ki=1, VSD maintains a trainable orthogonal matrix U which prevents the approximate posterior
from having degenerate supports with measure zero, thereby avoiding the singularity issue. In the
following section, we will present an appropriate choice of the prior distribution p(W) such that the
KL term is well-defined, and then derive a tractable objective function satisfying the KL condition in
Bayesian Dropout frameworks.

3.2 Derivation of tractable variational objective

We consider employing an isotropic Gaussian as the prior distribution, namely p(W) =
∏Q
j=1 p(W:j)

with p(W:j) = N (0, diag(β−1:j )) and β is a hyper-parameter matrix of the same size with W. With
the previous analysis, our approximate posterior qt(W) would be absolutely continuous w.r.t the
prior p(W), and thus the KL term DKL(qt(W)||p(W)) is defined. Furthermore, the Gaussian prior
helps our proposal avoid the pathologies of improper true posterior and ill-posed inference in VD.

Note that, the prior p(W) is a fully factorized Gaussian which usually facilitates simple analysis
and efficient computation. This factorized structure is chosen also because we have no reason for
the correlation between non-identical weights at first. Moreover, several arguments indicate that a
simple prior over parameter p(W), when interacts with neural nets architecture f(D; W), induces
a sophisticated prior over function p(f(D; W)), with desirable properties and useful inductive
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Figure 1: The performance of VSD when using the number of transformations T ∈ {1, 2, 3}. Evaluation over
5 runs on CIFAR10 (above) and SVHN (below) with LeNet architecture.

biases [86]. However, when we are interested in structured approximations in parameter space, the
factorized prior may raise some contradictions. By relative entropy decomposition, we have:

DKL(qt(W)||p(W)) =

Q∑
j=1

DKL(qt(W:j)||p(W:j)) + I(W:1,W:2, ...,W:Q), (3)

where I(.) is the mutual information measured by the distribution qt(.), and this term is validly defined
in VSD. Maximizing the variational lower bound tends to encourage smaller KL term, and hence
constrains the components in RHS of equation (3). Intuitively, a relatively small mutual information
can break the strong correlations between the columns of W. Several studies have focused on
this limitation and suggested using richer priors such as matrix variate Gaussian [75, 91], doubly
semi-implicit distribution [58]. Our solution for this scenario is derived naturally from equation (3),
in which we leverage the mutual information as an additional regularization term. Concretely, we
maximize an alternative variational objective as follows:

LMI(φ) := Eqα(ξ) log p(D|Θ, ξ(t))− DKL(qt(W)||p(W)) + I(W:1,W:2, ...,W:Q)

= Eqα(ξ) log p(D|Θ, ξ(t))− DKL(q?t (W)||p(W)), (4)

where q?t (W) :=
∏Q
j=1 qt(W:j) is the product of marginal column distributions. From the

information-theoretic perspective, augmenting the mutual information is a standard principle for
structure learning in Bayesian networks [41]. Particularly in our derivation, maximizing the alter-
native objective LMI(φ) would help to sustain the dependence structure between columns of the
network weights, and thus fixes appropriately the broken ELBO as mentioned above. Interestingly,
this technique is utilized reasonably in our method. This is because our dependence structure allows
to specify explicitly the marginal distribution on each column of W, leading to a tractable objective
in equation (4) whose KL divergence between two multivariate Gaussian can be calculated analyti-
cally in closed-form. We note that a similar application to other structured approximations, such as
low-rank, Kronecker-factored or matrix variate Gaussian, can be non-trivial. We also remark that our
alternative variational objective might be not necessarily a valid lower bound of the original model
evidence, but would be the lower bound of new model evidence defined on an alternative prior p̂(W),
which satisfies DKL(qt(W)||p̂(W)) = DKL(q?t (W)||p(W)). Indeed, the correlated prior deter-
mined by p̂(W) ∝ p(W) ∗ qt(W)/q?t (W) meets this constraint, and thus we could reinterpret the
use of mutual information as adopting this prior at each iteration of the training procedure. To clarify,
our idea was partly motivated by the similar technique that has been extensively adopted in deep
latent variable models, in which a mutual information maximization is also added to the variational
lower bound to mitigate the degenerate issue of amortized inference in these models [1, 92].

The KL condition in VSD. With the new variational objective in equation (4), to offer VSD
complementary advantages of structured Dropout and Bayesian inference, we need to ensure
DKL(q?t (W)||p(W)) satisfies the KL condition. We solve this prerequisite by specifying the
precision parameter β of the prior p(W) via the Empirical Bayes (EB) approach. As a result, we
obtain an optimal value for this hyperparameter in an analytical form β∗. The optimal β∗ is then
substituted back into the prior, and thereby we get the optimal KL term with a form independent of
the deterministic weight Θ as follows:

DEBKL(q?t (W)||p(W)) =
Q

2

K∑
i=1

log
1 +

∑K
j=1 αjU

2
ij

αi
. (5)
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Figure 2: The performance of ARD-VD and VSD when using the prior hierarchy (coressponding to the labels
VDH

ARD and VSDH ). The left and right y−axis are represented for SVHN and CIFAR10 dataset, respectively.

A formal proof of equation (5) is in Appendix B.

The number of transformations steps T in VSD. An appropriate choice of T is essential in our
method. For deep learning architectures, the degree T ∗ of the orthogonal matrix P might be relatively
large, so it is quite challenging to adjust the empirical value of T in a principled way to meet the
basis-kernel representation theorem. We can employ an efficient parameterization introduced in [90],
in which we only need the Householder vectors {vt, t ≥ 1} with sizes much smaller than the order
of the matrix P . This will facilitate tuning T with a larger range in an applicable computation time.
In our method, we instead only adopt a small T ∈ {1, 2, 3} as a form of "low-degree" approxiamtion,
and to make the reflections more expressive, we use a fully connected layer between successive
Householder vectors, i.e. vt = FC(vt−1). The low dimension of variational noise in VSD leads to a
good adaptation, but with a little trade-off in computational complexity when increasing the number
of transformation steps T . We show the performance of VSD when using this neural parameterization
with T ∈ {1, 2, 3} in Figure 1, where a larger T could potentially improve the results on predictive
measures. However, to maintain computational efficiency, we recommend using T = 1 or 2 in
large-scale experiments. Indeed, this neural parameterization has been successfully implemented in
the context of learning the latent space in deep latent variable models [79, 5].

3.3 Joint inference with hierarchical prior

We further promote our proposal by introducing a prior hierarchy in VSD framework and then
obtain a joint approximation for the Dropout posterior. This will facilitate the flexibility of Bayesian
inference in our method in terms of the expressiveness of both prior distribution and approximate
posterior. We design a two-level hierarchical prior given by: p(W, z) = p(W|z, β)p(z), where
p(W|z, β) =

∏Q
j=1 p(W:j |z, β:j) and p(W:j |z, β:j) = N (0, diag(z � β−1:j )); the hyperprior p(z)

is a distribution with positive support such as Gamma or half-Cauchy distribution; the latent z has the
size of the number of rows and is shared across columns of the weight matrix W; the hyper-parameter
matrix β is treated as a scaling factor. This prior family has a centered parameterization and induces
several compelling properties such as facilitating feature sparsity [46, 12], model selection [21] or
improving robustness, uncertainty calibration [15].

We implement variational inference with a joint approximate posterior, also referred to as the joint
Dropout posterior, which is parameterized as follows:

qφ(W, z) = qψ(z)qφ(W|z) with qφ(W:j |z) = N (z�Θ:j , diag(z2 � α�Θ2
:j)),

where qφ(W|z) is the conditional Dropout posterior, qψ(z) is chosen depending on the family of
prior p(z) so that the reparametrization trick can be utilized. Sampling the random weight W from
the joint variational posterior qφ(W, z) includes two steps: z∗ ∼ qψ(z) and W∗ ∼ qφ(W|z∗), in
which the second one can be reparameterized as: W∗ = diag(z∗)diag(ξ)Θ = diag(z∗ � ξ)Θ, with
the noise ξ ∼ N (1K , diag(α)). This new representation adapts to the vanilla Dropout procedure
but allows our method to regularize each unit layer with different levels of stochasticity. We derive
some insights about the role of hierarchical prior in our framework in Appendix A.2. We apply the
Householder transformation to the variational noise ξ and obtain a new joint approximate posterior:

qt(W, z) = qψ(z)qt(W|z) with qt(W:j |z) = N (z�Θ:j ,VjUdiag(α)(VjU)T ),

where Vj = diag(z�Θ:j). Similarly, we define q?t (W|z) =
∏Q
j=1 qt(W:j |z) and then optimize an

alternative variational objective given by:

L(φ, ψ) := Eqψ(z)qt(W|z) log p(D|W)− Eqψ(z)(DKL(q?t (W|z, φ)||p(W|z, β))− DKL(qψ(z)||p(z)).
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Table 1: Computational complexity per layer of MAP
and different variational methods.

Method Time Memory
MAP O(KL|B|) O(L|B|)
BBB O(sKL|B|) O(sKL+ L|B|)
BBB-LTR O(2KL|B|) O(2L|B|)
VMG O(m3 + 2KL|B|) O(KL|B|)
SLANG O(r2KL+ rsKL|B|) O(rKL+ sKL|B|)
ELRG O(r3 + (r + 2)KL|B|) O((r + 2)L|B|)
VSD O(K2 +KL|B|) O(K2 +K|B|)
VSD-low rank O(rK +KL|B|) O(K2 +K|B|)

Table 2: Computation time of variational
methods compared to standard MAP (1x).

Methods Time/epochs (s)
LeNet5 AlexNet ResNet18

BBB-LTR 1.53x 1.75x 3.28x
MNF 2.86x 3.40x 4.88x
VD 1.18x 1.15x 1.32x
VSD T = 1 1.25x 1.32x 1.86x
VSD T = 2 1.35x 1.49x 2.90x

We have chosen the (inverse) Gamma and log-Normal distribution for p(z) and q(z) respectively.
These distributions have positive supports, can be reparametrized and the KL-divergence between
them also has a closed-form due to the conjugacy. A full derivation of L(φ, ψ) including the
KL condition is given in Appendix C. The parameterization of the prior hierarchy in our method is
flexible without any simplifying assumptions about hyperprior p(z). We can directly apply it for ARD-
Variational Dropout framework (ARD-VD) [36] (a derivation is in Appendix F). As the experimental
results are shown in Figure 2, the hierarchical prior significantly improves the performance of both
ARD-VD and VSD on predictive metrics. Therefore, we aim to introduce VSD with hierarchical
prior as an unified framework and a general-purpose approach for Bayesian inference, particularly
for BNNs.

3.4 Scalability of Variational Structured Dropout

Approximating a structured posterior directly on the random weights of deep convolutional models is
challenging. Besides expensive computation, it is difficult to employ the local reparameterization
trick [39], leading to the high variance issue in training. We apply VSD to convolutional layer by
learning a structured noise with the size of the number of kernels and imposing it to convolutional
weights: ξ ∼ N (1K ,Udiag(α)UT ) and Wijk = ξkΘijk, with i, j, k are the indexes representing
height, width, and kernel respectively. This simple solution greatly reduces computational complexity
while being able to captures the dependencies among kernels of the convolutional layer.

We present the complexity of MAP and VI methods in terms of computational cost and memory
storage in Table 1, with the detailed analysis given in Appendix D. VSD adopts the advantage of
Dropout training and maintains an efficiency on both criteria. We also give more results in Table 2
about the empirical computation time of VSD and some other methods. Based on these tables, VSD
shows more effective running time even than the mean-field BBNs. Although there is a trade-off
when using a larger number of T , VSD does not incur much extra computation time compared to VD.

3.5 On explicit regularization of Variational Structured Dropout

There are several compelling theories to explain the tremendous success of Dropout technique,
in which regularization-based is one of the most active approaches [81, 26, 55, 53, 83, 10]. We
would follow this direction to investigate inductive biases induced by the structured Dropout in
VSD, and from which to consolidate our claim of complementary advantages unified in the proposed
method. To characterize the regularization of VSD, we consider a deep linear neural net with L
layers parameterized by {Θ(i)}Li=1, and define some notations as: x is an input data, B is the data
batch; hi is the i-th hidden layer; Ji(x) denotes the Jacobian of network output w.r.t hi(x); Hi(x)
and Hout(x) denotes the Hessian of the loss w.r.t hi(x) and the network output, respectively. Then
we have Ji = (

∏L
l=i Θ(l))T , Θ[i:L] the transposition of linear multiplication of weight matrices

from i-th layer to the last one. From a detailed derivation presented in Appendix E, VSD induces an
explicit regularization given by:

RV SD = E(x∼B)

L∑
i=1

〈
Hi, diag(hi)Udiag(α)UT diag(hi)

〉
.

Note that, Hi can be approximated by JTi HoutJi after ignoring the non-PSD term which is less
important empirically [73]. This regularizer offers some intriguing but popular interpretations related
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Table 3: Results for VSD and baselines on vectorized MNIST, CIFAR10 and SVHN. Results are averaged over
5 random seeds. For all metrics, lower is better.

Method

MNIST CIFAR10 SVHN
FC 400x2 FC 750x3 CNN 32x64x128

NLL err. rate ECE NLL err. rate ECE NLL err. rate ECE NLL err. rate ECE

MAP 0.098 1.32 0.011 0.109 1.27 0.011 2.847 34.04 0.272 0.855 12.26 0.086
BBB 0.109 1.59 0.011 0.140 1.50 0.013 1.202 30.11 0.098 0.545 10.57 0.017
MCD 0.049 1.26 0.007 0.057 1.22 0.007 0.794 26.91 0.024 0.365 9.23 0.013
VD 0.051 1.21 0.007 0.061 1.17 0.008 1.176 27.45 0.156 0.534 9.47 0.055
ELRG 0.053 1.54 - - - - 0.871 29.43 - - - -

VSD 0.042 1.08 0.006 0.048 1.09 0.006 0.730 24.92 0.020 0.299 8.39 0.008
D.E 0.057 1.29 0.009 0.063 1.21 0.009 1.815 26.44 0.042 0.783 9.31 0.070
SWAG 0.044 1.27 0.008 0.043 1.25 0.007 0.799 26.94 0.012 0.312 8.42 0.021

to the curvature of loss landscape [83, 10] (see a detailed explanation in Appendix E). We now show
novel properties of VSD induced by the orthogonal matrix U.

VSD imposes a Tikhonov-like regularization and reshapes the gradient of network weights: We rewrite
our regularization corresponding to layer i-th by: R(i)

V SD = E(x∼B)‖H
1/2
i diag(hi)Udiag(α1/2)‖2F .

This form can be interpreted as the Tikhonov-like regularization imposed on the square root of Hessian
matrix Hi, in which the Tikhonov matrix Γ := diag(hi)Udiag(α1/2) is automatically learned during
training. This principle can improve the conditioning of the estimation problem. Furthermore, when
considering the case of regression problem, we have:

R
(i)
V SD = E(x∼B)

[
Θ[i:L]diag(hi)Udiag(α)UT diag(hi)Θ

[i:L].T
]
. (6)

This is a data-dependent regularization with adaptive structure determined by the matrix ΓΓT =
diag(hi)Udiag(α)UT diag(hi). From the algorithmic perspective, this regularizer allows VSD to
reshape the gradient of network weights according to the geometry of the data based on both scale
and direction information [14, 25]. Meanwhile ΓΓT = diag(hi)diag(α)diag(hi) only plays as a
scaling factor in VD.

VSD penalizes implicitly the spectral norm of weight matrices: Let Ωi := diag(hi)J
T
i HoutJidiag(hi),

then our regularizer can be rewritten as: R(i)
V SD = E(x∼B)

∑K
k=1 α

2
kU

T
:kΩiU:k. Since the trainable

matrix U satisfies UT
:kU:k = 1 for any k, a penalty on UT

:kΩiU:k implies that VSD likely prefers a
solution with smaller spectral norms of the matrix H

1/2
out Jidiag(hi) and thus of the network weights.

This implication points us to the well-studied theories about generalization bound based on the
spectral norm [4, 65]. Concretely, Neyshabur et al. [65] suggests that smaller spectral norm and stable
rank can lead to better generalization. This expectation can be observed empirically in VSD through
Table 9 in Appendix E. A more solid investigation about the generalization of VSD is of interest.

4 Experiments

In this section, we provide experimental evaluations to show the effectiveness of our proposed methods
compared with the existing methods in terms of both predictability and scalability. We focus mainly
on variational inference methods of the following two directions: the first one is direct approximations
of the posterior on the random weights of Bayesian nets, including Bayes by Backprop (BBB) [8],
Variational Matrix Gaussian (VMG) [47], low-rank approximations (SLANG, ELRG) [56, 80]; and
the other one is the Bayesian Dropout methods with MC Dropout (MCD) [19, 20], Variational
Dropout (VD) [39], and our method-Variational Structured Dropout (VSD). In addition, we evaluate
the performance of point estimate framework MAP and two standard non-variational baselines
Deep Ensemble (D.E) [44] and SWAG [50]. Details about data descriptions, network architectures,
hyper-parameter tuning are presented in Appendix I.

4.1 Image classification

We now compare the predictive performance of the aforementioned methods for classification tasks
on three standard image datasets: MNIST [45], CIFAR10 [43], and SVHN [64]. We evaluate the
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Table 4: Image classification using AlexNet architecture. Results are averaged over 5 random seeds.

AlexNet CIFAR10 CIFAR100 SVHN STL10
NLL ACC ECE NLL ACC ECE NLL ACC ECE NLL ACC ECE

MAP 1.038 69.58 0.121 4.705 40.23 0.393 0.418 87.56 0.033 2.532 65.70 0.267
BBB 0.994 65.38 0.062 2.659 32.41 0.049 0.476 87.30 0.094 1.707 65.46 0.222
MCD 0.717 75.22 0.023 2.503 42.91 0.151 0.401 88.03 0.023 1.059 63.65 0.052
VD 0.702 77.28 0.028 2.582 43.10 0.106 0.327 90.76 0.010 2.130 65.48 0.195
ELRG 0.723 76.87 0.065 2.368 42.90 0.099 0.312 90.66 0.006 1.088 59.99 0.018
VSD 0.656 78.21 0.046 2.241 46.85 0.112 0.290 91.62 0.008 1.019 67.98 0.079

D.E 0.872 77.56 0.115 3.402 46.42 0.314 0.319 90.30 0.008 2.229 68.51 0.241
SWAG 0.651 78.14 0.059 1.958 49.81 0.028 0.331 90.04 0.031 1.522 68.41 0.161

Table 5: Image classification using ResNet18 architecture. Results are averaged over 5 random seeds.

ResNet18 CIFAR10 CIFAR100 SVHN STL10
NLL ACC ECE NLL ACC ECE NLL ACC ECE NLL ACC ECE

MAP 0.644 86.34 0.093 2.410 55.38 0.243 0.232 95.32 0.028 1.401 71.26 0.199
BBB 0.697 76.63 0.071 2.239 41.07 0.100 0.218 94.53 0.047 1.290 71.55 0.179
MCD 0.534 87.47 0.084 2.121 59.28 0.227 0.207 95.78 0.026 1.333 72.28 0.188
VD 0.451 87.68 0.024 2.888 56.80 0.284 0.164 96.11 0.017 1.084 73.29 0.084
ELRG 0.382 87.24 0.018 1.634 58.14 0.096 0.145 96.03 0.003 0.811 73.66 0.080
VSD 0.464 87.44 0.061 1.504 60.15 0.116 0.140 96.41 0.003 0.769 74.50 0.083
D.E 0.488 88.91 0.069 1.913 60.16 0.203 0.171 96.36 0.020 1.197 73.16 0.177
SWAG 0.330 88.77 0.026 1.417 62.45 0.028 0.130 96.72 0.016 0.843 73.15 0.069

predictive probabilities using negative log-likelihood (NLL), error rate, and expected calibration error
(ECE) [61, 23]. Details on experimental settings are available in Appendix I.4.

The synthesis results of this experiment are in Table 3. On MNIST, VMG achieves err. rates of 1.17%
and 1.27% with FC 400x2 and FC 750x3 respectively, while SLANG reports 1.72% err. rate with FC
400x2. In general, VSD outperforms consistently other variational methods in most settings. For D.E
and SWAG, VSD exhibits competitive results on all three metrics. Especially, the figures on NLL
and ECE indicate well-calibrated probabilities in our model. This is also a common but noteworthy
behavior in structured approximations. On the other hand, for the remaining methods such as MAP
and BBB, the error rates are worse by a large margin compared to VSD (respectively about 9% and
5% on CIFAR10, 4% and 2% on SVHN). On CIFAR10 and SVHN, these two methods and VD all
show poor results on both NLL and ECE measures, implying that it will be difficult for them to reason
properly about the model uncertainty especially in the out-of-distribution context. For MC Dropout,
we observe a pretty good performance with the second-best result in variational methods that is
similar to those reported of other works [56, 68, 80]. These results of the Bayesian Dropout methods
are competitive with structured methods such as VMG, SLANG, ELRG. This further reinforces our
motivation about the potential of Dropout methods for improving the predictive performance.

4.2 Scaling up Bayesian deep convolutional networks

We conduct additional experiments to integrate VSD into large-scale convolutional networks. We
reproduce the experiments proposed in [80] (ELRG), in which we trained AlexNet and ResNet18 on
4 datasets CIFAR10, SVHN, CIFAR100 [43], and STIL10 [11] to evaluate the predictive performance
of our proposal compared to other methods.

The final results are given in Table 4 and Table 5, in which the top two results will be highlighted
in bold. For AlexNet, the performance of VSD is more consistent and higher than other variational
methods. Modern deeper architectures facilitate deterministic estimates like MAP to better learn
discriminative information extracted from training data but also makes its predictions more confident
when picking excessively on unique optima. Therefore, although MAP has comparable predictive
accuracy on some settings, it comes at a trade-off with the worst results on both NLL and ECE.
Meanwhile, ELRG with a low-rank structure on the variational posterior gains desirable properties
on uncertainty metrics. Its performance on NLL and ECE are competitive to that of VSD, however,
our method obtains significant improvements on accuracy metric. For the remaining methods, BBB
performs poorly on CIFAR10 and CIFAR100 in predictive accuracy, but it still has better performance
than MAP in terms of NLL and ECE.
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Figure 3: Histograms of predictive entropy for LeNet architecture trained on SVHN dataset.

For ResNet18 architecture, while MAP and BBB still exhibit the same behavior as mentioned above,
VSD continues to achieve the convincing results, namely, it has the best performance on CIFAR100
and SVHN over all three metrics when compared to variational-based methods. On CIFAR10 and
STL10, VSD also gets competitive statistics on NLL and accuracy. Overall, compared with MCD,
VD, and ELRG, our method maintains good performance with better stability.

4.3 Predictive entropy performance

We now evaluate the predictive uncertainty of each model on out-of-distribution settings that have been
implemented in previous works [44, 48, 68, 80]. We evaluate the entropy of predictive distribution
p(y∗|x∗,D) and use the density of this entropy to assess the quality of uncertainty estimates. Basically,
an accurate and well-calibrated model is expected to represent entropy values being concentrated
mostly around 0 (i.e. high confidence) when the test data comes from the same underlying distribution
as the training data, and in the opposite case, the predictive entropies should be evenly distributed
(i.e. higher uncertainty). In fact, the deep learning models do not achieve simultaneously on both
expectations at the most ideal, but instead, accurate and well-calibrated ones tend to exhibit a
moderate level of confidence on in-distribution data, and then provide a reasonable representation for
uncertainty estimates on out-of-distribution data.

For LeNet, we train the model on SVHN dataset and then consider out-of-distribution data from
CIFAR10 and CIFAR100. The results are shown in Figure 3. All methods work well on in-distribution
data SVHN with the entropy value being distributed mostly around zero. However, the entropy
densities of MAP and VD are concentrated excessively. This indicates that these methods would
tend to make overconfident predictions on out-of-distribution data. This claim is consolidated by
the qualitative results on CIFAR10 and CIFAR100 datasets. In contrast, MCD, BBB, and VSD
are well-calibrated with a moderate level of confidence for in-distribution data. On CIFAR10 and
CIFAR100 datasets, VSD gains better results with entropy values being distributed over a larger
support, meaning that the predictions of VSD are closer to uniform on unseen classes.

We run a similar experiment, in which we train AlexNet on CIFAR10 and use SVHN, CIFAR100
as out-of-distribution data. The results are shown in the top row of Figure 4 in Appendix G.1.
While MAP and VD still exhibit the same overconfident phenomenon as on LeNet, we observe the
underconfident predictions of BBB and MC Dropout even on in-distribution data, which possibly
leads to a high uncertainty on out-of-distribution data. We hypothesize that this is because the models
trained with these methods are likely underfit with a low accuracy on the in-distribution training data.
In contrast, VSD estimates reasonably the predictive entropy in both settings. The remaining scenario
with ResNet18 trained on CIFAR100 is shown in the bottom row of Figure 4 with the same behaviors.

5 Conclusions

We proposed a novel approximate inference framework for Bayesian deep nets, named Variational
Structured Dropout (VSD). In VSD, we learn a structured approximate posterior via the Dropout
principle. VSD is able to yield a flexible inference while maintaining computational efficiency and
scalability for deep convolutional models. The extensive experiments have evidenced the advantages
of VSD such as well-calibrated prediction, better generalization, good uncertainty estimation. Given
a consistent performance of VSD as presented throughout the paper, an extension of that method to
other problems, such as Bayesian active learning or reinforcement learning, is of interest.
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