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Abstract
Finetuned large language models (LLMs) have shown re-
markable performance in financial tasks, such as sentiment
analysis and information retrieval. Due to privacy concerns,
finetuning and deploying Financial LLMs (FinLLMs) lo-
cally are crucial for institutions. However, finetuning Fin-
LLMs poses challenges including GPU memory constraints
and long input sequences. In this paper, we employ quan-
tized low-rank adaptation (QLoRA) to finetune FinLLMs,
which leverage low-rank matrix decomposition and quanti-
zation techniques to significantly reduce computational re-
quirements while maintaining high model performance. We
also employ data and pipeline parallelism to enable local
finetuning using cost-effective, widely accessible GPUs. Ex-
periments on financial datasets demonstrate that our method
achieves substantial improvements in accuracy, GPU memory
usage, and time efficiency, underscoring the potential of low-
rank methods for scalable and resource-efficient LLM fine-
tuning.

Introduction
Large language models (LLMs) have demonstrated ex-
ceptional capabilities in various applications, such as fi-
nance (Liu et al. 2023a, 2024b), healthcare (Wang et al.
2024; Chen et al. 2024), scientific discovery (Lu et al.
2022b; Fu et al. 2024), etc. Finetuning using low-rank struc-
tures of these models to domain-specific datasets further en-
hances their performance and improves their applicability to
specialized tasks. In the financial domain, finetuned LLMs
demonstrate substantial potential for tasks such as sentiment
analysis, named-entity recognition, and knowledge extrac-
tion from financial documents.

FinGPT (Liu et al. 2023a, 2024b,a) applied low-rank
adaptation techniques for finetuning quantized LLMs in fi-
nancial contexts, which displayed noticeable improvement
over the base model, while having substantial memory re-
duction and training speedup. XBRL agent (Han et al. 2024)
evaluated the potential of LLMs’ capabilities on analyzing
XBRL reports. The use of Retrieval-Augmented Generation
(RAG) and tools-calling techniques on XBRL-related tasks
and demonstrated significant improvement in task accuracy.

Due to sensitive data and regulatory constraints, fine-
tuning and inference of LLMs within local environments
remain critical requirements for financial institutions. Fur-
thermore, the ability to create personalized and customized

LLMs, finetuned for specific tasks, is essential for maximiz-
ing the utility of these models in financial applications.
Challenges Existing FinLLMs face the following chal-
lenges:
• Inefficient finetuning: Financial tasks are often complex

and require precise adaptation to large domain-specific
data, which can involve extensive parameter updates and
prolonged training times.

• Resource-constrained local devices: Finetuning and de-
ploying large language models on resource-constrained
local devices, such as consumer GPUs, can be challeng-
ing due to their memory and computational limitations.

Building upon prior research, we demonstrate that state-of-
the-art LLMs can be finetuned for diverse financial tasks
locally and cost-effectively using widely accessible GPUs,
achieving notable improvements over baseline models. Our
main contributions can be summarized as follows:
1. We employ Quantized Low-Rank Adaptation (QLoRA)

(Dettmers et al. 2023) to alleviate memory requirements
and allow more efficient finetuning. Using the low-rank
structure reduces the number of trainable parameters re-
quired for finetuning, and quantization compresses the
model size, further limiting GPU memory consumption.

2. We employ distributed data parallelism (DDP) and
pipeline parallelism to leverage multiple GPUs effec-
tively. DDP distributes training data across GPUs to ac-
celerate finetuning, while pipeline parallelism partitions
the model at the layer level to optimize memory usage
during inference. Together, these strategies enable more
efficient fintuning and inference for FinLLMs.

3. We conduct extensive experiments on diverse financial
datasets. Models finetuned with QLoRA exhibit up to a
48% average increase in accuracy compared to baseline
models, which validates the effectiveness of low-rank
adaptation and quantization in addressing the unique
challenges of FinLLMs.

Finetuning LLMs with Quantized Low-rank
Adaptation (QLoRA)

Quantized Low-rank Adaptation
Low-rank adaptation (LoRA) (Hu et al., 2021) is a
parameter-efficient finetuning method that preserves the pre-



Table 1: The maximum GPU memory used during inference.

GPU memory (GB)

Quantization Llama 3.1-8B Llama 3.1-70B

16-bit 15.0 131.5
8-bit 8.6 68.5
4-bit 5.6 37.8

trained transformer model weights and introduces a smaller
set of trainable weights, which are expressed using low-rank
decomposition.

In LoRA, the update weights are assumed to follow the
low-rank decompositions ∆W = BA, where A ∈ Rr×n

and B ∈ Rn×r are trainable parameters, W0 ∈ Rn×n is the
pretrained weights. Note that n can be large, e.g., 4096 and
the rank r ≪ n, say r = 4, 8, or 16. As an example, setting
n = 4096 and r = 8, W0 has about 16 million parameters,
while A and B together have 65536 parameters, which is
about 0.039% the size of W0.

During the finetuning stage, the forward pass is:

y = W0x+∆Wx = W0x+BAx,

where W0 denotes the pretrained weights.
During the inference stage, A and B will be added back

to W0, resulting in matrix W with the size of W0, such that

W = W0 +BA,

y = Wx.

Therefore, it does not introduce additional costs to the infer-
ence process.

Quantized LoRA (QLoRA) (Dettmers et al. 2023) further
reduces memory usage by using 8-bit or 4-bit quantization.
During finetuning, all weights of the pre-trained model are
quantized to 8-bit or 4-bit. Weights will be dynamically de-
quantized back to 16 bit when performing computation with
the input sequence x and the adaptor matrix A and B, which
remain in 16-bit precision throughout the process.

High-Performance Optimizations on GPUs
Optimizing Finetuning Process
To accelerate the finetuning process and leverage the compu-
tational power of multiple GPUs, we employed Distributed
Data Parallel (DDP), which distributes the training data
across multiple GPUs. DDP launches one process per GPU,
where each process gets its own copy of the model and op-
timizer. Each process then receives different inputs, and the
gradients are computed and synchronized across all GPUs
to accelerate training. DDP offers significant speedup when
multiple GPUs are available (Li et al. 2020).

We also opted to use Brain Floating Point (BF16) dur-
ing finetuning, BF16 offers range of values the same as
FP32 and easy conversion to/from FP32. Studies showed
that BF16 can achieve similar results as FP32 while having
significant speedup and memory savings (Kalamkar et al.
2019).

We used 0/1 Adam optimizer (Lu et al. 2022a), a modified
version of the Adam optimizer that linearizes each Adam
step and allows utilizing 1-bit compression for faster conver-
gence speed, while offering reduced data volume and higher
training throughput.

Optimizing Inference Process
Inference on larger models like Llama 3.1 70B requires sub-
stantial GPU memory usage, particularly when using higher
precision like 8-bit or 16-bit. We employ pipeline paral-
lelism, where the model is partitioned at the layer level
and distributed across multiple GPUs; each GPU process
computes different micro-batches with different parts of the
model concurrently (Liu et al. 2024a).

Table 1 illustrates GPU memory usage achieved through
quantization and pipeline parallelism during inference with
a batch size of 1. For Llama 3.1-8B, memory usage de-
creases by 43% with 8-bit quantization and 63% with 4-
bit quantization compared to the original 16-bit. Similarly,
for Llama 3.1-70B, the memory requirement reduces from
131.5 GB (16-bit, requiring 3 GPUs) to 68.5 GB (8-bit, 2
GPUs) and further to 37.8 GB (4-bit, 1 GPU). These reduc-
tions demonstrate the practical benefits of quantization in
enabling resource-efficient inference for large-scale models.

Experiments
Experimental Setup
Hardware Configurations. The experiments were con-
ducted on a server equipped with four 16-core AMD EPYC
7313 CPUs, 1 TB of RAM, and four NVIDIA RTX A6000
GPUs, each featuring 48 GB of dedicated GPU memory.

Financial Applications
For classification tasks, our study focuses on three finan-
cial language processing tasks: Sentiment Analysis (SA),
Named Entity Recognition (NER), and news headline clas-
sification.
1. Sentiment Analysis (SA) entails analyzing financial text,

such as news articles or tweets, to assign sentiment labels
(e.g., positive, negative, or neutral).

2. Named Entity Recognition (NER) is designed to identify
and classify critical entities within financial texts, includ-
ing organizations, locations, and individuals.

3. News headline classification involves categorizing head-
lines according to predefined criteria or questions, facil-
itating the automated organization and analysis of finan-
cial news.

For Question-Answering (QA) tasks, we focus on eX-
tensible Business Reporting Language (XBRL) (Saeedi,
Richards, and Smith 2007) data extraction. XBRL is a stan-
dardized format designed for the exchange of financial infor-
mation. Although XBRL documents are based on structured
XML (eXtensible Markup Language), their inherent com-
plexity presents challenges that can be addressed using the
capabilities of LLMs to extract key information, thereby fa-
cilitating financial reporting and analysis (Han et al. 2024).
In this study, we aim to finetune LLMs to accurately extract
both numerical and textual information from XBRL files.



Table 2: Datasets we used for finetuning and evaluation.

Dataset Name Type Train/Test Examples

FPB Classification 1,200 / 3,600
FiQA SA Classification 961 / 150
TFNS Classification 9,540 / 2,390
NWGI Classification 16,200 / 4,050
Headline Classification 82,200 / 20,500
NER Classification 13,500 / 3,500
XBRL Tags QA 375 / 164
XBRL Values QA 846 / 154

Base Models
We choose Llama 3.1-8B Instruct and Llama 3.1-70B In-
struct (Dubey et al. 2024) models as base models.

Datasets
Sentiment Analysis The following datasets all consist of
input texts and sentiment labels such as "neutral", "positive",
or "negative".

• Financial phrasebank (FPB) (Malo et al. 2013) con-
tains sentences extracted from financial news and reports.
These sentences are annotated with sentiment labels. We
manually created the train/test split.

• Financial question-answering Sentiment Analysis
(FiQA SA) (Maia et al. 2018) is another sentiment anal-
ysis dataset with the same labels as FPB from microblog
headlines and financial news.

• Twitter financial news sentiment (TFNS) (Rahman
2022) comprises annotated tweets related to financial
news labeled with sentiment categories.

• News with GPT instruction (NWGI) (Liu et al. 2023b)
comprises samples with seven labels ranging from
“strong negative” to “strong positive”. We map the seven
labels back to three for simplicity and consistancy with
other SA dataset.

Headline classification The Headline dataset (Sinha and
Khandait 2020) classifies headlines based on various ques-
tions into two classes: "yes" and "no".

Named entity recognition (NER) The NER dataset (Sali-
nas Alvarado, Verspoor, and Baldwin 2015) annotates one
entity per sentence, categorized into one of three classes:
"location", "person", and "organization"

XBRL The XBRL dataset (Han et al. 2024) comprises
questions and answers derived from XBRL filings from
2019 to 2023 for Dow Jones 30 companies. Each example
includes a question, a text segment from an XBRL file con-
taining the answer, and the ground truth generated using an
XBRL file extraction library. From this dataset, we selected
the following two tasks:

• XBRL tag extraction: This task involves extracting a
specific XBRL tag from a large XBRL raw text segment
given a natural language description of the tag.

• XBRL value extraction: This task focuses on extracting
a numeric value from the raw XBRL text segment given
a natural language description of the value.

To allow better instruction following for the base model, we
use one-shot prompting by providing an example question
and answer.

Implementation Details
Finetuning We employed distinct finetuning strategies
based on the nature of the tasks:

• Classification Tasks: For classification tasks, including
sentiment analysis, headline classification, and named
entity recognition, single-task fine-tuning was employed.

• XBRL Question Answering: For XBRL question-
answering tasks, including tag extraction and value ex-
traction, multi-task fine-tuning was adopted.

All fine-tuning experiments utilized the 0/1 Adam optimizer
(Lu et al. 2022a) with learning rate of 1e-4, LoRA alpha of
32, LoRA dropout of 0.1. We use both LoRA rank 4 with 4-
bit quantization and rank 8 with 8-bit quantization for Llama
3.1 8B. We adjusted the batch size and number of training
epochs based on the model size and task:

• Classification Tasks:
– Llama 3.1 8B: Batch size of 16 with gradient accumu-

lation step of 1; 4 epochs.
– Llama 3.1 70B: Batch size of 4 with gradient accumu-

lation step of 4; 4 epochs.

• XBRL Tasks:
– Llama 3.1 8B: Batch size of 2 with gradient accumu-

lation step of 2; 1 epoch.

Inference We use 8-bit quantized inference for all evalua-
tions to ensure consistency.

Performance Metrics
We evaluate performance using the following metrics:

Accuracy Accuracy is the ratio of the number of correct
answers to the total number of queries. An answer is con-
sidered correct if the ground truth answer is included in the
generated response.

Weighted F1 score For classification tasks, we report the
weighted F1 score, calculated as the weighted average of
the F1 scores for each class, with weights proportional to
the number of instances in each class

Finetuning and Inference Performance
• Batch size: The batch size per GPU during finetuning.
• GPU memory usage: The sum of the amount of GPU

memory used for all GPUs during training.
• GPU hours: The product of total training time and num-

ber of GPUs used.
• Adapter size: The size of the LoRA adapter file.
• Inference Speed: The number of seconds to process an

example.



Table 3: Accuracy on classification and XBRL extraction tasks.

Model
Classification Datasets XBRL Extraction

FPB FIQA TFNS NWGI NER Headline Tags Values

Llama-3.1-8B-Instruct (base) 0.6873 0.4655 0.6997 0.4658 0.4889 0.4534 0.7937 0.5526
Llama-3.1-70B-Instruct (base) 0.7450 0.4727 0.6842 0.7993 0.4628 0.7168 0.8902 0.8766
Llama-3.1-8B-Instruct-4bits-r4 0.8630 0.7309 0.8827 0.8095 0.9663 0.8803 0.9500 0.9605
Llama-3.1-8B-Instruct-8bits-r8 0.8284 0.8036 0.8405 0.8396 0.9805 0.8466 0.9437 0.9736
Llama-3.1-70B-Instruct-4bits-r4 - - - - 0.9888 - - -

Table 4: Weighted F1 score on all classification tasks.

Model
Classification Datasets

FPB FIQA TFNS NWGI NER Headline

Llama-3.1-8B-Instruct (Base) 0.6768 0.5571 0.6834 0.4117 0.5686 0.5576
Llama-3.1-70B-Instruct (Base) 0.7363 0.5645 0.6864 0.7993 0.4539 0.7294
Llama-3.1-8B-Instruct-4bits-r4 0.8600 0.7811 0.8824 0.8029 0.9664 0.8864
Llama-3.1-8B-Instruct-8bits-r8 0.8302 0.8177 0.8436 0.8492 0.9806 0.8520
Llama-3.1-70B-Instruct-4bits-r4 - - - - 0.9887 -

Table 5: Finetuning and inference performance on one classification task (NER).

Model Finetuning Inference

Batch size GPU memory (GB) GPU hours Adapter size (MB) Time per example (s)

Llama-3.1-8B-Instruct-4bits-r4 16 × 4 83.6 0.77 × 4 4.5 0.1
Llama-3.1-8B-Instruct-8bits-r8 16 × 4 96.7 0.90 × 4 9.0 0.1
Llama-3.1-70B-Instruct-4bits-r4 4 × 4 184.3 3.50 × 4 21.3 0.9

Table 6: Finetuning and inference performance on XBRL.

Model Finetuning Inference

Batch size GPU memory (GB) GPU hours Adapter size (MB) Time per Example (s)

Llama-3.1-8B-Instruct-4bits-r4 2 × 4 139.2 0.44 × 4 4.5 1.9
Llama-3.1-8B-Instruct-8bits-r8 2 × 4 152.2 0.48 × 4 9.0 1.9

Results and Analysis
Tables 3 and 4 summarize the accuracy and weighted F1
scores under different finetuning configurations. Table 5 and
6 displays resource usage and inference performance for
NER and XBRL QA. The finetuned Llama 3.1 8B demon-
strates noticeable improvements in accuracy compared to its
base model and even surpasses the results of the Llama 3.1
70B base model.

Notably, even with lower quantization (4-bit) and rank 4,
the finetuned Llama 3.1 8B model achieves comparable per-
formance to its 8-bit, rank 8 counterpart, while requiring less
memory. Furthermore, the fine-tuned 70B model demon-
strates practical usability with 4-bit quantization, showcas-
ing the feasibility of deploying larger LLMs for complex fi-
nancial tasks in resource-constrained environments.

While we utilized four GPUs to expedite finetuning, it is
important to note that all finetuning are achievable with one
GPU with 48GB memory, albeit with longer training times.

Conclusion and Future work
This study demonstrates the effectiveness of Quantized
LoRA (QLoRA) for finetuning large language models
(LLMs) on a range of financial tasks, including sentiment
analysis, named entity recognition, news headline analysis,
and XBRL data extraction. We finetuned both Llama 3.1
8B and 70B models, achieving up to 48% improvements
in accuracy compared to the base models on average across
all tasks. Notably, these performance gains can be achieved
with only four GPUs and less than 20 hours of training times
per task, making local finetuning and deployment of cus-
tomized models a feasible option for financial institutions.

In future work, we plan to explore multi-task finetuning in
classification tasks and expand our investigation of XBRL-
related tasks, including formula calculations. This will en-
able FinLLMs to perform more complex analysis and rea-
soning tasks, further increasing their utility in the financial
domain.
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