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Abstract

Tasks that involve complex interactions between
objects with unknown dynamics make planning
before execution difficult. These tasks require
agents to iteratively improve their actions after
actively exploring causes and effects in the en-
vironment. For these type of tasks, we propose
Causal-PIK, a method that leverages Bayesian
optimization to reason about causal interactions
via a Physics-Informed Kernel to help guide effi-
cient search for the best next action. Experimen-
tal results on Virtual Tools and PHYRE physical
reasoning benchmarks show that Causal-PIK out-
performs state-of-the-art results, requiring fewer
actions to reach the goal. We also compare Causal-
PIK to human studies, including results from a
new user study we conducted on the PHYRE
benchmark. We find that Causal-PIK remains
competitive on tasks that are very challenging,
even for human problem-solvers.

1. Introduction
Consider trying to solve a physical reasoning puzzle from
the Virtual Tools benchmark, like those shown in Figure 1.
Your goal is to have the red ball end up in the green region.
To make that happen, you need to choose one of the three
objects from the top left, place it somewhere in the scene,
and let gravity and causality do the rest. Which object would
you choose and where would you place it? Research in
cognitive science suggests that humans solve tasks like these
by building internal models of the physical world (Battaglia
et al., 2013; Smith et al., 2018; Ota et al., 2021; Zhou et al.,
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2023). These models encode our causal understanding of the
domain – our beliefs about how one event leads to another.

While predicting the exact sequence of events is difficult,
our physical intuition allows us to estimate the immediate
causal effects of our actions, such as which object will move
and in which direction. In addition, we rapidly learn from
the outcomes of previous actions (Allen et al., 2020). If
the red ball almost landed in the goal region, we would
slightly change our action and try again. If it was way off,
we might try something completely different. Inspired by
people’s rapid learning in such tasks, we develop a method
that leverages physical intuitions to efficiently solve physical
reasoning tasks.

Researchers have developed several benchmarks for evaluat-
ing the physical reasoning capabilities of AI agents (Melnik
et al., 2023). These benchmarks range from predicting the
stability of a stack of blocks from an image to recognizing
violations of physical principles. In this work, we focus
on single-intervention physical reasoning tasks, where an
agent chooses what action to take at the beginning of an
episode and then observes the action’s effects on the envi-
ronment. We focus on the Virtual Tools (Allen et al., 2020)
and PHYRE (Bakhtin et al., 2019) benchmarks, which de-
spite looking deceivingly simple in their 2D form, are very
hard to solve even for humans (Allen et al., 2020). These
tasks involve complex physical interactions between objects,
which without complete information about the environment
dynamics make it impossible for agents to plan the exact
solution without active exploration. Agents must interact
with the environment to actively obtain information about
the object dynamics. The main challenge is to reason about
the causal consequences of one’s actions, to leverage this
knowledge in order to make effective decisions about what
actions to try, and to rapidly learn from previous attempts.

We propose Causal-PIK, a method that leverages physical
intuition and causality to solve single-intervention physical
reasoning tasks in as few trials as possible. Our method
uses Bayesian optimization to reason about causality via a
Physics-Informed Kernel to obtain an expressive posterior
distribution over the environment dynamics. This allows an
agent to efficiently explore the search space and intelligently
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Figure 1. Example puzzles from the Virtual Tools (Allen et al., 2020) and PHYRE (Bakhtin et al., 2019) benchmarks. For Virtual Tools,
the objective is to place one of the blue action objects from the left to have a red ball fall into the green area. For PHYRE, the objective
is to place a red ball of variable radius in the environment to have the green and blue objects touch for at least 3 seconds. The runs
highlighted in red are failed attempts and the runs highlighted in green are successful attempts.

select what actions to evaluate next. Causal-PIK minimizes
the number of physical interactions required. We demon-
strate that Causal-PIK significantly outperforms state-of-
the-art models on the single-intervention physical reasoning
tasks from the Virtual Tools (Allen et al., 2020) and PHYRE
(Bakhtin et al., 2019) benchmarks, finding solutions in the
fewest number of attempts.

2. Related Work
Physical Reasoning: Researchers have developed several
benchmarks towards the goal of improving physical reason-
ing capabilities in machine-learning models (Melnik et al.,
2023). We evaluate Causal-PIK on the PHYRE (Bakhtin
et al., 2019) and Virtual Tools (Allen et al., 2020) bench-
marks. Both benchmarks use a physics simulator and cap-
ture a variety of complex interaction mechanisms. Further-
more, both contain a large set of puzzle variations, allowing
us to study generalization across diverse environments.

Both PHYRE and Virtual Tools have inspired several meth-
ods for solving physical reasoning puzzles. A number of
works (Harter et al., 2020; Girdhar et al., 2020; Ahmed
et al., 2021; Qi et al., 2021; Li et al., 2022) that evaluate
on PHYRE leverage forward prediction models, also called
dynamics models or world models, to predict the outcomes
of actions. They use dynamics models to score actions and
then execute the most promising actions until one succeeds.
Like these works, Causal-PIK also uses a dynamics model
to reason about the action outcomes. However, unlike these
prior methods, Causal-PIK uses observations from previ-
ous trials to inform future action selection via Bayesian
optimization. Instead of using a dynamics model to di-
rectly choose actions, we use dynamics predictions to instill

physical intuition into kernel updates during Bayesian opti-
mization. We show that our method solves PHYRE in fewer
attempts than any of these prior methods.

The ‘Sample, Simulate, Update’ model (SSUP) (Allen et al.,
2020) attempts to solve the Virtual Tools benchmark. It
samples actions from an object-based prior, simulates the
sampled actions in a noisy physics engine to find the best
action to try, executes the action, and updates the model’s
belief using information from both simulation and execution.
SSUP uses a Gaussian mixture model for guidance, but it
doesn’t embed information about how actions are related
via their effects, making SSUP search less efficient. In
contrast, our work builds on active learning methods, such
as Bayesian optimization, and successfully incorporates
additional guidance for action selection by introducing a
Physics-Informed Kernel. This significantly lowers how
many trials are needed to succeed.

Bayesian optimization: Causal-PIK uses Bayesian opti-
mization (BO), a global search method for optimizing black-
box functions (Shahriari et al., 2015; Wang et al., 2023).
Similar to how we use BO to efficiently find puzzle-solving
actions, BO has been used in robotics to reduce the num-
ber of trials needed to be run on real robots (Feng et al.,
2015; Calandra, 2017; Jaquier et al., 2020; Berkenkamp
et al., 2023). Some prior works proposed to further increase
data-efficiency by incorporating simulation-based informa-
tion (Antonova et al., 2017; Marco et al., 2017; Antonova
et al., 2019). However, they mostly considered continuous
parametric controllers, while we need to accommodate a
hybrid continuous/discrete action space.

Inferring Causality: For the type of tasks we study in this
work, the ability to reason about the outcome of an interac-
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Figure 2. An overview of Causal-PIK. The Causality-Based Action Selection module proposes the best action to execute based on the
predictions from the Gaussian Process. These predictions are generated considering the rewards from previous actions and the causal
similarities between candidate actions computed by the Physics-Informed Kernel. These similarities are derived from the individual
effects of actions, as predicted by the learned dynamics model. They are expressed as the state change of object O caused by action a,
denoted as ṡO,a.

tion is critical (Ullman et al., 2018; Bramley et al., 2018).
Some works aim to reason about causality by focusing on
the Violation of Expectations (VoE) paradigm (Smith et al.,
2019; Riochet et al., 2021), where models learn physical
plausibility by observing scenes that either follow or violate
intuitive physics rules. These models can then judge if new
scenes are plausible or not based on past observations. Other
works utilize deep neural networks to predict the outcome
of interactions from frames (Duan et al., 2022; Ye et al.,
2018). If an agent can reason about the outcome of inter-
actions before actions are taken, then the reasoning can be
used to guide smarter action selection, which is beneficial
when taking actions in the real world is costly. (Battaglia
et al., 2013) and (Wu et al., 2017) introduce methods that
conduct physical reasoning with the help of simulation after
constructing a representation of the physical world from
visual inputs.

3. Method
Problem Formulation: We consider single-intervention
physical reasoning tasks where an agent executes an action
at the beginning of an episode, observes the action’s effects
on the environment over T episode steps, and then receives
a score at the final timestep. After each episode, the envi-
ronment resets, and the agent may attempt the task again by
trying another action. Formally, on each attempt, an agent
executes an action x at the first state s0 and observes this
action’s effect on the environment’s state at the remaining
timesteps, st for t = 1, 2, ..., T . The state evolves according
to the environment’s unknown dynamics, which we denote
as the function 𝔻(s0,x), to give s1,...T = 𝔻(s0,x). At
the end of the episode, the agent receives a score y, which
is computed based on the observed states s1,...T using a
score function 𝕊(s1,...T ): y = 𝕊(s1,...T ). For a given initial

state s0, the future states s1,...T are a function of the action,
so we can re-write the score function as a function of x:
y = 𝕊(𝔻(s0,x)) = f(x).

Given an initial state s0, we aim to solve the task by finding
the action that achieves the highest score, namely maximiz-
ing f(x), in as few attempts as possible. However, the task’s
unknown dynamics make it difficult to find optima of f(x).
Therefore, we use Bayesian optimization to find actions that
maximize the score.

Bayesian Optimization (BO): The goal of BO is to find
the optimal x∗ that maximizes a given objective f(x). The
objective captures characteristics of the desired outcome,
e.g., in our setting, the task score. BO begins with a prior
that expresses uncertainty over f(x). After evaluating an x,
BO constructs a posterior based on the observed data y
obtained so far. It then uses an auxiliary acquisition function
to pick the next x to evaluate, taking into account both
the posterior mean and covariance. A Gaussian process
(GP) is commonly used to model the objective function:
f(x) ∼ GP (µ(x), k(·, ·)). Its kernel function describes the
covariance between the objective values of any pair of input
points: k(x1,x2)=cov(f(x1), f(x2)).

A common choice for the kernel is the Radial Ba-
sis Function (RBF): kRBF (x1,x2) = σ2

kexp(− 1
2 (x1 −

x2)
T diag(l)−2(x1 − x2)), where σ2

k, l can be tuned au-
tomatically. The kernel plays a crucial role in BO, as it
encodes an inductive bias about the properties of the under-
lying objective function to choose the next x. The RBF ker-
nel, in particular, assumes that values geometrically closer in
the input space have a higher correlation (are more similar)
than values geometrically farther in the input space.

Selecting an appropriate kernel significantly impacts the
accuracy of the objective function approximated by the GP,
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thus influencing the performance of BO. We develop a ker-
nel that encodes an intuition of causality and physics, which
we show solves physical reasoning tasks in fewer attempts
than the RBF kernel. In the following section, we describe
our full physics-informed BO algorithm Causal-PIK.

3.1. Causal-PIK

Causal-PIK uses BO and reasons about causality with a
Physics-Informed Kernel to solve physical reasoning tasks.
It iteratively proposes actions and uses their observed out-
comes, in conjunction with an intuition of physics, to inform
future action proposals. We encode physics intuition, such
as effects of geometry, mass, and momentum, into the BO
framework via the learned Physics-Informed Kernel used to
build the GP that approximates the objective function. We
will show that incorporating knowledge of physics through
the kernel function allows BO to more quickly discover
promising regions of the action space.

Algorithm 1 Causal-PIK
1: Attempt i = 0
2: X = {xinit

1 , ...,xinit
ninitial}, y = {ŷinit

1 , ..., ŷinit
ninitial}

3: while success == False do
4: gp← GP(X, y,PhysicsInformedKernel)
5: xi ← CausalityBasedActionSelection(gp)
6: yi, success← Execute(xi)
7: X ← concat(X,xi), y ← concat(y, yi)
8: i += 1

9: end while

Algorithm 1 outlines Causal-PIK. First, we construct initial
sets of actions X and scores y to initialize the GP prior us-
ing a probabilistic intuitive physics engine (Battaglia et al.,
2013). After initializing X and y, we begin the BO proce-
dure, iteratively updating the physics-informed GP surrogate
function, choosing the next action and executing it until the
puzzle is solved.

GP Initialization (Alg. 1 L2): To initialize the GP for both
Virtual Tools and PHYRE, we use ninitial = 9 initial data
points. This is the same number of initial data points that
our Virtual Tools baseline SSUP (Allen et al., 2020) uses to
initialize their method. SSUP found that this value provided
a good trade-off between the number of initial points, total
attempts required, and convergence time. Since we use
the same initialization framework as SSUP, we expect their
parameter analysis to extend to our results. Importantly,
like SSUP, we treat these initial noisy rollouts as warm-up
samples that do not count towards the total attempt count.

We choose the initial points following the same approach
as SSUP: randomly select a dynamic object from the envi-
ronment and sample a point from a Gaussian distribution
centered at the object’s center. As a result, each puzzle
attempt has a unique set of ninitial points. This heuristic

helps the GP build a noisy prior that includes different areas.

Physics-Informed GP Update (Alg. 1 L4): On the ith
attempt, we update the GP surrogate function with all at-
tempted actions X and their observed outcomes y using
our learned Physics-Informed Kernel. Conceptually, the
Physics-Informed Kernel encodes similarities and differ-
ences between actions based on the predicted effects they
will have on the environment. Using this kernel to construct
the GP helps the GP use the observed outcomes of already-
attempted actions to more accurately predict the outcomes
of unexplored actions. We derive the Physics-Informed
Kernel in Section 3.2.

Causality-Based Action Selection (Alg. 1 L5): On the ith
attempt, we select the next most promising action xi by find-
ing the action that maximizes an Upper Confidence Bound
(UCB) acquisition function. This acquisition function con-
siders the mean and uncertainty of the physics-informed GP.
First, we use a Sobol sequence generator to sample a set
of ncandidate = 500 candidate actions. Then, we evaluate
the acquisition function at each of these ncandidate actions.
Adopting the intuitive physics procedure proposed by Allen
et al., we approximate the outcome of the nbest = 5 can-
didate actions with the highest acquisition function values
using a probabilistic simulation of the task. As per (Allen
et al., 2020), approximating the outcomes of actions mim-
ics how humans use mental representations to imagine the
potential effects of actions before committing to an action.
Finally, from this set of nbest actions, we select the action
with the highest expected outcome as the next action.

Action Execution (Alg. 1 L6): We execute the selected
action xi, observe its outcome, and compute the correspond-
ing reward yi. If xi solves the task, the algorithm terminates.
If xi fails to solve the task, we append it along with the score
yi to X and y, respectively.

3.2. Physics-Informed Kernel

In this section, we describe the Physics-Informed Kernel
used to construct the GP in BO (Alg. 1 L4). We construct
the Physics-Informed Kernel such that it captures two types
of physics intuition that are important for solving physical
reasoning tasks. The first type is the ability to reason about
the causal effect of individual actions, or in other words, the
changes that single actions induce in the environment. To
capture this, we train a dynamics model to predict future
states of the environment given an action and initial state.
The second type of physics intuition that we encode into the
kernel is the ability to reason about causal similarity, namely
which actions cause similar changes in the environment. To
capture this, we define a function that computes how similar
two actions are based on their causal effects.

As shown in Fig. 2, the Physics-Informed Kernel function
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Figure 3. Illustration of how causal similarity is computed. We obviate the object superscript as there is only one object (red ball) in this
example. (a): Cosine similarity (Eq. 3). ṡ1 has a high cosine similarity with ṡ2 as they point in the same direction. ṡ3 points in the
opposite direction of ṡ1, obtaining a negative similarity value. (b): Magnitude similarity (Eq. 4). ṡ2 has a magnitude that is 40% smaller
than ṡ1, receiving a low magnitude similarity score. ṡ3 has a magnitude that is very close to ṡ1, obtaining a high similarity value. (c)
Final causal similarity combining cosine and magnitude similarities (Eq. 6). We obtain a medium similarity score for ṡ2 relative to ṡ1 and
low score for ṡ3 relative to ṡ1.

first uses the learned dynamics model to predict action out-
comes. It then uses these dynamics model predictions to
predict the similarity between actions. Using the predictions
from the learned dynamics model to predict action similarity
allows the Physics-Informed Kernel function to model the
correlation between actions. In the following sections, we
describe the learned dynamics model and the causal sim-
ilarity function. Then, we show that the causal similarity
function is a valid kernel function.

Predicting Causal Effects via Learned Dynamics

First, we train a dynamics model �̂� to predict the causal
effects of individual actions. The physical reasoning tasks
we consider involve placing an action object into an envi-
ronment with D dynamic objects. The action object and all
dynamic objects move in the environment according to the
unknown world’s dynamics. We train the model to predict
the effects that individual actions x have on these dynamic
objects. Formally, at each timestep t of an episode, the
environment’s state vector st consists of the state of the
action object, sAt , and the states of every dynamic object,
s1t , s

2
t , ..., s

D
t . For a given action x and initial environment

state s0, the dynamics model �̂� predicts the state at the next
npred timesteps:

[s1 ... snpred ] = �̂�(s0,x). (1)

The Causal Similarity Function

We use predictions from the learned dynamics model
[s1 ... snpred ] to compute the causal similarity of actions,

which captures how similar actions are based on their ability
to cause similar outcomes in the environment. To achieve
this, we begin by finding the timestep of the first causal
event, where the action object interacts with any of the D
dynamic objects, which we call tevent. If the action object
does not interact with any dynamic object during the npred
steps, we set tevent to be the initial timestep, 0. Next, we
quantify the causal effect of an action on a dynamic object
O based on its predicted motion as

ṡO =
sO(tevent+∆t) − sOtevent

∆t
, (2)

which computes the state change of object O between tevent
and ∆t timesteps after tevent.

To quantify similarity of two actions a and b, we first look
at the difference in the state changes, predicted by the dy-
namics model, they cause to a given object O. In computing
this per-object similarity, we account for both the difference
in the directions of the state changes caused by each action
on the object (the cosine similarity),

𝕤𝕚𝕞cos(ṡ
O,a, ṡO,b) =

ṡO,a · ṡO,b

||ṡO,a|| ||ṡO,b||
∈ [−1, 1], (3)

and the difference in the magnitudes of the state changes
caused by each action on the object,

𝕤𝕚𝕞mag(ṡ
O,a, ṡO,b) =

1

1 +
∣∣ ||ṡO,a|| − ||ṡO,b||

∣∣ ∈ [0, 1],

(4)
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where ṡO,a and ṡO,b are the state changes of object O
caused by actions a and b, respectively (as computed by
Eq. 2). Combining these, the full per-object similarity of
actions a and b for an object O is

𝕤𝕚𝕞obj(O, a, b) = max [

0, 𝕤𝕚𝕞cos
(
ṡO,a, ṡO,b

)
𝕤𝕚𝕞mag

(
ṡO,a, ṡO,b

)
] ∈ [0, 1]. (5)

Finally, we define the full causal similarity metric between
actions a and b as:

𝕤𝕚𝕞csl(a, b) =
1

D

D∑
O=1

[𝕤𝕚𝕞obj(O, a, b)]

· exp

([
1

D

D∑
O=1

𝕤𝕚𝕞obj(O, a, b)

]
− 1

)
. (6)

The above computes the mean per-object similarity over
all D dynamic objects scaled by the exponentiated mean
to accentuate differences between state changes caused by
actions. Figure 3 provides a visual example of Equations
(3)-(6) and shows how the causal similarity metric captures
both directional and magnitude similarity.

From Causal Similarity to Physics-Informed Kernel

The causal similarity function in Equation 6 uses predicted
state changes to quantify the correlation between actions
that have similar causal effects. Consequently, these scores
possess significant potential to be used as the kernel func-
tion of a GP that models the objective function of physical
reasoning tasks. For a function to be a valid kernel, it must
satisfy two fundamental properties: symmetry and positive
semi-definiteness. Analyzing Equations (3)-(6), the reader
can verify that 𝕤𝕚𝕞csl(a, b) = 𝕤𝕚𝕞csl(b, a), thereby fulfill-
ing the symmetry criterion. Furthermore, for any arbitrary
pair of actions a and b, their similarity score 𝕤𝕚𝕞csl(a, b)
is always non-negative. As such, causal similarity satis-
fies both criteria of valid kernel function, so we define the
Physics-Informed Kernel used in Algorithm 1 Line 4 as
𝕤𝕚𝕞csl(a, b).

3.3. Causal-PIK objective function

We use Causal-PIK to find an optimal action x that max-
imizes the objective function f(x). On each attempt, we
use an objective function f(x) that quantifies the progress
that executing action x makes towards a goal state sg. We
find that for tasks with complex dynamics, it is important
for the objective function to capture how close an action
gets to reaching the goal state at any timestep in the T -
timestep long episode, not just at the final timestep. This
insight aligns with the concept of “almost” reaching a goal,
introduced by Gerstenberg et al. (Gerstenberg & Tenen-
baum, 2016). To capture this, we use the closest distance

dc = mint=1,...,T dist(st, sg) to the goal state achieved
at any timestep t in an episode to compute the objective
function f(x) (where dist(·) denotes a distance function):

f(x) =


(
1− dc

dist(s0, sg)

)
exp(βdc) if dc < dist(s0, s

g)

0 otherwise
(7)

3.4. Leveraging Causality for Efficient Sample Learning

Unlike methods that learn only from direct observations, our
approach leverages physical reasoning to infer the outcomes
of untested actions that are predicted to share the same
causal effect as observed ones. As a result, a single rollout
allows our model to update its belief not just about the
executed action, but also about actions that are predicted
to produce a similar physical outcome. This significantly
enhances sample efficiency and enables reasoning about
alternative scenarios without exhaustive exploration.

Our Physics-Informed Kernel explicitly encodes causal de-
pendencies between actions and their physical consequences.
In contrast to standard approaches that tend to cluster actions
based on proximity in the feature space, Physics-Informed
Kernel compares them by assessing their impact on the envi-
ronment. Using counterfactual reasoning, the kernel distin-
guishes between causal effects – those directly attributable
to actions – and confounding factors arising from the dy-
namics of the environment.

This distinction is achieved by evaluating action outcomes
against a counterfactual baseline where no action object
is placed in the environment. In Equation 7, the shortest
observed distance dc is normalized by the counterfactual
baseline distance dist(s0, sg). Similarly, when computing
the causal similarity of actions in Equation 6, the counter-
factual baseline helps cluster actions that have no effect on
the environment and emphasizes the attributable effects of
other actions.

4. Experimental Setup
Benchmarks:

Virtual Tools: We test Causal-PIK on the 20 original puz-
zles from the Virtual Tools benchmark. These puzzles in-
volve placing an action object in a 2D dynamic physical
environment to guide a red ball into the green goal area.
Once an action object is placed, gravity is activated, and
its effect can be observed.. The three-dimensional action
space consists of: xpos ∈ [0, 600], ypos ∈ [0, 600], and
actionobj ∈ {tool1, tool2, tool3}, resulting in a total of
1,080,000 possible actions.

PHYRE: We test Causal-PIK on the 25 puzzles from the
BALL tier in PHYRE, following the cross-generalization
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Figure 4. Comparison of posterior distributions f(x) generated by Causal-PIK and a BO agent with an RBF kernel. Given the same initial
observations {x1,x2}, Causal-PIK produces a more expressive posterior, effectively clustering actions based on their causal effects - the
red area contains those actions predicted to move the ball closer to the goal while the blue area contains those predicted to push it further
away. In contrast, the BO agent with the RBF kernel requires more iterations to develop an informative posterior.

setting. These puzzles require selecting the radius of a ball
and placing it in a 2D dynamic physical environment to
have the blue and green objects stay in contact for at least
3 seconds. As in Virtual Tools, gravity is activated upon
placement, after which the action’s effect is observed. The
three dimensional action space consists of: xpos ∈ [0, 256],
ypos ∈ [0, 256], and actionobj ∈ [2, 32], yielding a total of
2,555,904 possible actions.

Baselines and Ablations: For Virtual Tools, we compare
Causal-PIK against SSUP (Allen et al., 2020), the state-of-
the-art method for this benchmark. We also compare against
the two naive baselines from Allen et al., RAND and DQN.
For PHYRE, we compare Causal-PIK against three cate-
gories of prior work. The first category consists of a method
that uses a reduced action space of size 1,000 (Girdhar et al.,
2020). The second category consists of methods that use a
reduced action space of size 10,000 (Ahmed et al., 2021; Qi
et al., 2021). Critically, by reducing the action space from
∼2.5 million actions, these methods simplify the problem
dramatically. The third category consists of methods that
operate over the full action space (Harter et al., 2020), as
we do. Additionally, we report results for three naive base-
lines from the original PHYRE paper (Bakhtin et al., 2019):
RAND, MEM, and DQN. Finally, to assess the impact of
the Physics-Informed Kernel, we conduct an ablation study
by replacing it with a standard RBF kernel. This baseline
highlights the expressiveness of the Physics-Informed Ker-
nel, particularly in tasks with complex dynamics, where
capturing underlying physical principles is key to finding
solutions efficiently.

Human Baseline: In addition to model baselines, we com-
pare Causal-PIK against a human baseline for both bench-
marks. A human study with Virtual Tools was conducted by

Allen et al. (2020). Here, we conducted a human experiment
with PHYRE by recruiting n = 50 participants from Prolific
and asking each participant to solve one variation of each of
the 25 puzzles. Participants had 10 attempts to solve each
puzzle by using the mouse to draw and place a valid action
object. As with the model setup, each puzzle was initially
presented as a freeze-frame, and then gravity was activated
once the participant submitted their action (see Appendix B
for details). The experiment was approved by the Stanford
Institutional Review Board (IRB).

Evaluation Metric: We measure the performance of our
method using the AUCCESS metric introduced by Bakhtin
et al.. This metric aggregates the success percentages via a
weighted average, placing more emphasis on solving tasks
with fewer attempts. AUCCESS is computed as follows:

AUCCESS =

∑
k wk · sk∑

k wk
, where

wk = log(k + 1)− log(k), for k ∈ {1, ...,MAX ATT}
sk : percentage of tasks solved within k attempts (8)

We compare overall AUCCESS scores for each model, as
well as correlation between scores for humans and models
across individual puzzles.

Dynamics Model: We use Region Proposal Interaction
Networks (Qi et al., 2021) as the architecture. We train
the model on puzzles that share underlying physical con-
cepts similar to the test puzzles. For Virtual Tools, we train
the model on 10 variations for each original puzzle. For
PHYRE, for each of the 10-fold splits from Bakhtin et al.,
we train a model exclusively on the fold’s training set, ensur-
ing that Causal-PIK is tested on previously unseen puzzles.
At inference time, an image of the test puzzle with the action
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embedded and the initial bounding boxes of all dynamic
objects in the scene are fed into the model. The model out-
puts the bounding boxes of the next npred time steps. We
set npred to capture the initial steps, but not the full roll-
out. The choice of npred helps the dynamic model focus on
learning the immediate causal effect of an action, which is
then used to compare the similarity between actions. For
further details, refer to Appendix A.

5. Results and Discussion
Virtual Tools: We evaluate Causal-PIK on the 20 Virtual
Tools puzzles with 100 tests per puzzle. For each test, we
limit the maximum number of attempts to 10. Table 1 in-
cludes a summary of the AUCCESS rate achieved by the
different agents. Causal-PIK is 7 points higher than the best-
performing baseline, requiring a lower number of attempts
to solve the tasks.

PHYRE: We evaluate Causal-PIK on the PHYRE-1B Cross
test set, which comprises 25 tasks distributed across 10
folds, with 10 variations per task and 10 tests per fold. For
each test, we limit the maximum number of attempts to 100.
As shown in Table 2, Causal-PIK achieves an AUCCESS
rate over 10 points higher than the best-performing baseline.
We also compare our results to baselines that use a reduced
action space (Girdhar et al., 2020; Ahmed et al., 2021; Qi
et al., 2021), which is guaranteed to lead to a 100 AUCCESS
score for 10K actions if an optimal oracle is used.

As shown in Table 2, Causal-PIK performs comparably to
baselines that utilize a drastically reduced action space. Our
approach tackles a significantly harder problem by consid-
ering any point in the action space. Bakhtin et al. (2019)
analyzed how the number of actions ranked by agents at
test time affects performance. As shown in Figure 4 of
their work, the AUCCESS of the DQN agent decreases as
the number of ranked actions increases by orders of magni-
tude, up to a maximum of 100,000, which is still far from
the 2,555,904 possible actions per puzzle in the full action
space. We argue that discretizing the environment for action
selection is an unrealistic constraint when aiming to develop
generalist algorithms capable of solving complex physical
reasoning tasks.

Physics-Informed Kernel versus RBF Kernel: We com-
pare the posterior distributions of our Bayesian Optimization
(BO) agent using the Physics-Informed Kernel and the RBF
kernel. As shown in Figure 4, given the same set of initial ob-
servations, the BO Agent with the Physics-Informed Kernel
produces a more expressive posterior that focuses on high-
likelihood actions. Given two actions, one that moved the
red ball further from the goal and another one that brought
it closer but overshoots, the GP with the Physics-Informed
Kernel constructs a posterior with three distinct regions: a

Table 1. AUCCESS scores of Causal-PIK, its RBF ablation variant,
and state-of-the-art model on the Virtual Tools benchmark. Results
are based on a maximum of 10 attempts per task, with higher
scores indicating more efficient problem-solving.

Model AUCCESS ↑
RAND 16.0±20.0
DQN 25.0±24.0
SSUP (Allen et al., 2020) 58.0±27.0

Ours RBF 42.0±33.0
Ours Causal-PIK 65.0±25.0

Humans (Allen et al., 2020) 53.25±23

Table 2. AUCCESS scores of Causal-PIK, its RBF ablation variant,
and state-of-the-art models on PHYRE-1B Cross. Results are
based on a maximum of 100 attempts per task and averaged over 10
test folds. Higher scores indicate more efficient problem-solving.

Model AUCCESS ↑
Dec [Joint] (Girdhar et al., 2020) ∗ 40.3±8

MEM† 18.5±5.1

DQN† 36.8±9.7

Ahmed et al. 2021† 41.9±8.8

RPIN (Qi et al., 2021)† 42.2±7.1

RAND 13.0±5.0
Harter et al. 2020 30.24±8.9
Ours RBF 27.70±9.68
Ours Causal-PIK 41.6±9.33

Ours Causal-PIK @10+ 24.8±9.22
Humans @10+ 36.6±10.2

∗1K reduced action space. †10K reduced action space.
+ max of 10 attempts per task.

red area on the top left side of the red ball, clustering actions
that move the ball closer to the goal; a blue area on the
top right, clustering actions that push it further away; and a
yellow area representing unexplored actions that cause no
movement. In contrast, the BO agent with the RBF kernel
requires more steps to build an informative posterior.

Human performance: Participants found the puzzles from
both benchmarks to be challenging. Causal-PIK achieved a
higher AUCCESS score than humans on both benchmarks,
except when it was restricted to 10 attempts in PHYRE.
The high variance in AUCCESS rates for both humans and
models suggests that the puzzles had mixed levels of dif-
ficulty. We computed AUCCESS scores across individual
puzzles. On Virtual Tools, human per-puzzle scores were
most correlated with SSUP (r = 0.71), followed by Causal-
PIK (r = 0.63), then DQN (r = 0.32). Causal-PIK may be
less correlated with humans but still have a higher overall
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AUCCESS rate because it is able to solve several puzzles
that humans find very difficult. This lowers the per-puzzle
correlation, but highlights the overall performance of our
method. On PHYRE, human scores were most correlated
with Causal-PIK (r = 0.73), followed by Causal-PIK @10,
which has limited attempts (r = 0.71), then the RBF ker-
nel baseline (r = 0.64), and finally Harter et al. (2020)
(r = 0.55). Overall, the high correlation in scores between
humans and our model, even when restricted to a maximum
of 10 attempts per puzzle, suggests high alignment in the
types of physical dynamics that were found to be easy or
difficult to reason about.

Resistance to noisy predictions We conduct an analysis to
study the impact of the accuracy of the dynamics model on
the performance of our method. To demonstrate that existing
predictions are inherently noisy due to the characteristics of
the train and test sets, we train the PHYRE dynamics model
on tasks from the test templates, ensuring prior exposure
to similar puzzles. As a result, the L2 error for object
bounding boxes improved to 3.56, compared to 19.3 ± 4.55
when tested on entirely unseen puzzles.

Despite this difference in prediction accuracy, our method
achieved an AUCCESS of 45, which is only 4 points higher
than the 41.6 ± 9.33 AUCCESS we reported for the case
with unseen dynamics. This demonstrates that even with
a substantial increase in prediction error, the performance
drop is small, indicating that our method remains resilient
to noisy dynamic predictions. While improved dynamic
predictions can enhance performance, our approach does
not rely on perfect predictions, retaining robustness even in
the presence of inaccuracies.

On the shortcomings of RL agents: Reinforcement learn-
ing (RL) agents like DQN have shown remarkable perfor-
mance in strategic games such as Atari and Go after exten-
sive training, but they struggle in tasks that require physical
reasoning. In the context of the Virtual Tools and PHYRE
physical reasoning tasks, DQN fails to generalize effec-
tively to unseen puzzles due to its limited understanding of
the physical properties of objects and the basic rules gov-
erning their interactions. Previous studies on the PHYRE
and Virtual Tools benchmarks (Li et al., 2024; Allen et al.,
2020) have underscored this limitation, demonstrating that
RL agents struggle to understand the underlying physics
involved beyond their strong mapping between states and
actions. This shortcoming leads to a broad and inefficient
unguided exploration process, requiring numerous attempts
to discover promising areas. Furthermore, DQN fails to
learn from past attempts, often repeating similar unsuccess-
ful actions. In contrast, our approach focuses on learning
from each failed attempt and uses the causality and phys-
ical insights from the Physics-Informed Kernel to guide
exploration towards more promising areas.

6. Limitations
Causal-PIK currently does not share knowledge across tasks.
Enabling agents to recognize similarities between tasks and
leverage past observations from tasks requiring similar phys-
ical reasoning remains an avenue for future work. By iden-
tifying regions of the action space that share underlying
dynamics, agents could integrate prior knowledge to solve
new tasks more efficiently.

Another limitation arises from the noise introduced by
causal effect predictions, which directly impacts perfor-
mance. Poor predictions introduce misleading similarities,
potentially guiding the agent in the wrong direction. Im-
proving these predictions would improve the expressivity of
the Physics-Informed Kernel. However, our results demon-
strate that Causal-PIK remains robust despite this noise,
suggesting potential for future sim-to-real transfer.

Additionally, the physical reasoning tasks considered in this
study involve a three-dimensional action space. Scaling
to higher-dimensional action spaces would require modifi-
cations to the causal effect predictor to accommodate the
added complexity. However, the kernel equations (2-6)
would remain unchanged, as the new dimensions would be
encoded within the state returned by the model. Thereby, the
fundamental structure of our approach remains unchanged,
preserving the kernel’s ability to compare the immediate
effects of high-dimensional actions. Moreover, Bayesian
Optimization (BO) is expected to remain effective in larger
search spaces, as prior work has demonstrated its robustness
in high-dimensional action spaces in real-world applications
(Antonova et al., 2019).

7. Conclusion
We introduce Causal-PIK, a novel approach that integrates a
Physics-Informed Kernel with BO to reason about causality
in single-intervention physical reasoning tasks. By lever-
aging information from past failed attempts, our method
enables agents to efficiently search for optimal actions, re-
ducing the number of trials needed to solve tasks with com-
plex dynamics. Our experimental results demonstrate that
Causal-PIK outperforms state-of-the-art baselines, requir-
ing fewer attempts on average to solve the puzzles from the
Virtual Tools and PHYRE benchmarks.
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A. Dynamics Model
We train the dynamics models to predict causal effects of actions in the Virtual Tools and PHYRE benchmarks (Allen et al.,
2020; Bakhtin et al., 2019). Our model is based on the Region Proposal Interaction Networks (RPIN) architecture (Qi et al.,
2021) and is trained on puzzles that share similar underlying physical principles with the test puzzles.

For the Virtual Tools benchmark, we generate 10 variations of each of the 20 original puzzles, modifying object sizes and
relative positions to create diverse scenarios (see Figure 5). None of the original puzzles are included in training. For each
puzzle variation, 300 actions are generated, distributed evenly across the three action object types. At least 50% of actions
result in collisions between the action object and a dynamic object, while 10% simulate the absence of an action object
in the environment. The remaining actions are randomly sampled using a Sobol generator to determine object placement.
The inclusion of ”no-action” cases enables the model to implicitly learn that stationary objects remain static when no net
external force is applied.

For the PHYRE benchmark, we train 10 separate dynamics models, one per fold. Each model is trained on 20 out of the 25
puzzles assigned to the training set for that fold. For each puzzle, we generate 500 actions, of which 350 result in failed
rollouts, 150 result in successful rollouts, and 50 simulate the absence of an action object. Actions are randomly drawn from
the 100,000 pre-selected actions provided by (Bakhtin et al., 2019).

At inference time, the model receives an image of the puzzle, along with the initial bounding boxes of all dynamic objects
and the action object. The model outputs the bounding boxes for the next npred time steps. We set npred to 20, which usually
captures one collision but not the full roll-out. The choice of npred helps the dynamic model focus on learning the immediate
causal effect of an action, which is then used to compare similarity between actions.

Figure 5. Puzzle variations for one of the original puzzles in the Virtual Tools benchmark. The puzzle variations share a similar underlying
physical concept with the original puzzle, but have different dynamics due to varying object sizes and relative positions.
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B. PHYRE Human Experiment
We adapted the PHYRE-1B benchmark into a suite of online games using Planck.js (Shakiba, 2017), a JavaScript rewrite
of the Box2D physics engine used in PHYRE (Bakhtin et al., 2019). The experiment was posted on Prolific, an online
crowd-sourcing research platform. We recruited n = 50 participants (age: M = 37, SD = 11; gender: 20 female, 27 male, 1
non-binary, and 2 undisclosed; race: 29 White, 9 Black, 5 Asian, 1 American Indian/Alaska Native, 4 Multiracial, and 2
undisclosed) and compensated them at a rate of $12/hour. All participants were native English speakers residing in the US.

Participants were first given instructions for the task, including a “playground” environment where they learned about the
different objects and the dynamics of the world. They then solved a simple practice puzzle before moving on to the main
puzzles. During the main portion of the experiment, they were given one variation of each of the 25 puzzles in Phyre-1B in
a random order. On each puzzle, participants were initially presented with a freeze-frame of the scene. They attempted to
solve the puzzle by using the mouse to draw and place the action object (a red ball) in any valid location in the scene. On
each attempt, they watched the simulation run until it either succeeded, after which they continued on to the next puzzle, or
timed out or all objects stopped moving, at which point they could try again. If they ran out of attempts (maximum 10),
then they were also directed to the next puzzle. We enforced all the same physics parameters and time limit described in
the original PHYRE benchmark. We recorded participants’ actions (xpos, ypos, and actionobj = rball) on each attempt.
Overall, participants spent an average of 1.7 minutes (SD = 1.4) on each puzzle.
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