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Abstract

Dependency parsing aims to extract syntac-
tic dependency structure or semantic depen-
dency structure for sentences. Existing meth-
ods suffer the drawbacks of lacking univer-
sality or highly relying on the auxiliary de-
coder. To remedy these drawbacks, we pro-
pose to achieve universal and schema-free De-
pendency Parsing (DP) via Sequence Gener-
ation (SG) DPSG by utilizing only the pre-
trained language model (PLM) without any
auxiliary structures or parsing algorithms. We
first explore different serialization designing
strategies for converting parsing structures into
sequences. Then we design dependency units
and concatenate these units into the sequence
for DPSG. Thanks to the high flexibility of the
sequence generation, our DPSG can achieve
both syntactic DP and semantic DP using a sin-
gle model. By concatenating the prefix to in-
dicate the specific schema with the sequence,
our DPSG can even accomplish the multi-
schemata parsing. The effectiveness of our
DPSG is demonstrated by the experiments on
widely used DP benchmarks, i.e., PTB, CODT,
SDP15, and SemEval16. DPSG achieves com-
parable results with the first-tier methods on
all the benchmarks and even the state-of-the-
art (SOTA) performance in CODT and Se-
mEvall6. This paper demonstrates our DPSG
has the potential to be a new parsing paradigm.
We will release our codes upon acceptance.

1 Introduction

Dependency Parsing (DP), which aims to extract
the structural information beneath sentences, is fun-
damental in understanding natural languages. It
benefits a wide range of Natural Language Pro-
cessing (NLP) applications, such as machine trans-
lation (Bugliarello and Okazaki, 2020), question
answering (Teney et al., 2017), and information re-
trieval (Chandurkar and Bansal, 2017). As shown
in Figure 1, dependency parsing predicts for each
word the existence and dependency relation with
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Figure 1: Parsing “Ms. Haag plays Elianti.” according
to the Stanford syntactic dependency structure (Man-
ning et al., 2014) and the PSD semantic dependency
structure (Oepen et al., 2014). They are further con-
verted into unified serialized representations.

other words according to a pre-defined schema.
Such dependency structure is represented in tree or
directed acyclic graph, which can be converted into
flattened sequence, as presented in this paper.

The field of dependency parsing develops three
main categories of paradigms: graph-based meth-
ods (Dozat and Manning, 2017), transition-based
methods (Ma et al., 2018), and sequence-based
methods (Li et al., 2018). While prospering with
these methods, dependency parsing shows three
trends now. 1) New Schema. Recent works
extend dependency parsing from syntactic DP
(SyDP) to semantic DP (SeDP) with many new
schemata (Oepen et al., 2014; Che et al., 2012). 2)
Cross-Domain. Corpora from different domains
facilitate the research on cross-domain dependency
parsing (Peng et al., 2019; Li et al., 2019). 3) PLM.
With the development of pre-trained language mod-
els (PLM)s, researchers manage to enable PLMs
on dependency task and successfully achieve the
new state-of-the-art (SOTA) results (Fernandez-



Gonzdlez and Gémez-Rodriguez, 2020; Gan et al.,
2021). However, there are still two main issues.

Lacking Universality. Although there are many
successful parsers, most of them are schema-
specific and have limitations, e.g., sequence-based
parsers (Vacareanu et al., 2020) are only suitable
for SyDP. Thus, these methods require re-training
before being adapted to another schema.

Relying on Extra Decoder. Previous parsers
usually produce the parsing results employing an
extra decoding module, such as a biaffine network
for score calculation (Dozat and Manning, 2017)
and a neural transducer for decision making (Zhang
et al., 2019). These modules cannot be pre-trained
and learn the dependency relation merely from the
training corpora. Thus, only part of these models
generalizes to sentences of different domains.

To address these issues, we propose schema-
free Dependency Parsing via Sequence Generation
(DPSG). The core idea is to find a unified unam-
biguous serialized representation for both syntac-
tic and semantic dependency structures. Then an
encoder-decoder PLM is learned to generate the
parsing results following the serialized represen-
tation, without the need for an additional decoder.
That is, our parser can achieve its function using
one original PLM (without any modification), and
thus is entirely pre-trained. Furthermore, by adding
a prefix to the serialized representation, DPSG pro-
vides a principled way to pack different schemata
into a single model.

In particular, DPSG consists of three key compo-
nents. The Serializer is responsible for converting
between the dependency structure and the serial-
ized representation. The Positional Prompt pattern
provides supplementary word position information
in the input sentence to facilitate the sequence gen-
eration process. The encoder-decoder PLM with
added special tokens performs the parsing task
via sequence generation. The main advantages of
DPSG comparing with previous paradigms are sum-
marized in Table 1. Our DPSG accomplishes DP
for different schemata, unifies multiple schemata
without training multiple models, and transfers the
overall model to different domains.

We conduct experiments on 4 popular DP bench-
marks: PTB, CODT, SDP15, and SemEvall6.
DPSG performs generally well on different DP. It
significantly outperforms the baselines on cross-
domain (CODT) and Chinese SeDP (SemEvall6)
corpora, and achieves comparable results on the

. Multi-  Unsupervised
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Table 1: Summary of the previous parsing paradigms
and DPSG. @ means “can be directly used in this sce-
nario", O means “can be used in this scenario after
modification", @ means “can partially generalize to
this scenario”, and O means “cannot be used in this
scenario".

other two benchmarks, which further shows that
our DPSG has the potential to be a new paradigm
for dependency parsing.

2 Preliminaries

We formally introduce the dependency parsing task
and the encoder-decoder PLM, and the correspond-
ing notations. This paper uses bold lower case let-
ters, blackboard letters, and bold upper case letters
to denote sequences, sets, and functions, respec-
tively. Elements in the sequence and the sets are
enclosed in parentheses and braces, respectively.

2.1 Dependency Parsing

A pre-defined dependency schema is a set of rela-
tions R. Dependency parsing takes a sentence x =
(w1, wa, ..., wy) as input, where wj is the ™ word
in the sentence. It outputs the set of dependency
pairsy = (p1, p2, ..., Pn ), Where p; = { (rf-, hi) }
denotes the dependency pair of the ™ word w;. We
use h{ and rg to denote the j™M head word of w; and
their relation. POS(w) denotes the position of the
specific word w in the input sentence.

Syntactic Dependency Parsing (SyDP) analy-
ses the grammatical dependency relations. The
parsing result of SyDP is a tree structure called
the syntactic parsing tree. In the SyDP, each non-
root word has exactly one head word, which means
|pi| = 1if w; is the not root word.

Semantic Dependency Parsing (SeDP) fo-
cuses on representing the deep-semantic relation
between words. Each word in SeDP is allowed to
have multiple (even no) head words. This leads
to the result of SeDP being a directed acyclic
graph called Semantic Dependency Graph. Fig-
ure 1 shows the difference between SyDP and
SeDP, where SyDP produces a tree while SeDP
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Figure 2: This figure shows the overall framework of DPSG. The PSD semantic dependency structure of “Ms.

’

Haag plays Elianti

is converted into the serialized representation by the Serializer. The Positional Prompt

module injects positional information into the input sentence, and the PLM is responsible for generating the results.

produces a graph.

2.2 Pre-trained Language Model

PLMs are usually stacks of attention blocks of
Transformer (Vaswani et al., 2017). Some PLMs
that consist of encoder blocks only (e.g., BERT (De-
vlin et al., 2019)) are not capable of sequence gener-
ation. This paper focuses on PLMs having both en-
coder blocks and decoder blocks, such as T5 (Raf-
fel et al., 2020) and BART (Lewis et al., 2020).

An encoder-decoder PLM takes a sequence
s = (s1, ..., 8,) as input, and outputs a sequence
PLM(s) = o = (o1, ..., 0m). Each PLM has an
associated vocabulary V, which is a set of tokens
that can be directly accepted and embedded by the
PLM. The PLM first splits the input sequence into
tokens in the vocabulary with a subword tokeniza-
tion algorithm, such as SentencePieces (Kudo and
Richardson, 2018). Then, the tokens are mapped
into vectors by looking up the embedding table.
The attention blocks digest the embedded sequence
and generate the output sequence.

3 Method

DPSG leverages a PLM to parse the dependency re-
lation of a sentence by sequence generation. There-
fore, the Serializer converts the dependency struc-
ture into a serialized representation that meets the
output format of the PLM (Section 3.1). The Po-
sitional Prompt injects word position information
into the input sentence so as to avoid numerical
reasoning (Section 3.2). The PLM is modified by
adding special tokens introduced by the Serializer
and the Positional Prompt (Section 3.3). Figure 2
illustrates the overall framework.

3.1 Serializer for Dependency Structure

The Serializer S : (x,y) ~— t is a function that
maps sentence x and its corresponding dependency
pairs y into a serialized representation t, which
servers as the target output to fine-tune the language
model. The Inverse Serializer S~™1 : (x,0) — y
converts the output o of the PLM into dependency
pairs to meet the output requirement of the DP task.

Specifically, the Serializer S decomposes depen-
(h]» 7!

R

dency pairs, { )} € y, into smaller de-

pendency units by scattering the dependent word
w; into each of its head word, which forms the
following triplets set: {(wi,rg, hf)} Then, it
replaces each relation 7“{ with a special token!
[REL (ri )] € R, where R is a set of special to-
kens for all different relations. The head word hg
is substituted by its position in the input sentence
X, denoted as POS (hf ) . The target serialized rep-

resentation t = S(x) concatenates all the depen-
dency units with split token [SPT] as the following:

(...[SPT} w; [REL (ri)} POS (h{) [SPT]..)

one dependency unit

The Inverse Serialzer S~! restores the dependency
structure from the serialized representation by sub-

with the
original relation and indexing the head with its

stituting the special token [REL (ri )]

position POS (hf ) in the input sentence x.

There are two issues in the Serializer designing:

"Brackets indicate special tokens out of vocabulary V.



Word Ambiguity. It is highly possible to have
words, especially function words, appear multiple
times in one sentence, e.g., there are more than 72%
sentences in Penn Treebank (Marcus et al., 1993)
have repeated words. We take two measures for
word disambiguation in a dependency unit: (1) To
disambiguate head word, the Serializer represents
the head word by its position, rather than the word
itself; (2) To disambiguate dependent word, the Se-
rializer arranges dependency units by order of the
dependent word in the input sentence X, rather than
topological ordering or depth/breadth first search
ordering of the dependency graph. The Inverse Se-
rializer scans x and o simultaneously so as to refer
the corresponding dependent word to x.

Isolated Words. There are dependency schemata
allowing for isolated words which have neither
head words nor dependency relations with other
words, e.g., the period mark in the SeDP results
shown in Figure 1. Note that the isolated words
are different from the root word, as the root word
is the head word of itself. One direct solution is
to remove the isolated words from the serialized
representation. However, this will result in incon-
sistencies between x and t, which complicates the
word disambiguation. Thus, We use special token
[NO] to denote such isolation relation and word no
to represent the position of the virtual head word.

3.2 Positional Prompt for Input Sentence

As Section 3.1 mentions, representing the head
words by their positions is an important scheme
for head word disambiguation. However, PLMs
are less skilled at numerical reasoning (Geva et al.,
2020). We also empirically find it difficult for the
PLM to learn the positional information of each
word from scratch. Thus, we inject Positional
Prompt (PP) for each word, which converts the
positional encoding problem into generating the
position number in the input, rather than counting
for each word.

In particular, given the input sentence x, the
positional prompt is the position number of each
word w; wrapped with two special tokens [PID] and
[SPT|. [PID] marks the beginning of the position
number and prevents the tokenization algorithms
from falsely taking the position prompt as part of
the previous word. [SPT] separates the position
number from the next word. They also provide
word segmentation information for some languages,
such as Chinese. After the conversion, we have the

input sequence in the following form:
s = wy [PID] 1 [SPT] wy [PID] 2 [SPT]- - -

For brevity, we denote the above process as a func-
tion PP : x — s that maps input sentence into
sequence with positional prompt.

3.3 PLM for Sequence Generation

Both Serializer and Positional Prompt introduce
special tokens that are out of the original vocab-
ulary V, including the relation tokens in R, the
separation tokens [PID], [SPT], and the special rela-
tion token [NO|. Before training, these tokens are
added to the vocabulary, and their corresponding
embeddings are randomly initialized from the same
distribution as other tokens. As we should notice,
these special tokens are expected to undertake dif-
ferent semantics. PLM thus treats them as trainable
variables and learns their semantics during training.

With all the three components of DPSG, input
sentence is first converted into sequence with po-
sitional prompt: s = PP(x). The sequence is
further fed into the PLM and get the sequence out-
put with the maximum probability: o = PLM(s).
The final predicted dependency structure is recov-
ered via the Inverse Serializer: y’ = S™1(o).

The training objective aims to maximize the like-
lihood of the ground truth dependency structure. To
do so, we take the serialized dependency structure
as the target and minimize the auto-regressive lan-
guage model loss. We can further enhance the un-
supervised cross-domain capacity of DPSG with in-
termediate fine-tuning (IFT) (Pruksachatkun et al.,
2020; Chang and Lu, 2021). Before training on the
dependency parsing, the intermediate fine-tuning
uses the unlabeled sentences in the target domain
and continues to train the PLM in source domain.

4 Experiments

4.1 Evaluation Setups
4.1.1 Datasets

We evaluate DPSG on the following 4 widely used
benchmarks for both SyDP and SeDP. We show
more details about datasets in Appendix A.

¢ Penn Treebank (PTB) (Marcus et al., 1993) is
the most proverbial benchmark for SyDP.

* Chinese Open Dependency Treebank (CODT)
(Lietal.,2019) aims to evaluate the cross-domain
SyDP capacity of the parser. It includes a bal-
anced corpus (BC) for training, and three other



corpora gathering from different domains for test-
ing: product blogs (PB), popular novel ‘“Zhu
Xian” (ZX), and product comments (PC).

* BroadCoverage Semantic Dependency Pars-
ing dataset (SDP15) (Oepen et al., 2014) anno-
tates English SeDP sentences with three different
schemata, named as DM, PAS, and PSD. It pro-
vides both in-domain (ID) and out-of-domain
(OOD) evaluation datasets. The schema of
SDP15 allows for isolated words.

* Chinese semantic Dependency Parsing dataset
(SDP16) (Che et al., 2012) is a Chinese SeDP
benchmark. The sentences are gathered from
News (NEWS) and textbook (TEXT). The
schema of SemEval16 allows for multiple head
words but does not have isolated words.

4.1.2 Evaluation Metrics

Following the conventions, we use unlabeled at-
tachment score (UAS) and labeled attachment score
(LAS) for SyDP. We use labeled attachment F1
Score (LF) on SDP15 of SeDP. For SeDP on Se-
mEvall6, we use unlabeled attachment F1 (UF)
and labeled attachment F1 (LF). All the results are
presented in percentages (%).

4.1.3 Implementations

We use T5-base (Raffel et al., 2020) and mT5-
base (Xue et al., 2021) as the backbone PLM for
English dependency parsing and Chinese depen-
dency parsing, respectively. In particular, we use
their V1.1 checkpoints, which are only pre-trained
on unlabeled sentences, so as to keep the PLM un-
biased. In order to focus on the parsing capability
of PLM itself, we do not use additional information,
such as part-of-speech (pos) tagging and character
embedding (Wang and Tu, 2020; Gan et al., 2021).
The PLM is implemented with Huggingface
Transformers (Wolf et al., 2020). The learning
rate is 4¢~°, weight decay is 1e~>. The optimizer
is AdamW (Loshchilov and Hutter, 2019). We
conduct all the experiments on Tesla V100.

4.2 Baselines

We divide baselines into three main categories
based on their domain of expertise. Note that al-
most all baselines use the additional lexical-level
feature (including pos tagging, character-level em-
bedding, and other pre-trained word embeddings),
which is different from our DPSG. We supplement
more details about baselines in Appendix B.

In-domain SyDP. Biaffine (Dozat and Man-
ning, 2017), StackPTR (Ma et al., 2018), and
CRF20 (Zhang et al., 2020) introduce specially de-
signed parsing modules without PLM. CVT (Clark
et al., 2018), MP20 (Wang and Tu, 2020), and
MRC (Gan et al., 2021) are recently proposed PLM-
based dependency parser. SegNMT (Li et al., 2018),
SeqViable (Strzyz et al., 2019), and PaT (Vacareanu
et al., 2020) cast dependency parsing as sequence
labeling task, which is closely related to our se-
quence generation method.

Unsupervised Cross-domain SyDP. Peng et al.
(2019) and Li et al. (2019) modify the Biaffine for
the unsupervised cross-domain DP. SSADP (Lin
et al., 2021) relies on extra domain adaptation steps.
In the PLM era, Li et al. (2019) propose ELMo-
Biaffine with IFT on unlabeled target domain data.

SeDP. Dozat and Manning (2018) modify Bi-
affine for SeDP. BS-IT (Wang et al., 2018) is a
transition-based semantic dependency parser with
incremental Tree-LSTM. HIT-SCIR (Che et al.,
2019) solves the SeDP with a BERT based ipeline.
BERT+Flair* (He and D. Choi, 2020) augments the
Biaffine model with BERT and Flair (Akbik et al.,
2018) embedding. Pointer (Fernandez-Gonzélez
and Gomez-Rodriguez, 2020) combines transition-
based parser with Pointer Network. It is also
augmented with a Convolutional Neural Network
(CNN) encoder for the character-level feature.

4.3 Main Results
4.3.1 DPSG is Schema-Free

The schema-free characteristics of DPSG are re-
flected by the following two perspectives.
Towards Specific Schema. DPSG obtains the
SOTA performance on both CODT in Table 5 and
SemEvall6 in Table 3, and achieves the first-tier
even among methods used additional lexical-level
features on PTB in Table 2 and SDP15 in Table 4.
For in-domain SyDP in Table 2, DPSG outperforms
all the previous sequence-based methods, and per-
forms sightly lower than MRC, which uses contex-
tual interactive pos tagging, by 0.45% in LAS.
For SeDP in Table 3, DPSG ourperforms BERT
+Flair to a large margin on SemEvall6, achieves
3.55% performances gain on NEWS, and 1.95%
performance gain on TEXT with regard to LF.
DPSG also outperforms the PLM-based pipeline
HIT-SCIR on SDP15 (Table 4), but sightly lower

*They use different pre-processing scripts on SDP15, thus
are not comparable with DPSG and other baselines on SDP15.



Features Method (PLM) UAS LAS
Char CRF20 96.14 94.49
POS Biaffine 95.74 94.08
POS StackPTR 95.87 94.19

Char+POS TMP20 (BERT-large) 96.91 95.34

POS  TMRC (RoBERTa-large) 97.24 95.49
POS  fCVT(CVT) 96.60 95.00
POS  iSeqNMT 92.08 94.11
POS  #SeqViable 93.67 91.72
POS  PaT (BERT-base) 95.87 94.66
- "'DPSG (T5-base) 96.48 95.04
- DPSG (Multi) 96.25 94.85

Table 2: Results on PTB for SyDP. Features means
these methods use additional lexical-level information,
such as character embedding (Char) or part of speech
tagging (POS). 1 means this method belongs to se-
quence based methods. T means this method use PLM,
and the used PLM as listed in parenthesis.

Method NEWS TEXT

UF LF UF LF
BS-IT 81.14 63.30 85.71 7292
BERT+Flair 8292 67.27 91.10 80.41
DPSG 8431 70.82 90.97 82.36

Table 3: Experimental results on SemEvall6.

than Pointer, which applies additional CNN to en-
code the character-level embeddings. We also ob-
serve that DPSG and the Pointer have the largest
gap in the PSD schema of SDP15. This is caused
in that PSD has much more relation labels than the
other schemata (Peng et al., 2017), which increases
the search space of our generation model.
Towards Multi-Schemata. Furthermore, we
design the multi-schemata experiment. We mix
PTB and SDP15 by concatenating a prefix to the
input text to distinguish different schemata. To pre-
vent data leakage, we filter out sentences from the
training set of PTB, which also appear in the test set
of SDP15. As DPSG (Multi) uses less training data
for PTB, it performs worse than DPSG in Table 2.
DPSG (Multi) in Table 4 outperforms Pointer by
1.49% in ID evaluation of the PAS schema, 0.05%
in ID evaluation of the DM schema, and achieves al-
most the same performance with Pointer in ID eval-
uation of the PSD schema. The improvement over
schema-specific model is most obvious on PAS. It
could be because the PAS schema is more similar
to the syntax schema (Peng et al., 2017), thus it

Method (ID) DM PAS PSD
BS-IT 90.3 91.7 786
Biaffine 93.7 93.9 81.0
THIT-SCIR (BERT-base) 92.9 944  81.6
TPointer (BERT-base) 94.4 95.1 82.6
DPSG 93.96 94.26 81.98
DPSG (Multi) 94.45 96.59 82.25
Method (OOD) DM PAS PSD
BS-IT 84.9 87.6 759
Biaffine 88.9 90.6 794
THIT-SCIR (BERT-base) 89.2 924  81.0
tPointer (BERT-base) 91.0 934 820
"DPSG 90.47 92.38 80.04
TDPSG (Multi) 90.70 92.31 79.65

Table 4: Experimental results on SDP15 in terms of
LF. DPSG (PTB) means the parameters are initialized
from another DPSG trained on PTB. T means the model
utilizing PLM.

benefits more from PTB. This multi-schemata ap-
proach also provides a new method to explore the
inner connection between SyDP and SeDP.

4.3.2 Unsupervised Cross-domain

Table 5 demonstrates the outstanding transferability
of DPSG. We implement DPSG with and without
IFT on the target domain. DPSG with IFT achieves
the new SOTA, with a boosting of 5.06%, 7.21%
and 10.49% in terms of LAS on PB, ZX, and PC,
compared to ELMo with IFT. DPSG is completely
trained during IFT. While the additional biaffine
module of ELMo cannot benefit from the unlabeled
sentences from the target domain.

S Analysis

This section studies whether there is better imple-
mentation for DPSG. We are particularly interested
in: 1) the designing of the Serializer, 2) the effect
of the introduced special tokens, and 3) the choice
of the PLM model. We use PTB as the benchmark
and compare DPSG introduced in Section 3 with
many other possible choices. The results of these
exploratory experiments are shown in Table 6.

5.1 Serializer Designing

Tree, as the well-studied data structure for syntac-
tic dependency parsing, has several other serializa-
tion methods to be converted into serialized repre-
sentations. We explore the serializer designing of
the tree structure in DPSG with two other widely



BC— PB BC— ZX BC— PC Average
Category Model
UAS LAS UAS LAS UAS LAS UAS LAS
w/o PLM Biaffine 67.75 60.95 69.41 61.55 39.95 26.96 59.04 49.82
SSADP 68.55 61.59 70.82 63.61 41.10 27.67 60.16 50.96
ELMo-Biaffine w/ IFT  77.15 71.54 74.68 67.51 53.04 3948 68.29 59.51
W/PLM " bpsG wio IFT 7886 7328 7574 6942 54.00 4198 69.53 G61.56
DPSG w/ IFT 81.74 76.60 80.73 T74.77 62.44 4997 7T4.97 67.11
Table 5: Results on CODT for unsupervised cross-domain SyDP.
Metric DPSG Prufer Bracket Syntactic Dependency Tree
UAS 96.48  85.53;1005 95.37|1.11 it i®
LAS 95.04 83.72)11.32  93.761.28 ph:ys @
. nsubj dobj punct
Metric DPSGpos DPSG.q DPSGpagr . aﬁ Ehlank' )
UAS 95~20¢1.28 93.88¢2_60 86.35¢10_13 l””
LAS 93-17J,1.87 92.46¢2_5g 79.45¢15.59 Ms. (@

Table 6: Results on PTB for exploratory experiment

used serialized representation—Prufer sequence
and Bracket Tree, which are shown in Figure 3.
Note that both Prufer sequence and Bracket Tree
face the same word ambiguity issues; we associate
each word with a unique position number as well.

Prufer Sequence is a unique sequence associ-
ated with the labeled tree in combinatorial mathe-
matics. The algorithm which converts labeled tree
into Prufer sequence does not preserve the root
node, while in dependency parsing, the root is a
unique word. To bridge this inconsistency, we in-
troduce an additionally added virtual node to the
dependency tree to mark the root word.

Bracket Tree is one of the most commonly
used serialization methods to represent the tree
structure (Strzyz et al., 2019). By recursively
putting the sub-tree nodes in a pair of brackets
from left-to-right, bracket tree can build a bijection
between parsing tree and bracket tree. More details
about how to construct the Prufer sequence and the
bracket tree are shown in Appendix C.

We denote the experimental results of Prufer
sequence and bracket tree as Prufer and Bracket,
respectively, in Table 6. Both Prufer sequence
and bracket tree undermine the performance of
DPSG to a large margin, which indicates that our
proposed Serializer provides a better serialized rep-
resentation for the PLM to generate. This is be-
cause our Serializer guarantees the dependency

[ Prufer Sequence

! Ms. [nn] Q) Haag [nsub3] @) Elianti [dob3] () . [punct] @)

Bracket Tree Sequence i
3 plays [root] @(Haag [nsubj] @( Ms. [nn] (D) Elianti [dob3j] @ . [punct] @)i

,,,,,,,,,,,,,,,,,,,,,,,,,, L

Figure 3: Prufer sequence and Bracket Tree sequence
of the same sentence “Ms. Haag plays Elianti .”.

units in the output have the same order of the words
in the input sentences, while Prufer sequence and
bracket tree do not preserve the order. Thus, our
proposed DPSG expands the input sentence to gen-
erate the output sequence, while Prufer sequence
and bracket tree based DPSG reconstruct the syn-
tax dependency structure. As expansion strategy
has smaller generation space than reconstruction,
the serialization representation proposed in Sec-
tion 3.1 eases the learning complexity of the PLM,
and further brings better performance.

5.2 Special Tokens Designing

We further investigate whether the additionally in-
troduced special tokens are useful.

Relation Tokens. There are two different ways
to represent the dependency relations in the serial-
ized representation: adding a special token for each
dependency relation, or mapping each dependency
relation to one token in the original vocabulary
with the closest meaning, e.g., conj — conjunct.
Experimental results using word mapping is de-
noted as DPSG_, in Table 6. DPSG_ is inferior
than DPSG, which indicates that the special tokens
for relations are important. The reason is that if



we use the tokens in the original vocabulary, they
interfere with their original meanings as the word.
Special tokens disentangle the dependency relation
from the words that could appear in the sentence.

Positional Prompt. We are also particularly
interested in the effectiveness of the positional
prompts. We conduct experiments where the po-
sitional prompt is removed and send the original
input sentence to the PLM. The result is denoted
as DPSG_pos in Table 6. DPSG_,os undermines the
performance of DPSG because it requires the PLM
to perform numerical reasoning, that is, to count
for the position of each head word.

5.3 Model Choosing

Both BART and T5 are widely used encoder-
decoder PLMs. We try BART-base as the backbone
PLM in DPSG. Table 6 shows that BART under-
mines the performance. In addition, BART has a
significant performance drop after achieving the
best performance, as shown in Appendix E.

5.4 Legality

There are two different legalities in DPSG. Forma-
tion Legality focus on whether the sequence has the
correct formation (see Section 3.1) and Structural
Legality focus on the legality of the correspond-
ing parsing structure. The statistics on PTB show
that the formation legality of DPSG is 100%, and
the structure legality of DPSG is 99.7%, which is
acceptable in practical usage.

6 Related Work

6.1 Syntactic Dependency Parsing

In-domain SyDP. Transition-based methods
and graph-based methods are widely used in
SyDP. Dozat and Manning (2017) introcude bi-
affine attention into the graph-based methods. Ma
et al. (2018) adopt pointer network to alleviate the
drawback of local information in transition-based
methods. Zhang et al. (2020) improve the CRF to
capture second-order information.

There are also researches using sequence to se-
quence methods for SyDP. Li et al. (2018) use BiL-
STM to predict the labeling of positions and rela-
tions of dependency parsing. Strzyz et al. (2019)
improve Li et al. (2018)’s method and explore more
representation of predicated labeling sequence of
dependency parsing. Vacareanu et al. (2020) use
BERT to augment the sequence labeling methods.

Unsupervised Cross-domain SyDP. The label-
ing of parsing data requires a wealth of linguis-
tics knowledge and this limitation facilitates the
research of unsupervised cross-domain DP. Yu
et al. (2015) introduce pseduo-labeling unsuper-
vised cross-domain SyDP via self-training. Li et al.
(2019) propose a cross-domain datasets CODT for
SyDP and build baselines for unsupervised cross-
domain SyDP. Lin et al. (2021) introduce feature-
based domain adaptation method in this field.

6.2 Semantic Dependency Parsing

Buys and Blunsom (2017) accomplish the first
transition-based parser for Minimal Recursion Se-
mantics (MRS). Zhang et al. (2016) present two
novel transition-systems to generate arbitrary di-
rected graphs in an incremental manner. Dozat
and Manning (2018) modify the Biaffine (Dozat
and Manning, 2017) for SeDP. However, due to the
words in SeDP may have multiple-head, there is
not sequence-based method for SeDP now.

6.3 Probing in Language Model

The research of exploring whether PLM can learn
the linguistic features during the pre-training pro-
cess, especially syntax knowledge, attracts some
attention. Hewitt and Manning (2019) map the dis-
tance between word embedding in PLM into the
distance in syntax tree and construct a syntax tree
without relation label. Clark et al. (2019) design
a structural probe to detect the ability of attention
heads to express dobj (direct object) dependency
relation. Their results prove the syntax knowledge
can also be found in the attention maps.

7 Conclusion

This paper proposes DPSG—a schema-free depen-
dency parsing method. By serializing the parsing
structure to a flattened sequence, PLM can directly
generate the parsing results in serialized representa-
tion. DPSG not only achieves good results in each
different schema, but also performs surprisingly
well on unsupervised cross-domain DP. The multi-
schemata experiments also suggest that DPSG is
capable of investigating the inner connection be-
tween different schemata dependency parsing. The
exploratory experiments and analyses demonstrate
the rationality of the designing of DPSG. Consid-
ering the unity, indirectness, and effectiveness of
DPSG, we believe it has the potential to become a
new paradigm for dependency parsing.
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Set  Section Sentences  Words

Train [2-21] 39,832 95,0028
Dev [22] 1,700 40,117
Test [23] 2,416 56, 684

Table 7: Data statistics of PTB.

Domain Train Set Dev Set Test Set Unlabeled Set

BC 16.3K 1K 2K -

PB 5.1K 1.3K 2.6K 291K
PC 6.6K 1.3K 2.6K 349K
7zX 1.6K 0.5K 1.1K 33K

Table 8: Data statistics of CODT.

A Dataset Statistics

The details about the statistics of datasets used in
this paper are shown on Table 7, Table 8, Table 9
and Table 10.

B More Details on Baseline

Baselines for in-domain SyDP.

* 3 Biaffine: Dozat and Manning (2017) adopt bi-

affine attention mechanism into the graph-based
method of dependency parsing.

* StackPTR: Ma et al. (2018) introduce the
pointer network into the transition-based meth-
ods of dependency parsing.

* CRF': Zhang et al. (2020) improve the CRF to
capture more high-order information in depen-
dency parsing.

» *SeqNMT: Li et al. (2018) use an Encoder-
Decoder architecture to achieve the Seq2Seq
dependency parsing by sequence tagging. The
BPE segmentation from Neural Machine Trans-
lation (NMT) and character embedding from Al-
lenNLP (Gardner et al., 2018) are applied to ar-
gument their model.

* SeqViable: Strzyz et al. (2019) explore four en-
codings of dependency trees and improve the
performance comparing with Li et al. (2018).

* PaT: Vacareanu et al. (2020) use a simple tagging
structure over BERT-base to achieve sequence
labeling of dependency parsing.

+ 3 CVT: Clark et al. (2018) propose another pre-
train method named cross-view training, which

3% means model without PLM

“e means sequence-based methods
5+ means model utilizing PLM
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Schema Train Set ID Test Set OOD Test Set

DM 35,656 1,410 1,849
PAS 35,656 1,410 1,849
PSD 35,656 1,410 1,849

Table 9: Data statistics of SDP15.

Domain Train Set Dev Set Test Set

NEWS 8,301 534 1,233
TEXT 128,095 1,546 3,096

Table 10: Data statistics of SemEvall6.

can be used in many sequence constructing task
including SyDP. The best results of CVT is
achieved by the multi-task pre-training of SyDP
and part-of-speech tagging.

MP20: Wang and Tu (2020) use message pass-
ing GNN based on BERT to capture second-order
information in SyDP.

MRC: Gan et al. (2021) use span-based method
to construct the edges at the subtree level. The
Machine Reading Comprehension (MRC) is ap-
plied to link the different span. RoBERTa-
large (Liu et al., 2019) is applied to enhance the
representation of parser.

Baselines for cross-domain SyDP.

*

Biaffine: Peng et al. (2019); Li et al. (2019) use
Biaffine trained on source domain and test on
target domain as the baseline of unsupervised
cross-domain SyDP.

SSADP: Lin et al. (2021) use both semantic and
structural feature to achieve the domain adapta-
tion of unsupervised cross-domain parsing.

ELMo: Li et al. (2019) use ELMo with inter-
mediate fine-tuning in unlabeled text of target
domain to achieve the SOTA on unsupervised
cross-domain SyDP.

Baselines for SeDP.

*

Biaffine: Dozat and Manning (2018) transfer the
Biaffine model from SyDP to SeDP.

BS-IT: Wang et al. (2018) use graph-based
method for SeDP.

HIT-SCIR: Che et al. (2019) propose a BERT-
based pipeline model for SeDP.

BERT+Flair: He and D. Choi (2020) use BERT
and flair embedding (Akbik et al., 2018) to argu-
ment their modificated Biaffine.
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vitrual ©® vitrual ® vitrual ®
v v v
plays @ plays @ plays ®
dobjl w:t Wft
Elianti @ . ® . ®
d e f

Ms. [nn]@ Haag [nsub]]@

Ms. [nn] (2) Haag [nsub3](3) Elianti [dob3] (3)

Ms. [nn]@ Haag [nsubi] @ Elianti [dob7] @ [punct]@

Figure 4: The Prufer Sequence of sentence “Ms. Haag plays Elianti .” is constructed from a to f.

Syntactic Dependency Tree

plays @
a
Mbjl W‘
Haag @ Elianti @ ®
b d €
lnn
Ms. @

C
plays[root]@)(Haag [nsub3]1@ (Ms. [nn]D)Elianti [dobi] @). [punct] )

Figure 5: The Bracket Tree Sequence of sentence “Ms.
Haag plays Elianti .” is constructed following the topo-
logical order from a to e.

C Construction of Prufer Sequence

C.1 Prufer Sequence

The principle of construction is deleting the leaf
node with minimum index and adding the index
of its farther node into the prufer sequence. This
process is repeated more times until there are only
two nodes left in the tree.

C.2 Prufer for Parsing Tree

The arc in parsing tree is directed and thus is a
rooted tree. When all the son nodes with smaller
index are deleted, the root node will be treated as a
leaf node then deleted in the next step. To address
this problem, we add a virtual node with the maxi-
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Metric Comparison between T5 and BART
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Figure 6: The UAS curves on dev sets of PTB between
of TS5 and BART.

mum index and build a arc from virtual node to the
real root. This virtual root force the root node al-
ways being a leaf node in the whole construction of
prufer sequence. The overall construction process
as shown on Figure 4 (a)~(f).

D Construction of Bracket Tree

The Bracket Tree uses Bracket to indicate levels
of nodes. All the nodes belonging to the same
level are wrapped in the same pair of brackets. The
process of construction is shown on Figure 5.



E Comparison between T5 and BART

Figure 6 shows the UAS comparison on dev sets
of PTB between the T5 and BART in first 30
epochs. After the first two epochs, the performance
of T5 raise rapidly and can better maintain perfor-
mance in the later stages of training. Although
BART achieves a better performance in the first
two round, but there is not much room for perfor-
mance improvement. To make matters worse, it
can be clearly seen that after achieving the best
performance, BART is very unstable, and even a
significant performance drop has occurred.
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