
Schema-Free Depednency Parsing via Sequence Generation

Anonymous ACL submission

Abstract

Dependency parsing aims to extract syntac-001
tic dependency structure or semantic depen-002
dency structure for sentences. Existing meth-003
ods suffer the drawbacks of lacking univer-004
sality or highly relying on the auxiliary de-005
coder. To remedy these drawbacks, we pro-006
pose to achieve universal and schema-free De-007
pendency Parsing (DP) via Sequence Gener-008
ation (SG) DPSG by utilizing only the pre-009
trained language model (PLM) without any010
auxiliary structures or parsing algorithms. We011
first explore different serialization designing012
strategies for converting parsing structures into013
sequences. Then we design dependency units014
and concatenate these units into the sequence015
for DPSG. Thanks to the high flexibility of the016
sequence generation, our DPSG can achieve017
both syntactic DP and semantic DP using a sin-018
gle model. By concatenating the prefix to in-019
dicate the specific schema with the sequence,020
our DPSG can even accomplish the multi-021
schemata parsing. The effectiveness of our022
DPSG is demonstrated by the experiments on023
widely used DP benchmarks, i.e., PTB, CODT,024
SDP15, and SemEval16. DPSG achieves com-025
parable results with the first-tier methods on026
all the benchmarks and even the state-of-the-027
art (SOTA) performance in CODT and Se-028
mEval16. This paper demonstrates our DPSG029
has the potential to be a new parsing paradigm.030
We will release our codes upon acceptance.031

1 Introduction032

Dependency Parsing (DP), which aims to extract033

the structural information beneath sentences, is fun-034

damental in understanding natural languages. It035

benefits a wide range of Natural Language Pro-036

cessing (NLP) applications, such as machine trans-037

lation (Bugliarello and Okazaki, 2020), question038

answering (Teney et al., 2017), and information re-039

trieval (Chandurkar and Bansal, 2017). As shown040

in Figure 1, dependency parsing predicts for each041

word the existence and dependency relation with042

Sentence Ms. Haag plays Elianti .

Syntactic Dependency Semantic Dependency

Ms.

plays

Haag Elianti .

nn

nsubj dobj punct

Ms. plays

Haag Elianti

.

ACT-arg PAT-argRSTR

Syntactic Dependency Structure in Sequence

Semantic Dependency Structure in Sequence

1 2 3 4 5

2Ms. [nn] Haag [nsubj] plays [root] Elianti [dobj] . [punct]3 3 3 3

1Ms. [root] Haag [RSTR] Haag [ACT-arg] plays [root] Elianti

[PAT-arg] . [rel-no]
1 3 3

3 n

Figure 1: Parsing “Ms. Haag plays Elianti .” according
to the Stanford syntactic dependency structure (Man-
ning et al., 2014) and the PSD semantic dependency
structure (Oepen et al., 2014). They are further con-
verted into unified serialized representations.

other words according to a pre-defined schema. 043

Such dependency structure is represented in tree or 044

directed acyclic graph, which can be converted into 045

flattened sequence, as presented in this paper. 046

The field of dependency parsing develops three 047

main categories of paradigms: graph-based meth- 048

ods (Dozat and Manning, 2017), transition-based 049

methods (Ma et al., 2018), and sequence-based 050

methods (Li et al., 2018). While prospering with 051

these methods, dependency parsing shows three 052

trends now. 1) New Schema. Recent works 053

extend dependency parsing from syntactic DP 054

(SyDP) to semantic DP (SeDP) with many new 055

schemata (Oepen et al., 2014; Che et al., 2012). 2) 056

Cross-Domain. Corpora from different domains 057

facilitate the research on cross-domain dependency 058

parsing (Peng et al., 2019; Li et al., 2019). 3) PLM. 059

With the development of pre-trained language mod- 060

els (PLM)s, researchers manage to enable PLMs 061

on dependency task and successfully achieve the 062

new state-of-the-art (SOTA) results (Fernández- 063

1

González and Gómez-Rodríguez, 2020; Gan et al.,064

2021). However, there are still two main issues.065

Lacking Universality. Although there are many066

successful parsers, most of them are schema-067

specific and have limitations, e.g., sequence-based068

parsers (Vacareanu et al., 2020) are only suitable069

for SyDP. Thus, these methods require re-training070

before being adapted to another schema.071

Relying on Extra Decoder. Previous parsers072

usually produce the parsing results employing an073

extra decoding module, such as a biaffine network074

for score calculation (Dozat and Manning, 2017)075

and a neural transducer for decision making (Zhang076

et al., 2019). These modules cannot be pre-trained077

and learn the dependency relation merely from the078

training corpora. Thus, only part of these models079

generalizes to sentences of different domains.080

To address these issues, we propose schema-081

free Dependency Parsing via Sequence Generation082

(DPSG). The core idea is to find a unified unam-083

biguous serialized representation for both syntac-084

tic and semantic dependency structures. Then an085

encoder-decoder PLM is learned to generate the086

parsing results following the serialized represen-087

tation, without the need for an additional decoder.088

That is, our parser can achieve its function using089

one original PLM (without any modification), and090

thus is entirely pre-trained. Furthermore, by adding091

a prefix to the serialized representation, DPSG pro-092

vides a principled way to pack different schemata093

into a single model.094

In particular, DPSG consists of three key compo-095

nents. The Serializer is responsible for converting096

between the dependency structure and the serial-097

ized representation. The Positional Prompt pattern098

provides supplementary word position information099

in the input sentence to facilitate the sequence gen-100

eration process. The encoder-decoder PLM with101

added special tokens performs the parsing task102

via sequence generation. The main advantages of103

DPSG comparing with previous paradigms are sum-104

marized in Table 1. Our DPSG accomplishes DP105

for different schemata, unifies multiple schemata106

without training multiple models, and transfers the107

overall model to different domains.108

We conduct experiments on 4 popular DP bench-109

marks: PTB, CODT, SDP15, and SemEval16.110

DPSG performs generally well on different DP. It111

significantly outperforms the baselines on cross-112

domain (CODT) and Chinese SeDP (SemEval16)113

corpora, and achieves comparable results on the114

Paradigms SyDP SeDP
Multi-

Schema
Unsupervised
Cross-Domain

Transition
Graph
Sequence
DPSG

Table 1: Summary of the previous parsing paradigms
and DPSG. means “can be directly used in this sce-
nario", means “can be used in this scenario after
modification", means “can partially generalize to
this scenario", and means “cannot be used in this
scenario".

other two benchmarks, which further shows that 115

our DPSG has the potential to be a new paradigm 116

for dependency parsing. 117

2 Preliminaries 118

We formally introduce the dependency parsing task 119

and the encoder-decoder PLM, and the correspond- 120

ing notations. This paper uses bold lower case let- 121

ters, blackboard letters, and bold upper case letters 122

to denote sequences, sets, and functions, respec- 123

tively. Elements in the sequence and the sets are 124

enclosed in parentheses and braces, respectively. 125

2.1 Dependency Parsing 126

A pre-defined dependency schema is a set of rela- 127

tions R. Dependency parsing takes a sentence x = 128

(w1, w2, ..., wn) as input, where wi is the ith word 129

in the sentence. It outputs the set of dependency 130

pairs y = (p1, p2, ..., pn), where pi =
{(

rji , h
j
i

)}
131

denotes the dependency pair of the ith word wi. We 132

use hji and rji to denote the jth head word of wi and 133

their relation. POS(w) denotes the position of the 134

specific word w in the input sentence. 135

Syntactic Dependency Parsing (SyDP) analy- 136

ses the grammatical dependency relations. The 137

parsing result of SyDP is a tree structure called 138

the syntactic parsing tree. In the SyDP, each non- 139

root word has exactly one head word, which means 140

|pi| = 1 if wi is the not root word. 141

Semantic Dependency Parsing (SeDP) fo- 142

cuses on representing the deep-semantic relation 143

between words. Each word in SeDP is allowed to 144

have multiple (even no) head words. This leads 145

to the result of SeDP being a directed acyclic 146

graph called Semantic Dependency Graph. Fig- 147

ure 1 shows the difference between SyDP and 148

SeDP, where SyDP produces a tree while SeDP 149

2

HaagMs. plays Elianti .

Input Sentence

Pre-train Language Model 𝐏𝐋𝐌

Ms. [PID] 1 [SPT] Haag [PID] 2 [SPT] plays [PID] 3 [SPT] Elianti [PID] 4 [SPT] . [PID] 5 [SPT]

Legends

Special Token

Position Number

Words

Dependency Relation

Ms. [root] 1 [SPT] Haag [RSTR] 1 [SPT] plays [root] 3 [SPT]Haag [ACT-arg] 3 [SPT] Elianti [PAT-arg] 3 [SPT] . [NO] [SPT]no

Dependency
Structure of
Input Sentence Haag

Ms. plays

Elianti

.

RSTR ACT-arg PAT-arg
Serializer 𝐒

one dependency unitone dependency unitone dependency unitone dependency unitone dependency unitone dependency unit

Serialized Representation

Position Prompt 𝐏𝐏

Co
ns

tru
ct

Se

ria
liz

ed
 R

ep
re

se
nt

at
io

n
G

en
er

at
e

Se
ria

liz
ed

 R
ep

re
se

nt
at

io
n

Figure 2: This figure shows the overall framework of DPSG. The PSD semantic dependency structure of “Ms.
Haag plays Elianti .” is converted into the serialized representation by the Serializer. The Positional Prompt
module injects positional information into the input sentence, and the PLM is responsible for generating the results.

produces a graph.150

2.2 Pre-trained Language Model151

PLMs are usually stacks of attention blocks of152

Transformer (Vaswani et al., 2017). Some PLMs153

that consist of encoder blocks only (e.g., BERT (De-154

vlin et al., 2019)) are not capable of sequence gener-155

ation. This paper focuses on PLMs having both en-156

coder blocks and decoder blocks, such as T5 (Raf-157

fel et al., 2020) and BART (Lewis et al., 2020).158

An encoder-decoder PLM takes a sequence159

s = (s1, ..., sn) as input, and outputs a sequence160

PLM(s) = o = (o1, ..., om). Each PLM has an161

associated vocabulary V, which is a set of tokens162

that can be directly accepted and embedded by the163

PLM. The PLM first splits the input sequence into164

tokens in the vocabulary with a subword tokeniza-165

tion algorithm, such as SentencePieces (Kudo and166

Richardson, 2018). Then, the tokens are mapped167

into vectors by looking up the embedding table.168

The attention blocks digest the embedded sequence169

and generate the output sequence.170

3 Method171

DPSG leverages a PLM to parse the dependency re-172

lation of a sentence by sequence generation. There-173

fore, the Serializer converts the dependency struc-174

ture into a serialized representation that meets the175

output format of the PLM (Section 3.1). The Po-176

sitional Prompt injects word position information177

into the input sentence so as to avoid numerical178

reasoning (Section 3.2). The PLM is modified by179

adding special tokens introduced by the Serializer180

and the Positional Prompt (Section 3.3). Figure 2181

illustrates the overall framework.182

3.1 Serializer for Dependency Structure 183

The Serializer S : (x,y) 7→ t is a function that 184

maps sentence x and its corresponding dependency 185

pairs y into a serialized representation t, which 186

servers as the target output to fine-tune the language 187

model. The Inverse Serializer S−1 : (x,o) 7→ y 188

converts the output o of the PLM into dependency 189

pairs to meet the output requirement of the DP task. 190

Specifically, the Serializer S decomposes depen- 191

dency pairs,
{(

hji , r
j
i

)}
∈ y, into smaller de- 192

pendency units by scattering the dependent word 193

wi into each of its head word, which forms the 194

following triplets set:
{
(wi, r

j
i , h

j
i)
}

. Then, it 195

replaces each relation rji with a special token1 196[
REL

(
rji

)]
∈ R, where R is a set of special to- 197

kens for all different relations. The head word hji 198

is substituted by its position in the input sentence 199

x, denoted as POS
(
hji

)
. The target serialized rep- 200

resentation t = S(x) concatenates all the depen- 201

dency units with split token [SPT] as the following: 202(
...
[
SPT
]
wi

[
REL

(
rji

)]
POS

(
hji

)
︸ ︷︷ ︸

one dependency unit

[
SPT
]
...
)

203

The Inverse Serialzer S−1 restores the dependency 204

structure from the serialized representation by sub- 205

stituting the special token
[
REL

(
rji

)]
with the 206

original relation and indexing the head with its 207

position POS
(
hji

)
in the input sentence x. 208

There are two issues in the Serializer designing: 209

1Brackets indicate special tokens out of vocabulary V.

3

Word Ambiguity. It is highly possible to have210

words, especially function words, appear multiple211

times in one sentence, e.g., there are more than 72%212

sentences in Penn Treebank (Marcus et al., 1993)213

have repeated words. We take two measures for214

word disambiguation in a dependency unit: (1) To215

disambiguate head word, the Serializer represents216

the head word by its position, rather than the word217

itself; (2) To disambiguate dependent word, the Se-218

rializer arranges dependency units by order of the219

dependent word in the input sentence x, rather than220

topological ordering or depth/breadth first search221

ordering of the dependency graph. The Inverse Se-222

rializer scans x and o simultaneously so as to refer223

the corresponding dependent word to x.224

Isolated Words. There are dependency schemata225

allowing for isolated words which have neither226

head words nor dependency relations with other227

words, e.g., the period mark in the SeDP results228

shown in Figure 1. Note that the isolated words229

are different from the root word, as the root word230

is the head word of itself. One direct solution is231

to remove the isolated words from the serialized232

representation. However, this will result in incon-233

sistencies between x and t, which complicates the234

word disambiguation. Thus, We use special token235

[NO] to denote such isolation relation and word no236

to represent the position of the virtual head word.237

3.2 Positional Prompt for Input Sentence238

As Section 3.1 mentions, representing the head239

words by their positions is an important scheme240

for head word disambiguation. However, PLMs241

are less skilled at numerical reasoning (Geva et al.,242

2020). We also empirically find it difficult for the243

PLM to learn the positional information of each244

word from scratch. Thus, we inject Positional245

Prompt (PP) for each word, which converts the246

positional encoding problem into generating the247

position number in the input, rather than counting248

for each word.249

In particular, given the input sentence x, the250

positional prompt is the position number of each251

word wi wrapped with two special tokens [PID] and252

[SPT]. [PID] marks the beginning of the position253

number and prevents the tokenization algorithms254

from falsely taking the position prompt as part of255

the previous word. [SPT] separates the position256

number from the next word. They also provide257

word segmentation information for some languages,258

such as Chinese. After the conversion, we have the259

input sequence in the following form: 260

s = w1 [PID] 1 [SPT] w2 [PID] 2 [SPT] · · · 261

For brevity, we denote the above process as a func- 262

tion PP : x 7→ s that maps input sentence into 263

sequence with positional prompt. 264

3.3 PLM for Sequence Generation 265

Both Serializer and Positional Prompt introduce 266

special tokens that are out of the original vocab- 267

ulary V, including the relation tokens in R, the 268

separation tokens [PID], [SPT], and the special rela- 269

tion token [NO]. Before training, these tokens are 270

added to the vocabulary, and their corresponding 271

embeddings are randomly initialized from the same 272

distribution as other tokens. As we should notice, 273

these special tokens are expected to undertake dif- 274

ferent semantics. PLM thus treats them as trainable 275

variables and learns their semantics during training. 276

With all the three components of DPSG, input 277

sentence is first converted into sequence with po- 278

sitional prompt: s = PP(x). The sequence is 279

further fed into the PLM and get the sequence out- 280

put with the maximum probability: o = PLM(s). 281

The final predicted dependency structure is recov- 282

ered via the Inverse Serializer: y′ = S−1(o). 283

The training objective aims to maximize the like- 284

lihood of the ground truth dependency structure. To 285

do so, we take the serialized dependency structure 286

as the target and minimize the auto-regressive lan- 287

guage model loss. We can further enhance the un- 288

supervised cross-domain capacity of DPSG with in- 289

termediate fine-tuning (IFT) (Pruksachatkun et al., 290

2020; Chang and Lu, 2021). Before training on the 291

dependency parsing, the intermediate fine-tuning 292

uses the unlabeled sentences in the target domain 293

and continues to train the PLM in source domain. 294

4 Experiments 295

4.1 Evaluation Setups 296

4.1.1 Datasets 297

We evaluate DPSG on the following 4 widely used 298

benchmarks for both SyDP and SeDP. We show 299

more details about datasets in Appendix A. 300

• Penn Treebank (PTB) (Marcus et al., 1993) is 301

the most proverbial benchmark for SyDP. 302

• Chinese Open Dependency Treebank (CODT) 303

(Li et al., 2019) aims to evaluate the cross-domain 304

SyDP capacity of the parser. It includes a bal- 305

anced corpus (BC) for training, and three other 306

4

corpora gathering from different domains for test-307

ing: product blogs (PB), popular novel “Zhu308

Xian” (ZX), and product comments (PC).309

• BroadCoverage Semantic Dependency Pars-310

ing dataset (SDP15) (Oepen et al., 2014) anno-311

tates English SeDP sentences with three different312

schemata, named as DM, PAS, and PSD. It pro-313

vides both in-domain (ID) and out-of-domain314

(OOD) evaluation datasets. The schema of315

SDP15 allows for isolated words.316

• Chinese semantic Dependency Parsing dataset317

(SDP16) (Che et al., 2012) is a Chinese SeDP318

benchmark. The sentences are gathered from319

News (NEWS) and textbook (TEXT). The320

schema of SemEval16 allows for multiple head321

words but does not have isolated words.322

4.1.2 Evaluation Metrics323

Following the conventions, we use unlabeled at-324

tachment score (UAS) and labeled attachment score325

(LAS) for SyDP. We use labeled attachment F1326

Score (LF) on SDP15 of SeDP. For SeDP on Se-327

mEval16, we use unlabeled attachment F1 (UF)328

and labeled attachment F1 (LF). All the results are329

presented in percentages (%).330

4.1.3 Implementations331

We use T5-base (Raffel et al., 2020) and mT5-332

base (Xue et al., 2021) as the backbone PLM for333

English dependency parsing and Chinese depen-334

dency parsing, respectively. In particular, we use335

their V1.1 checkpoints, which are only pre-trained336

on unlabeled sentences, so as to keep the PLM un-337

biased. In order to focus on the parsing capability338

of PLM itself, we do not use additional information,339

such as part-of-speech (pos) tagging and character340

embedding (Wang and Tu, 2020; Gan et al., 2021).341

The PLM is implemented with Huggingface342

Transformers (Wolf et al., 2020). The learning343

rate is 4e−5, weight decay is 1e−5. The optimizer344

is AdamW (Loshchilov and Hutter, 2019). We345

conduct all the experiments on Tesla V100.346

4.2 Baselines347

We divide baselines into three main categories348

based on their domain of expertise. Note that al-349

most all baselines use the additional lexical-level350

feature (including pos tagging, character-level em-351

bedding, and other pre-trained word embeddings),352

which is different from our DPSG. We supplement353

more details about baselines in Appendix B.354

In-domain SyDP. Biaffine (Dozat and Man- 355

ning, 2017), StackPTR (Ma et al., 2018), and 356

CRF2O (Zhang et al., 2020) introduce specially de- 357

signed parsing modules without PLM. CVT (Clark 358

et al., 2018), MP2O (Wang and Tu, 2020), and 359

MRC (Gan et al., 2021) are recently proposed PLM- 360

based dependency parser. SeqNMT (Li et al., 2018), 361

SeqViable (Strzyz et al., 2019), and PaT (Vacareanu 362

et al., 2020) cast dependency parsing as sequence 363

labeling task, which is closely related to our se- 364

quence generation method. 365

Unsupervised Cross-domain SyDP. Peng et al. 366

(2019) and Li et al. (2019) modify the Biaffine for 367

the unsupervised cross-domain DP. SSADP (Lin 368

et al., 2021) relies on extra domain adaptation steps. 369

In the PLM era, Li et al. (2019) propose ELMo- 370

Biaffine with IFT on unlabeled target domain data. 371

SeDP. Dozat and Manning (2018) modify Bi- 372

affine for SeDP. BS-IT (Wang et al., 2018) is a 373

transition-based semantic dependency parser with 374

incremental Tree-LSTM. HIT-SCIR (Che et al., 375

2019) solves the SeDP with a BERT based ipeline. 376

BERT+Flair2 (He and D. Choi, 2020) augments the 377

Biaffine model with BERT and Flair (Akbik et al., 378

2018) embedding. Pointer (Fernández-González 379

and Gómez-Rodríguez, 2020) combines transition- 380

based parser with Pointer Network. It is also 381

augmented with a Convolutional Neural Network 382

(CNN) encoder for the character-level feature. 383

4.3 Main Results 384

4.3.1 DPSG is Schema-Free 385

The schema-free characteristics of DPSG are re- 386

flected by the following two perspectives. 387

Towards Specific Schema. DPSG obtains the 388

SOTA performance on both CODT in Table 5 and 389

SemEval16 in Table 3, and achieves the first-tier 390

even among methods used additional lexical-level 391

features on PTB in Table 2 and SDP15 in Table 4. 392

For in-domain SyDP in Table 2, DPSG outperforms 393

all the previous sequence-based methods, and per- 394

forms sightly lower than MRC, which uses contex- 395

tual interactive pos tagging, by 0.45% in LAS. 396

For SeDP in Table 3, DPSG ourperforms BERT 397

+Flair to a large margin on SemEval16, achieves 398

3.55% performances gain on NEWS, and 1.95% 399

performance gain on TEXT with regard to LF. 400

DPSG also outperforms the PLM-based pipeline 401

HIT-SCIR on SDP15 (Table 4), but sightly lower 402

2They use different pre-processing scripts on SDP15, thus
are not comparable with DPSG and other baselines on SDP15.

5

Features Method (PLM) UAS LAS

Char CRF2O 96.14 94.49
POS Biaffine 95.74 94.08
POS StackPTR 95.87 94.19

Char+POS †MP2O (BERT-large) 96.91 95.34
POS †MRC (RoBERTa-large) 97.24 95.49
POS †CVT (CVT) 96.60 95.00

POS ‡SeqNMT 92.08 94.11
POS ‡SeqViable 93.67 91.72
POS †‡PaT (BERT-base) 95.87 94.66

- †‡DPSG (T5-base) 96.48 95.04
- †‡DPSG (Multi) 96.25 94.85

Table 2: Results on PTB for SyDP. Features means
these methods use additional lexical-level information,
such as character embedding (Char) or part of speech
tagging (POS). ‡ means this method belongs to se-
quence based methods. † means this method use PLM,
and the used PLM as listed in parenthesis.

Method
NEWS TEXT

UF LF UF LF

BS-IT 81.14 63.30 85.71 72.92
BERT+Flair 82.92 67.27 91.10 80.41

DPSG 84.31 70.82 90.97 82.36

Table 3: Experimental results on SemEval16.

than Pointer, which applies additional CNN to en-403

code the character-level embeddings. We also ob-404

serve that DPSG and the Pointer have the largest405

gap in the PSD schema of SDP15. This is caused406

in that PSD has much more relation labels than the407

other schemata (Peng et al., 2017), which increases408

the search space of our generation model.409

Towards Multi-Schemata. Furthermore, we410

design the multi-schemata experiment. We mix411

PTB and SDP15 by concatenating a prefix to the412

input text to distinguish different schemata. To pre-413

vent data leakage, we filter out sentences from the414

training set of PTB, which also appear in the test set415

of SDP15. As DPSG (Multi) uses less training data416

for PTB, it performs worse than DPSG in Table 2.417

DPSG (Multi) in Table 4 outperforms Pointer by418

1.49% in ID evaluation of the PAS schema, 0.05%419

in ID evaluation of the DM schema, and achieves al-420

most the same performance with Pointer in ID eval-421

uation of the PSD schema. The improvement over422

schema-specific model is most obvious on PAS. It423

could be because the PAS schema is more similar424

to the syntax schema (Peng et al., 2017), thus it425

Method (ID) DM PAS PSD

BS-IT 90.30 91.70 78.60
Biaffine 93.70 93.90 81.00
†HIT-SCIR (BERT-base) 92.90 94.40 81.60
†Pointer (BERT-base) 94.40 95.10 82.60
†DPSG 93.96 94.26 81.98
†DPSG (Multi) 94.45 96.59 82.25

Method (OOD) DM PAS PSD

BS-IT 84.90 87.60 75.90
Biaffine 88.90 90.60 79.40
†HIT-SCIR (BERT-base) 89.20 92.40 81.00
†Pointer (BERT-base) 91.00 93.40 82.00
†DPSG 90.47 92.38 80.04
†DPSG (Multi) 90.70 92.31 79.65

Table 4: Experimental results on SDP15 in terms of
LF. DPSG (PTB) means the parameters are initialized
from another DPSG trained on PTB. † means the model
utilizing PLM.

benefits more from PTB. This multi-schemata ap- 426

proach also provides a new method to explore the 427

inner connection between SyDP and SeDP. 428

4.3.2 Unsupervised Cross-domain 429

Table 5 demonstrates the outstanding transferability 430

of DPSG. We implement DPSG with and without 431

IFT on the target domain. DPSG with IFT achieves 432

the new SOTA, with a boosting of 5.06%, 7.21% 433

and 10.49% in terms of LAS on PB, ZX, and PC, 434

compared to ELMo with IFT. DPSG is completely 435

trained during IFT. While the additional biaffine 436

module of ELMo cannot benefit from the unlabeled 437

sentences from the target domain. 438

5 Analysis 439

This section studies whether there is better imple- 440

mentation for DPSG. We are particularly interested 441

in: 1) the designing of the Serializer, 2) the effect 442

of the introduced special tokens, and 3) the choice 443

of the PLM model. We use PTB as the benchmark 444

and compare DPSG introduced in Section 3 with 445

many other possible choices. The results of these 446

exploratory experiments are shown in Table 6. 447

5.1 Serializer Designing 448

Tree, as the well-studied data structure for syntac- 449

tic dependency parsing, has several other serializa- 450

tion methods to be converted into serialized repre- 451

sentations. We explore the serializer designing of 452

the tree structure in DPSG with two other widely 453

6

Category Model
BC→ PB BC→ ZX BC→ PC Average

UAS LAS UAS LAS UAS LAS UAS LAS

w/o PLM
Biaffine 67.75 60.95 69.41 61.55 39.95 26.96 59.04 49.82
SSADP 68.55 61.59 70.82 63.61 41.10 27.67 60.16 50.96

w/ PLM
ELMo-Biaffine w/ IFT 77.15 71.54 74.68 67.51 53.04 39.48 68.29 59.51

DPSG w/o IFT 78.86 73.28 75.74 69.42 54.00 41.98 69.53 61.56
DPSG w/ IFT 81.74 76.60 80.73 74.77 62.44 49.97 74.97 67.11

Table 5: Results on CODT for unsupervised cross-domain SyDP.

Metric DPSG Prufer Bracket

UAS 96.48 85.53↓10.95 95.37↓1.11
LAS 95.04 83.72↓11.32 93.76↓1.28

Metric DPSG-pos DPSG-rel DPSGBART

UAS 95.20↓1.28 93.88↓2.60 86.35↓10.13
LAS 93.17↓1.87 92.46↓2.58 79.45↓15.59

Table 6: Results on PTB for exploratory experiment

used serialized representation—Prufer sequence454

and Bracket Tree, which are shown in Figure 3.455

Note that both Prufer sequence and Bracket Tree456

face the same word ambiguity issues; we associate457

each word with a unique position number as well.458

Prufer Sequence is a unique sequence associ-459

ated with the labeled tree in combinatorial mathe-460

matics. The algorithm which converts labeled tree461

into Prufer sequence does not preserve the root462

node, while in dependency parsing, the root is a463

unique word. To bridge this inconsistency, we in-464

troduce an additionally added virtual node to the465

dependency tree to mark the root word.466

Bracket Tree is one of the most commonly467

used serialization methods to represent the tree468

structure (Strzyz et al., 2019). By recursively469

putting the sub-tree nodes in a pair of brackets470

from left-to-right, bracket tree can build a bijection471

between parsing tree and bracket tree. More details472

about how to construct the Prufer sequence and the473

bracket tree are shown in Appendix C.474

We denote the experimental results of Prufer475

sequence and bracket tree as Prufer and Bracket,476

respectively, in Table 6. Both Prufer sequence477

and bracket tree undermine the performance of478

DPSG to a large margin, which indicates that our479

proposed Serializer provides a better serialized rep-480

resentation for the PLM to generate. This is be-481

cause our Serializer guarantees the dependency482

Prufer Sequence

Bracket Tree Sequence

Syntactic Dependency Tree

Ms.

plays

Haag Elianti .
nn

nsubj dobj punct

plays [root] (Haag [nsubj] (Ms. [nn]) Elianti [dobj] . [punct])3 12 4 5

2Ms. [nn] Haag [nsubj] Elianti [dobj] . [punct]3 3 3

1

2

3

4 5

vitrual 6

Figure 3: Prufer sequence and Bracket Tree sequence
of the same sentence “Ms. Haag plays Elianti .”.

units in the output have the same order of the words 483

in the input sentences, while Prufer sequence and 484

bracket tree do not preserve the order. Thus, our 485

proposed DPSG expands the input sentence to gen- 486

erate the output sequence, while Prufer sequence 487

and bracket tree based DPSG reconstruct the syn- 488

tax dependency structure. As expansion strategy 489

has smaller generation space than reconstruction, 490

the serialization representation proposed in Sec- 491

tion 3.1 eases the learning complexity of the PLM, 492

and further brings better performance. 493

5.2 Special Tokens Designing 494

We further investigate whether the additionally in- 495

troduced special tokens are useful. 496

Relation Tokens. There are two different ways 497

to represent the dependency relations in the serial- 498

ized representation: adding a special token for each 499

dependency relation, or mapping each dependency 500

relation to one token in the original vocabulary 501

with the closest meaning, e.g., conj → conjunct. 502

Experimental results using word mapping is de- 503

noted as DPSG-rel in Table 6. DPSG-rel is inferior 504

than DPSG, which indicates that the special tokens 505

for relations are important. The reason is that if 506

7

we use the tokens in the original vocabulary, they507

interfere with their original meanings as the word.508

Special tokens disentangle the dependency relation509

from the words that could appear in the sentence.510

Positional Prompt. We are also particularly511

interested in the effectiveness of the positional512

prompts. We conduct experiments where the po-513

sitional prompt is removed and send the original514

input sentence to the PLM. The result is denoted515

as DPSG-pos in Table 6. DPSG-pos undermines the516

performance of DPSG because it requires the PLM517

to perform numerical reasoning, that is, to count518

for the position of each head word.519

5.3 Model Choosing520

Both BART and T5 are widely used encoder-521

decoder PLMs. We try BART-base as the backbone522

PLM in DPSG. Table 6 shows that BART under-523

mines the performance. In addition, BART has a524

significant performance drop after achieving the525

best performance, as shown in Appendix E.526

5.4 Legality527

There are two different legalities in DPSG. Forma-528

tion Legality focus on whether the sequence has the529

correct formation (see Section 3.1) and Structural530

Legality focus on the legality of the correspond-531

ing parsing structure. The statistics on PTB show532

that the formation legality of DPSG is 100%, and533

the structure legality of DPSG is 99.7%, which is534

acceptable in practical usage.535

6 Related Work536

6.1 Syntactic Dependency Parsing537

In-domain SyDP. Transition-based methods538

and graph-based methods are widely used in539

SyDP. Dozat and Manning (2017) introcude bi-540

affine attention into the graph-based methods. Ma541

et al. (2018) adopt pointer network to alleviate the542

drawback of local information in transition-based543

methods. Zhang et al. (2020) improve the CRF to544

capture second-order information.545

There are also researches using sequence to se-546

quence methods for SyDP. Li et al. (2018) use BiL-547

STM to predict the labeling of positions and rela-548

tions of dependency parsing. Strzyz et al. (2019)549

improve Li et al. (2018)’s method and explore more550

representation of predicated labeling sequence of551

dependency parsing. Vacareanu et al. (2020) use552

BERT to augment the sequence labeling methods.553

Unsupervised Cross-domain SyDP. The label- 554

ing of parsing data requires a wealth of linguis- 555

tics knowledge and this limitation facilitates the 556

research of unsupervised cross-domain DP. Yu 557

et al. (2015) introduce pseduo-labeling unsuper- 558

vised cross-domain SyDP via self-training. Li et al. 559

(2019) propose a cross-domain datasets CODT for 560

SyDP and build baselines for unsupervised cross- 561

domain SyDP. Lin et al. (2021) introduce feature- 562

based domain adaptation method in this field. 563

6.2 Semantic Dependency Parsing 564

Buys and Blunsom (2017) accomplish the first 565

transition-based parser for Minimal Recursion Se- 566

mantics (MRS). Zhang et al. (2016) present two 567

novel transition-systems to generate arbitrary di- 568

rected graphs in an incremental manner. Dozat 569

and Manning (2018) modify the Biaffine (Dozat 570

and Manning, 2017) for SeDP. However, due to the 571

words in SeDP may have multiple-head, there is 572

not sequence-based method for SeDP now. 573

6.3 Probing in Language Model 574

The research of exploring whether PLM can learn 575

the linguistic features during the pre-training pro- 576

cess, especially syntax knowledge, attracts some 577

attention. Hewitt and Manning (2019) map the dis- 578

tance between word embedding in PLM into the 579

distance in syntax tree and construct a syntax tree 580

without relation label. Clark et al. (2019) design 581

a structural probe to detect the ability of attention 582

heads to express dobj (direct object) dependency 583

relation. Their results prove the syntax knowledge 584

can also be found in the attention maps. 585

7 Conclusion 586

This paper proposes DPSG—a schema-free depen- 587

dency parsing method. By serializing the parsing 588

structure to a flattened sequence, PLM can directly 589

generate the parsing results in serialized representa- 590

tion. DPSG not only achieves good results in each 591

different schema, but also performs surprisingly 592

well on unsupervised cross-domain DP. The multi- 593

schemata experiments also suggest that DPSG is 594

capable of investigating the inner connection be- 595

tween different schemata dependency parsing. The 596

exploratory experiments and analyses demonstrate 597

the rationality of the designing of DPSG. Consid- 598

ering the unity, indirectness, and effectiveness of 599

DPSG, we believe it has the potential to become a 600

new paradigm for dependency parsing. 601

8

References602

Alan Akbik, Duncan Blythe, and Roland Vollgraf.603
2018. Contextual string embeddings for sequence604
labeling. In Proceedings of the 27th International605
Conference on Computational Linguistics, pages606
1638–1649, Santa Fe, New Mexico, USA. Associ-607
ation for Computational Linguistics.608

Emanuele Bugliarello and Naoaki Okazaki. 2020. En-609
hancing machine translation with dependency-aware610
self-attention. In Proceedings of the 58th Annual611
Meeting of the Association for Computational Lin-612
guistics, pages 1618–1627, Online. Association for613
Computational Linguistics.614

Jan Buys and Phil Blunsom. 2017. Robust incremen-615
tal neural semantic graph parsing. In Proceedings616
of the 55th Annual Meeting of the Association for617
Computational Linguistics (Volume 1: Long Papers),618
pages 1215–1226, Vancouver, Canada. Association619
for Computational Linguistics.620

Avani Chandurkar and Ajay Bansal. 2017. Information621
retrieval from a structured knowledgebase. In 11th622
IEEE International Conference on Semantic Com-623
puting, ICSC 2017, San Diego, CA, USA, January624
30 - February 1, 2017, pages 407–412. IEEE Com-625
puter Society.626

Ting-Yun Chang and Chi-Jen Lu. 2021. Rethinking627
why intermediate-task fine-tuning works. In Find-628
ings of the Association for Computational Linguis-629
tics: EMNLP 2021, pages 706–713. Association for630
Computational Linguistics.631

Wanxiang Che, Longxu Dou, Yang Xu, Yuxuan Wang,632
Yijia Liu, and Ting Liu. 2019. HIT-SCIR at MRP633
2019: A unified pipeline for meaning representa-634
tion parsing via efficient training and effective en-635
coding. In Proceedings of the Shared Task on Cross-636
Framework Meaning Representation Parsing at the637
2019 Conference on Natural Language Learning,638
pages 76–85, Hong Kong. Association for Compu-639
tational Linguistics.640

Wanxiang Che, Meishan Zhang, Yanqiu Shao, and Ting641
Liu. 2012. SemEval-2012 task 5: Chinese semantic642
dependency parsing. In *SEM 2012: The First Joint643
Conference on Lexical and Computational Seman-644
tics – Volume 1: Proceedings of the main conference645
and the shared task, and Volume 2: Proceedings of646
the Sixth International Workshop on Semantic Eval-647
uation (SemEval 2012), pages 378–384, Montréal,648
Canada. Association for Computational Linguistics.649

Kevin Clark, Urvashi Khandelwal, Omer Levy, and650
Christopher D. Manning. 2019. What does BERT651
look at? an analysis of BERT’s attention. In Pro-652
ceedings of the 2019 ACL Workshop BlackboxNLP:653
Analyzing and Interpreting Neural Networks for654
NLP, pages 276–286, Florence, Italy. Association655
for Computational Linguistics.656

Kevin Clark, Minh-Thang Luong, Christopher D. Man- 657
ning, and Quoc Le. 2018. Semi-supervised se- 658
quence modeling with cross-view training. In Pro- 659
ceedings of the 2018 Conference on Empirical Meth- 660
ods in Natural Language Processing, pages 1914– 661
1925, Brussels, Belgium. Association for Computa- 662
tional Linguistics. 663

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 664
Kristina Toutanova. 2019. BERT: Pre-training of 665
deep bidirectional transformers for language under- 666
standing. In Proceedings of the 2019 Conference 667
of the North American Chapter of the Association 668
for Computational Linguistics: Human Language 669
Technologies, Volume 1 (Long and Short Papers), 670
pages 4171–4186, Minneapolis, Minnesota. Associ- 671
ation for Computational Linguistics. 672

Timothy Dozat and Christopher D. Manning. 2017. 673
Deep biaffine attention for neural dependency pars- 674
ing. In 5th International Conference on Learning 675
Representations, ICLR 2017, Toulon, France, April 676
24-26, 2017, Conference Track Proceedings. Open- 677
Review.net. 678

Timothy Dozat and Christopher D. Manning. 2018. 679
Simpler but more accurate semantic dependency 680
parsing. In Proceedings of the 56th Annual Meet- 681
ing of the Association for Computational Linguis- 682
tics (Volume 2: Short Papers), pages 484–490, Mel- 683
bourne, Australia. Association for Computational 684
Linguistics. 685

Daniel Fernández-González and Carlos Gómez- 686
Rodríguez. 2020. Transition-based semantic 687
dependency parsing with pointer networks. In 688
Proceedings of the 58th Annual Meeting of the 689
Association for Computational Linguistics, pages 690
7035–7046, Online. Association for Computational 691
Linguistics. 692

Leilei Gan, Yuxing Meng, Kun Kuang, Xiaofei Sun, 693
Chun Fan, Fei Wu, and Jiwei Li. 2021. Dependency 694
parsing as mrc-based span-span prediction. ArXiv 695
preprint, abs/2105.07654. 696

Matt Gardner, Joel Grus, Mark Neumann, Oyvind 697
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew Pe- 698
ters, Michael Schmitz, and Luke Zettlemoyer. 2018. 699
AllenNLP: A deep semantic natural language pro- 700
cessing platform. In Proceedings of Workshop for 701
NLP Open Source Software (NLP-OSS), pages 1– 702
6, Melbourne, Australia. Association for Computa- 703
tional Linguistics. 704

Mor Geva, Ankit Gupta, and Jonathan Berant. 2020. 705
Injecting numerical reasoning skills into language 706
models. In Proceedings of the 58th Annual Meet- 707
ing of the Association for Computational Linguis- 708
tics, pages 946–958, Online. Association for Com- 709
putational Linguistics. 710

Han He and Jinho D. Choi. 2020. Establishing strong 711
baselines for the new decade: Sequence tagging, 712
syntactic and semantic parsing with BERT. In Pro- 713
ceedings of the Thirty-Third International Florida 714

9

https://aclanthology.org/C18-1139
https://aclanthology.org/C18-1139
https://aclanthology.org/C18-1139
https://doi.org/10.18653/v1/2020.acl-main.147
https://doi.org/10.18653/v1/2020.acl-main.147
https://doi.org/10.18653/v1/2020.acl-main.147
https://doi.org/10.18653/v1/2020.acl-main.147
https://doi.org/10.18653/v1/2020.acl-main.147
https://doi.org/10.18653/v1/P17-1112
https://doi.org/10.18653/v1/P17-1112
https://doi.org/10.18653/v1/P17-1112
https://ieeexplore.ieee.org/abstract/document/7889571
https://ieeexplore.ieee.org/abstract/document/7889571
https://ieeexplore.ieee.org/abstract/document/7889571
https://aclanthology.org/2021.findings-emnlp.61
https://aclanthology.org/2021.findings-emnlp.61
https://aclanthology.org/2021.findings-emnlp.61
https://doi.org/10.18653/v1/K19-2007
https://doi.org/10.18653/v1/K19-2007
https://doi.org/10.18653/v1/K19-2007
https://doi.org/10.18653/v1/K19-2007
https://doi.org/10.18653/v1/K19-2007
https://doi.org/10.18653/v1/K19-2007
https://doi.org/10.18653/v1/K19-2007
https://aclanthology.org/S12-1050
https://aclanthology.org/S12-1050
https://aclanthology.org/S12-1050
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/D18-1217
https://doi.org/10.18653/v1/D18-1217
https://doi.org/10.18653/v1/D18-1217
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://doi.org/10.18653/v1/P18-2077
https://doi.org/10.18653/v1/P18-2077
https://doi.org/10.18653/v1/P18-2077
https://doi.org/10.18653/v1/2020.acl-main.629
https://doi.org/10.18653/v1/2020.acl-main.629
https://doi.org/10.18653/v1/2020.acl-main.629
https://arxiv.org/abs/2105.07654
https://arxiv.org/abs/2105.07654
https://arxiv.org/abs/2105.07654
https://doi.org/10.18653/v1/W18-2501
https://doi.org/10.18653/v1/W18-2501
https://doi.org/10.18653/v1/W18-2501
https://doi.org/10.18653/v1/2020.acl-main.89
https://doi.org/10.18653/v1/2020.acl-main.89
https://doi.org/10.18653/v1/2020.acl-main.89
https://aaai.org/ocs/index.php/FLAIRS/FLAIRS20/paper/view/18438
https://aaai.org/ocs/index.php/FLAIRS/FLAIRS20/paper/view/18438
https://aaai.org/ocs/index.php/FLAIRS/FLAIRS20/paper/view/18438
https://aaai.org/ocs/index.php/FLAIRS/FLAIRS20/paper/view/18438
https://aaai.org/ocs/index.php/FLAIRS/FLAIRS20/paper/view/18438

Artificial Intelligence Research Society Conference,715
Originally to be held in North Miami Beach, Florida,716
USA, May 17-20, 2020, pages 228–233. AAAI717
Press.718

John Hewitt and Christopher D. Manning. 2019. A719
structural probe for finding syntax in word repre-720
sentations. In Proceedings of the 2019 Conference721
of the North American Chapter of the Association722
for Computational Linguistics: Human Language723
Technologies, Volume 1 (Long and Short Papers),724
pages 4129–4138, Minneapolis, Minnesota. Associ-725
ation for Computational Linguistics.726

Taku Kudo and John Richardson. 2018. SentencePiece:727
A simple and language independent subword tok-728
enizer and detokenizer for neural text processing. In729
Proceedings of the 2018 Conference on Empirical730
Methods in Natural Language Processing: System731
Demonstrations, pages 66–71, Brussels, Belgium.732
Association for Computational Linguistics.733

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-734
jan Ghazvininejad, Abdelrahman Mohamed, Omer735
Levy, Veselin Stoyanov, and Luke Zettlemoyer.736
2020. BART: Denoising sequence-to-sequence pre-737
training for natural language generation, translation,738
and comprehension. In Proceedings of the 58th An-739
nual Meeting of the Association for Computational740
Linguistics, pages 7871–7880, Online. Association741
for Computational Linguistics.742

Zhenghua Li, Xue Peng, Min Zhang, Rui Wang, and743
Luo Si. 2019. Semi-supervised domain adaptation744
for dependency parsing. In Proceedings of the 57th745
Annual Meeting of the Association for Computa-746
tional Linguistics, pages 2386–2395, Florence, Italy.747
Association for Computational Linguistics.748

Zuchao Li, Jiaxun Cai, Shexia He, and Hai Zhao. 2018.749
Seq2seq dependency parsing. In Proceedings of750
the 27th International Conference on Computational751
Linguistics, pages 3203–3214, Santa Fe, New Mex-752
ico, USA. Association for Computational Linguis-753
tics.754

Boda Lin, Mingzheng Li, Si Li, and Yong Luo.755
2021. Unsupervised domain adaptation method756
with semantic-structural alignment for dependency757
parsing. In Findings of the Association for Computa-758
tional Linguistics: EMNLP 2021, pages 2158–2167,759
Punta Cana, Dominican Republic. Association for760
Computational Linguistics.761

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-762
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,763
Luke Zettlemoyer, and Veselin Stoyanov. 2019.764
Roberta: A robustly optimized bert pretraining ap-765
proach. ArXiv preprint, abs/1907.11692.766

Ilya Loshchilov and Frank Hutter. 2019. Decou-767
pled weight decay regularization. In 7th Inter-768
national Conference on Learning Representations,769
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.770
OpenReview.net.771

Xuezhe Ma, Zecong Hu, Jingzhou Liu, Nanyun Peng, 772
Graham Neubig, and Eduard Hovy. 2018. Stack- 773
pointer networks for dependency parsing. In Pro- 774
ceedings of the 56th Annual Meeting of the Associa- 775
tion for Computational Linguistics (Volume 1: Long 776
Papers), pages 1403–1414, Melbourne, Australia. 777
Association for Computational Linguistics. 778

Christopher Manning, Mihai Surdeanu, John Bauer, 779
Jenny Finkel, Steven Bethard, and David McClosky. 780
2014. The Stanford CoreNLP natural language pro- 781
cessing toolkit. In Proceedings of 52nd Annual 782
Meeting of the Association for Computational Lin- 783
guistics: System Demonstrations, pages 55–60, Bal- 784
timore, Maryland. Association for Computational 785
Linguistics. 786

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann 787
Marcinkiewicz. 1993. Building a large annotated 788
corpus of English: The Penn Treebank. Computa- 789
tional Linguistics, 19(2):313–330. 790

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao, 791
Daniel Zeman, Dan Flickinger, Jan Hajič, Angelina 792
Ivanova, and Yi Zhang. 2014. SemEval 2014 task 793
8: Broad-coverage semantic dependency parsing. In 794
Proceedings of the 8th International Workshop on 795
Semantic Evaluation (SemEval 2014), pages 63–72, 796
Dublin, Ireland. Association for Computational Lin- 797
guistics. 798

Hao Peng, Sam Thomson, and Noah A. Smith. 2017. 799
Deep multitask learning for semantic dependency 800
parsing. In Proceedings of the 55th Annual Meet- 801
ing of the Association for Computational Linguistics 802
(Volume 1: Long Papers), pages 2037–2048, Van- 803
couver, Canada. Association for Computational Lin- 804
guistics. 805

Xue Peng, Zhenghua Li, Min Zhang, Wang Rui, Yue 806
Zhang, and Luo Si. 2019. Overview of the nlpcc 807
2019 shared task: Cross-domain dependency pars- 808
ing. In Natural Language Processing and Chi- 809
nese Computing - 8th CCF International Confer- 810
ence, NLPCC 2019, Dunhuang, China, October 9- 811
14, 2019, Proceedings, Part II, volume 11839, pages 812
760–771. Springer. 813

Yada Pruksachatkun, Jason Phang, Haokun Liu, 814
Phu Mon Htut, Xiaoyi Zhang, Richard Yuanzhe 815
Pang, Clara Vania, Katharina Kann, and Samuel R. 816
Bowman. 2020. Intermediate-task transfer learning 817
with pretrained language models: When and why 818
does it work? In Proceedings of the 58th Annual 819
Meeting of the Association for Computational Lin- 820
guistics, pages 5231–5247, Online. Association for 821
Computational Linguistics. 822

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine 823
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, 824
Wei Li, and Peter J. Liu. 2020. Exploring the limits 825
of transfer learning with a unified text-to-text trans- 826
former. J. Mach. Learn. Res., 21:140:1–140:67. 827

10

https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/P19-1229
https://doi.org/10.18653/v1/P19-1229
https://doi.org/10.18653/v1/P19-1229
https://aclanthology.org/C18-1271
https://aclanthology.org/2021.findings-emnlp.186
https://aclanthology.org/2021.findings-emnlp.186
https://aclanthology.org/2021.findings-emnlp.186
https://aclanthology.org/2021.findings-emnlp.186
https://aclanthology.org/2021.findings-emnlp.186
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/P18-1130
https://doi.org/10.18653/v1/P18-1130
https://doi.org/10.18653/v1/P18-1130
https://doi.org/10.3115/v1/P14-5010
https://doi.org/10.3115/v1/P14-5010
https://doi.org/10.3115/v1/P14-5010
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://doi.org/10.3115/v1/S14-2008
https://doi.org/10.3115/v1/S14-2008
https://doi.org/10.3115/v1/S14-2008
https://doi.org/10.18653/v1/P17-1186
https://doi.org/10.18653/v1/P17-1186
https://doi.org/10.18653/v1/P17-1186
https://link.springer.com/chapter/10.1007/978-3-030-32236-6_69
https://link.springer.com/chapter/10.1007/978-3-030-32236-6_69
https://link.springer.com/chapter/10.1007/978-3-030-32236-6_69
https://link.springer.com/chapter/10.1007/978-3-030-32236-6_69
https://link.springer.com/chapter/10.1007/978-3-030-32236-6_69
https://doi.org/10.18653/v1/2020.acl-main.467
https://doi.org/10.18653/v1/2020.acl-main.467
https://doi.org/10.18653/v1/2020.acl-main.467
https://doi.org/10.18653/v1/2020.acl-main.467
https://doi.org/10.18653/v1/2020.acl-main.467
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html

Michalina Strzyz, David Vilares, and Carlos Gómez-828
Rodríguez. 2019. Viable dependency parsing as se-829
quence labeling. In Proceedings of the 2019 Con-830
ference of the North American Chapter of the Asso-831
ciation for Computational Linguistics: Human Lan-832
guage Technologies, Volume 1 (Long and Short Pa-833
pers), pages 717–723, Minneapolis, Minnesota. As-834
sociation for Computational Linguistics.835

Damien Teney, Lingqiao Liu, and Anton van den Hen-836
gel. 2017. Graph-structured representations for vi-837
sual question answering. In 2017 IEEE Conference838
on Computer Vision and Pattern Recognition, CVPR839
2017, Honolulu, HI, USA, July 21-26, 2017, pages840
3233–3241. IEEE Computer Society.841

Robert Vacareanu, George Caique Gouveia Barbosa,842
Marco A. Valenzuela-Escárcega, and Mihai Sur-843
deanu. 2020. Parsing as tagging. In Proceedings of844
the 12th Language Resources and Evaluation Con-845
ference, pages 5225–5231, Marseille, France. Euro-846
pean Language Resources Association.847

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob848
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz849
Kaiser, and Illia Polosukhin. 2017. Attention is all850
you need. In Advances in Neural Information Pro-851
cessing Systems 30: Annual Conference on Neural852
Information Processing Systems 2017, December 4-853
9, 2017, Long Beach, CA, USA, pages 5998–6008.854

Xinyu Wang and Kewei Tu. 2020. Second-order neural855
dependency parsing with message passing and end-856
to-end training. In Proceedings of the 1st Confer-857
ence of the Asia-Pacific Chapter of the Association858
for Computational Linguistics and the 10th Interna-859
tional Joint Conference on Natural Language Pro-860
cessing, pages 93–99, Suzhou, China. Association861
for Computational Linguistics.862

Yuxuan Wang, Wanxiang Che, Jiang Guo, and Ting Liu.863
2018. A neural transition-based approach for seman-864
tic dependency graph parsing. In Proceedings of the865
Thirty-Second AAAI Conference on Artificial Intelli-866
gence, (AAAI-18), the 30th innovative Applications867
of Artificial Intelligence (IAAI-18), and the 8th AAAI868
Symposium on Educational Advances in Artificial In-869
telligence (EAAI-18), New Orleans, Louisiana, USA,870
February 2-7, 2018, pages 5561–5568. AAAI Press.871

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien872
Chaumond, Clement Delangue, Anthony Moi, Pier-873
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-874
icz, Joe Davison, Sam Shleifer, Patrick von Platen,875
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,876
Teven Le Scao, Sylvain Gugger, Mariama Drame,877
Quentin Lhoest, and Alexander Rush. 2020. Trans-878
formers: State-of-the-art natural language process-879
ing. In Proceedings of the 2020 Conference on Em-880
pirical Methods in Natural Language Processing:881
System Demonstrations, pages 38–45, Online. Asso-882
ciation for Computational Linguistics.883

Linting Xue, Noah Constant, Adam Roberts, Mi-884
hir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya885

Barua, and Colin Raffel. 2021. mT5: A massively 886
multilingual pre-trained text-to-text transformer. In 887
Proceedings of the 2021 Conference of the North 888
American Chapter of the Association for Computa- 889
tional Linguistics: Human Language Technologies, 890
pages 483–498, Online. Association for Computa- 891
tional Linguistics. 892

Juntao Yu, Mohab Elkaref, and Bernd Bohnet. 2015. 893
Domain adaptation for dependency parsing via self- 894
trainging. In Proceedings of the 14th International 895
Conference on Parsing Technologies, pages 1–10, 896
Bilbao, Spain. Association for Computational Lin- 897
guistics. 898

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin 899
Van Durme. 2019. Broad-coverage semantic pars- 900
ing as transduction. In Proceedings of the 2019 Con- 901
ference on Empirical Methods in Natural Language 902
Processing and the 9th International Joint Confer- 903
ence on Natural Language Processing (EMNLP- 904
IJCNLP), pages 3786–3798, Hong Kong, China. As- 905
sociation for Computational Linguistics. 906

Xun Zhang, Yantao Du, Weiwei Sun, and Xiaojun Wan. 907
2016. Transition-based parsing for deep dependency 908
structures. Computational Linguistics, 42(3):353– 909
389. 910

Yu Zhang, Zhenghua Li, and Min Zhang. 2020. Effi- 911
cient second-order TreeCRF for neural dependency 912
parsing. In Proceedings of the 58th Annual Meet- 913
ing of the Association for Computational Linguistics, 914
pages 3295–3305, Online. Association for Computa- 915
tional Linguistics. 916

11

https://doi.org/10.18653/v1/N19-1077
https://doi.org/10.18653/v1/N19-1077
https://doi.org/10.18653/v1/N19-1077
https://doi.org/10.1109/CVPR.2017.344
https://doi.org/10.1109/CVPR.2017.344
https://doi.org/10.1109/CVPR.2017.344
https://aclanthology.org/2020.lrec-1.643
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://aclanthology.org/2020.aacl-main.12
https://aclanthology.org/2020.aacl-main.12
https://aclanthology.org/2020.aacl-main.12
https://aclanthology.org/2020.aacl-main.12
https://aclanthology.org/2020.aacl-main.12
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16549
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16549
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16549
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://aclanthology.org/W15-2201/
https://aclanthology.org/W15-2201/
https://aclanthology.org/W15-2201/
https://doi.org/10.18653/v1/D19-1392
https://doi.org/10.18653/v1/D19-1392
https://doi.org/10.18653/v1/D19-1392
https://doi.org/10.1162/COLI_a_00252
https://doi.org/10.1162/COLI_a_00252
https://doi.org/10.1162/COLI_a_00252
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302

Set Section Sentences Words

Train [2-21] 39, 832 95, 0028
Dev [22] 1, 700 40, 117
Test [23] 2, 416 56, 684

Table 7: Data statistics of PTB.

Domain Train Set Dev Set Test Set Unlabeled Set

BC 16.3K 1K 2K –
PB 5.1K 1.3K 2.6K 291K
PC 6.6K 1.3K 2.6K 349K
ZX 1.6K 0.5K 1.1K 33K

Table 8: Data statistics of CODT.

A Dataset Statistics917

The details about the statistics of datasets used in918

this paper are shown on Table 7, Table 8, Table 9919

and Table 10.920

B More Details on Baseline921

Baselines for in-domain SyDP.922

* 3 Biaffine: Dozat and Manning (2017) adopt bi-923

affine attention mechanism into the graph-based924

method of dependency parsing.925

* StackPTR: Ma et al. (2018) introduce the926

pointer network into the transition-based meth-927

ods of dependency parsing.928

* CRF: Zhang et al. (2020) improve the CRF to929

capture more high-order information in depen-930

dency parsing.931

• 4SeqNMT: Li et al. (2018) use an Encoder-932

Decoder architecture to achieve the Seq2Seq933

dependency parsing by sequence tagging. The934

BPE segmentation from Neural Machine Trans-935

lation (NMT) and character embedding from Al-936

lenNLP (Gardner et al., 2018) are applied to ar-937

gument their model.938

• SeqViable: Strzyz et al. (2019) explore four en-939

codings of dependency trees and improve the940

performance comparing with Li et al. (2018).941

• PaT: Vacareanu et al. (2020) use a simple tagging942

structure over BERT-base to achieve sequence943

labeling of dependency parsing.944

+ 5 CVT: Clark et al. (2018) propose another pre-945

train method named cross-view training, which946

3* means model without PLM
4• means sequence-based methods
5+ means model utilizing PLM

Schema Train Set ID Test Set OOD Test Set

DM 35, 656 1, 410 1, 849
PAS 35, 656 1, 410 1, 849
PSD 35, 656 1, 410 1, 849

Table 9: Data statistics of SDP15.

Domain Train Set Dev Set Test Set

NEWS 8, 301 534 1, 233
TEXT 128, 095 1, 546 3, 096

Table 10: Data statistics of SemEval16.

can be used in many sequence constructing task 947

including SyDP. The best results of CVT is 948

achieved by the multi-task pre-training of SyDP 949

and part-of-speech tagging. 950

+ MP2O: Wang and Tu (2020) use message pass- 951

ing GNN based on BERT to capture second-order 952

information in SyDP. 953

+ MRC: Gan et al. (2021) use span-based method 954

to construct the edges at the subtree level. The 955

Machine Reading Comprehension (MRC) is ap- 956

plied to link the different span. RoBERTa- 957

large (Liu et al., 2019) is applied to enhance the 958

representation of parser. 959

Baselines for cross-domain SyDP. 960

* Biaffine: Peng et al. (2019); Li et al. (2019) use 961

Biaffine trained on source domain and test on 962

target domain as the baseline of unsupervised 963

cross-domain SyDP. 964

* SSADP: Lin et al. (2021) use both semantic and 965

structural feature to achieve the domain adapta- 966

tion of unsupervised cross-domain parsing. 967

+ ELMo: Li et al. (2019) use ELMo with inter- 968

mediate fine-tuning in unlabeled text of target 969

domain to achieve the SOTA on unsupervised 970

cross-domain SyDP. 971

Baselines for SeDP. 972

* Biaffine: Dozat and Manning (2018) transfer the 973

Biaffine model from SyDP to SeDP. 974

* BS-IT: Wang et al. (2018) use graph-based 975

method for SeDP. 976

• HIT-SCIR: Che et al. (2019) propose a BERT- 977

based pipeline model for SeDP. 978

• BERT+Flair: He and D. Choi (2020) use BERT 979

and flair embedding (Akbik et al., 2018) to argu- 980

ment their modificated Biaffine. 981

12

Syntactic Dependency Tree

Ms.

plays

Haag Elianti .

nn

nsubj dobj punct

1

2

3

4 5

vitrual 6

Syntactic Dependency Tree

plays

Haag Elianti .

nsubj dobj punct

2

3

4 5

vitrual 6

Syntactic Dependency Tree

plays

Elianti .

dobj punct

3

4 5

vitrual 6

Syntactic Dependency Tree

plays

.

punct

3

5

vitrual 6

Syntactic Dependency Tree

plays 3

vitrual 6

Syntactic Dependency Tree

Ms.

plays

Haag Elianti .

nn

nsubj dobj punct

1

2

3

4 5

Ms. [nn] 2

Ms. [nn] Haag [nsubj] Elianti [dobj] . [punct]3 3 32Ms. [nn] Haag [nsubj] Elianti [dobj] 3 32Ms. [nn] Haag [nsubj] 32

a b c

d e f

Figure 4: The Prufer Sequence of sentence “Ms. Haag plays Elianti .” is constructed from a to f .

Syntactic Dependency Tree

Ms.

plays

Haag Elianti .

nn

nsubj dobj
punct

1

2

3

4 5

a

b d e

c

plays[root] (Haag [nsubj] (Ms. [nn])Elianti [dobj]). [punct])3 2 1 4 5

Figure 5: The Bracket Tree Sequence of sentence “Ms.
Haag plays Elianti .” is constructed following the topo-
logical order from a to e.

C Construction of Prufer Sequence982

C.1 Prufer Sequence983

The principle of construction is deleting the leaf984

node with minimum index and adding the index985

of its farther node into the prufer sequence. This986

process is repeated more times until there are only987

two nodes left in the tree.988

C.2 Prufer for Parsing Tree989

The arc in parsing tree is directed and thus is a990

rooted tree. When all the son nodes with smaller991

index are deleted, the root node will be treated as a992

leaf node then deleted in the next step. To address993

this problem, we add a virtual node with the maxi-994

5 10 15 20 25 30
Epoch

75.0

77.5

80.0

82.5

85.0

87.5

90.0

92.5

95.0

UA
S

Metric Comparison between T5 and BART

BART
T5

Figure 6: The UAS curves on dev sets of PTB between
of T5 and BART.

mum index and build a arc from virtual node to the 995

real root. This virtual root force the root node al- 996

ways being a leaf node in the whole construction of 997

prufer sequence. The overall construction process 998

as shown on Figure 4 (a)~(f). 999

D Construction of Bracket Tree 1000

The Bracket Tree uses Bracket to indicate levels 1001

of nodes. All the nodes belonging to the same 1002

level are wrapped in the same pair of brackets. The 1003

process of construction is shown on Figure 5. 1004

13

E Comparison between T5 and BART1005

Figure 6 shows the UAS comparison on dev sets1006

of PTB between the T5 and BART in first 301007

epochs. After the first two epochs, the performance1008

of T5 raise rapidly and can better maintain perfor-1009

mance in the later stages of training. Although1010

BART achieves a better performance in the first1011

two round, but there is not much room for perfor-1012

mance improvement. To make matters worse, it1013

can be clearly seen that after achieving the best1014

performance, BART is very unstable, and even a1015

significant performance drop has occurred.1016

14

