Schema-Free Depednency Parsing via Sequence Generation

Anonymous ACL submission

Abstract

Dependency parsing aims to extract syntac-
tic dependency structure or semantic depen-
dency structure for sentences. Existing meth-
ods suffer the drawbacks of lacking univer-
sality or highly relying on the auxiliary de-
coder. To remedy these drawbacks, we pro-
pose to achieve universal and schema-free De-
pendency Parsing (DP) via Sequence Gener-
ation (SG) DPSG by utilizing only the pre-
trained language model (PLM) without any
auxiliary structures or parsing algorithms. We
first explore different serialization designing
strategies for converting parsing structures into
sequences. Then we design dependency units
and concatenate these units into the sequence
for DPSG. Thanks to the high flexibility of the
sequence generation, our DPSG can achieve
both syntactic DP and semantic DP using a sin-
gle model. By concatenating the prefix to in-
dicate the specific schema with the sequence,
our DPSG can even accomplish the multi-
schemata parsing. The effectiveness of our
DPSG is demonstrated by the experiments on
widely used DP benchmarks, i.e., PTB, CODT,
SDP15, and SemEval16. DPSG achieves com-
parable results with the first-tier methods on
all the benchmarks and even the state-of-the-
art (SOTA) performance in CODT and Se-
mEvall6. This paper demonstrates our DPSG
has the potential to be a new parsing paradigm.
We will release our codes upon acceptance.

1 Introduction

Dependency Parsing (DP), which aims to extract
the structural information beneath sentences, is fun-
damental in understanding natural languages. It
benefits a wide range of Natural Language Pro-
cessing (NLP) applications, such as machine trans-
lation (Bugliarello and Okazaki, 2020), question
answering (Teney et al., 2017), and information re-
trieval (Chandurkar and Bansal, 2017). As shown
in Figure 1, dependency parsing predicts for each
word the existence and dependency relation with

Syntactic Dependency 11 Semantic Dependency

plays [l Ms. plays

Mobjl Wft i RSTF\AACW \w‘-arg !

Haag Elianti o Haag Elianti = |
i nn 3
Ms. ‘

’, Syntactic Dependency Structure in Sequence !
Ms. [nn] @) Haag [nsubj] @ plays [root] @) Elianti [dobi] @) . [punct] @)

Semantic Dependency Structure in Sequence
Ms. [root] (D Haag [RSTR] D Haag [ACT-arg] () plays [root] B Elianti
! [PAT-arg] 3 . [rel-no] @

Figure 1: Parsing “Ms. Haag plays Elianti.” according
to the Stanford syntactic dependency structure (Man-
ning et al., 2014) and the PSD semantic dependency
structure (Oepen et al., 2014). They are further con-
verted into unified serialized representations.

other words according to a pre-defined schema.
Such dependency structure is represented in tree or
directed acyclic graph, which can be converted into
flattened sequence, as presented in this paper.

The field of dependency parsing develops three
main categories of paradigms: graph-based meth-
ods (Dozat and Manning, 2017), transition-based
methods (Ma et al., 2018), and sequence-based
methods (Li et al., 2018). While prospering with
these methods, dependency parsing shows three
trends now. 1) New Schema. Recent works
extend dependency parsing from syntactic DP
(SyDP) to semantic DP (SeDP) with many new
schemata (Oepen et al., 2014; Che et al., 2012). 2)
Cross-Domain. Corpora from different domains
facilitate the research on cross-domain dependency
parsing (Peng et al., 2019; Li et al., 2019). 3) PLM.
With the development of pre-trained language mod-
els (PLM)s, researchers manage to enable PLMs
on dependency task and successfully achieve the
new state-of-the-art (SOTA) results (Fernandez-

Gonzdlez and Gémez-Rodriguez, 2020; Gan et al.,
2021). However, there are still two main issues.

Lacking Universality. Although there are many
successful parsers, most of them are schema-
specific and have limitations, e.g., sequence-based
parsers (Vacareanu et al., 2020) are only suitable
for SyDP. Thus, these methods require re-training
before being adapted to another schema.

Relying on Extra Decoder. Previous parsers
usually produce the parsing results employing an
extra decoding module, such as a biaffine network
for score calculation (Dozat and Manning, 2017)
and a neural transducer for decision making (Zhang
et al., 2019). These modules cannot be pre-trained
and learn the dependency relation merely from the
training corpora. Thus, only part of these models
generalizes to sentences of different domains.

To address these issues, we propose schema-
free Dependency Parsing via Sequence Generation
(DPSG). The core idea is to find a unified unam-
biguous serialized representation for both syntac-
tic and semantic dependency structures. Then an
encoder-decoder PLM is learned to generate the
parsing results following the serialized represen-
tation, without the need for an additional decoder.
That is, our parser can achieve its function using
one original PLM (without any modification), and
thus is entirely pre-trained. Furthermore, by adding
a prefix to the serialized representation, DPSG pro-
vides a principled way to pack different schemata
into a single model.

In particular, DPSG consists of three key compo-
nents. The Serializer is responsible for converting
between the dependency structure and the serial-
ized representation. The Positional Prompt pattern
provides supplementary word position information
in the input sentence to facilitate the sequence gen-
eration process. The encoder-decoder PLM with
added special tokens performs the parsing task
via sequence generation. The main advantages of
DPSG comparing with previous paradigms are sum-
marized in Table 1. Our DPSG accomplishes DP
for different schemata, unifies multiple schemata
without training multiple models, and transfers the
overall model to different domains.

We conduct experiments on 4 popular DP bench-
marks: PTB, CODT, SDP15, and SemEvall6.
DPSG performs generally well on different DP. It
significantly outperforms the baselines on cross-
domain (CODT) and Chinese SeDP (SemEvall6)
corpora, and achieves comparable results on the

. Multi- Unsupervised
Paradigms| SyDP SeDP Schema Cross-Domain
Transition | @ {] O >
Graph (O O >
Sequence | @ O O >
DPSG o (] o [

Table 1: Summary of the previous parsing paradigms
and DPSG. @ means “can be directly used in this sce-
nario", O means “can be used in this scenario after
modification", @ means “can partially generalize to
this scenario”, and O means “cannot be used in this
scenario".

other two benchmarks, which further shows that
our DPSG has the potential to be a new paradigm
for dependency parsing.

2 Preliminaries

We formally introduce the dependency parsing task
and the encoder-decoder PLM, and the correspond-
ing notations. This paper uses bold lower case let-
ters, blackboard letters, and bold upper case letters
to denote sequences, sets, and functions, respec-
tively. Elements in the sequence and the sets are
enclosed in parentheses and braces, respectively.

2.1 Dependency Parsing

A pre-defined dependency schema is a set of rela-
tions R. Dependency parsing takes a sentence x =
(w1, wa, ..., wy) as input, where wj is the ™ word
in the sentence. It outputs the set of dependency
pairsy = (p1, p2, ..., Pn), Where p; = { (rf-, hi) }
denotes the dependency pair of the ™ word w;. We
use h{ and rg to denote the j™M head word of w; and
their relation. POS(w) denotes the position of the
specific word w in the input sentence.

Syntactic Dependency Parsing (SyDP) analy-
ses the grammatical dependency relations. The
parsing result of SyDP is a tree structure called
the syntactic parsing tree. In the SyDP, each non-
root word has exactly one head word, which means
|pi| = 1if w; is the not root word.

Semantic Dependency Parsing (SeDP) fo-
cuses on representing the deep-semantic relation
between words. Each word in SeDP is allowed to
have multiple (even no) head words. This leads
to the result of SeDP being a directed acyclic
graph called Semantic Dependency Graph. Fig-
ure 1 shows the difference between SyDP and
SeDP, where SyDP produces a tree while SeDP

EYR o) e N
Ms.) (plays) (.
< J \ J \

ACT-arg

Dependency RSTR PAT-arg
Structure of

Input Sentence

1

(" Haag) ‘/Elianti>
\ raag) \

J - [Serializer (S) }

1
* Serialized Representation

Construct
Serialized Representation

=l ireoes) 1570 i () 1)(1981) (067 ar91) 3 G5PD) o)(iz0ot) 3 (1870 i (551 3 (180) 01 e (5821)
L L L L A L J
T T T T

one dependency unit one dependency unit one dependency unit

T ¥
one dependency unilf one dependency unit one dependency unit

Pre-train Language Model (PLM) J

t
Lol L L L 1 []

Lo Lo L L L L L]]

Generate
Serialized Representation
i\

Input Sentence

(Ms) (Haag) (plays) (Elianti) (.)

—

[Coie) o) (1) oem) Coime) (@) (2) (080) o) Goo0) (2) (@oPm) (o) Ci00) () Govmn) (.) (@) (5) o) |

f Legends

() O Special Token <7> Words

Position Prompt (PP)

Position Number [Dependency Relalion%

J

Figure 2: This figure shows the overall framework of DPSG. The PSD semantic dependency structure of “Ms.

’

Haag plays Elianti

is converted into the serialized representation by the Serializer. The Positional Prompt

module injects positional information into the input sentence, and the PLM is responsible for generating the results.

produces a graph.

2.2 Pre-trained Language Model

PLMs are usually stacks of attention blocks of
Transformer (Vaswani et al., 2017). Some PLMs
that consist of encoder blocks only (e.g., BERT (De-
vlin et al., 2019)) are not capable of sequence gener-
ation. This paper focuses on PLMs having both en-
coder blocks and decoder blocks, such as T5 (Raf-
fel et al., 2020) and BART (Lewis et al., 2020).

An encoder-decoder PLM takes a sequence
s = (s1, ..., 8,) as input, and outputs a sequence
PLM(s) = o = (o1, ..., 0m). Each PLM has an
associated vocabulary V, which is a set of tokens
that can be directly accepted and embedded by the
PLM. The PLM first splits the input sequence into
tokens in the vocabulary with a subword tokeniza-
tion algorithm, such as SentencePieces (Kudo and
Richardson, 2018). Then, the tokens are mapped
into vectors by looking up the embedding table.
The attention blocks digest the embedded sequence
and generate the output sequence.

3 Method

DPSG leverages a PLM to parse the dependency re-
lation of a sentence by sequence generation. There-
fore, the Serializer converts the dependency struc-
ture into a serialized representation that meets the
output format of the PLM (Section 3.1). The Po-
sitional Prompt injects word position information
into the input sentence so as to avoid numerical
reasoning (Section 3.2). The PLM is modified by
adding special tokens introduced by the Serializer
and the Positional Prompt (Section 3.3). Figure 2
illustrates the overall framework.

3.1 Serializer for Dependency Structure

The Serializer S : (x,y) ~— t is a function that
maps sentence x and its corresponding dependency
pairs y into a serialized representation t, which
servers as the target output to fine-tune the language
model. The Inverse Serializer S~™1 : (x,0) — y
converts the output o of the PLM into dependency
pairs to meet the output requirement of the DP task.

Specifically, the Serializer S decomposes depen-
(h]» 7!

R

dency pairs, {)} € y, into smaller de-

pendency units by scattering the dependent word
w; into each of its head word, which forms the
following triplets set: {(wi,rg, hf)} Then, it
replaces each relation 7“{ with a special token!
[REL (ri)] € R, where R is a set of special to-
kens for all different relations. The head word hg
is substituted by its position in the input sentence
X, denoted as POS (hf) . The target serialized rep-

resentation t = S(x) concatenates all the depen-
dency units with split token [SPT] as the following:

(...[SPT} w; [REL (ri)} POS (h{) [SPT]..)

one dependency unit

The Inverse Serialzer S~! restores the dependency
structure from the serialized representation by sub-

with the
original relation and indexing the head with its

stituting the special token [REL (ri)]

position POS (hf) in the input sentence x.

There are two issues in the Serializer designing:

"Brackets indicate special tokens out of vocabulary V.

Word Ambiguity. It is highly possible to have
words, especially function words, appear multiple
times in one sentence, e.g., there are more than 72%
sentences in Penn Treebank (Marcus et al., 1993)
have repeated words. We take two measures for
word disambiguation in a dependency unit: (1) To
disambiguate head word, the Serializer represents
the head word by its position, rather than the word
itself; (2) To disambiguate dependent word, the Se-
rializer arranges dependency units by order of the
dependent word in the input sentence X, rather than
topological ordering or depth/breadth first search
ordering of the dependency graph. The Inverse Se-
rializer scans x and o simultaneously so as to refer
the corresponding dependent word to x.

Isolated Words. There are dependency schemata
allowing for isolated words which have neither
head words nor dependency relations with other
words, e.g., the period mark in the SeDP results
shown in Figure 1. Note that the isolated words
are different from the root word, as the root word
is the head word of itself. One direct solution is
to remove the isolated words from the serialized
representation. However, this will result in incon-
sistencies between x and t, which complicates the
word disambiguation. Thus, We use special token
[NO] to denote such isolation relation and word no
to represent the position of the virtual head word.

3.2 Positional Prompt for Input Sentence

As Section 3.1 mentions, representing the head
words by their positions is an important scheme
for head word disambiguation. However, PLMs
are less skilled at numerical reasoning (Geva et al.,
2020). We also empirically find it difficult for the
PLM to learn the positional information of each
word from scratch. Thus, we inject Positional
Prompt (PP) for each word, which converts the
positional encoding problem into generating the
position number in the input, rather than counting
for each word.

In particular, given the input sentence x, the
positional prompt is the position number of each
word w; wrapped with two special tokens [PID] and
[SPT|. [PID] marks the beginning of the position
number and prevents the tokenization algorithms
from falsely taking the position prompt as part of
the previous word. [SPT] separates the position
number from the next word. They also provide
word segmentation information for some languages,
such as Chinese. After the conversion, we have the

input sequence in the following form:
s = wy [PID] 1 [SPT] wy [PID] 2 [SPT]- - -

For brevity, we denote the above process as a func-
tion PP : x — s that maps input sentence into
sequence with positional prompt.

3.3 PLM for Sequence Generation

Both Serializer and Positional Prompt introduce
special tokens that are out of the original vocab-
ulary V, including the relation tokens in R, the
separation tokens [PID], [SPT], and the special rela-
tion token [NO|. Before training, these tokens are
added to the vocabulary, and their corresponding
embeddings are randomly initialized from the same
distribution as other tokens. As we should notice,
these special tokens are expected to undertake dif-
ferent semantics. PLM thus treats them as trainable
variables and learns their semantics during training.

With all the three components of DPSG, input
sentence is first converted into sequence with po-
sitional prompt: s = PP(x). The sequence is
further fed into the PLM and get the sequence out-
put with the maximum probability: o = PLM(s).
The final predicted dependency structure is recov-
ered via the Inverse Serializer: y’ = S™1(o).

The training objective aims to maximize the like-
lihood of the ground truth dependency structure. To
do so, we take the serialized dependency structure
as the target and minimize the auto-regressive lan-
guage model loss. We can further enhance the un-
supervised cross-domain capacity of DPSG with in-
termediate fine-tuning (IFT) (Pruksachatkun et al.,
2020; Chang and Lu, 2021). Before training on the
dependency parsing, the intermediate fine-tuning
uses the unlabeled sentences in the target domain
and continues to train the PLM in source domain.

4 Experiments

4.1 Evaluation Setups
4.1.1 Datasets

We evaluate DPSG on the following 4 widely used
benchmarks for both SyDP and SeDP. We show
more details about datasets in Appendix A.

¢ Penn Treebank (PTB) (Marcus et al., 1993) is
the most proverbial benchmark for SyDP.

* Chinese Open Dependency Treebank (CODT)
(Lietal.,2019) aims to evaluate the cross-domain
SyDP capacity of the parser. It includes a bal-
anced corpus (BC) for training, and three other

corpora gathering from different domains for test-
ing: product blogs (PB), popular novel ‘“Zhu
Xian” (ZX), and product comments (PC).

* BroadCoverage Semantic Dependency Pars-
ing dataset (SDP15) (Oepen et al., 2014) anno-
tates English SeDP sentences with three different
schemata, named as DM, PAS, and PSD. It pro-
vides both in-domain (ID) and out-of-domain
(OOD) evaluation datasets. The schema of
SDP15 allows for isolated words.

* Chinese semantic Dependency Parsing dataset
(SDP16) (Che et al., 2012) is a Chinese SeDP
benchmark. The sentences are gathered from
News (NEWS) and textbook (TEXT). The
schema of SemEval16 allows for multiple head
words but does not have isolated words.

4.1.2 Evaluation Metrics

Following the conventions, we use unlabeled at-
tachment score (UAS) and labeled attachment score
(LAS) for SyDP. We use labeled attachment F1
Score (LF) on SDP15 of SeDP. For SeDP on Se-
mEvall6, we use unlabeled attachment F1 (UF)
and labeled attachment F1 (LF). All the results are
presented in percentages (%).

4.1.3 Implementations

We use T5-base (Raffel et al., 2020) and mT5-
base (Xue et al., 2021) as the backbone PLM for
English dependency parsing and Chinese depen-
dency parsing, respectively. In particular, we use
their V1.1 checkpoints, which are only pre-trained
on unlabeled sentences, so as to keep the PLM un-
biased. In order to focus on the parsing capability
of PLM itself, we do not use additional information,
such as part-of-speech (pos) tagging and character
embedding (Wang and Tu, 2020; Gan et al., 2021).
The PLM is implemented with Huggingface
Transformers (Wolf et al., 2020). The learning
rate is 4¢~°, weight decay is 1e~>. The optimizer
is AdamW (Loshchilov and Hutter, 2019). We
conduct all the experiments on Tesla V100.

4.2 Baselines

We divide baselines into three main categories
based on their domain of expertise. Note that al-
most all baselines use the additional lexical-level
feature (including pos tagging, character-level em-
bedding, and other pre-trained word embeddings),
which is different from our DPSG. We supplement
more details about baselines in Appendix B.

In-domain SyDP. Biaffine (Dozat and Man-
ning, 2017), StackPTR (Ma et al., 2018), and
CRF20 (Zhang et al., 2020) introduce specially de-
signed parsing modules without PLM. CVT (Clark
et al., 2018), MP20 (Wang and Tu, 2020), and
MRC (Gan et al., 2021) are recently proposed PLM-
based dependency parser. SegNMT (Li et al., 2018),
SeqViable (Strzyz et al., 2019), and PaT (Vacareanu
et al., 2020) cast dependency parsing as sequence
labeling task, which is closely related to our se-
quence generation method.

Unsupervised Cross-domain SyDP. Peng et al.
(2019) and Li et al. (2019) modify the Biaffine for
the unsupervised cross-domain DP. SSADP (Lin
et al., 2021) relies on extra domain adaptation steps.
In the PLM era, Li et al. (2019) propose ELMo-
Biaffine with IFT on unlabeled target domain data.

SeDP. Dozat and Manning (2018) modify Bi-
affine for SeDP. BS-IT (Wang et al., 2018) is a
transition-based semantic dependency parser with
incremental Tree-LSTM. HIT-SCIR (Che et al.,
2019) solves the SeDP with a BERT based ipeline.
BERT+Flair* (He and D. Choi, 2020) augments the
Biaffine model with BERT and Flair (Akbik et al.,
2018) embedding. Pointer (Fernandez-Gonzélez
and Gomez-Rodriguez, 2020) combines transition-
based parser with Pointer Network. It is also
augmented with a Convolutional Neural Network
(CNN) encoder for the character-level feature.

4.3 Main Results
4.3.1 DPSG is Schema-Free

The schema-free characteristics of DPSG are re-
flected by the following two perspectives.
Towards Specific Schema. DPSG obtains the
SOTA performance on both CODT in Table 5 and
SemEvall6 in Table 3, and achieves the first-tier
even among methods used additional lexical-level
features on PTB in Table 2 and SDP15 in Table 4.
For in-domain SyDP in Table 2, DPSG outperforms
all the previous sequence-based methods, and per-
forms sightly lower than MRC, which uses contex-
tual interactive pos tagging, by 0.45% in LAS.
For SeDP in Table 3, DPSG ourperforms BERT
+Flair to a large margin on SemEvall6, achieves
3.55% performances gain on NEWS, and 1.95%
performance gain on TEXT with regard to LF.
DPSG also outperforms the PLM-based pipeline
HIT-SCIR on SDP15 (Table 4), but sightly lower

*They use different pre-processing scripts on SDP15, thus
are not comparable with DPSG and other baselines on SDP15.

Features Method (PLM) UAS LAS
Char CRF20 96.14 94.49
POS Biaffine 95.74 94.08
POS StackPTR 95.87 94.19

Char+POS TMP20 (BERT-large) 96.91 95.34

POS TMRC (RoBERTa-large) 97.24 95.49
POS fCVT(CVT) 96.60 95.00
POS iSeqNMT 92.08 94.11
POS #SeqViable 93.67 91.72
POS PaT (BERT-base) 95.87 94.66
- "'DPSG (T5-base) 96.48 95.04
- DPSG (Multi) 96.25 94.85

Table 2: Results on PTB for SyDP. Features means
these methods use additional lexical-level information,
such as character embedding (Char) or part of speech
tagging (POS). 1 means this method belongs to se-
quence based methods. T means this method use PLM,
and the used PLM as listed in parenthesis.

Method NEWS TEXT

UF LF UF LF
BS-IT 81.14 63.30 85.71 7292
BERT+Flair 8292 67.27 91.10 80.41
DPSG 8431 70.82 90.97 82.36

Table 3: Experimental results on SemEvall6.

than Pointer, which applies additional CNN to en-
code the character-level embeddings. We also ob-
serve that DPSG and the Pointer have the largest
gap in the PSD schema of SDP15. This is caused
in that PSD has much more relation labels than the
other schemata (Peng et al., 2017), which increases
the search space of our generation model.
Towards Multi-Schemata. Furthermore, we
design the multi-schemata experiment. We mix
PTB and SDP15 by concatenating a prefix to the
input text to distinguish different schemata. To pre-
vent data leakage, we filter out sentences from the
training set of PTB, which also appear in the test set
of SDP15. As DPSG (Multi) uses less training data
for PTB, it performs worse than DPSG in Table 2.
DPSG (Multi) in Table 4 outperforms Pointer by
1.49% in ID evaluation of the PAS schema, 0.05%
in ID evaluation of the DM schema, and achieves al-
most the same performance with Pointer in ID eval-
uation of the PSD schema. The improvement over
schema-specific model is most obvious on PAS. It
could be because the PAS schema is more similar
to the syntax schema (Peng et al., 2017), thus it

Method (ID) DM PAS PSD
BS-IT 90.3 91.7 786
Biaffine 93.7 93.9 81.0
THIT-SCIR (BERT-base) 92.9 944 81.6
TPointer (BERT-base) 94.4 95.1 82.6
DPSG 93.96 94.26 81.98
DPSG (Multi) 94.45 96.59 82.25
Method (OOD) DM PAS PSD
BS-IT 84.9 87.6 759
Biaffine 88.9 90.6 794
THIT-SCIR (BERT-base) 89.2 924 81.0
tPointer (BERT-base) 91.0 934 820
"DPSG 90.47 92.38 80.04
TDPSG (Multi) 90.70 92.31 79.65

Table 4: Experimental results on SDP15 in terms of
LF. DPSG (PTB) means the parameters are initialized
from another DPSG trained on PTB. T means the model
utilizing PLM.

benefits more from PTB. This multi-schemata ap-
proach also provides a new method to explore the
inner connection between SyDP and SeDP.

4.3.2 Unsupervised Cross-domain

Table 5 demonstrates the outstanding transferability
of DPSG. We implement DPSG with and without
IFT on the target domain. DPSG with IFT achieves
the new SOTA, with a boosting of 5.06%, 7.21%
and 10.49% in terms of LAS on PB, ZX, and PC,
compared to ELMo with IFT. DPSG is completely
trained during IFT. While the additional biaffine
module of ELMo cannot benefit from the unlabeled
sentences from the target domain.

S Analysis

This section studies whether there is better imple-
mentation for DPSG. We are particularly interested
in: 1) the designing of the Serializer, 2) the effect
of the introduced special tokens, and 3) the choice
of the PLM model. We use PTB as the benchmark
and compare DPSG introduced in Section 3 with
many other possible choices. The results of these
exploratory experiments are shown in Table 6.

5.1 Serializer Designing

Tree, as the well-studied data structure for syntac-
tic dependency parsing, has several other serializa-
tion methods to be converted into serialized repre-
sentations. We explore the serializer designing of
the tree structure in DPSG with two other widely

BC— PB BC— ZX BC— PC Average
Category Model
UAS LAS UAS LAS UAS LAS UAS LAS
w/o PLM Biaffine 67.75 60.95 69.41 61.55 39.95 26.96 59.04 49.82
SSADP 68.55 61.59 70.82 63.61 41.10 27.67 60.16 50.96
ELMo-Biaffine w/ IFT 77.15 71.54 74.68 67.51 53.04 3948 68.29 59.51
W/PLM " bpsG wio IFT 7886 7328 7574 6942 54.00 4198 69.53 G61.56
DPSG w/ IFT 81.74 76.60 80.73 T74.77 62.44 4997 7T4.97 67.11
Table 5: Results on CODT for unsupervised cross-domain SyDP.
Metric DPSG Prufer Bracket Syntactic Dependency Tree
UAS 96.48 85.53;1005 95.37|1.11 it i®
LAS 95.04 83.72)11.32 93.761.28 ph:ys @
. nsubj dobj punct
Metric DPSGpos DPSG.q DPSGpagr . aﬁ Ehlank')
UAS 95~20¢1.28 93.88¢2_60 86.35¢10_13 l””
LAS 93-17J,1.87 92.46¢2_5g 79.45¢15.59 Ms. (@

Table 6: Results on PTB for exploratory experiment

used serialized representation—Prufer sequence
and Bracket Tree, which are shown in Figure 3.
Note that both Prufer sequence and Bracket Tree
face the same word ambiguity issues; we associate
each word with a unique position number as well.

Prufer Sequence is a unique sequence associ-
ated with the labeled tree in combinatorial mathe-
matics. The algorithm which converts labeled tree
into Prufer sequence does not preserve the root
node, while in dependency parsing, the root is a
unique word. To bridge this inconsistency, we in-
troduce an additionally added virtual node to the
dependency tree to mark the root word.

Bracket Tree is one of the most commonly
used serialization methods to represent the tree
structure (Strzyz et al., 2019). By recursively
putting the sub-tree nodes in a pair of brackets
from left-to-right, bracket tree can build a bijection
between parsing tree and bracket tree. More details
about how to construct the Prufer sequence and the
bracket tree are shown in Appendix C.

We denote the experimental results of Prufer
sequence and bracket tree as Prufer and Bracket,
respectively, in Table 6. Both Prufer sequence
and bracket tree undermine the performance of
DPSG to a large margin, which indicates that our
proposed Serializer provides a better serialized rep-
resentation for the PLM to generate. This is be-
cause our Serializer guarantees the dependency

[Prufer Sequence

! Ms. [nn] Q) Haag [nsub3] @) Elianti [dob3] () . [punct] @)

Bracket Tree Sequence i
3 plays [root] @(Haag [nsubj] @(Ms. [nn] (D) Elianti [dob3j] @ . [punct] @)i

,,,,,,,,,,,,,,,,,,,,,,,,,, L

Figure 3: Prufer sequence and Bracket Tree sequence
of the same sentence “Ms. Haag plays Elianti .”.

units in the output have the same order of the words
in the input sentences, while Prufer sequence and
bracket tree do not preserve the order. Thus, our
proposed DPSG expands the input sentence to gen-
erate the output sequence, while Prufer sequence
and bracket tree based DPSG reconstruct the syn-
tax dependency structure. As expansion strategy
has smaller generation space than reconstruction,
the serialization representation proposed in Sec-
tion 3.1 eases the learning complexity of the PLM,
and further brings better performance.

5.2 Special Tokens Designing

We further investigate whether the additionally in-
troduced special tokens are useful.

Relation Tokens. There are two different ways
to represent the dependency relations in the serial-
ized representation: adding a special token for each
dependency relation, or mapping each dependency
relation to one token in the original vocabulary
with the closest meaning, e.g., conj — conjunct.
Experimental results using word mapping is de-
noted as DPSG_, in Table 6. DPSG_ is inferior
than DPSG, which indicates that the special tokens
for relations are important. The reason is that if

we use the tokens in the original vocabulary, they
interfere with their original meanings as the word.
Special tokens disentangle the dependency relation
from the words that could appear in the sentence.

Positional Prompt. We are also particularly
interested in the effectiveness of the positional
prompts. We conduct experiments where the po-
sitional prompt is removed and send the original
input sentence to the PLM. The result is denoted
as DPSG_pos in Table 6. DPSG_,os undermines the
performance of DPSG because it requires the PLM
to perform numerical reasoning, that is, to count
for the position of each head word.

5.3 Model Choosing

Both BART and T5 are widely used encoder-
decoder PLMs. We try BART-base as the backbone
PLM in DPSG. Table 6 shows that BART under-
mines the performance. In addition, BART has a
significant performance drop after achieving the
best performance, as shown in Appendix E.

5.4 Legality

There are two different legalities in DPSG. Forma-
tion Legality focus on whether the sequence has the
correct formation (see Section 3.1) and Structural
Legality focus on the legality of the correspond-
ing parsing structure. The statistics on PTB show
that the formation legality of DPSG is 100%, and
the structure legality of DPSG is 99.7%, which is
acceptable in practical usage.

6 Related Work

6.1 Syntactic Dependency Parsing

In-domain SyDP. Transition-based methods
and graph-based methods are widely used in
SyDP. Dozat and Manning (2017) introcude bi-
affine attention into the graph-based methods. Ma
et al. (2018) adopt pointer network to alleviate the
drawback of local information in transition-based
methods. Zhang et al. (2020) improve the CRF to
capture second-order information.

There are also researches using sequence to se-
quence methods for SyDP. Li et al. (2018) use BiL-
STM to predict the labeling of positions and rela-
tions of dependency parsing. Strzyz et al. (2019)
improve Li et al. (2018)’s method and explore more
representation of predicated labeling sequence of
dependency parsing. Vacareanu et al. (2020) use
BERT to augment the sequence labeling methods.

Unsupervised Cross-domain SyDP. The label-
ing of parsing data requires a wealth of linguis-
tics knowledge and this limitation facilitates the
research of unsupervised cross-domain DP. Yu
et al. (2015) introduce pseduo-labeling unsuper-
vised cross-domain SyDP via self-training. Li et al.
(2019) propose a cross-domain datasets CODT for
SyDP and build baselines for unsupervised cross-
domain SyDP. Lin et al. (2021) introduce feature-
based domain adaptation method in this field.

6.2 Semantic Dependency Parsing

Buys and Blunsom (2017) accomplish the first
transition-based parser for Minimal Recursion Se-
mantics (MRS). Zhang et al. (2016) present two
novel transition-systems to generate arbitrary di-
rected graphs in an incremental manner. Dozat
and Manning (2018) modify the Biaffine (Dozat
and Manning, 2017) for SeDP. However, due to the
words in SeDP may have multiple-head, there is
not sequence-based method for SeDP now.

6.3 Probing in Language Model

The research of exploring whether PLM can learn
the linguistic features during the pre-training pro-
cess, especially syntax knowledge, attracts some
attention. Hewitt and Manning (2019) map the dis-
tance between word embedding in PLM into the
distance in syntax tree and construct a syntax tree
without relation label. Clark et al. (2019) design
a structural probe to detect the ability of attention
heads to express dobj (direct object) dependency
relation. Their results prove the syntax knowledge
can also be found in the attention maps.

7 Conclusion

This paper proposes DPSG—a schema-free depen-
dency parsing method. By serializing the parsing
structure to a flattened sequence, PLM can directly
generate the parsing results in serialized representa-
tion. DPSG not only achieves good results in each
different schema, but also performs surprisingly
well on unsupervised cross-domain DP. The multi-
schemata experiments also suggest that DPSG is
capable of investigating the inner connection be-
tween different schemata dependency parsing. The
exploratory experiments and analyses demonstrate
the rationality of the designing of DPSG. Consid-
ering the unity, indirectness, and effectiveness of
DPSG, we believe it has the potential to become a
new paradigm for dependency parsing.

References

Alan Akbik, Duncan Blythe, and Roland Vollgraf.
2018. Contextual string embeddings for sequence
labeling. In Proceedings of the 27th International
Conference on Computational Linguistics, pages
1638-1649, Santa Fe, New Mexico, USA. Associ-
ation for Computational Linguistics.

Emanuele Bugliarello and Naoaki Okazaki. 2020. En-
hancing machine translation with dependency-aware
self-attention. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1618-1627, Online. Association for
Computational Linguistics.

Jan Buys and Phil Blunsom. 2017. Robust incremen-
tal neural semantic graph parsing. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1215-1226, Vancouver, Canada. Association
for Computational Linguistics.

Avani Chandurkar and Ajay Bansal. 2017. Information
retrieval from a structured knowledgebase. In 7/th
IEEE International Conference on Semantic Com-
puting, ICSC 2017, San Diego, CA, USA, January
30 - February 1, 2017, pages 407-412. IEEE Com-
puter Society.

Ting-Yun Chang and Chi-Jen Lu. 2021. Rethinking
why intermediate-task fine-tuning works. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2021, pages 706—713. Association for
Computational Linguistics.

Wanxiang Che, Longxu Dou, Yang Xu, Yuxuan Wang,
Yijia Liu, and Ting Liu. 2019. HIT-SCIR at MRP
2019: A unified pipeline for meaning representa-
tion parsing via efficient training and effective en-
coding. In Proceedings of the Shared Task on Cross-
Framework Meaning Representation Parsing at the
2019 Conference on Natural Language Learning,
pages 76-85, Hong Kong. Association for Compu-
tational Linguistics.

Wanxiang Che, Meishan Zhang, Yanqiu Shao, and Ting
Liu. 2012. SemEval-2012 task 5: Chinese semantic
dependency parsing. In *SEM 2012: The First Joint
Conference on Lexical and Computational Seman-
tics — Volume 1: Proceedings of the main conference
and the shared task, and Volume 2: Proceedings of
the Sixth International Workshop on Semantic Eval-
uation (SemEval 2012), pages 378-384, Montréal,
Canada. Association for Computational Linguistics.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does BERT
look at? an analysis of BERT’s attention. In Pro-
ceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for
NLP, pages 276-286, Florence, Italy. Association
for Computational Linguistics.

Kevin Clark, Minh-Thang Luong, Christopher D. Man-
ning, and Quoc Le. 2018. Semi-supervised se-
quence modeling with cross-view training. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1914—
1925, Brussels, Belgium. Association for Computa-
tional Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Timothy Dozat and Christopher D. Manning. 2018.
Simpler but more accurate semantic dependency
parsing. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 2: Short Papers), pages 484-490, Mel-
bourne, Australia. Association for Computational
Linguistics.

Daniel Fernandez-Gonzédlez and Carlos Goémez-
Rodriguez. 2020. Transition-based semantic
dependency parsing with pointer networks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
7035-7046, Online. Association for Computational
Linguistics.

Leilei Gan, Yuxing Meng, Kun Kuang, Xiaofei Sun,
Chun Fan, Fei Wu, and Jiwei Li. 2021. Dependency
parsing as mrc-based span-span prediction. ArXiv
preprint, abs/2105.07654.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
AllenNLP: A deep semantic natural language pro-
cessing platform. In Proceedings of Workshop for
NLP Open Source Software (NLP-OSS), pages 1-
6, Melbourne, Australia. Association for Computa-
tional Linguistics.

Mor Geva, Ankit Gupta, and Jonathan Berant. 2020.
Injecting numerical reasoning skills into language
models. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 946-958, Online. Association for Com-
putational Linguistics.

Han He and Jinho D. Choi. 2020. Establishing strong
baselines for the new decade: Sequence tagging,
syntactic and semantic parsing with BERT. In Pro-
ceedings of the Thirty-Third International Florida

https://aclanthology.org/C18-1139
https://aclanthology.org/C18-1139
https://aclanthology.org/C18-1139
https://doi.org/10.18653/v1/2020.acl-main.147
https://doi.org/10.18653/v1/2020.acl-main.147
https://doi.org/10.18653/v1/2020.acl-main.147
https://doi.org/10.18653/v1/2020.acl-main.147
https://doi.org/10.18653/v1/2020.acl-main.147
https://doi.org/10.18653/v1/P17-1112
https://doi.org/10.18653/v1/P17-1112
https://doi.org/10.18653/v1/P17-1112
https://ieeexplore.ieee.org/abstract/document/7889571
https://ieeexplore.ieee.org/abstract/document/7889571
https://ieeexplore.ieee.org/abstract/document/7889571
https://aclanthology.org/2021.findings-emnlp.61
https://aclanthology.org/2021.findings-emnlp.61
https://aclanthology.org/2021.findings-emnlp.61
https://doi.org/10.18653/v1/K19-2007
https://doi.org/10.18653/v1/K19-2007
https://doi.org/10.18653/v1/K19-2007
https://doi.org/10.18653/v1/K19-2007
https://doi.org/10.18653/v1/K19-2007
https://doi.org/10.18653/v1/K19-2007
https://doi.org/10.18653/v1/K19-2007
https://aclanthology.org/S12-1050
https://aclanthology.org/S12-1050
https://aclanthology.org/S12-1050
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/D18-1217
https://doi.org/10.18653/v1/D18-1217
https://doi.org/10.18653/v1/D18-1217
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://doi.org/10.18653/v1/P18-2077
https://doi.org/10.18653/v1/P18-2077
https://doi.org/10.18653/v1/P18-2077
https://doi.org/10.18653/v1/2020.acl-main.629
https://doi.org/10.18653/v1/2020.acl-main.629
https://doi.org/10.18653/v1/2020.acl-main.629
https://arxiv.org/abs/2105.07654
https://arxiv.org/abs/2105.07654
https://arxiv.org/abs/2105.07654
https://doi.org/10.18653/v1/W18-2501
https://doi.org/10.18653/v1/W18-2501
https://doi.org/10.18653/v1/W18-2501
https://doi.org/10.18653/v1/2020.acl-main.89
https://doi.org/10.18653/v1/2020.acl-main.89
https://doi.org/10.18653/v1/2020.acl-main.89
https://aaai.org/ocs/index.php/FLAIRS/FLAIRS20/paper/view/18438
https://aaai.org/ocs/index.php/FLAIRS/FLAIRS20/paper/view/18438
https://aaai.org/ocs/index.php/FLAIRS/FLAIRS20/paper/view/18438
https://aaai.org/ocs/index.php/FLAIRS/FLAIRS20/paper/view/18438
https://aaai.org/ocs/index.php/FLAIRS/FLAIRS20/paper/view/18438

Artificial Intelligence Research Society Conference,
Originally to be held in North Miami Beach, Florida,
USA, May 17-20, 2020, pages 228-233. AAAI
Press.

John Hewitt and Christopher D. Manning. 2019. A
structural probe for finding syntax in word repre-
sentations. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 41294138, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66—71, Brussels, Belgium.
Association for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871-7880, Online. Association
for Computational Linguistics.

Zhenghua Li, Xue Peng, Min Zhang, Rui Wang, and
Luo Si. 2019. Semi-supervised domain adaptation
for dependency parsing. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 2386-2395, Florence, Italy.
Association for Computational Linguistics.

Zuchao Li, Jiaxun Cai, Shexia He, and Hai Zhao. 2018.
Seq2seq dependency parsing. In Proceedings of
the 27th International Conference on Computational
Linguistics, pages 3203-3214, Santa Fe, New Mex-
ico, USA. Association for Computational Linguis-
tics.

Boda Lin, Mingzheng Li, Si Li, and Yong Luo.
2021. Unsupervised domain adaptation method
with semantic-structural alignment for dependency
parsing. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2021, pages 2158-2167,
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. ArXiv preprint, abs/1907.11692.

Ilya Loshchilov and Frank Hutter. 2019. Decou-
pled weight decay regularization. In 7th Inter-
national Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

Xuezhe Ma, Zecong Hu, Jingzhou Liu, Nanyun Peng,
Graham Neubig, and Eduard Hovy. 2018. Stack-
pointer networks for dependency parsing. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1403—-1414, Melbourne, Australia.
Association for Computational Linguistics.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 55-60, Bal-
timore, Maryland. Association for Computational
Linguistics.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: The Penn Treebank. Computa-
tional Linguistics, 19(2):313-330.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Dan Flickinger, Jan Haji¢, Angelina
Ivanova, and Yi Zhang. 2014. SemEval 2014 task
8: Broad-coverage semantic dependency parsing. In
Proceedings of the 8th International Workshop on
Semantic Evaluation (SemEval 2014), pages 63-72,
Dublin, Ireland. Association for Computational Lin-
guistics.

Hao Peng, Sam Thomson, and Noah A. Smith. 2017.
Deep multitask learning for semantic dependency
parsing. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 2037-2048, Van-
couver, Canada. Association for Computational Lin-
guistics.

Xue Peng, Zhenghua Li, Min Zhang, Wang Rui, Yue
Zhang, and Luo Si. 2019. Overview of the nlpcc
2019 shared task: Cross-domain dependency pars-
ing. In Natural Language Processing and Chi-
nese Computing - 8th CCF International Confer-
ence, NLPCC 2019, Dunhuang, China, October 9-
14, 2019, Proceedings, Part 11, volume 11839, pages
760-771. Springer.

Yada Pruksachatkun, Jason Phang, Haokun Liu,
Phu Mon Htut, Xiaoyi Zhang, Richard Yuanzhe
Pang, Clara Vania, Katharina Kann, and Samuel R.
Bowman. 2020. Intermediate-task transfer learning
with pretrained language models: When and why
does it work? In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 5231-5247, Online. Association for
Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1-140:67.

https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/P19-1229
https://doi.org/10.18653/v1/P19-1229
https://doi.org/10.18653/v1/P19-1229
https://aclanthology.org/C18-1271
https://aclanthology.org/2021.findings-emnlp.186
https://aclanthology.org/2021.findings-emnlp.186
https://aclanthology.org/2021.findings-emnlp.186
https://aclanthology.org/2021.findings-emnlp.186
https://aclanthology.org/2021.findings-emnlp.186
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/P18-1130
https://doi.org/10.18653/v1/P18-1130
https://doi.org/10.18653/v1/P18-1130
https://doi.org/10.3115/v1/P14-5010
https://doi.org/10.3115/v1/P14-5010
https://doi.org/10.3115/v1/P14-5010
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://doi.org/10.3115/v1/S14-2008
https://doi.org/10.3115/v1/S14-2008
https://doi.org/10.3115/v1/S14-2008
https://doi.org/10.18653/v1/P17-1186
https://doi.org/10.18653/v1/P17-1186
https://doi.org/10.18653/v1/P17-1186
https://link.springer.com/chapter/10.1007/978-3-030-32236-6_69
https://link.springer.com/chapter/10.1007/978-3-030-32236-6_69
https://link.springer.com/chapter/10.1007/978-3-030-32236-6_69
https://link.springer.com/chapter/10.1007/978-3-030-32236-6_69
https://link.springer.com/chapter/10.1007/978-3-030-32236-6_69
https://doi.org/10.18653/v1/2020.acl-main.467
https://doi.org/10.18653/v1/2020.acl-main.467
https://doi.org/10.18653/v1/2020.acl-main.467
https://doi.org/10.18653/v1/2020.acl-main.467
https://doi.org/10.18653/v1/2020.acl-main.467
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html

Michalina Strzyz, David Vilares, and Carlos Gomez-
Rodriguez. 2019. Viable dependency parsing as se-
quence labeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 717723, Minneapolis, Minnesota. As-
sociation for Computational Linguistics.

Damien Teney, Lingqiao Liu, and Anton van den Hen-
gel. 2017. Graph-structured representations for vi-
sual question answering. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR
2017, Honolulu, HI, USA, July 21-26, 2017, pages
3233-3241. IEEE Computer Society.

Robert Vacareanu, George Caique Gouveia Barbosa,
Marco A. Valenzuela-Escarcega, and Mihai Sur-
deanu. 2020. Parsing as tagging. In Proceedings of
the 12th Language Resources and Evaluation Con-
ference, pages 5225-5231, Marseille, France. Euro-
pean Language Resources Association.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-
9, 2017, Long Beach, CA, USA, pages 5998—6008.

Xinyu Wang and Kewei Tu. 2020. Second-order neural
dependency parsing with message passing and end-
to-end training. In Proceedings of the Ist Confer-
ence of the Asia-Pacific Chapter of the Association
for Computational Linguistics and the 10th Interna-
tional Joint Conference on Natural Language Pro-
cessing, pages 93-99, Suzhou, China. Association
for Computational Linguistics.

Yuxuan Wang, Wanxiang Che, Jiang Guo, and Ting Liu.
2018. A neural transition-based approach for seman-
tic dependency graph parsing. In Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelli-
gence, (AAAI-18), the 30th innovative Applications
of Artificial Intelligence (IAAI-18), and the 8th AAAI
Symposium on Educational Advances in Artificial In-
telligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018, pages 5561-5568. AAAI Press.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38—45, Online. Asso-
ciation for Computational Linguistics.

Linting Xue, Noah Constant, Adam Roberts, Mi-
hir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya

11

Barua, and Colin Raffel. 2021. mT5: A massively
multilingual pre-trained text-to-text transformer. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 483-498, Online. Association for Computa-
tional Linguistics.

Juntao Yu, Mohab Elkaref, and Bernd Bohnet. 2015.
Domain adaptation for dependency parsing via self-
trainging. In Proceedings of the 14th International
Conference on Parsing Technologies, pages 1-10,
Bilbao, Spain. Association for Computational Lin-
guistics.

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin
Van Durme. 2019. Broad-coverage semantic pars-
ing as transduction. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 3786-3798, Hong Kong, China. As-
sociation for Computational Linguistics.

Xun Zhang, Yantao Du, Weiwei Sun, and Xiaojun Wan.
2016. Transition-based parsing for deep dependency
structures. Computational Linguistics, 42(3):353—
389.

Yu Zhang, Zhenghua Li, and Min Zhang. 2020. Effi-
cient second-order TreeCRF for neural dependency
parsing. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3295-3305, Online. Association for Computa-
tional Linguistics.

https://doi.org/10.18653/v1/N19-1077
https://doi.org/10.18653/v1/N19-1077
https://doi.org/10.18653/v1/N19-1077
https://doi.org/10.1109/CVPR.2017.344
https://doi.org/10.1109/CVPR.2017.344
https://doi.org/10.1109/CVPR.2017.344
https://aclanthology.org/2020.lrec-1.643
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://aclanthology.org/2020.aacl-main.12
https://aclanthology.org/2020.aacl-main.12
https://aclanthology.org/2020.aacl-main.12
https://aclanthology.org/2020.aacl-main.12
https://aclanthology.org/2020.aacl-main.12
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16549
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16549
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16549
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://aclanthology.org/W15-2201/
https://aclanthology.org/W15-2201/
https://aclanthology.org/W15-2201/
https://doi.org/10.18653/v1/D19-1392
https://doi.org/10.18653/v1/D19-1392
https://doi.org/10.18653/v1/D19-1392
https://doi.org/10.1162/COLI_a_00252
https://doi.org/10.1162/COLI_a_00252
https://doi.org/10.1162/COLI_a_00252
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302

Set Section Sentences Words

Train [2-21] 39,832 95,0028
Dev [22] 1,700 40,117
Test [23] 2,416 56, 684

Table 7: Data statistics of PTB.

Domain Train Set Dev Set Test Set Unlabeled Set

BC 16.3K 1K 2K -

PB 5.1K 1.3K 2.6K 291K
PC 6.6K 1.3K 2.6K 349K
7zX 1.6K 0.5K 1.1K 33K

Table 8: Data statistics of CODT.

A Dataset Statistics

The details about the statistics of datasets used in
this paper are shown on Table 7, Table 8, Table 9
and Table 10.

B More Details on Baseline

Baselines for in-domain SyDP.

* 3 Biaffine: Dozat and Manning (2017) adopt bi-

affine attention mechanism into the graph-based
method of dependency parsing.

* StackPTR: Ma et al. (2018) introduce the
pointer network into the transition-based meth-
ods of dependency parsing.

* CRF': Zhang et al. (2020) improve the CRF to
capture more high-order information in depen-
dency parsing.

» *SeqNMT: Li et al. (2018) use an Encoder-
Decoder architecture to achieve the Seq2Seq
dependency parsing by sequence tagging. The
BPE segmentation from Neural Machine Trans-
lation (NMT) and character embedding from Al-
lenNLP (Gardner et al., 2018) are applied to ar-
gument their model.

* SeqViable: Strzyz et al. (2019) explore four en-
codings of dependency trees and improve the
performance comparing with Li et al. (2018).

* PaT: Vacareanu et al. (2020) use a simple tagging
structure over BERT-base to achieve sequence
labeling of dependency parsing.

+ 3 CVT: Clark et al. (2018) propose another pre-
train method named cross-view training, which

3% means model without PLM

“e means sequence-based methods
5+ means model utilizing PLM

12

Schema Train Set ID Test Set OOD Test Set

DM 35,656 1,410 1,849
PAS 35,656 1,410 1,849
PSD 35,656 1,410 1,849

Table 9: Data statistics of SDP15.

Domain Train Set Dev Set Test Set

NEWS 8,301 534 1,233
TEXT 128,095 1,546 3,096

Table 10: Data statistics of SemEvall6.

can be used in many sequence constructing task
including SyDP. The best results of CVT is
achieved by the multi-task pre-training of SyDP
and part-of-speech tagging.

MP20: Wang and Tu (2020) use message pass-
ing GNN based on BERT to capture second-order
information in SyDP.

MRC: Gan et al. (2021) use span-based method
to construct the edges at the subtree level. The
Machine Reading Comprehension (MRC) is ap-
plied to link the different span. RoBERTa-
large (Liu et al., 2019) is applied to enhance the
representation of parser.

Baselines for cross-domain SyDP.

*

Biaffine: Peng et al. (2019); Li et al. (2019) use
Biaffine trained on source domain and test on
target domain as the baseline of unsupervised
cross-domain SyDP.

SSADP: Lin et al. (2021) use both semantic and
structural feature to achieve the domain adapta-
tion of unsupervised cross-domain parsing.

ELMo: Li et al. (2019) use ELMo with inter-
mediate fine-tuning in unlabeled text of target
domain to achieve the SOTA on unsupervised
cross-domain SyDP.

Baselines for SeDP.

*

Biaffine: Dozat and Manning (2018) transfer the
Biaffine model from SyDP to SeDP.

BS-IT: Wang et al. (2018) use graph-based
method for SeDP.

HIT-SCIR: Che et al. (2019) propose a BERT-
based pipeline model for SeDP.

BERT+Flair: He and D. Choi (2020) use BERT
and flair embedding (Akbik et al., 2018) to argu-
ment their modificated Biaffine.

Syntactic Dependency Tree

Syntactic Dependency Tree

Syntactic Dependency Tree

vitrual ® vitrual ®’
plays @ ; ;
nsubj dobj punct v v
/O Jl \ plays @ plays ®
Haag @ Elianti @) . ® Webi punct nsubj ! punct
]l dobj
lnn . \ / l \
Haag @ Elianti @ . ® Haag (@ Elianti @ . ®
Ms. @ l
nn
a Ms. @ b c
Ms. [nn] Q)

Syntactic Dependency Tree

Syntactic Dependency Tree

Syntactic Dependency Tree

vitrual ©® vitrual ® vitrual ®
v v v
plays @ plays @ plays ®
dobjl w:t Wft
Elianti @ . ® . ®
d e f

Ms. [nn]@ Haag [nsub]]@

Ms. [nn] (2) Haag [nsub3](3) Elianti [dob3] (3)

Ms. [nn]@ Haag [nsubi] @ Elianti [dob7] @ [punct]@

Figure 4: The Prufer Sequence of sentence “Ms. Haag plays Elianti .” is constructed from a to f.

Syntactic Dependency Tree

plays @
a
Mbjl W‘
Haag @ Elianti @ ®
b d €
lnn
Ms. @

C
plays[root]@)(Haag [nsub3]1@ (Ms. [nn]D)Elianti [dobi] @). [punct])

Figure 5: The Bracket Tree Sequence of sentence “Ms.
Haag plays Elianti .” is constructed following the topo-
logical order from a to e.

C Construction of Prufer Sequence

C.1 Prufer Sequence

The principle of construction is deleting the leaf
node with minimum index and adding the index
of its farther node into the prufer sequence. This
process is repeated more times until there are only
two nodes left in the tree.

C.2 Prufer for Parsing Tree

The arc in parsing tree is directed and thus is a
rooted tree. When all the son nodes with smaller
index are deleted, the root node will be treated as a
leaf node then deleted in the next step. To address
this problem, we add a virtual node with the maxi-

13

Metric Comparison between T5 and BART

87.54

UAS

85.0 1

W

—— BART
— T5

82.51

80.0

77.54

75.0 T T T
15 20 25
Epoch

30

Figure 6: The UAS curves on dev sets of PTB between
of TS5 and BART.

mum index and build a arc from virtual node to the
real root. This virtual root force the root node al-
ways being a leaf node in the whole construction of
prufer sequence. The overall construction process
as shown on Figure 4 (a)~(f).

D Construction of Bracket Tree

The Bracket Tree uses Bracket to indicate levels
of nodes. All the nodes belonging to the same
level are wrapped in the same pair of brackets. The
process of construction is shown on Figure 5.

E Comparison between T5 and BART

Figure 6 shows the UAS comparison on dev sets
of PTB between the T5 and BART in first 30
epochs. After the first two epochs, the performance
of T5 raise rapidly and can better maintain perfor-
mance in the later stages of training. Although
BART achieves a better performance in the first
two round, but there is not much room for perfor-
mance improvement. To make matters worse, it
can be clearly seen that after achieving the best
performance, BART is very unstable, and even a
significant performance drop has occurred.

14

