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ABSTRACT

A bottleneck for developing general artificial intelligence is empowering machines
with knowledge-reasoning capabilities to facilitate NLP tasks such as semantic
search, reading comprehension, and question-answering. Prior arts focus on inte-
grating distributed knowledge embeddings and representations of pre-trained neu-
ral language models to produce outputs; however, there are still large areas for
improvement in performance and sustainability. In this paper, we propose to repre-
sent Knowledge as the Functional representation (KasF ) with a dynamics-based
mechanism that simulates the semantic flow amongst tokens to facilitate knowl-
edge reasoning. The method utilizes a superposition of semantic fields to repre-
sent knowledge, by building a dynamical mechanism to compute the similarity
between semantic units. This mechanism comprehensively captures the semantic
features and eliminates ambiguities in representing entities and relations. We first
evaluate our KasF on the WikiQA dataset to demonstrate its superiority in cap-
turing semantic patterns. Next, we evaluate our KasF modules on the SQuAD2.0
dataset by replacing the last layer of pre-trained language models fine-tuned on
this dataset. We observe consistent improvements in accuracy with fewer param-
eters. Then we evaluate KasF on the CommonsenseQA benchmark1. On the
official blind test set, we achieve state-of-the-art with a single model, outperform-
ing the prior best ensemble and single models by 0.4% and 3.1%, respectively2.
It is worth noting that the prior best single model is 47× larger than ours. Fur-
ther experiments also demonstrate that KasF exhibits superiority in dealing with
sophisticated sentences.

1 INTRODUCTION

The ability of reasoning, especially knowledge reasoning, is essential for humans to think and inter-
act with the world (Chen et al., 2020). The theory and application of knowledge reasoning have been
studied for a long time (Zhang & Zhang, 1992; Kompridis, 2000), which claims that reasoning is the
cognitive procedure of concluding existing facts by rules. Many successful cases (Silver et al., 2017;
Bubeck et al., 2023) show that artificial intelligence models require robust and reliable reasoning ca-
pabilities. Thus, empowering machines with the abilities of knowledge reasoning can be regarded
as imitating the ability of humans to use known knowledge, i.e., factual statements retrieved from a
knowledge base, to infer new knowledge and make decisions (Aamodt, 1990).

A dominant building block for knowledge reasoning is the large-scale language models (LLMs) that
are powerful in natural language understanding (Min et al., 2021; Huang & Chang, 2023). Never-
theless, LLMs need an explicit mechanism to deal with knowledge-intensive information. On the
other hand, knowledge graphs (KGs) succeed in using topological features among entities (Chen
et al., 2020) to interpret knowledge-centric data. KGs are indispensable in providing context out of
LLMs in the form of entities linked with substantial relations to produce the outputs. Mainstream
knowledge reasoning approaches are methods coupling LLMs with KGs (Pan et al., 2023), includ-

1We only compare with the models that do not use ConceptNet since the CommonsenseQA’s team officially
no longer accepts this submission type. As ConceptNet was used to create the dataset, it filters the human-
generated distractors, reducing the 5-way multi-choice to a simpler one.

2We will include the link to the latest official leaderboard after the anonymity period. Note that the leader-
board directly accessed from the website is outdated and has not been updated since 2021.
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ing KG-BERT (Yao et al., 2019), KagNet (Lin et al., 2019), QA-GNN (Yasunaga et al., 2021),
GreaseLM (Zhang et al., 2022), LLM-based KGs (AlKhamissi et al., 2022), and KG-augmented
LLMs (Yang et al., 2023). They achieve improved accuracy by combining the merits of natural
language understanding and structural knowledge guidance. However, there are still areas for im-
provement in performance and sustainability of knowledge reasoning.

In general, existing methods adopt the “knowledge as embeddings” strategy that trains the deep
neural network with facts organized as triplets. The semantic units, i.e., words/entities, sentences,
or paragraphs, are represented as distributed vectors with fixed dimensions (Bengio et al., 2000;
Mikolov et al., 2013; Devlin et al., 2018). Despite its computational efficiency, this strategy is
quite different with the mechanism of the human brain that works as dynamic functions to represent
semantic relations of a field of concepts (Patterson et al., 2007). In linguistics, this mechanism is
interpreted as the semantic field, referring to a semantically structured group of the lexical set of
words (Jackson & Amvela, 2007). Every token in a factual statement is equipped with varying
semantic fields that express its relations to the other tokens. Inspired by the above biological and
linguistic study, we model knowledge via functional representation. A functional is a real-valued
function on a space of functions, i.e., it takes functions as arguments. A functional can map linear
mappings from a vector space into its field of vectors or scalars (Lang, 2012). Each semantic unit
is treated as a functional that takes the objectives, the external states, and the internal states as the
input arguments, and returns a task-specific encoding with varying structure/dimensions and roles.

Given the functional representation of semantic units, another bottleneck problem is enhancing en-
tity connectivity and knowledge throughput for knowledge reasoning. Motivated by Pei & Wang
(2023) that interprets neural weights as the path integrals between neuronal dynamics, we deal with
the semantic relation between arbitrary semantic units as a dependent variable between them rather
than an independent trainable parameter. As a result, our method can capture the necessary semantic
patterns as much as possible, needless of storing every possible relation pair amongst the semantic
units. To this end, we propose “knowledge as functions” (KasF), a dynamics-inspired mechanism,
to simulate the dynamics amongst semantic units in human brain. Instead of edge-based entity re-
lation, KasF links the knowledge-intensive entities via multiple weak but more flexible relations,
preserving richer semantic inter-dependency. Rather than traditional knowledge retrieval by sim-
ilarity ranking, KasF computes nonlinear trainable metric functions as the similarity between the
functional representations of semantic units under different semantic fields, facilitating more com-
prehensive knowledge throughput towards the needs of knowledge reasoning. Besides, as the func-
tional representations comprise explicitly defined relations among semantic units, KasF is highly
flexible and sustainable, allowing users to edit the intrinsic structure explicitly in practical usage.

We first use the WikiQA dataset (Yang et al., 2015) to validate that the functional representations
can capture more semantic patterns with an improved efficiency. Experiments show that KasF can
efficiently encode knowledge with fewer parameters and better precision than traditional neural and
SVD-based approaches. Next, we use the SQuAD2.0 benchmark (Rajpurkar et al., 2018) to validate
the knowledge reasoning ability of KasF in the real-world case. We replace the last fully connected
layers of several pre-trained language models fine-tuned on SQuAD2.0, i.e., RoBERTa-base (Liu
et al., 2019), ALBERTa-base (Lan et al., 2019), and DeBERTa-base (He et al., 2020), with our
proposed KasF layers. Then we observe that the exact match (EM) accuracies of the KasF-based
models outperform the original models by 0.95% ∼ 1.36% with fewer parameters.

Furthermore, we choose CommonsenseQA (CSQA) Talmor et al. (2018) as a benchmark to validate
KasF’s capability of complicated causal reasoning rather than just locating keywords in contexts.
The CSQA’s official team, evaluates our methods on a blind test set. The results show that the accu-
racy of KasF on a single model setting outperforms the previous best ensemble and single models by
0.4% and 3.1%, respectively. Note that the prior best single model UnifiedQA (Raffel et al., 2020)
is 47× larger than ours. On the in-home developing set, the accuracy using a single fine-tuned AL-
BERT with KasF can be significantly increased from 78.7% to 87.1%, outperforming models like
GPT-3.5 (Bubeck et al., 2023) of 73.3%, and other fusion-based methods like ALBERT+KEAR of
81.2% (Xu et al., 2021). Unlike models that use external task-specific resources, e.g., large-scale QA
training sets and a structured commonsense knowledge base like OMCS (Singh et al., 2002), KasF
uses only the plain-text corpus and self-generative knowledge base during training and inference.
Moreover, we show the advantage of KasF over main-stream Transformer encoders, demonstrate
the feasibility of combining KasF with LLM decoder, and discuss the limitation regarding to imple-
mentation and application in the Appendix.
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2 METHODOLOGY

2.1 FUNCTIONAL REPRESENTATION OF SEMANTIC UNITS

A semantic unit is analogous to a token/word and is strictly a conceptual element that implements
reasoning tasks. A well-formed reasoning model needs as few semantic units as possible while pre-
serving its reasoning capacity as much as possible. Giving a semantic unit with index i ∈ {1, ...,M},
Instead of treating it as a fixed-dimensional encoding, we treat it as a functional Fi that takes the
functional and tensor-formed parameters, including the objectives T, the external states E, and the
internal states I as the arguments, followed by returning a task-specific encoding vi as the output:

vi = Fi(T,E, I) (1)

The parameters in Eq. 1 have yet to be defined precisely. One can freely define the parameters
towards the need of a given task, such as semantic compression, reading comprehension, and QA.

For better understanding, we show how to instantiate Eq. 1 to facilitate the task of semantic com-
pression (Ceglarek, 2014; Cai et al., 2021). This task is to find the top-K largest components of
z = Vy ∈ Rn×1 given a query vector y ∈ RDv×1 and n Dv-dimensional encodings V ∈ Rn×Dv

under limited computational cost. In this case, the query y is the external state E in Eq. 1. The in-
ternal states I contain two parts: the remaining computational budget and the original-dimensional
encoding Vi ∈ RDv×1. The objective T minimizes the query loss between the computed ẑ and the
actual z, and the computational cost.

T(D
′

v) =

K∑
k=1

γk∥y⊤Vrk − (P[D
′

v]y)
⊤(P[D

′

v]Vrk)∥+D
′

v

2
(2)

where D
′

v ∈ [1, Dv − 1], γ ∈ [0, 1], P[D
′

v] ∈ RD
′
v×Dv . The index rk refers to the candidate that

corresponds to the k-largest components of z, i.e., zrk = y⊤Vrk is the k-largest ones of {z1, ..., zn}.
P[D

′

v] is trained by minimizing T(D
′

v) using a set of provided queries y. In this case, Fi presents
a heuristic way to recursively compute Vy, reducing the dimensions step-by-step. During a T -step
iterative process, D(0)

v = Dv

10 < D
(1)
v < ... < D

(T )
v , we compute the reduced V(t)y(t) and filter out

the candidates, i.e., reduce the candidates’ size from R(t−1) ∈ N+ to R(t) ∈ [1, R(t−1)], followed
by further reducing the dimensions, computing and filtering out, etc., until the computational budget
is consumed. The analytical form of Fi for this task can be defined as

v
(t)
i = Fi(T, y, I(t)) = P[D(t)

v ]v
(0)
i = P

[
η
(
Ψ−

t−1∑
s=0

R(s)D(s)
v

2) 1
2

]
v
(0)
i (3)

where v
(0)
i = Vi, η ∈ (0, 1) is a predefined parameter that compromises the extra computational

cost during pre-processing, and Ψ ∈ N is the initial computational budget that determines the ex-
pected computational complexity. The parameter P[D

(t)
v ] ∈ RD(t)

v ×Dv is pre-trained by back-
propagating the objective T defined in Eq. 2. A candidate encoding i with a higher ẑ(t)i is more
likely to be selected by the filtering mechanism, where details are omitted for simplicity. Note
that this functional representation can perform specified tasks more efficiently, ensuring an optimal
trade-off between the execution process’s cost and efficiency. However, as illustrated above, this
mechanism is too specific, it needs further generalized implementation.

2.2 GENERALIZING THE FUNCTIONAL REPRESENTATIONS OF KNOWLEDGE

The core idea involves the decomposition of a functional Fi into local and global functions. The
local functions are responsible for processing the external inputs, referring to the external states
E in Eq. 1 The global functions guide the local functions to achieve the ultimate outcomes. For
analytical purposes, we assume that the reasoning model consists of N neurons, each characterized
by d-dimensional dynamic states as qx ∈ Rd with x ∈ {1, ..., N}, following Pei & Wang (2023).

Subsequently, we will formalize the remaining arguments defined in Eq. 1. The objective argument
T can be formalized as the task of nonlinear sequential mapping, as most reasoning tasks can be
viewed as equivalent to such mappings. This task aims to map arbitrary sequential inputs, denoted
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Figure 1: A Sketch Pipeline of Functional Reasoning. We associate the dynamic states corre-
sponding to an identical semantic unit, i.e., {Qi[1], ...,Qi[d]}, with arrows of the same color. Then,
as labeled via dotted line, the signals {S1, ...,Sd} are processed with the relations amongst dynamic
states, which act as an instruction to guide the signals S, to generate the final outputs Ŷ.

as X ∈ RLX×DX , where LX represents the length and DX represents the dimension, to arbitrary
sequential outputs, denoted as Y ∈ RLY ×DY .

Formalizing the internal states I requires insights from the field of neuroscience: the neuronal ac-
tivities involve a superposition of M distinct “frequencies” (Koudelková & Strmiska, 2018). Each
frequency component corresponds to a semantic unit equipped with dynamic states represented as
Qi = [q1, . . . , qN ] ∈ Rd×N . We can employ global functions to decompose the external inputs X
into M sets of dynamic states. Then, we compute the relations among the decomposed dynamic
states, referring to the internal states I. These relations serve as instructions that guide the local
functions in their treatment on the external inputs, resulting in the generation of the final outputs.

Next, we present how to construct the global and local functions analytically. We configure the
semantic units by defining their dynamic states and signals from the inputs X via linear projec-
tions. As presented in Figure 1, we interpret M semantic units as two pairs of M global functions,
{N (L)

i ,N (D)
i , i ∈ [1,M ]}, designed to deal with X’s Length and Dimension, respectively. These

global functions take the inputs X as the input argument and returns the functional representations
of “knowledge” embedded in X as the dynamic states:

Qi = N (L)
i XN (D)

i ∈ Rd×N ; i ∈ {1, ...,M} (4)

where N (L)
i ∈ Rd×LX and N (D)

i ∈ RDX×N are trainable parameters corresponding to a specific
functional Fi. Likewise, we interpret the d-dimensional dynamic states as two pairs of d local
functions, i.e., {T (L)

k , T (D)
k , k ∈ [1, d]}. These local functions also take X as the input argument,

and returns d distinct signals, i.e., {S1, ...,Sd}, for further processing. The signals Sk ∈ RM×DY

are computed via the local functions as follows:

Sk = T (L)
k XT (D)

k ∈ RM×DY ; k ∈ {1, ..., d} (5)

where T (L) ∈ RM×LX and T (D) ∈ RDX×DY are trainable parameters shared by all the functionals
F = {F1, ...,FM}. The relations amongst the semantic units are obtained based on the piece-wise
linearity principle, which indicates that an arbitrary nonlinear mapping can be approximated as the
weighted sum of linear transformations. Thus, the d-dimensional nonlinear relation µ between two
semantic units i, j ∈ {1, ...,M} is interpreted as the weighted p-norm between dynamic states,

µij [k] =

H∑
h=1

λh∥Qi[k, hδ : (h+ 1)δ]−Qj [k, hδ : (h+ 1)δ]∥p ∈ R; δ =
d

H
(6)
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Figure 2: Representation of a sentence using semantic fields. The sentence contains 7 tokens in-
terpreted as 128-dimensional embeddings, i.e., LX = 7 and DX = 128, mapping to the hyperspaces
via three distinct semantic fields, i.e., G = 3. Each semantic field contains five semantic units, i.e.,
M = 5. The generated encoding is a tensor of shape RG×M×DX , as we suppose DX = DY here.

where λh ∈ R is a trainable parameter. Note that we use p-norm rather than other metric functions,
such as cosine similarity, since p-norm results in a stronger representation capacity in empirical
results. The resulting signals received by semantic units are obtained as

Rk = σ[

M∑
m=1

µim[k] · Sk[m, j]]i,j = σ(ΦkSk) ∈ RM×DY (7)

where Φk ∈ RM×M with i ∈ {1, ...,M} and j ∈ {1, ..., DY }. Note that Eq. 7 can be largely
accelerated via the designed matrix algorithms presented by Indyk & Silwal (2022) and Pei & Wang
(2023). This faster implementation can compute Eq. 7 without explicitly knowing the matrix Φk,
reducing the computational complexity from O(M2DY ) to O(pMDY ), where p refers to the p-
norm in Eq. 6. The final output is then obtained as the weighted sum of resulting signals:

Ŷ =

d∑
k=1

OkRk ∈ RLY ×DY (8)

where Ok ∈ RLY ×M are trainable parameters shared by the functionals set F . We can take either
the MSE Loss or the Cross-Entropy Loss between Ŷ and Y as the objective function to train the
trainable parameters mentioned in this section.

2.3 INTERPRETING KNOWLEDGE AS FUNCTIONAL VIA SEMANTIC FIELDS

Recall that a semantic field is a semantically structured group of the lexical set of words/tokens
related to one another through their similar meanings or a more abstract semantic relation. Our
proposed KasF interprets such an abstract semantic relation as a multi-dimensional nonlinear re-
lation µ via Eq. 6. Suppose we have a sentence SX = [w1, ..., wLX

] with embeddings denoted
as X = [v1, ...,vLX

]⊤ ∈ RLX×DX . As shown in Fig. 2, KasF maps the embeddings into d-
dimensional dynamic states of semantic units via Eq. 4. Note that a semantic unit is not strictly
related to a single word but refers to a collection of words that constitute the semantics, so the se-
mantic unit gains much stronger representation ability than the traditional distributed representation
approach (Mikolov et al., 2013) and a massive body of its variants.

Besides, there should be multiple semantic fields, i.e., Q(1)
i , ...,Q

(G)
i , rather than just a single one

from a linguistic view (Ataboyev & Turgunova, 2022). Each semantic field may refer to a particular
linguistic pattern, e.g., part-of-speech, dependency parsing, or even some unknown patterns. The
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dynamical relations amongst the semantic units in a semantic field act as an instruction to guide
the signals S(g) = [S

(g)
1 , ...,S

(g)
d ], which are obtained from X via Eq. 5. Different from Eq. 8 that

generates the final outputs Y ∈ RLY ×DY , we obtain the temporal outputs by adding the resulting
signals along with dimension, i.e., T(g) =

∑d
k=1 R

(g)
k ∈ RM×DY .

Using the methods above, we can encode an arbitrary fixed-length sentence or query SX as a set of
temporal signals denoted by TX = {T(1), ...T(G)}, each refers to the dynamic states of a semantic
field. For a reasoning task in the form of multiple choices and selecting the best choice from the
candidates C = C1, ..., CC , we need to get the temporal signals of all the well-formed sentences that
contain the candidates. These well-formed base sentences are extracted from the training set and
other relevant corpus. Then we use a trainable metric function G to compute the probability that a
candidate Cx can answer the question SX .

G(TX ,TCy ) = W(M)σ

( G∑
g=1

Concat
(
T

(g)
X ,T

(g)
Cy

)
W(D)

)
(9)

where TCy
refers to the temporal signals of a base sentence containing the candidate Cy , W(M) ∈

R1×2M , and W(D) ∈ RDY ×1. We train the metric G by assigning it 1 for a correct candidate and
−1 for an incorrect candidate.

3 EMPIRICAL RESULTS

3.1 DATASETS AND SETUPS

We use three public benchmarks, i.e., WikiQA (Yang et al., 2015), SQuAD2.0 (Rajpurkar et al.,
2018), and CommonsenseQA (Talmor et al., 2018), to validate our methods in knowledge reasoning
tasks. We also use a synthetic dataset to compare KasF with Transformer (Vaswani et al., 2023).

The WikiQA dataset contains 3047 questions/queries and 29258 sentences/candidates, in which
1473 sentences were labeled as the answer to their related questions. Bing query logs were used
as the query source to reflect the real-world case. Each query is linked to a Wikipedia article that
contains the answer. We use the heuristic functional representation presented by Eq. 3 on this bench-
mark to show that the proposed functional representation contains more semantic patterns than other
fixed-dimensional representations.

The SQuAD2.0 dataset is a challenging natural language understanding benchmark for reading com-
prehension. The dataset combines 100, 000 questions extracted from its former version with over
50, 000 new unanswerable questions written by crowdworkers. The training dataset contains 87k
answerable and 43k unanswerable questions. In this task, we set the output’s length the same as the
input’s length with a binary classifier that determines if the current token is the start or end token,
i.e., LY = LX and DY = 2. Besides, we set the numbers of semantic units and dynamic states
M = N = DX as defaults. The default dynamic dimension d is 30. We use some fine-tuned base
models3, e.g., RoBERTa-base (Liu et al., 2019), ALBERTa-base (Lan et al., 2019), and DeBERTa-
base (He et al., 2020), as the text encoders to obtain the encoded inputs feeding into the KasF module
defined in Section 2.2, followed by fine-tuning them on the SQuAD2.0’s training dataset.

The CommonsenseQA (CSQA) dataset is a challenging 5-way multiple choice QA dataset for com-
monsense question answering, containing 12, 102 questions created via ConceptNet (Speer et al.,
2017). The official test set of CSQA is hidden, and the official team can only evaluate model pre-
dictions twice a month. Therefore, besides the official results in the leaderboard, we perform major
experiments on the in-house data splits following Lin et al. (2019). We use RoBERTa-large (Liu
et al., 2019) and ALBERTa-xxlarge-v2 (Lan et al., 2019) as the base models to build the pre-trained
text encoders, respectively. Then, we feed the encoded inputs into a well-formed KasF module
described in Section 2.3. The output mechanism follows the Eq. 9.

We also conduct experiments on a synthetic dataset based on the SQuAD2.0 dataset. The empirical
results show that our KasF outperforms a typical transformer encoder in learning nonlinear sequen-
tial mapping. We refer the reader to the Appendix A.1 for more details.

3We select the best-performing models among the fully open-sourced and computational affordable models
in the leaderboard. The models’ structures are also relatively representative.
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3.2 BASELINE METHODS FOR SEMANTIC COMPRESSION AND KNOWLEDGE REASONING

Table 1 lists the baseline methods for semantic compression. Incremental PCA, i.e., iPCA (Evan-
gelopoulos et al., 2012) reduces the query and candidate embeddings to lower dimensional com-
pressed vectors. Kernel PCA (Mingbo et al., 2021) configures a non-linear mapping to transform
the embeddings to higher-dimensional space, followed by standard PCA to project them back to
lower-dimensional linearly separable space. Locally Linear Embedding, i.e., LLE) aims to dis-
cover non-linear structures in the dataset and also preserve the distances within local neighbor-
hoods (Roweis & Saul, 2000). Isometric Mapping, i.e., Isomap, uses the spectral theory to preserve
the geodesic distances in the lower dimensional space (Tenenbaum et al., 2000).

The baseline methods for knowledge reasoning are listed in Table 3, Table 4, and Table 5. Fine-
tuned LMs: We add a linear layer with a softmax on the text encoder RoBERTa-large or ALBERTa-
xxlarge-v2. The RoBERTa model follows the setting in Zhang et al. (2022). The ALBERTa model
uses a learning rate of 1e−5, batch size 16, Adam optimizer, five epochs, and a linear learn-
ing rate scheduler. GNN-based KGs: The graph-based methods interpret commonsense rules as
graph-based relational features, e.g., KagNet (Lin et al., 2019), QA-GNN (Yasunaga et al., 2021),
GreaseLM (Zhang et al., 2022) and HGN (Yan et al., 2020). These methods leverage the distributed
representation of semantic components and several structure-based features. The topological rela-
tions amongst entities have a direct impact on the model predictions. Fusing Mechanisms: We also
compare the methods that apply the fusing mechanism (e.g., self-attention and external attention) to
fuse contextual features into knowledge graphs, including DEKCOR (Xu et al., 2020), KEAR (Xu
et al., 2021) and HeadHunter (Li et al., 2021). These methods combine the knowledge-centric
features with the input textual encoding via novel attention-based mechanisms. The knowledge
is expressed as triplets via a selection mechanism such as KCR (Xu et al., 2020), which uses the
frequency of relation type to assign a weighted score to each triplet.

3.3 SEMANTIC COMPRESSION

Semantic search aims to improve search accuracy by capturing the semantic information of the
content candidates. In Table 1, we choose three pre-trained models designed for semantic search,
including All-mpnet (Song et al., 2020), Qa-mpnet (Song et al., 2020), and Distil-roberta (Sanh
et al., 2019). to encode the queries and the candidate contents to generate contextual representations
with the original dimension of 768 (Reimers & Gurevych, 2019). The experiments are conducted
on four dimension settings, i.e., dim = {10, 20, 30, 50}. The heuristic KasF using Eq. 3 takes
the original 768-dimensional embeddings as v(0) defined in Eq. 3. We also list the actual time cost
of our method for implementing semantic query to validate the fairness of comparison. KasF in
all cases performs better than other methods regarding query accuracy. We observe that using the
functional representation to encode the sentences, the contextual representations containing less than
10% of the original parameters perform competitively with the original 768-dim representations in
semantic search. On text encoders of All-mpnet and Distil-roberta, our method with much fewer
parameters and complexity performs even better than the original 768-dimensional representation
obtained by a large-scale pretrained model, demonstrating the advantage of KasF in encoding the
relational information underneath the data.

3.4 READING COMPREHENSION

To implement reading comprehension via KasF, we need a text encoder to generate the inputs X . We
use three distinct pre-trained language models as the text encoders in the experiments. Specifically,
we replace their last output layers with our designed KasF module, then fine-tune the KasF-based
models using the training corpus. As presented in Table 2, all the KasF-based language models
outperform the original Linear layer with fewer parameters. The KasF-based models outperform
those with a Transformer encoder as the output layer. These empirical results show KasF can cap-
ture more semantic patterns from the context. We further conduct experiments to compare a KasF
module with a Transformer regarding the approximation capacity on sequences. We create a syn-
thetic dataset using the sentences from SQuAD2.0 as the sequential inputs and randomly generated
sequences as the labels. Then we observe that a KasF module can better fit the sequential mappings
than a Transformer (Appendix A.1) with fewer parameters.
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Table 1: Performance comparison on WikiQA dataset. We test our method on the task of seman-
tic query on different dimension settings. Each dimension setting refers to a limited computational
budget, i.e., the time cost for implementing the complete query task should not exceed a specific
value. We use the original embeddings generated by three distinct pre-trained text encoders. Then,
we apply five methods to compress the generated embeddings or reduce the computational complex-
ity to meet the limited computational budgets. The top 1 or top 3 accuracies are recorded.

Compress dim dim=10 dim=20 dim=30 dim=50 dim=768

Actual Time Cost
for Query (seconds) 0.3-0.4 0.4-0.5 0.5-0.7 1.1-1.3 12-13

Text Encoder Method Top1 Top1 Top1 Top1 Top3 Top1 Top3

All-mpnet

iPCA 0.0887 0.2759 0.3842 0.4926 0.7340

0.5615 0.8374
kPCA 0.0690 0.2364 0.3941 0.5222 0.7438
LLE 0.2167 0.2463 0.2562 0.2611 0.5025

Isomap 0.2463 0.2562 0.2759 0.2906 0.5813
KasF (Ours) 0.2611 0.3892 0.4384 0.5665 0.8079

Qa-mpnet

iPCA 0.0345 0.1330 0.2611 0.4433 0.6749

0.6010 0.8276
kPCA 0.0246 0.1231 0.2512 0.4433 0.6601
LLE 0.1674 0.1921 0.2019 0.1921 0.3744

Isomap 0.1133 0.1133 0.1478 0.1724 0.3645
KasF (Ours) 0.1872 0.3892 0.4828 0.5764 0.8177

Distil-roberta

iPCA 0.0493 0.2315 0.3399 0.3941 0.6749

0.3990 0.7192
kPCA 0.0542 0.2213 0.3005 0.3892 0.6700
LLE 0.1478 0.1823 0.1970 0.1773 0.3695

Isomap 0.1773 0.2069 0.2118 0.2118 0.5074
KasF (Ours) 0.2808 0.2709 0.3892 0.4089 0.6946

Table 2: Performance comparison on SQuAD2.0 dataset. We test our method for reading compre-
hension tasks by replacing the output layers of the selected fine-tuned pre-trained models. For each
model, we use three configurations for KasF, denoting as the form of Gx-Dy, where x refers to the
number of semantic fields, and y refers to the dimension of dynamic states. For further comparison,
we use an additional Transformer encoder as the output layer for each model with 768-dimensional
hidden size and 4 heads identically. The impromenvents validate the advantage of KasF.

Base Model Output Layer No.Params EM (%) F1 (%) Improvement (%)

ALBERTa-base

FC Linear 0.59M 75.82 78.91 0
Transformer 2.98M 76.25 79.46 + 0.43

KasF (G4-D30) 0.25M 76.68 78.82 + 0.86
KasF (G4-D50) 0.41M 77.18 80.31 + 1.36

RoBERTa-base

FC Linear 0.59M 79.68 82.24 0
Transformer 2.98M 80.13 82.76 + 0.45

KasF (G4-D30) 0.25M 80.41 83.05 + 0.73
KasF (G4-D50) 0.41M 80.63 83.22 + 0.95

DeBERTa-base

FC Linear 0.59M 81.20 84.25 0
Transformer 2.98M 81.82 84.93 + 0.62

KasF (G4-D30) 0.25M 82.07 85.15 + 0.87
KasF (G4-D50) 0.41M 82.44 85.54 + 1.19

3.5 COMMONSENSE REASONING

Our results in Table 4 demonstrate substantial improvement over baseline models. For various text
encoders, KasF consistently improves and significantly outperforms other approaches. We also sub-
mit our best single model to CSQA’s team for evaluation on the official blind test set. Table 3
shows that KasF outperforms strong fine-tuned LM baselines (e.g., RoBERTa-large and ALBERTa-
xxlarge) and the best amongst all the single models. Specifically, UnifiedQA (Khashabi et al.,
2020) has 11B parameters and is based on T5, which is impractical to fine-tune without strong
GPU servers. ALBERT+HeadHunter uses Open Mind CommonSense corpus (Singh et al., 2002)
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Table 3: Test accuracy on CommonsenseQA’s official leaderboard. Note that models with *
use ConceptNet. The CSQA’s official team no longer accepts submission using ConceptNet. Our
method outperforms all the prior ensemble and single models presented in leaderboard.

Methods Parameters Test-Acc. (%) Use External Sources

single ensemble QA datasets KGs

BERT-large ∼ 345M 56.7 - - -
KagNet* > 345M - 58.9 ✓ ✓
RoBERTa-large ∼ 354M 72.1 72.5 - -
ALBERT-large ∼ 223M 73.5 76.5 - -
ALBERT+PathGenerator > 345M 75.6 78.2 - ✓
QA-GNN* ∼ 360M 76.1 - - ✓
ALBERT+HGN* ∼ 355M 77.3 - - ✓
T5 ≥ 11B 78.1 - - -
ALBERT+HeadHunter ∼ 283M 78.4 78.3 - ✓
UnifiedQA ∼ 11B 79.1 - ✓ -
DeBERTa ∼ 1.5B - 79.6 ✓ -
ALBERT+SFR - - 81.8 - -

ALBERT+KasF (Ours) ∼ 225M 82.2 - - -

Table 4: Performance comparison on CommonsenseQA in-house controlled experiments. As
the official test set is hidden, we report the accuracies of in-house dev (IHdev-Acc) and test (IHtest-
Acc), following the data split of Lin et al. (2019). The DEKCOR* and KEAR* methods use the
prohibited ConceptNet, whose empty triplets explicitly correspond to the human-generated distrac-
tor choices. Therefore, we randomly initiate the empty triplets to eliminate the shortcut hints.

Methods IHdev-Acc. (%) IHtest-Acc. (%)

GPT-3.5-turbo 73.3 -

RoBERTa-large 73.1 ± 0.5 68.7 ± 0.6

+KagNet 73.5 ± 0.2 69.0 ± 0.8
+PathGenerator - 72.7 ± 0.4
+QA-GNN 76.5 ± 0.2 73.4 ± 0.9
+HGN - 73.6 ± 0.3
+KasF (Ours) 79.5 ± 0.3 75.4 ± 0.4

ALBERTa-large 78.7 ± 0.4 75.1 ± 0.4

+DEKCOR* 80.3 -
+KEAR* 81.2 -
+Headhunter 83.3 -
+KasF (Ours) 87.1 ± 0.3 83.8 ± 0.4

as an additional knowledge base regarded as an extended commonsenseQA dataset. Our KasF that
only uses self-generative resources still outperforms UnifiedQA and HeadHunter by 3.1% and 3.8%,
respectively. The KasF ’s superiority on complicated sentences is further validated in Appendix A.2.

4 CONCLUSION

We propose a Dynamics-inspired Knowledge as Functionals mechanism for knowledge reasoning.
We first evaluate KasF on the WikiQA dataset, demonstrating outstanding semantic compression
and dimension reduction ability over other widely used paradigms. Then we evaluate KasF on the
SQuAD2.0 dataset to validate its superiority in knowledge reasoning. Finally, we evaluate KasF
on the official blind test set of CommonsenseQA, where KasF with single model setting achieves
state-of-the-art in the leaderboard, outperforming the prior best ensemble and single models by 0.4%
and 3.1%, respectively. Future works include systematic research on semantic fields and training a
large-scale language model completely based on KasF from scratch as both language encoder and
decoder, and the framework that treats data and knowledge uniformly for constructing LLMs.
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A APPENDIX

A.1 COMPARISON WITH TRANSFORMERS

We constructed a synthetic dataset using sentences from the SQuAD2.0 dataset as inputs and gen-
erating 100-dimensional labels for each input token. We train our KasF module, as presented in
Section 2.2, along with a standard Transformer encoder with 4 heads and 4 layers on this synthetic
dataset. It is important to note that we intentionally adjusted the models to have fewer parameters,
causing their representation capacities to be inadequate for fitting the training samples. This manip-
ulation can measure the ultimate representation capacity of each model on a sequential dataset.

(a) (b)

(c) (d)

Figure 3: Comparison between KasF and Transformer Encoder.

As Figure 3 demonstrates, the KasF module performs better in fitting sequential samples with re-
duced parameter counts. Furthermore, as illustrated in Figure 3d, the KasF module with more
parameters outperforms the others. It is worth emphasizing that KasF modules without activation
functions (labeled as ”w/o Act” in the figures) exhibit higher representation capacities. We postu-
late that this phenomenon occurs because the p-norm operations applied in Eq. 6 act as rectifiers,
introducing nonlinearity to the model.

A.2 EMPIRICAL RESULTS ON CSQA’S COMPLICATED SENTENCES

We investigate whether KasF makes consistent improvements in tasks requiring more complicated
reasoning. We follow Zhang et al. (2022) to categorize the dev set into three proxies, i.e., a) the
number of prepositional phrases in the question stems, b) the existence of a negation term (e.g.,
no, not), and c) the existence of a hedging term (e.g., possibly, probably). We implement the data
split via the spaCy toolkit (Vasiliev, 2020). Each token with a dependency relation prep or neg is
labeled as a propositional or negation term, respectively. The results are presented in Table 5, where
we see KasF significantly outperforms other competitors in all the settings. The improvement can
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be attributed to the trainable metric functions of KasF that capture the semantic relations amongst
tokens. Therefore, KasF succeeds in dealing with negation and hedge terms with more sensitive
meanings than the others.

Table 5: Performance comparison on CommonsenseQA IHdev set to validate KasF’s improve-
ments on complex questions. The experimental setting follows Zhang et al. (2022). Except for the
base models, the accuracy improvements are listed on the right side of the accuracy.

Methods No. Prepositional Phrases Negation
Term

Hedge
Term

0 1 2 3 4∼7

RoBERTa 66.7 72.3 76.3 74.3 69.5 63.8 70.7

+QA-GNN 76.7 +10.0 76.2 +3.9 79.1 +2.8 74.9 +0.6 81.4 +10.9 66.2 +2.4 76.0 +5.3
+GreaseLM 75.7 +9.0 79.3 +7.0 80.4 +4.1 77.2 +2.9 84.7 +15.2 69.9 +6.1 78.4 +7.7
+KasF (Ours) 77.9 +11.2 79.8 +7.5 81.5 +5.2 80.6 +6.6 85.0 +15.5 81.5 +7.5 78.9 +8.2

ALBERTa 73.9 77.8 78.7 75.0 78.9 81.4 70.8

+KEAR 80.6 +6.7 82.8 +5.0 80.1 +1.4 80.6 +5.6 84.2 +5.3 86.6 +5.2 73.9 +3.1
+KasF (Ours) 83.8 +9.9 83.6 +5.8 84.8 +6.1 86.1 +11.1 94.7 +15.8 88.7 +7.3 79.3 +8.5

A.3 MATHEMATICAL VALIDATION

Theoretically, the metric function G defined in Eq. 9 is dense in C(Id) that denotes the space of
continuous functions on a finite d-dimensional cube (Theorem A.1). Thus, provided with a specific
set of semantic fields N , a well-formed prompt S, and a discriminatory metric function µ, our
KasF can approximate arbitrary function amongst semantic units. This theorem guarantees that
KasF can facilitate the usage of knowledge as nonlinear and dynamical functions. It also validates
that the nonlinear dynamic functions of KasF can be of arbitrarily large model capacity with an
arbitrary size of trainable parameters, supporting the full utilization of arbitrary-scale knowledge
bases. Moreover, we can replace a query token with a proper candidate that provides sufficient
information from arbitrarily large external knowledge sources.

Theorem A.1. Let V be a d-dimensional vector space, Ψ : Rd × Rd → Rd constructed using a
functional F and functions N defined above, be a continuous and discriminatory function on Id,
and fi : Rd → RN×d be a vector field for ui ∈ V . Then there exists a signed regular Borel measure
µ on Id such that fi(θ) + fj(−θ) = µ(ui − uj) for arbitrary θ ∈ Rd and S is dense in C(Id).

Proof. (sketch) We can easily construct a well-formed measure µ. We can prove in an apagogical
manner that Ψ is dense in C(Id). Suppose that Ψ is not dense in C(Id), then the closure of Ψ is a
subset of C(Id): Ψ ⊂ C(Id). By Hahn-Banach Theorem, there exists a non-zero bounded linear
functional L on C(Id) such that L (Ψ) = L (Ψ) = 0. By Reisz Representation Theorem, we have

L (Ψ) =

∫
θ

Ψ
(
fi(θ), fj(θ)

)
dµ(θ) = 0 (10)

for every pair of ui and uj . Since Ψ is discriminatory, we must have µ = 0, which contradicts the
assertions that L ̸= 0 and µ are regular.

A.4 A PRELIMINIARY EXPERIMENT ON COMBINING KasF WITH LLM

CommonsenseQA PIQA Social iQA

LLaMA2-7B 57.8 78.8 48.3
LLaMA2-7B+KasF 59.2 80.0 49.4
LLaMA2-13B 67.3 80.5 50.3
LLaMA2-13B+KasF 69.3 81.1 51.5

Table 6: The results of LLMs with our KasF module
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Our KasF can be seen as a new paradigm to model the relation among semantic units. Since it can be
used to replace the Transformer encoder as shown in Appendix A.1, it is also feasible to be injected
into the Transformer decoder of LLMs. To further validate the potential of our method to combine
with LLMs, we have expanded our experimentation by utilizing the pre-trained LLaMA2-7B and
LLaMA2-13B models on three distinct reasoning benchmarks: CommonsenseQA, SocialiQA and
PiQA, see Table 6. Due to limited computational resources, we opted for a pragmatic approach, re-
placing the output linear layer (e.g., 4096×32000) with our proposed KasF structure. Subsequently,
we fine-tuned the added KasF on each benchmark’s training set while keeping the LLaMA’s param-
eters fixed. Our results demonstrate consistent improvements in accuracy on the validation sets.

It is worth noting that the reasoning ability can potentially be further enhanced, provided richer
computational resources and access to external knowledge bases, without imposing constraints on
fixing the LLaMA’s parameters. The results show that our KasF can also work with LLMs in decoder
style, and enhance the accuracy accordingly. However, from the experiments, especially the results
on CommonsenseQA validation dataset, we can observe that, the GPT-based LLMs, even with KasF,
do not perform quite well on the commonsense reasoning task in multi-choice form, compared to the
results obtained by using ALBERT in the main paper. However, it should be noticed that improving
the GPT-based LLM’s performance is beyond the scope of this paper.

A.5 DISCUSSION ON THE POTENTIAL OF EMPLOYING EXTERNAL KNOWLEDGE BASES

Based on the definition of KasF, we have validated its ability in modeling the semantic unit relations
in sentences. Another advantage of KasF is that it is naturally compatible on the task of encoding
external knowledge bases. To elaborate, one can establish a semantic field in the form of a knowl-
edge graph by substituting the dynamic state Q of semantic units with embeddings of entities from
a knowledge graph. Following this, we change the metric between Qs as the vector of relations
between entities, creating an independent semantic field detached from the input X . In our prelim-
inary experiments conducted on CsQA, we noted that adopting the mentioned approach to convey
knowledge related to the query using corresponding triplets in ConceptNet led to an improvement of
approximately 3.5% in model accuracy. Nevertheless, due to the evaluation protocol of CsQA that
ConceptNet is not allowed to use, we have not included this part of results in the main part.

Furthermore, our findings indicate that by ensuring precision and accuracy in the independent se-
mantic field through manual annotation, the model accuracy could be enhanced to over 94%, show-
ing the significant potential for an enhanced KasF through integration with well-established exter-
nal knowledge bases.

A.6 DISCUSSION ON THE LIMITATION OF KasF

We would like to discuss briefly on the limitation of our KasF, particularly regarding to the GPU
implementation and hyper-parameter tuning issues:

• CUDA Implementation. One challenge we face is the limited availability of well-
established CUDA packages for efficiently computing metric-based operations that are in-
tensively required by our method. Integrating our approach into the Large Language Model
(LLM) community demands additional efforts, particularly in terms of CUDA implemen-
tation and acceleration.

• Hyper-parameter Tuning. The introduction of novel concepts in our method, such as neu-
ronal groups, represents an area that is not extensively explored in the existing literature.
Consequently, further investigations are needed to empirically establish the relationships
between these concepts and their theoretical implications. We acknowledge the importance
of refining the content regarding to these novel elements and will address this concern in
the revision by providing additional insights and analyses.
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