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Abstract

This paper is on video recognition using Transformers. Very recent attempts in
this area have demonstrated promising results in terms of recognition accuracy,
yet they have been also shown to induce, in many cases, significant computational
overheads due to the additional modelling of the temporal information. In this
work, we propose a Video Transformer model the complexity of which scales
linearly with the number of frames in the video sequence and hence induces
no overhead compared to an image-based Transformer model. To achieve this,
our model makes two approximations to the full space-time attention used in
Video Transformers: (a) It restricts time attention to a local temporal window
and capitalizes on the Transformer’s depth to obtain full temporal coverage of the
video sequence. (b) It uses efficient space-time mixing to attend jointly spatial and
temporal locations without inducing any additional cost on top of a spatial-only
attention model. We also show how to integrate 2 very lightweight mechanisms for
global temporal-only attention which provide additional accuracy improvements at
minimal computational cost. We demonstrate that our model produces very high
recognition accuracy on the most popular video recognition datasets while at the
same time being significantly more efficient than other Video Transformer models.
Code for our method is made available here.

1 Introduction

Video recognition – in analogy to image recognition – refers to the problem of recognizing events
of interest in video sequences such as human activities. Following the tremendous success of
Transformers in sequential data, specifically in Natural Language Processing (NLP) [39, 5], Vision
Transformers were very recently shown to outperform CNNs for image recognition too [48, 13, 35],
signaling a paradigm shift on how visual understanding models should be constructed. In light of
this, in this paper, we propose a Video Transformer model as an appealing and promising solution for
improving the accuracy of video recognition models.

A direct, natural extension of Vision Transformers to the spatio-temporal domain is to perform the
self-attention jointly across all S spatial locations and T temporal locations. Full space-time attention
though has complexityO(T 2S2) making such a model computationally heavy and, hence, impractical
even when compared with the 3D-based convolutional models. As such, our aim is to exploit the
temporal information present in video streams while minimizing the computational burden within the
Transformer framework for efficient video recognition.
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(a) Full space-time atten-
tion: O(T 2S2)

(b) Spatial-only attention:
O(TS2)

(c) TimeSformer [3] and
ViViT (Model 3) [1]:
O(T 2S + TS2)

(d) Ours: O(TS2)

Figure 1: Different approaches to space-time self-attention for video recognition. In all cases, the key
locations that the query vector, located at the center of the grid in red, attends are shown in orange.
Unlike prior work, our key vector is constructed by mixing information from tokens located at the
same spatial location within a local temporal window. Our method then performs self-attention with
these tokens. Note that our mechanism allows for an efficient approximation of local space-time
attention at no extra cost.

A baseline solution to this problem is to consider spatial-only attention followed by temporal
averaging, which has complexity O(TS2). Similar attempts to reduce the cost of full space-time
attention have been recently proposed in [3, 1]. These methods have demonstrated promising results
in terms of video recognition accuracy, yet they have been also shown to induce, in most of the
cases, significant computational overheads compared to the baseline (spatial-only) method due to the
additional modelling of the temporal information.

Our main contribution in this paper is a Video Transformer model that has complexity O(TS2)
and, hence, is as efficient as the baseline model, yet, as our results show, it outperforms re-
cently/concurrently proposed work [3, 1] in terms of efficiency (i.e. accuracy/FLOP) by significant
margins. To achieve this our model makes two approximations to the full space-time attention used
in Video Transformers: (a) It restricts time attention to a local temporal window and capitalizes on
the Transformer’s depth to obtain full temporal coverage of the video sequence. (b) It uses efficient
space-time mixing to attend jointly spatial and temporal locations without inducing any additional
cost on top of a spatial-only attention model. Fig. 1 shows the proposed approximation to space-time
attention. We also show how to integrate two very lightweight mechanisms for global temporal-only
attention, which provide additional accuracy improvements at minimal computational cost. We
demonstrate that our model is surprisingly effective in terms of capturing long-term dependencies and
producing very high recognition accuracy on the most popular video recognition datasets, including
Something-Something-v2 [17], Kinetics [4] and Epic Kitchens [9], while at the same time being
significantly more efficient than other Video Transformer models.

2 Related work

Video recognition: Standard solutions are based on CNNs and can be broadly classified into two
categories: 2D- and 3D-based approaches. 2D-based approaches process each frame independently
to extract frame-based features which are then aggregated temporally with some sort of temporal
modeling (e.g. temporal averaging) performed at the end of the network [42, 26, 27]. The works
of [26, 27] use the “shift trick” [45] to have some temporal modeling at a layer level. 3D-based
approaches [4, 16, 36] are considered the current state-of-the-art as they can typically learn stronger
temporal models via 3D convolutions. However, they also incur higher computational and memory
costs. To alleviate this, a large body of works attempt to improve their efficiency via spatial and/or
temporal factorization [38, 37, 15].

CNN vs ViT: Historically, video recognition approaches tend to mimic the architectures used for
image classification (e.g. from AlexNet [23] to [20] or from ResNet [18] and ResNeXt [47] to [16]).
After revolutionizing NLP [39, 32], very recently, Transformer-based architectures showed promising
results on large scale image classification too [13]. While self-attention and attention were previously
used in conjunction with CNNs at a layer or block level [6, 50, 33], the Vision Transformer (ViT)
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of Dosovitskiy et al. [13] is the first convolution-free, Transformer-based architecture that achieves
state-of-the-art on ImageNet [11].

Video Transformer: Recently/concurrently with our work, vision transformer architectures, derived
from [13], were used for video recognition [3, 1], too. Because performing full space-time attention
is computationally prohibitive (i.e. O(T 2S2)), their main focus is on reducing this via temporal and
spatial factorization. In TimeSformer [3], the authors propose applying spatial and temporal attention
in an alternating manner reducing the complexity to O(T 2S + TS2). In a similar fashion, ViViT [1]
explores several avenues for space-time factorization. In addition, they also proposed to adapt the
patch embedding process from [13] to 3D (i.e. video) data. Our work proposes a completely different
approximation to full space-time attention that is also efficient. To this end, we firstly restrict full
space-time attention to a local temporal window which is reminiscent of [2] but applied here to
space-time attention and video recognition 1. Secondly, we define a local joint space-time attention
which we show that can be implemented efficiently via the “shift trick” [45].

3 Method

Video Transformer: We are given a video clip X ∈ RT×H×W×C (C = 3). Following ViT [13],
each frame is divided into K ×K non-overlapping patches which are then mapped into visual tokens
using a linear embedding layer E ∈ R3K2×d. Since self-attention is permutation invariant, in order
to preserve the information regarding the location of each patch within space and time we also learn
two positional embeddings, one for space: ps ∈ R1×S×d and one for time: pt ∈ RT×1×d. These are
then added to the initial visual tokens. Finally, the token sequence is processed by L Transformer
layers.

The visual token at layer l, spatial location s and temporal location t is denoted as:
zls,t ∈ Rd, l = 0, . . . , L− 1, s = 0, . . . , S − 1, t = 0, . . . , T − 1. (1)

In addition to the ST visual tokens extracted from the video, a special classification token zlcls ∈ Rd

is prepended to the token sequence [12]. The l−th Transformer layer processes the visual tokens
Zl ∈ R(ST+1)×d of the previous layer using a series of Multi-head Self-Attention (MSA), Layer
Normalization (LN), and MLP (Rd → R4d → Rd) layers as follows:

Yl = MSA(LN(Zl−1)) + Zl−1, (2)

Zl = MLP(LN(Yl)) +Yl. (3)

The main computation of a single full space-time Self-Attention (SA) head boils down to calculating:

yl
s,t =

T−1∑
t′=0

S−1∑
s′=0

Softmax{(ql
s,t · kl

s′,t′)/
√
dh}vl

s′,t′ ,
{ s=0,...,S−1

t=0,...,T−1
}

(4)

where ql
s,t,k

l
s,t,v

l
s,t ∈ Rdh are the query, key, and value vectors computed from zls,t (after LN) using

embedding matrices Wq,Wk,Wv ∈ Rd×dh . Finally, the output of the h heads is concatenated and
projected using embedding matrix Wh ∈ Rhdh×d.

The complexity of the full model is: O(3hTSddh) (qkv projections) +O(2hT 2S2dh) (MSA for h
attention heads) +O(TS(hdh)d) (multi-head projection) +O(4TSd2) (MLP) 2. From these terms,
our goal is to reduce the costO(2T 2S2dh) (for a single attention head) of the full space-time attention
which is the dominant term 3. For clarity, from now on, we will drop constant terms and dh to report
complexity unless necessary. Hence, the complexity of the full space-time attention is O(T 2S2).

Our baseline is a model that performs a simple approximation to the full space-time attention by
applying, at each Transformer layer, spatial-only attention:

yl
s,t =

S−1∑
s′=0

Softmax{(ql
s,t · kl

s′,t)/
√
dh}vl

s′,t,
{ s=0,...,S−1

t=0,...,T−1
}

(5)

1Other attempts of exploiting local attention can be found in [29, 7, 49], however they are also different in
scope, task/domain and implementation.

2For this work, we used S = 196, T = {8, 16, 32} and d = 768 (for a ViT-B backbone).
3The MLP complexity is by no means negligible, however the focus of this work (similarly to [3, 1]) is on

reducing the complexity of the self-attention component.
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the complexity of which is O(TS2). Notably, the complexity of the proposed space-time mixing
attention is also O(TS2). Following spatial-only attention, simple temporal averaging is performed
on the class tokens zfinal = 1

T

∑
t
zL−1t,cls to obtain a single feature that is fed to the linear classifier.

Recent work by [3, 1] has focused on reducing the cost O(T 2S2) of the full space-time attention of
Eq. 4. Bertasius et al. [3] proposed the factorised attention:

ỹl
s,t =

T−1∑
t′=0

Softmax{(ql
s,t · kl

s,t′)/
√
dh}vl

s,t′ ,

yl
s,t =

S−1∑
s′=0

Softmax{q̃l
s,t · k̃l

s′,t)/
√
dh}ṽl

s′,t,

{
s = 0, . . . , S − 1
t = 0, . . . , T − 1

}
, (6)

where q̃l
s,t, k̃

l
s′,tṽ

l
s′,t are new query, key and value vectors calculated from ỹl

s,t
4. The above model

reduces complexity to O(T 2S + TS2). However, temporal attention is performed for a fixed spatial
location which is ineffective when there is camera or object motion and there is spatial misalignment
between frames.

The work of [1] is concurrent to ours and proposes the following approximation: Ls Transformer
layers perform spatial-only attention as in Eq. 5 (each with complexity O(S2)). Following this,
there are Lt Transformer layers performing temporal-only attention on the class tokens zLs

t . The
complexity of the temporal-only attention is, in general, O(T 2).

Our model aims to better approximate the full space-time self-attention (SA) of Eq. 4 while keeping
complexity to O(TS2), i.e. inducing no further complexity to a spatial-only model.

To achieve this, we make a first approximation to perform full space-time attention but restricted to a
local temporal window [−tw, tw]:

yl
s,t =

t+tw∑
t′=t−tw

S−1∑
s′=0

Softmax{(ql
s,t · kl

s′,t′)/
√
dh}vl

s′,t′ =

t+tw∑
t′=t−tw

Vl
t′a

l
t′ ,
{ s=0,...,S−1

t=0,...,T−1
}

(7)

where Vl
t′ = [vl

0,t′ ;v
l
1,t′ ; . . . ;v

l
S−1,t′ ] ∈ Rdh×S and alt′ = [al0,t′ , a

l
1,t′ , . . . , a

l
S−1,t′ ] ∈ RS is the

vector with the corresponding attention weights. Eq. 7 shows that, for a single Transformer layer,
yl
s,t is a spatio-temporal combination of the visual tokens in the local window [−tw, tw]. It follows

that, after k Transformer layers, yl+k
s,t will be a spatio-temporal combination of the visual tokens in

the local window [−ktw, ktw] which in turn conveniently allows to perform spatio-temporal attention
over the whole clip. For example, for tw = 1 and k = 4, the local window becomes [−4, 4] which
spans the whole video clip for the typical case T = 8.

The complexity of the local self-attention of Eq. 7 is O(T (2tw + 1)2S2). To reduce this even further,
we make a second approximation on top of the first one as follows: the attention between spatial
locations s and s′ according to the model of Eq. 7 is:

t+tw∑
t′=t−tw

Softmax{(ql
s,t · kl

s′,t′)/
√
dh}vl

s′,t′ , (8)

i.e. it requires the calculation of 2tw +1 attentions, one per temporal location over [−tw, tw]. Instead,
we propose to calculate a single attention over [−tw, tw] which can be achieved by ql

s,t attending
kl
s′,−tw:tw

, [kl
s′,t−tw ; . . . ;k

l
s′,t+tw

] ∈ R(2tw+1)dh . Note that to match the dimensions of ql
s,t

and kl
s′,−tw:tw

a further projection of kl
s′,−tw:tw

to Rdh is normally required which has complexity
O((2tw +1)d2h) and hence compromises the goal of an efficient implementation. To alleviate this we
use the “shift trick” [45, 26] which allows to perform both zero-cost dimensionality reduction, space-
time mixing and attention (between ql

s,t and kl
s′,−tw:tw

) in O(dh). In particular, each t′ ∈ [−tw, tw]
is assigned dt

′

h channels from dh (i.e.
∑

t′ d
t′

h = dh). Let kl
s′,t′(d

t′

h ) ∈ Rdt′
h denote the operator for

4More precisely, Eq. 6 holds for h = 1 heads. For h > 1, the different heads ỹl,h
s,t are concatenated and

projected to produce ỹl
s,t.
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(a) Full space-time attention.

MatMul

MatMul

Scale

SoftMax

S

Q K

V

ii-t i+tw w

i i+tw w
i-t

(b) Proposed space-time mixing attention.

Figure 2: Detailed self-attention computation graph for (a) full space-time attention and (b) the
proposed space-time mixing approximation. Notice that in our case only S tokens participate instead
of ST. The temporal information is aggregated by indexing channels from adjacent frames. Tokens of
identical colors share the same temporal index.

indexing the dt
′

h channels from kl
s′,t′ . Then, a new key vector is constructed as:

k̃l
s′,−tw:tw , [kl

s′,t−tw(d
t−tw
h ), . . . ,kl

s′,t+tw(d
t+tw
h )] ∈ Rdh . (9)

Fig. 2 shows how the key vector k̃l
s′,−tw:tw

is constructed. In a similar way, we also construct a new
value vector ṽl

s′,−tw:tw
. Finally, the proposed approximation to the full space-time attention is given

by:

yls
s,t =

S−1∑
s′=0

Softmax{(qls
s,t · k̃l

s′,−tw:tw/
√
dh}ṽl

s′,−tw:tw ,
{ s=0,...,S−1

t=0,...,T−1
}
. (10)

This has the complexity of a spatial-only attention (O(TS2)) and hence it is more efficient than
previously proposed video transformers [3, 1]. Our model also provides a better approximation to the
full space-time attention and as shown by our results it significantly outperforms [3, 1].

Temporal Attention aggregation: The final set of the class tokens zL−1t,cls , 0 ≤ t ≤ L− 1 are used
to generate the predictions. To this end, we propose to consider the following options: (a) simple
temporal averaging zfinal =

1
T

∑
t z

L−1
t,cls as in the case of our baseline. (b) An obvious limitation

of temporal averaging is that the output is treated purely as an ensemble of per-frame features and,
hence, completely ignores the temporal ordering between them. To address this, we propose to use a
lightweight Temporal Attention (TA) mechanism that will attend to the T classification tokens. In
particular a zfinal token attends the sequence [zL−10,cls, . . . , z

L−1
T−1,cls] using a temporal Transformer

layer and then fed as input to the classifier. This is akin to the (concurrent) work of [1] with the
difference being that in our model we found that a single TA layer suffices whereas [1] uses Lt. A
consequence of this is that the complexity of our layer is O(T ) vs O(2(Lt − 1)T 2 + T ) of [1].

Summary token: As an alternative to TA, herein, we also propose a simple lightweight mechanism
for information exchange between different frames at intermediate layers of the network. Given
the set of tokens for each frame t, Zl−1

t ∈ R(S+1)×dh (constructed by concatenating all tokens
zl−1s,t , s = 0, . . . , S), we compute a new set of R tokens Zl

r,t = φ(Zl−1
t ) ∈ RR×dh which summarize

the frame information and hence are named “Summary” tokens. These are then, appended to the
visual tokens of all frames to calculate the keys and values so that the query vectors attend the
original keys plus the Summary tokens. Herein, we explore the case that φ(.) performs simple spatial
averaging zl0,t =

1
S

∑
s z

l
s,t over the tokens of each frame (R = 1 for this case). Note that, forR = 1,

the extra cost that the Summary token induces is O(TS).

X-ViT: We call the Video Transformer based on the proposed (a) space-time mixing attention and (b)
lightweight global temporal attention (or summary token) as X-ViT.
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4 Results

4.1 Experimental setup

Datasets: We train and evaluate the proposed models on the following datasets (all datasets are
publicly available for research purposes):

Kinetics-400 and 600: The Kinetics [21] dataset consists of short clips (typically 10 sec long sampled
from YouTube) labeled using 400 and 600 classes, respectively. Due to the removal of some videos
from YouTube, the version of the dataset used in this paper consists of approximately 261K clips for
Kinetics-400. Note, that these amounts are lower than the original version of the datasets and thus
might represent a negative performance bias when compared with prior works.

Something-Something-v2 (SSv2): The SSv2 [17] dataset consists of 220,487 short videos (of duration
between 2 and 6 sec) that depict humans performing pre-defined basic actions with everyday objects.
Because the objects and backgrounds in the videos are consistent across different action classes, this
dataset tends to require stronger temporal modeling. Due to this, we conducted most of our ablation
studies on SSv2 to better analyze the importance of the proposed components.

Epic Kitchens-100 (Epic-100): is an egocentric large scale action recognition dataset consisting of
more than 90,000 action segments spanning 100 hours of recordings in home environments, capturing
daily activities [10]. The dataset is labeled using 97 verb classes and 300 noun classes. The evaluation
results are reported using the standard action recognition protocol: the network predicts the “verb”
and the “noun” using two heads. The predictions are then merged to construct an “action” which is
used to report the accuracy.

Table 1: Effect of local window size. To
isolate its effect from that of temporal
aggregation, the models were trained
using temporal averaging. Note, that
(Bo.) indicates that only features from
the boundaries of the local window were
used, ignoring the intermediate ones.

Variant Top-1 Top-5

tw = 0 45.2 71.4
tw = 1 62.5 87.8
tw = 2 60.5 86.4

tw = 2 (Bo.) 60.4 86.2

Training details: All models, unless otherwise stated,
were trained using the following scheduler and training pro-
cedure: specifically, our models were trained using SGD
with momentum (0.9) and a cosine scheduler [28] (with
linear warmup) for 35 epochs on SSv2, 50 on Epic-100 and
30 on Kinetics. The base learning rate, set at a batch size of
128, was 0.05 (0.03 for Kinetics). To prevent over-fitting
we made use of the following augmentation techniques:
random scaling (0.9× to 1.3×) and cropping, random flip-
ping (with probability of 0.5; not for SSv2) and autoaug-
ment [8]. In addition, for SSv2 and Epic-100, we also
applied random erasing (probability=0.5, min. area=0.02,
max. area=1/3, min. aspect=0.3) [52] and label smoothing
(λ = 0.3) [34] while, for Kinetics, we used mixup [51]
(α = 0.4).

The backbone models follow closely the ViT architecture of Dosovitskiy et al. [13]. Most experiments
were performed using the ViT-B/16 variant (L = 12, h = 12, d = 768, K = 16), where L represents
the number of transformer layers, h the number of heads, d the embedding dimension and K the
patch size. We initialized our models from a pretrained ImageNet-21k [11] ViT model. The spatial
positional encoding ps was initialized from the pretrained 2D model and the temporal one, pt, with
zeros so that it does not have a great impact on the tokens early on during training. The models were
trained on 8 V100 GPUs using PyTorch [30].

Testing details: Unless otherwise stated, we used ViT-B/16 and T = 8 frames. We mostly used
Temporal Attention (TA) for temporal aggregation. We report accuracy results for 1 × 3 views
(1 temporal clip and 3 spatial crops) departing from the common approach of using up to 10 × 3
views [26, 16]. The 1× 3 views setting was also used in Bertasius et al. [3]. To measure the variation
between runs, we trained one of the 8–frame models 5 times. The results varied by ±0.4%.

4.2 Ablation studies

Throughout this section, we study the effect of varying certain design choices and different compo-
nents of our method. Because SSv2 tends to require a more fine-grained temporal modeling, unless
otherwise specified, all results reported, in this section, are on the SSv2.
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Table 2: Effect of: (a) proposed SA position, (b) temporal aggregation and number of Temporal
Attention (TA) layers, (c) space-time mixing qkv vectors and (d) amount of mixed channels on SSv2.

(a) Effect of applying the proposed SA to certain layers.

Transform. layers Top-1 Top-5

1st half 61.7 86.5
2nd half 61.6 86.3

Half (odd. pos) 61.2 86.4
All 62.6 87.8

(b) Effect of number of TA layers. 0 corresponds to
temporal averaging.

#. TA layers Top-1 Top-5

0 (temp. avg.) 62.4 87.8
1 64.4 89.3
2 64.5 89.3
3 64.5 89.3

(c) Effect of space-time mixing. x denotes the
input token before qkv projection. Query produces
equivalent results with key and thus omitted.

x key value Top-1 Top-5

7 7 7 56.6 83.5
X 7 7 63.1 88.8
7 X 7 63.1 88.8
7 7 X 62.5 88.6
7 X X 64.4 89.3

(d) Effect of amount of mixed channels. * uses
temp. avg. aggregation.

0%* 0% 25% 50% 100%

45.2 56.6 64.3 64.4 62.5

Effect of local window size: Table 1 shows the accuracy of our model by varying the local window
size [−tw, tw] used in the proposed space-time mixing attention. Firstly, we observe that the proposed
model is significantly superior to our baseline (tw = 0) which uses spatial-only attention. Secondly,
a window of tw = 1 produces the best results. This shows that more gradual increase of the effective
window size that is attended is more beneficial compared to more aggressive ones, i.e. the case where
tw = 2. A performance degradation for the case tw = 2 could be attributed to boundary effects
(handled by filling with zeros) which are aggravated as tw increases. Based on these results, we
chose to use tw = 1 for the models reported hereafter. For short to medium long videos, it seems that
tw = 1 suffices as the temporal receptive field size increases as we advance in depth in the model
allowing it to capture a larger effective temporal window. For the datasets used, as explained earlier,
after a few transformer layers the whole clip is effectively covered. However, for significantly longer
video sequences, larger window sizes may perform better.

Effect of SA position: We explored which layers should the proposed space-time mixing attention
be applied to within the network. Specifically, we explored the following variants: Applying it to the
first L/2 layers, to the last L/2 layers, to every odd indexed layer and, finally, to all layers. As the
results from Table 2a show, the exact layers within the network that self-attention is applied to do not
matter; what matters is the number of layers it is applied to. We attribute this result to the increased
temporal receptive field and cross-frame interactions.

Table 3: Effect of number of tokens
on SSv2.

Variant Top-1 Top-5

XViT-T/16 54.7 82.8
XViT-S/32 57.0 84.6
XViT-S/16 61.1 88.0
XViT-B/32 60.5 87.4
XViT-L/32 61.8 88.3
XViT-B/16 64.4 89.3

Effect of temporal aggregation: Herein, we compare the
two methods used for temporal aggregation: simple tempo-
ral averaging [41] and the proposed Temporal Attention (TA)
mechanism. Given that our model already incorporates tem-
poral information through the proposed space-time attention,
we also explored how many TA layers are needed. As shown
in Table 2b, replacing temporal averaging with one TA layer
improves the Top-1 accuracy from 62.5% to 64.4%. Increasing
the number of layers further yields no additional benefits. In
Table 2d, we also report the accuracy of spatial-only attention
(0% mixing) plus TA aggregation. In the absence of the pro-
posed space-time mixing attention, the TA layer alone is unable to compensate, scoring only 56.6%.
In the same table, 45.2% is the accuracy of a model trained without the proposed local attention and
TA layer (i.e. using a temporal pooling for aggregation). Overall, the results highlight the need of
having both components in our final model. For the next two ablation studies, we used 1 TA layer.

Effect of space-time mixing qkv vectors: Paramount to our work is the proposed space-time mixing
attention of Eq. 10 which is implemented by constructing k̃l

s′,−tw:tw
and ṽl

s′,−tw:tw
efficiently via

channel indexing (see Eq. 9). Space-time mixing though can be applied in several different ways in
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Table 4: Comparison between TA and Summary token on SSv2 (left) and Kinetics-400 (right).

Summary TA Top-1 Top-5

7 7 62.4 87.8
X 7 63.7 88.9
X X 63.4 88.9
7 X 64.4 89.3

Summary TA Top-1 Top-5

7 7 77.8 93.7
X 7 78.7 93.7
X X 78.0 93.2
7 X 78.5 93.7

Table 5: Comparison with state-of-the-art on the Kinetics-400.

Method Top-1 Top-5 # Frames Views Params FLOPs (×109)

bLVNet [14] 73.5 91.2 24× 2 3 × 3 25M 840
STM [19] 73.7 91.6 16 - 24M -
TEA [25] 76.1 92.5 16 10 × 3 25.6M 2,100

TSM R50 [26] 74.7 - 16 10 × 3 25.6M 650
I3D NL [44] 77.7 93.3 128 10 × 3 - 10,800

CorrNet-101 [40] 79.2 - 32 10 × 3 - 6,700
ip-CSN-152 [38] 79.2 93.8 8 10 × 3 - 3,270

LGD-3D R101 [31] 79.4 94.4 16 - - -
SlowFast 8×8 R101+NL [16] 78.7 93.5 8 10 × 3 - 3,480
SlowFast 16×8 R101+NL [16] 79.8 93.9 16 10 × 3 - 7,020

X3D-XXL [15] 80.4 94.6 - 10 × 3 20.3M 5,823
TimeSformer-L [3] 80.7 94.7 96 1 × 3 121M 7,140
ViViT-L/16x2 [1] 80.6 94.7 32 4 × 3 312M 17,352

X-ViT (Ours) 78.5 93.7 8 1 × 3 92M 425
X-ViT (Ours) 79.4 93.9 8 2 × 3 92M 850
X-ViT (Ours) 80.2 94.7 16 1 × 3 92M 850
X-ViT (Ours) 80.7 94.7 16 2 × 3 92M 1700

the model. For completeness, herein, we study the effect of applying space-time mixing to various
combinations for the key, value and to the input token prior to qkv projection. As shown in Table 2c,
the combination corresponding to our model (i.e. space-time mixing applied to the key and value)
significantly outperforms all other variants by up to 2%. This result is important as it confirms that
our model, derived from the proposed approximation to the local space-time attention, gives the best
results when compared to other non-well motivated variants.

Effect of amount of space-time mixing: We define as ρdh the total number of channels coming
from the adjacent frames in the local temporal window [−tw, tw] (i.e.

∑tw
t′=−tw,t6=0 d

t′

h = ρdh) when
constructing k̃l

s′,−tw:tw
(see Section 3). Herein, we study the effect of ρ on the model’s accuracy. As

the results from Table 2d show, the optimal ρ is between 25% and 50%. Increasing ρ to 100% (i.e. all
channels are coming from adjacent frames) unsurprisingly degrades the performance as it excludes
the case t′ = t when performing the self-attention.

Effect of Summary token: Herein, we compare Temporal Attention with Summary token on SSv2
and Kinetics-400. We used both datasets for this case as they require different type of understanding:
fine-grained temporal (SSv2) and spatial content (Kinetics-400). From Table 4, we conclude that the
Summary token compares favorable on Kinetics-400 but not on SSv2 showing that it is more useful
in terms of capturing spatial information. Since the improvement is small, we conclude that 1 TA
layer is the best global attention-based mechanism for improving the accuracy of our method adding
also negligible computational cost.

Effect of number of input frames: Herein we evaluate the impact of increasing the number of input
frames T from 8 to 16 and 32. We note that, for our method, this change results in a linear increase in
complexity. As the results from Table 7 show, increasing the number of frames from 8 to 16 offers a
1.8% boost in Top-1 accuracy on SSv2. Moreover, increasing the number of frames to 32 improves
the performance by a further 0.2%, offering diminishing returns. Similar behavior can be observed
on Kinetics and Epic-100 in Tables 5 and 8.
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Table 6: Comparison with state-of-the-art on the Kinetics-600 dataset. T× is the number of frames
used by our method.

Method Top-1 Top-5 Views FLOPs (×109)

AttentionNAS [43] 79.8 94.4 - 1,034
LGD-3D R101 [31] 81.5 95.6 10× 3 -

SlowFast R101+NL [16] 81.8 95.1 10× 3 3,480
X3D-XL [15] 81.9 95.5 10× 3 1,452

TimeSformer-HR [3] 82.4 96.0 1× 3 5,110
ViViT-L/16x2 [1] 82.5 95.6 4× 3 17,352

X-ViT (8×) (Ours) 82.5 95.4 1× 3 425
X-ViT (16×) (Ours) 84.5 96.3 1× 3 850

Effect of number of tokens and different model sizes: Herein, we vary the number of input tokens
by changing the patch size K. As the results from Table 3 show, even when the number of tokens
decreases significantly (e.g. ViT-B/32 or ViT-S/32) our approach is still able to produce results of
satisfactory accuracy. The benefit of that is having a model which is significantly more efficient.
Similar concusions can be observed when the model size (in terms of parameters and FLOPs) is
varied. Our approach provides consistent results in all cases, showcasing its ability to scale well from
tiny (XViT-T) to large (XViT-L) models.

Latency and throughput considerations: While the channel shifting operation used by the proposed
space-time mixing attention is zero-FLOP, there is still a small cost associated with memory movement
operations. In order to ascertain that the induced cost does not introduce noticeable performance
degradation, we benchmarked a Vit-B/16 (8× frames) model using spatial-only attention and the
proposed space-time mixing attention on 8 V100 GPUs and a batch size of 128. A model with
spatial-only attention has a throughput of 312 fps while our model has 304 fps.

Table 7: Comparison with state-of-the-art on SSv2. * - pretrained on Kinetics 600

Method Top-1 Top-5 # Frames Views FLOPs (×109)

TRN [53] 48.8 77.6 8 - -
SlowFast+multigrid [46] 61.7 - - 1× 3 -

TimeSformer-L [3] 62.4 - 96 1 × 3 7,140
TSM R50 [26] 63.3 88.5 16 2 × 3 -

STM [19] 64.2 89.8 16 - -
MSNet [24] 64.7 89.4 16 - -
TEA [25] 65.1 89.9 16 - -

ViViT-L/16x2 [3] 65.4 89.8 32 4 × 3 11,892

X-ViT (Ours) 64.4 89.3 8 1 × 3 425
X-ViT (Ours) 66.2 90.6 16 1 × 3 850

X-ViT* (Ours) 67.2 90.8 16 1 × 3 850
X-ViT (Ours) 66.4 90.7 32 1 × 3 1,270

4.3 Comparison to state-of-the-art

Our best model uses the proposed space-time mixing attention in all the Transformer layers and
performs temporal aggregation using a single lightweight temporal transformer layer as described
in Section 3. Unless otherwise specified, we report the results using the 1× 3 configuration for the
views (1 temporal and 3 spatial) for all datasets. Regarding related work on transformer-based video
recognition [1, 3], we included their very best models trained on the same data as our models. For
TimeSformer, this is typically the TimeSformer-L version. For ViVit, we used the 16x2 configuration,
with factorized-encoding for Epic-100 and SS-v2 (as reported in Tables 6d and 6e in [1]) and the full
version for Kinetics (as reported in Table 6a in [1]).
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On Kinetics-400, we match the current state-of-the-art while having significantly lower computational
complexity than the next two best recently proposed methods that also use Transformer-based
architectures: 20× fewer FLOPs than ViVit [1] and 8× fewer than TimeSformer-L [3]. Note that
both models from [1, 3] and ours were initialized from a ViT model pretrained on ImageNet-21k [11]
and take as input frames at a resolution of 224 × 224px. Similar conclusions can be drawn from
Table 6 which reports our results on Kinetics-600.

On SSv2, we match and surpass the current state-of-the-art, especially in terms of Top-5 accuracy
(ours: 90.7% vs ViViT: 89.8% [1]) using models that are 14× (16 frames) and 9× (32 frames) faster.

Finally, we observe similar outcomes on Epic-100 where we set a new state-of-the-art, showing large
improvements especially for “Verb” accuracy, while again being more efficient.

5 Ethical considerations and broader impact

Table 8: Comparison with state-of-the-art on Epic-
100. T× is the #frames used by our method. Re-
sults for other methods are taken from [1].

Method Action Verb Noun

TSN [41] 33.2 60.2 46.0
TRN [53] 35.3 65.9 45.4
TBN [22] 36.7 66.0 47.2
TSM [22] 38.3 67.9 49.0

SlowFast [16] 38.5 65.6 50.0
ViViT-L/16x2 [1] 44.0 66.4 56.8

X-ViT (8×) (Ours) 41.5 66.7 53.3
X-ViT (16×) (Ours) 44.3 68.7 56.4

Current high-performing video recognition mod-
els tend to have high computational demands
for both training and testing and, by extension,
significant environmental costs. This is espe-
cially true for the transformer-based architec-
tures. Our research introduces a novel approach
that matches and surpasses the current state-of-
the-art while being significantly more efficient
thanks to the linear scaling of the complexity
with respect to the number of frames. We hope
such models will offer noticeable reduction in
power consumption while setting at the same
time a solid base for future research. We will
release code and models to facilitate this. More-
over, and similarly to most data-driven systems,
bias from the training data can potentially affect the fairness of the model. As such, we suggest to
take this aspect into consideration when deploying the models into real-world scenarios.

6 Conclusions

We presented a novel approximation to the full space-time attention that is amenable to an efficient
implementation and applied it to video recognition. Our approximation has the same computational
cost as spatial-only attention yet the resulting video Transformer model was shown to be significantly
more efficient than recently proposed Video Transformers [3, 1]. By no means this paper proposes
a complete solution to video recognition using video Transformers. Future efforts could include
combining our approaches with other architectures than the standard ViT, removing the dependency
on pre-trained models and applying the model to other video-related tasks like detection and seg-
mentation. Finally, further research is required for deploying our models on low power/resource
devices.
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