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Abstract

Graph Neural Networks (GNNs) are the state-of-the-art model for machine learning1

on graph-structured data. The most popular class of GNNs operate by exchanging2

information between adjacent nodes, and are known as Message Passing Neural3

Networks (MPNNs). While understanding the expressive power of MPNNs is a4

key question, existing results typically consider settings with uninformative node5

features. In this paper, we provide a rigorous analysis to determine which function6

classes of node features can be learned by an MPNN of a given capacity. We do7

so by measuring the level of pairwise interactions between nodes that MPNNs8

allow for. This measure provides a novel quantitative characterization of the so-9

called over-squashing effect, which is observed to occur when a large volume10

of messages is aggregated into fixed-size vectors. Using our measure, we prove11

that, to guarantee sufficient communication between pairs of nodes, the capacity12

of the MPNN must be large enough, depending on properties of the input graph13

structure, such as commute times. For many relevant scenarios, our analysis results14

in impossibility statements in practice, showing that over-squashing hinders the15

expressive power of MPNNs. Our theory also holds for geometric graphs and hence16

extends to equivariant MPNNs on point clouds. We validate our analysis through17

extensive controlled experiments and ablation studies.18

1 Introduction19

Graphs describe the relational structure for a large variety of natural and artificial systems, making20

learning on graphs imperative in many contexts [48, 20, 51]. Given an underlying graph and features,21

defined on its nodes (and edges), as inputs, a Graph Neural Network (GNN) learns parametric22

functions from data. Due to the ubiquity of GNNs, characterizing their expressive power, i.e., which23

class of functions a GNN is able to learn, is a problem of great interest. In this context, most available24

results in literature on the universality of GNNs pertain to impractical higher-order tensors [38, 33] or25

unique node identifiers that may break the symmetries of the problem [36]. In particular, these results26

do not necessarily apply to Message Passing Neural Networks (MPNNs) [27], which have emerged as27

the most popular class of GNN models in recent years. Concerning expressivity results for MPNNs,28

the most general available characterization is due to [52] and [40], who proved that MPNNs are, at29

most, as powerful as the Weisfeiler-Leman graph isomorphism test [50] in distinguishing graphs30

without any features. This brings us to an important question:31

Which classes of functions can MPNNs of a given capacity learn, if node features are specified?32

Razin et al. [43] address this question by characterizing the separation rank of MPNNs; however,33

their analysis only covers unconventional architectures that do not correspond to MPNN models34

used in practice. In contrast, Alon & Yahav [2] investigate this question empirically, by observing35

that MPNNs fail to solve tasks which involve long-range interactions among nodes. This limitation36

was ascribed to a phenomenon termed as over-squashing, which loosely entails messages being37
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Figure 1: We study the power of MPNNs in terms of the mixing they induce among features and show
that this is affected by the model (via norm of the weights and depth) and the graph topology (via
commute times). For the given graph, the MPNN learns stronger mixing (tight springs) for nodes v, u
and u,w since their commute time is small, while nodes u, q and u, z, with high commute-time, have
weak mixing (loose springs). We characterize over-squashing as the inverse of the mixing induced by
an MPNN and hence relate it to its power. In fact, the MPNN might require an impractical depth to
solve tasks on the given graph that depend on high-mixing of features assigned to u, z.

‘squashed’ into fixed-size vectors when the receptive field of a node grows too fast. This effect38

was formalized in [47, 21, 8], who showed that the Jacobian of the nodes features is affected by39

topological properties of the graph, such as curvature and effective resistance. However, all the40

aforementioned papers ignore the specifics of the task at hand, i.e., the underlying function that the41

MPNN seeks to learn, leading us to the following question:42

How does over-squashing affect the expressive power of MPNNs? Can we measure it?43

What about geometric graphs? In many scientific applications, data come as graphs embedded in44

Euclidean space. Since popular architectures resort to the message-passing paradigm [25, 17, 7], the45

expressive power of such models has been rephrased in the language of the WL test, once extended46

to account for the extra geometric information [31]. Nonetheless, the questions raised above are even47

more pressing for these tasks, where the graph is typically derived from a point cloud using a cutoff48

radius, while the features also contain information about the positions in 3D space. In fact, for such49

problems where the features arguably carry more valuable information than the 2D graph structure,50

we argue that proposing new ways to assess the power of message-passing other than (variants of) the51

WL test, is crucial. To this aim, in our paper we study generic message-passing equations with no52

assumptions on the nature of the features, meaning that they may also include additional positional53

information if the dataset is a point cloud embedded in Euclidean space.54

Contributions. Our main goal is to show how over-squashing can be understood as the misalignment55

between the task and the graph-topology, ultimately limiting the classes of functions that MPNNs of56

practical size can learn (see Figure 1). We start by measuring the extent to which an MPNN allows57

pairs of nodes to interact (via mixing their features). With this measure as a tool, we characterize58

which functions of node features can be learned by an MPNN and how the model architecture and59

parameters, as well as the topology of the graph, affect the expressive power. More concretely,60

• We introduce a new metric of expressivity based on the Hessian of the function learned by61

an MPNN, which measures the ability of a model to mix features associated with different62

nodes. We then prove upper bounds on the power of MPNNs to mix features (i.e., model63

interactions) according to the novel metric mentioned above. As far as we know, this is the64

first theoretical result stating limitations of MPNNs to learn functions and their derivatives.65

• We characterize over-squashing as the reciprocal of the maximal mixing induced by an66

MPNN: the higher this measure, the smaller the class of functions MPNNs can learn.67

• We prove that the weights and depth must be sufficiently large – depending on the topology68

– to ensure mixing. For some tasks, the depth must exceed the highest commute time on the69

graph, resulting in impossibility statements. Our results show that MPNNs of practical size,70

fail to learn functions with strong mixing among nodes at high commute time.71

• We illustrate our theoretical results with controlled experiments that verify our analysis, by72

highlighting the impact of the architecture (depth), of the topology (commute time), and of73

the underlying task (the level of mixing required).74
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2 The Message-Passing paradigm75

Definitions on graphs. We denote a graph by G = (V,E), where V is the set of n nodes while E76

are the edges. We assume that G is undirected, connected and non-bipartite and define the n × n77

adjacency matrix A as Avu = 1 if (v, u) ∈ E and zero otherwise. We let D be the diagonal degree78

matrix with Dvv := dv and use dmax and dmin to denote the maximal and minimal degrees. Since79

we are interested in the over-squashing phenomenon, which affects the propagation of information,80

we need to quantify distances on G. We let dG(v, u) be the length of the shortest path connecting81

nodes v and u (geodesic distance). While dG describes how far two nodes u, v are in G, it does not82

account for how many different routes they can use to communicate. In fact, we will see below that83

the over-squashing of nodes v, u and, more generally, the mixing induced by MPNNs among the84

features associated with v, u, can be better quantified by their commute time τ(v, u), equal to the85

expected number of steps for a random walk to start at v, reach u, and then come back to v.86

The MPNN-class. For most problems, graphs are equipped with features {xv}v∈V ⊂ Rd, whose87

matrix representation is X ∈ Rn×d. To study the interactions induced by a GNN among pairs of88

features, we focus on graph-level tasks – in Section E of the Appendix, we extend the discussion and89

our main theoretical results to node-level tasks. The goal then is to predict a function X 7→ yG(X),90

where we assume that the graph G is fixed and thus yG : Rn×d → R is a function of the node features.91

MPNNs define a family of parametric functions through iterative local updates of the node features:92

the feature of node v at layer t is derived as93

h(t)
v = f (t)

(
h(t−1)
v , g(t)

(
{{h(t−1)

u , (v, u) ∈ E}}
))

, h(0)
v = xv (1)

where f (t), g(t) are learnable functions and the aggregation function g(t) is invariant to permutations.94

Specifically, we study a class of MPNNs of the following form,95

h(t)
v = σ

(
Ω(t)h(t−1)

v +W(t)
∑
u

Avuψ
(t)(h(t−1)

v ,h(t−1)
u )

)
, h(0)

v = xv, (2)

where σ acts pointwise, Ω(t),W(t) ∈ Rd×d are weight matrices, A ∈ Rn×n is any matrix satisfying96

Avu > 0 if (v, u) ∈ E and zero otherwise – A is typically some (normalized) version of the adjacency97

matrix A – and ψ(t) is a learnable message function. The layer-update in (2) includes common98

MPNN-models such as GCN [34], SAGE [28], GIN [52], and GatedGCN [10]. As commented in99

Section 6, this is the most general class of MPNN equations studied thus far in theoretical works on100

over-squashing; unless otherwise stated, all our considerations and analysis apply to MPNNs as in101

(2). For graph-level tasks, a permutation-invariant readout READ is required – usually MAX,MEAN,102

or SUM. We define the graph-level function computed by the MPNN after m layers to be103

y
(m)
G (X) = θ⊤READ({{h(m)

v }}), (3)

for some learnable θ ∈ Rd. We restrict to a linear layer since we are interested in the mixing induced104

by the MPNN itself through the topology (and not in readout, independently of the graph-structure).105

MPNNs on geometric graphs. Eq. (2) also describes a class of generic, equivariant MPNNs over106

a point cloud embedded in Euclidean space, once the matrix A is intended to encode the pairs of107

points that exchange information across each layer. In fact, throughout our analysis, we have no108

restriction on the type of features hv, which can also contain the position of a node in 3D space.109

Accordingly, our theoretical results hold for MPNNs on both 2D and 3D data, since they pertain to110

how the message passing paradigm models pairwise interactions among different points (nodes).111

3 On the mixing induced by Message Passing Neural Networks112

As one of the main contributions of this paper, we propose a new framework for characterizing the113

expressive power of MPNNs by estimating the amount of mixing they induce among pairs of node114

features xv and xu. To motivate our definition, fix the underlying graph G, let yG be the ground-truth115

function to be learned, and suppose, for simplicity, that the node features {xi} are all scalar. If yG is116

a smooth function, then we can take the Taylor expansion of yG at any point x̄ = (x̄1, . . . , x̄n) and117

obtain a polynomial in the variables (x1, . . . , xn), up to higher-order corrections. The mixing induced118
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by yG on the features xv, xu can then be expressed in terms of mixed product monomials of the form119

xvxu, and the powers thereof. The lowest-degree mixed monomials of this form are multiplied by120

the Hessian (i.e. the second-order derivatives) of yG. Accordingly, we can take the entries v, u of the121

Hessian of yG as the simplest measure of pairwise mixing induced by yG over the nodes v, u.122

Definition 3.1. For a twice differentiable graph-function yG of node features {xi}, the maximal123

mixing induced by yG among the features xv and xu associated with nodes v, u is124

mixyG
(v, u) = max

xi

max
1≤α,β≤d

∣∣∣∣∣∂2yG(X)

∂xαv ∂x
β
u

∣∣∣∣∣ . (4)

We note that the first maximum is taken over all input features, while the second maximum is taken125

over all entries α, β of the d-dimensional node features xv and xu; it is straightforward to adapt the126

results below to alternative definitions based on different norms of the Hessian.127

Problem statement. We study the expressive power of MPNNs in terms of the (maximal) mixing128

they can generate among nodes v, u. A low value of mixing implies that the MPNN cannot learn129

functions yG that require high mixing of the features associated with v, u and hence it cannot model130

‘product’-type interactions, as per our explanation above. We investigate how weights and depth on131

the one side, and the graph topology on the other, affect the mixing of an MPNN.132

The requirement of smoothness. In many applications, especially when deploying neural network133

models to solve partial differential equations, the predictions need to be sufficiently regular (smooth),134

which motivates the adoption of smooth activations [29, 9, 23]. Our analysis below follows this135

paradigm and holds for all activations σ that are (at least) twice differentiable.136

3.1 Pairwise mixing induced by MPNNs137

In this Section, our goal is to derive an upper bound on the maximal mixing induced by MPNNs,138

as defined above, over the features associated with pairs of nodes v, u. To motivate the structure of139

this bound, we consider the simple yet illustrative setting of an MPNN as in (2) with scalar features,140

weights ω,w > 0 and a linear message function of the form ψ(x, y) = c1x+ c2y, for some learnable141

constants c1, c2. In this case, the layer-update (2) takes the very simple form,142

h(t)v = σ(w(Sh(t−1))v), S :=
ω

w
I+ c1diag(A1) + c2A ∈ Rn×n, (5)

where 1 ∈ Rn is the vector of ones. Hence, the operator wS governs the flow of information from143

layer t− 1 to layer t – once we factor out the derivatives of σ – and the k-power of this matrix (wS)k144

determines the propagation of information on the graph over k layers, i.e. over walks of length k.145

A similar argument also works in the general case of (2), once we account for bounds on the non-linear146

activation function σ by cσ = max{|σ′|, |σ′′|}, and we choose ω,w, c1, c2 satisfying147

∥Ω(t)∥ ≤ ω, ∥W(t)∥ ≤ w, ∥∇iψ
(t)∥ ≤ ci,

for i = 1, 2, where ∇iψ is the Jacobian of ψ with respect to the i-th variable, and ∥ · ∥ is the operator148

norm of a matrix. We note that for trained MPNNs the weights would be finite and bounded, so our149

assumption is mild. For models such as GCN, SAGE or GIN, these constants will suffice in deriving150

the upper bound on the mixing. However, in the general case of non-linear message functions ψ,151

which for example includes GatedGCN, we also need to account for the term Qk, defined below,152

which arises when taking second-order derivatives of the MPNN (2): given S in (5), we set153

Pk := (Sm−k−1)⊤diag(1⊤Sk)(ASm−k−1)

Qk := Pk + P⊤
k + (Sm−k−1)⊤diag(1⊤Sk(diag(A1) + A))Sm−k−1. (6)

We assume that the Hessian of ψ is bounded as ∥∇2ψ(t)∥ ≤ c(2). Recall that y(m)
G is the MPNN-154

prediction (3) and that mix
y
(m)
G

(v, u) is its maximal mixing of nodes v, u as per Definition 3.1.155

Theorem 3.2. Consider an MPNN of depth m as in (2), where σ and ψ(t) are C2 functions and we156

denote the bounds on their derivatives and on the norm of the weights as above. Let S and Qk be157
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defined as in (5) and (6), respectively. If the readout is MAX,MEAN or SUM and θ in (3) has unit158

norm, then the mixing mix
y
(m)
G

(v, u) induced by the MPNN over the features of nodes v, u satisfies159

mix
y
(m)
G

(v, u) ≤
m−1∑
k=0

(cσw)
2m−k−1

(
w(Sm−k)⊤diag(1⊤Sk)Sm−k + c(2)Qk

)
vu
. (7)

Theorem 3.2 shows how the mixing induced by an MPNN depends on the model (via regularity of σ,160

norm of the weights w, and depth m) and on the graph-topology (via the powers of A, which enters161

the definition of S in (5)). Our goal now is to expand (7) and relate it to known quantities on the162

graph and show how this can be used to characterize the phenomenon of over-squashing. First, we163

introduce a notion of capacity of an MPNN in the spirit of [36].164

The capacity of an MPNN. For simplicity, we assume that cσ = 1, since this is satisfied by most165

commonly used non-linear activations – it is straightforward to extend the analysis to arbitrary cσ .166

Definition 3.3. Given an MPNN with m layers and w the maximal operator norm of the weights, we167

say that the pair (m,w) represents the capacity of the MPNN.168

A larger capacity, by increasing m or w, heuristically implies that the MPNN has more power to169

induce larger mixing among the nodes v, u. Accordingly, given v, u, we formulate the problem of170

expressivity as: what is the capacity required to induce enough mixing mixyG
(v, u)?171

Studying expressivity through derivatives. In applications to physics and PDEs, we may often172

need the neural-network prediction to also match the derivatives of the ground-truth function [29].173

Theorem 3.2 provides an upper bound on the ability of an MPNN to learn functions with non-trivial174

second-order derivatives among nodes. In particular, (7) shows that the second-order derivatives of175

MPNN predictions as in (2), cannot approximate second-order derivatives of graph-functions yG176

whose associated mixing is larger than the right hand side of (7). Our results are more general than177

the over-squashing problem, and represent, to the best of our knowledge, the first theoretical analysis178

on the limitations of MPNNs to approximate classes of functions and the derivatives thereof.179

4 Over-squashing limits the expressive power of MPNNs180

Over-squashing was originally described in [2] as the failure of MPNNs to propagate information181

across distant nodes. In fact, [47, 8, 21] showed that over-squashing – quantified by the sensitivity of182

node v to the input feature at node u via their Jacobian – is affected by topological properties such as183

curvature and effective resistance. In light of these works, it is evident that over-squashing is related184

to the inability of MPNNs to model interactions among certain nodes, depending on the underlying185

graph topology. Since one can rely on the Taylor expansion of a graph function to measure such186

interactions through the second-order derivatives, i.e. the maximal mixing, we leverage Definition 3.1187

to propose a novel, broader, but more accurate, characterization of over-squashing:188

Definition 4.1. Given the prediction y(m)
G of an MPNN with capacity (m,w), we define the pairwise189

over-squashing of v, u as190

OSQv,u(m,w) =
(
mix

y
(m)
G

(v, u)
)−1

.

Our notion of over-squashing is a pairwise measure over the graph that naturally depends on the191

graph-topology, as well as the capacity of the model. In particular, it captures how over-squashing192

pertains to the ability of the model to mix (induce interactions) between different node features. If193

such maximal mixing is large, then there is no obstruction to exchanging information between the194

given nodes and hence the over-squashing measure would be small; conversely, the over-squashing is195

large precisely when the model struggles to mix features associated with nodes v and u.196

In general though, computing the actual mixing induced by an MPNN may be difficult; we can then197

rely on Theorem 3.2 to derive a proxy for the over-squashing measure that will be used to obtain198

necessary conditions on the capacity of an MPNN to induce a required level of mixing:199

Definition 4.2. Given an MPNN with capacity (m,w), we approximate OSQv,u(m,w) by200

ÕSQv,u(m,w) :=
(m−1∑

k=0

w2m−k−1
(
w(Sm−k)⊤diag(1⊤Sk)Sm−k + c(2)Qk

)
vu

)−1

.
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First, note that by Theorem 3.2 we have ÕSQv,u(m,w) ≤ OSQv,u(m,w). If the network has no201

bandwidth through the weights (w = 0), then ÕSQv,u(m, 0) = ∞. Besides, the proposed measure202

is infinite (i.e., zero mixing) whenever 2m < dG(v, u), which captures the special case of under-203

reaching for graph-level tasks [5]. We also recall that for simplicity we have taken cσ = 1, but the204

measure extends to arbitrary non-linear activations σ. Finally, we generalize the characterization of205

OSQ to node-level tasks in Section E of the Appendix.206

We can rephrase our novel approach to studying expressivity through pairwise mixing, in terms of the207

over-squashing measure and its proxy. By Theorem 3.2 we derive that a necessary condition for a208

smooth MPNN to learn a function yG with mixing mixyG
(v, u) is209

ÕSQv,u(m,w) < (mixyG
(v, u))

−1
. (8)

An MPNN of given capacity might suffer or not from over-squashing, depending on the level of210

mixing required by the underlying task. Over-squashing can then be understood as the misalignment211

between the task and the underlying topology, as measured by the gap between the maximal mixing212

induced by an MPNN over nodes v, u and the mixing required by the task.213

Strategy. For a given graph G, to reduce the value of ÕSQ and hence satisfy (8), the capacity (m,w)214

must satisfy constraints posed by G and the choice of v, u. Since we can increase the capacity by215

taking either larger weights or more layers, we consider these two regimes separately. Below, we216

expand (8) in order to derive minimal requirements on the quantities w and m to induce a certain217

level of mixing. For simplicity, we restrict our analysis to the case A = Asym := D−1/2AD−1/2218

and extend the results to D−1A and A in Section D of the Appendix.219

4.1 The case of fixed depth m and variable weights norm w220

To assess the ability of the norm of the weights w to increase the capacity of an MPNN and hence221

reduce ÕSQ, we consider the limit case where the depth m is the minimal required for an MPNN to222

have a non-zero mixing among v, u (half the shortest-walk distance dG between the nodes).223

Theorem 4.3. Let A = Asym, r := dG(v, u), m = ⌈r/2⌉, and q be the number of paths of length224

r between v and u. For an MPNN satisfying Theorem 3.2 with capacity (m = ⌈r/2⌉,w), we find225

ÕSQv,u(m,w) · (c2w)r(Ar)vu ≥ 1. In particular, if the MPNN generates mixing mixyG
(v, u), then226

w ≥ dmin

c2

(
mixyG

(v, u)

q

) 1
r

.

Theorem 4.3 highlights that if the depth is set as the minimum required for any non-zero mixing, then227

the norm of the weights w has to be large enough depending on the connectivity of G – recall that228

for models as GCN, we have c2 = 1. However, increasing w is not optimal and may lead to poorer229

generalization capabilities [6, 24]. Besides, controlling the maximal operator norm of the weight230

matrices is not easy, especially from below. We report a few examples in Appendix D.231

4.2 The case of fixed weights norm w and variable depth m232

We now study the (desirable) setting where w is bounded, and derive the depth necessary to induce233

mixing of nodes v, u. Below, we let 0 = λ0 < λ1 ≤ . . . ≤ λn−1 be the eigenvalues of the normalized234

graph Laplacian ∆ = I−Asym; we note that λ1 is the spectral gap and λn−1 < 2 if G is not bipartite235

[16]. We also recall that dG is the shortest-walk distance and τ is the commute time (defined in236

Section 2). Finally, if dmax and dmin denote the maximal and minimal degrees, respectively, we set237

γ :=
√
dmax/dmin.238

Theorem 4.4. Consider an MPNN satisfying Theorem 3.2, with max{w, ω/w + c1γ + c2} ≤ 1,239

and A = Asym. If ÕSQv,u(m,w) · (mixyG
(v, u)) ≤ 1, i.e. the MPNN generates mixing mixyG

(v, u)240

among the features associated with nodes v, u, then the number of layers m satisfies241

m ≥ τ(v, u)

4c2
+

|E|√
dvdu

(mixyG
(v, u)

γµ
− 1

c2

(γ + |1− c2λ
∗|r−1

λ1
+ 2

c(2)

µ

))
,

where r = dG(v, u), µ = 1 + 2c(2)(1 + γ) and |1− c2λ
∗| = max0<ℓ≤n−1 |1− c2λℓ| < 1.242
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Theorem 4.4 provides a necessary condition on the depth of an MPNN to induce enough mixing243

among nodes v, u. We see that the MPNN must be sufficiently deep if the task depends on interactions244

between nodes at high commute time τ . Note that the lower bound on the depth can translate into a245

practical impossibility statement, since the commute time τ can be as large as O(n3) [13].246

If (i) the graph is such that the commute time between v, u is large, and (ii) the task depends on247

high-mixing of features associated with v, u, then over-squashing limits the expressive power of248

MPNNs since the depth has to scale impractically with the graph size n. In contrast to existing249

approaches based on the graph-isomorphism test, our results characterize the expressivity of MPNNs250

even when meaningful (e.g. geometric) features are provided. In fact, Theorem 4.4 implies that:251

Corollary 4.5. On a graph with features, MPNNs as in Theorem 4.4 with depth m ≤ n, cannot learn252

functions that induce high mixing among features of nodes with large commute time.253

Since the commute time of two adjacent nodes v, u equals 2|E| if (v, u) is a cut-edge [1], our result254

shows that MPNNs may require m = Ω(|E|) to generate enough mixing along a cut-edge, drawing a255

connection with [55], where it was shown that most GNNs fail to identify cut-edges on unattributed256

graphs. In fact, our theoretical results are more general than assessing the inability of an MPNN257

to solve tasks with long-range interactions, and show how over-squashing can be understood as a258

fundamental problem associated with how hard is for an MPNN to exchange information between259

nodes that are ‘badly connected’, as per their commute time, whatever this information might be.260

Theorem 4.4 determines the minimal number of layers required to induce mixing among the specific261

nodes v, u. If the depth m does not satisfy the lower bound in Theorem 4.4, then the mixing induced262

among v, u is smaller than yG(v, u). However, increasing the number of layers so to satisfy such263

constraint may have a detrimental effect to nodes that have small commute time instead.264

5 Experimental validation of the theoretical results265

Next, we aim to empirically verify the impact of the graph topology (via commute time τ ), the GNN266

architecture (depth, norm of weights), and the underlying task (node mixing) on over-squashing, as267

predicted by our theory. This, however, requires detailed information about the underlying function268

to be learned, which is not readily available in practice. Hence, we perform our empirical test269

in a controlled environment, but at the same time, we base our experiments on the real world270

ZINC chemical dataset [30] and constrain the number of molecular graphs to 12K [22]. Moreover,271

we exclude the edge features from this experiment and fix the MPNN size to ∼100K parameters.272

However, instead of regressing the constrained solubility based on the molecular input graphs, we273

define our own synthetic node features as well as our own target values as follows.274

Let {Gi} be the set of the 12K ZINC molecular graphs. We set all node features to zero, except for275

two, which are set to uniform random numbers xiui , xivi between 0 and 1 (i.e., xiui , xivi ∼ U(0, 1)) for276

all i. The target is set to yi = tanh(xiui + xivi) for all i. Hence, the task entails a non-linear mixing277

with non-vanishing second derivatives. The two non-zero node features xiui , xivi are positioned on278

Gi according to the commute time τ , i.e., for a given α ∈ [0, 1], we choose the nodes ui, vi as the279

α-quantile of the τ -distribution over Gi. This grants us a control on the level of commute time of the280

underlying mixing ( see Fig. 2). We call this graph dataset the synthetic ZINC dataset. We consider281

four different MPNN models namely GCN [34], GIN [52], GraphSAGE [28], and GatedGCN [10].282

Moreover, we choose the MAX-pooling as the GNN readout, which is supported by Theorem 3.2 and283

forces the GNNs to make use of the message-passing in order to learn the mixing.284

5.1 The role of commute time285

In this task, we empirically analyse the effect of the commute time τ of the underlying mixing on286

the performance of the MPNNs. To this end, we fix the architecture for all considered MPNNs.287

In particular, we set the depth to m = maxi⌈diam(Gi)/2⌉, which happens to be m = 11 for the288

considered ZINC 12K graphs, such that the MPNNs are guaranteed not to underreach. We further289

vary the value of the α-quantile of the τ -distributions over the graphs Gi between 0 and 1, thus290

controlling the level of commute times. According to our theoretical findings in Section 4, the291

measure ÕSQv,u (Definition 4.2) heavily depends on the commute time τ of the underlying mixing292

as derived in Theorem 4.4 – we verified this in Appendix Fig. 7. Thus, we would expect the MPNNs293
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Figure 2: (Left) Exemplary molecular graph of the ZINC (12K) dataset with colored nodes corre-
sponding to different values of commute time τ . We note that τ is a more refined measure than the
distance, and in fact beyond long-range nodes (red case), τ also captures other topological proper-
ties (yellow nodes are adjacent but belong to a cut-edge, so their commute-time is 2|E|). (Right)
Histogram of commute time τ between all pairs of the graph nodes.

to perform significantly worse for increasing levels of the commute time. This is indeed confirmed in294

Fig. 3 which shows that the test MAE increases for larger values of α for all considered MPNNs.295

5.2 The role of depth296

In this task, we study the effect of the depth on the performance of the MPNNs. To this end, we297

consider a high commute time-regime by setting α = 0.8. Note that in this case the maximum (over298

all graphs Gi) shortest path between two nodes ui, vi is 14. Therefore, a depth of m = 7 is sufficient299

to avoid under-reaching on all graphs. However, according to the over-squashing measure we provide300

and the conclusions of Theorem 4.4, we expect the MPNNs to be able to induce more mixing among301

nodes v, u, and hence reduce the error, as we increase the number of layers. This expectation is302

further evidenced in Appendix Fig. 8, where the computed ÕSQ decreases for increasing number of303

layers. In Fig. 4, we plot the test MAE of all considered MPNNs for increasing number of layers. We304

can indeed see that all considered GNNs benefit from depth, and thus higher capacity (Definition 3.3),305

as GatedGCN obtains the lowest test MAE with 16 layers, as well as GraphSAGE, GIN, and GCN306

with 32 layers. Our theoretical results provide a strong explanation as to why a task only depending307

on the mixing of nodes within 14 hops – so that 7 layers would suffice – actually benefits from many308

more layers. Naturally, we cannot increase the depth arbitrarily, as at some point other issues emerge309

which impact the trainability of the MPNNs [44].310

In Appendix F we also report additional experiments on the role of mixing and how the performance311

of the MPNN models if fully aligned with our theoretical findings.312
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Figure 3: Test MAE (average and standard devi-
ation over several random weight initializations)
of GCN, GIN, GraphSAGE, and GatedGCN
on synthetic ZINC, where the commute time
of the underlying mixing is varied, while the
MPNN architecture is fixed, i.e., mixing accord-
ing to increasing values of the α-quantile of the
τ -distribution over the graphs.
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Figure 4: Test MAE (average and standard devi-
ation over several random weight initializations)
of GCN, GIN, GraphSAGE, and GatedGCN
on synthetic ZINC, where the commute time
is fixed to be high (i.e., at the level of the 0.8-
quantile), while only the depth of the MPNN is
varied between 4 and 32 (all other architectural
components are fixed).
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6 Discussion313

Related Work: expressive power of MPNNs. The MPNN class in (2) is as powerful as the 1-WL314

test [50] in distinguishing unattributed graphs [52, 40]. In fact, MPNNs typically struggle to compute315

graph properties on feature-less graphs [19, 15, 45, 36]. The expressivity of GNNs has also been316

studied from the point of view of logical and tensor languages [5, 4, 26]. Nonetheless, far less is317

known about which functions of node features MPNNs can learn and the capacity required to do so.318

Razin et al. [43] recently studied the separation rank of a specific MPNN class. While this approach319

is a strong inspiration for our work, the results in [43] only apply to a family of MPNNs which does320

not include models used in practice. Our results instead hold in the full generality of (2) and provide321

a novel approach for investigating the expressivity of MPNNs through the mixing they are able to322

generate among features. To the best of our knowledge, this is the first work formally analysing the323

limitations on the expressive power of MPNNs to learn functions and their second-order derivatives.324

Differences between mixing and the WL test. Throughout our analysis we had no assumption on325

the nature of the features, that can in fact be structural or positional – meaning that the MPNNs we326

have considered above, may also be more powerful than the 1-WL test. Our derivations do not rely327

on the ability to distinguish different node representations, but rather on the ability of the MPNN to328

mix information associated with different nodes. This novel alternative paradigm may help design329

GNNs that are more powerful at mixing than MPNNs, and may further shed light on how and when330

frameworks such as Transformers can solve the underlying task better than conventional MPNNs.331

Differences between our results and existing works on over-squashing. The problem of over-332

squashing was introduced in [2] and studied through sensitivity analysis in [47]. This approach333

was generalized in [8, 21] who proved that the Jacobian of node features is likely to be small if334

the nodes have high commute time (effective resistance). We discuss more in detail the novelty335

of this work when compared to [47, 21]. (i) In [47, 21] there is no analysis on which functions336

MPNNs cannot learn as a consequence of over-squashing, nor a formal measure of over-squashing.337

Besides, the Jacobian of node features may not be suited for studying over-squashing for graph-level338

tasks. Note that our theory also holds for node-level tasks – see Section E of the Appendix. (ii) The339

analysis in [47] does not address over-squashing among nodes at distance larger than 2 and does not340

provide insights on the capacity required to learn certain tasks. (iii) Finally, [21] does not account for341

MPNNs such as GatedGCN (while ours does), and the connection to commute time is only carried342

out under simplifying assumptions on the nonlinear activation. We have extended these ideas to343

connect over-squashing and expressive power by studying higher-order derivatives of the MPNN and344

relating them to the capacity of the model and the underlying graph-topology.345

The measures OSQ and ÕSQ. Definition 4.1 considers pairs of nodes and second-order derivatives;346

this could be generalized to a hierarchy accounting for higher-order interactions of nodes. Besides, if,347

depending on the problem, one has access to better estimates on the mixing induced by an MPNN348

than (7), then one can extend our approach and get a finer approximation of OSQ.349

Beyond sum-aggregations. Our results apply to MPNNs as in (2), where A is constant, and350

do not include attention-based MPNNs [49, 11] or Graph-Transformers [35, 39, 54, 42] which351

further depend on features via normalization. Extending the analysis to these models is only more352

technically involved. More generally, one could replace the aggregation
∑

u Avu in (2) with a smooth,353

permutation invariant operator
⊕

[12, 41]. Our formalism will then prove useful to assess if different354

aggregations are more expressive in terms of the mixing (interactions) they are able to generate.355

Graph rewiring. Another way of going beyond (2) to find MPNNs with lower OSQ is to replace356

A with a different matrix A′, (partly) independent of the connectivity of the input graph, obtained357

from some ‘rewiring’ procedure. Theorem 4.4 validates why recent graph-rewiring methods such as358

[3, 32, 18, 8] manage to alleviate over-squashing: by adding edges that decrease the overall effective359

resistance (commute time) of the graph, these methods reduce the measure OSQ. More generally,360

Definition 4.2 allows one to measure whether a given rewiring is beneficial in terms of over-squashing361

(and hence of the mixing generated) and to what extent. In fact, it follows from Theorem 4.4 that362

methods like [18, 46] are in this sense optimal, since they propagate information over expander363

graphs, which are sparse and have commute time scaling linearly with the number of edges. Finally,364

our results suggest that for data given by point clouds, the choice of a computational graph over365

which message passing can operate, should also account for the commute time associated with it,366

given that the latter represents the correct metric to assess over-squashing.367
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A Outline of the appendix509

We provide an overview of the appendix. Since in the appendix we report additional theoretical510

results and considerations, we first point out to the most relevant content: the proofs of the main511

results, the extension of our discussion and analysis to node-level tasks, and the additional ablation512

studies.513

Where to find proofs of the main results. We prove Theorem 3.2 in Section C.1, we prove Theorem514

4.3 in Section D.1, and finally we prove Theorem 4.4 in Section D.3.515

Where to find the extension to node-level tasks.Concerning the case of node-level tasks, we present516

a thorough discussion on the matter in Section E, where we extend the definition of the over-squashing517

measure and generalize Theorem 3.2 and Theorem 4.4 to node-level predictions of the MPNN class518

in (2).519

Where to find additional ablation studies. In Section F we have conducted further experiments520

on the profile of the over-squashing measure ÕSQ across different MPNN models as well as on the521

training mean average error, to further validate our claims on over-squashing hindering the expressive522

power of MPNNs.523

Next, we summarize the contents of the Appendix more in detail below.524

• In order to be self-consistent, in Section B we review important notions pertaining to the525

spectrum of the graph-Laplacian and known properties of random walks on graphs, that will526

be then be used in our proofs.527

• In Section C we prove the main theorem on the maximal mixing induced by MPNNs528

(Theorem 3.2). In particular, we also derive additional results on the mixing generated529

at a specific node, which will turn out useful when extending the characterization of the530

over-squashing measure ÕSQ for node-level tasks.531

• In Section D we prove the main results of Section 4, mainly Theorem 4.3 and Theorem 4.4.532

Further, we also derive an explicit (sharper) characterization of the depth required to induce533

enough mixing among nodes, in terms of the pseudo-inverse of the graph-Laplacian. Finally,534

in Section D.4 we extend the results to the case of the unnormalized adjacency matrix and535

discuss relative over-squashing measures.536

• In Section E we generalize the over-squashing measure for node-level tasks, commenting on537

the differences between our approach and existing works (mainly [47, 8, 21]). In particular,538

we show that the same conclusions of Theorem 4.4 hold for node-level predictions too.539

• Finally, in Section F we report additional details on our experimental setup and further540

ablation studies concerning the over-squashing measure ÕSQ.541

B Summary of spectral properties on graphs542

Basic notions of spectral theory on graphs.543

Throughout the appendix, we let ∆ be the normalized graph Laplacian defined by ∆ = I −544

D−1/2AD−1/2. It is known [16] that the graph Laplacian is a symmetrically, positive semi-definite545

matrix whose spectral decomposition takes the form546

∆ =

n−1∑
ℓ=0

λℓϕℓϕ
⊤
ℓ , (9)

where {ϕℓ} is an orthonormal basis in Rn and 0 = λ0 < λ1 < . . . < λn−1 – recall that since we547

assume G to be connected, the zero eigenvalue has multiplicity one, i.e. λ1 > 0. We also note that548

we typically write ϕℓ(v) for the value of ϕℓ at v ∈ V, and that the kernel of ∆ is spanned by ϕ0549

with ϕ0(v) =
√
dv/2|E|. the results would extend to the bipartite cas As usual when doing spectral550

analysis one too if graphs, we exclude the edge case of the bipartite graph to make sure that the551

largest eigenvalue of the graph Laplacian satisfies λn−1 < 2 – yet all results hold for the bipartite552

case too provided we take ∥∇2ψ∥ < 1. Finally, we let ∆† denote the pseudo-inverse of the graph553
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Laplacian, which can be written as554

∆† =

n−1∑
ℓ=1

1

λℓ
ϕℓϕ

⊤
ℓ , (10)

and we emphasize that the sum starts from ℓ = 1 since we need to ignore the kernel of ∆ spanned by555

the orthonormal vector ϕ0.556

Basic properties of Random Walks on graphs. A simple Random Walk (RW) on G is a Markov557

chain supported on the nodes V with transition matrix defined by P(v, u) = d−1
v . While a RW can558

be studied through different properties, the one we are interested in is the commute time τ , which559

represents the expected number of steps for a RW starting at v, to visit u and then come back to v.560

The commute time is a distance on the graph and captures the diffusion properties associated with the561

underlying topology. In fact, while nodes that are distant often have larger commute time, the latter is562

more expressive than the shortest-walk graph-distance, since it also accounts (for example) for the563

number of paths connecting two given nodes. Thanks to [37], we can write down the commute time564

among two nodes using the spectral representation of the graph Laplacian in (9):565

τ(v, u) = 2|E|
n−1∑
ℓ=1

1

λℓ

(ϕℓ(v)√
dv

− ϕℓ(u)√
du

)2

. (11)

C Proofs and additional details of Section 3566

The goal of this section amounts to proving Theorem 3.2. To work towards this result, we first derive567

bounds on the Jacobian and Hessian of a single node feature after m layers before the readout READ568

operation. We emphasize that our analysis below is novel, when compared to previous works of569

[8, 21], on many accounts. First, [8, 21] do not consider higher (second) order derivatives, limiting570

their discussion to the case of first order derivatives, which are not suited to capture notions of mixing571

among features – we will expand on this topic in Section E. Second, even for the case of first-order572

derivatives, our result below is more general since it holds for all MPNNs as in (2), which includes573

(i) message-functions ψ that also depend on the input features (as for GatedGCN), and (ii) choices574

of message-passing matrices A that could be weighted and (or) asymmetric. Third, the analysis in575

[8, 21] does not account for the role of the readout map and hence fails to study the expressive power576

of graph-level prediction of MPNNs as measured by the mixing they generate among nodes.577

Conventions and notations for the proofs. First, we recall that h(0)
v = xv ∈ Rd is the input feature578

at node v. Below, we write h(t),αv for the α-th entry of the feature h
(t)
v . To simplify the notations, we579

rewrite the layer-update in (2) using coordinates as580

h(t),αv = σ(h̃(t−1),α
v ), 1 ≤ α ≤ d, (12)

where h̃(t−1),α
v is the entry α of the pre-activated feature of node v at layer t. We also let ∂1,pψ(t),r581

and ∂2,pψ(t),r be the p-th derivative of (ψ(t)(·, x))r and of (ψ(t)(x, ·))r, respectively. To avoid582

cumbersome notations, we usually omit to write the arguments of the derivatives of the message-583

functions ψ. Similarly, we let ∇1ψ (∇2ψ) be the d× d Jacobian matrix of ψ with respect to the first584

(second) variable. Finally, given nodes i, v, u ∈ V we introduce the following terms:585

∇uh
(m)
v :=

∂h
(m)
v

∂xu
∈ Rd×d, ∇2

uvh
(m)
i :=

∂2h
(m)
i

∂xu∂xv
∈ Rd×(d×d).

First, we derive an upper bound on the first-order derivatives of the node-features. This will provide586

useful to derive the more general second-order estimate of the MPNN-prediction. We highlight that587

the result below extends the analysis in [21] to MPNNs with arbitrary (i.e. non-linear) message588

functions ψ, such as GatedGCN [10].589

Theorem C.1. Given MPNNs as in (2), let σ and ψ(t) be C1 functions and assume |σ′| ≤ cσ,590

∥Ω(t)∥ ≤ ω, ∥W(t)∥ ≤ w, ∥∇1ψ
(t)∥ ≤ c1, and ∥∇2ψ

(t)∥ ≤ c2. Let S ∈ Rn×n be591

S :=
ω

w
I+ c1diag(A1) + c2A.

Given nodes v, u ∈ V and m the number of layers, the following holds:592

∥∇uh
(m)
v ∥ ≤ (cσw)

m(Sm)vu. (13)
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Proof. Recall that the dimension of the features is taken to be d for any layer 1 ≤ t ≤ m. We proceed593

by induction. If m = 1 and we fix entries 1 ≤ α, β ≤ d, then using the shorthand in (12), we obtain594

(∇uh
(1)
v )αβ = σ′(h̃(0),αv )

(
Ω

(1)
αβδvu +

∑
r

W (1)
αr

∑
j

Avj

(
∂1,βψ

(1),rδvu + ∂2,βψ
(1),rδju

))
=

(
diag(σ′(h̃(0)

v ))
(
Ω(1)δvu +W(1)

(∑
j

Avjδvu∇1ψ
(1) + Avu∇2ψ

(1)
)))

αβ
.

Therefore, we can bound the (spectral) norm of the Jacobian on the left hand side by595

∥∇uh
(1)
v ∥ ≤ ∥diag(σ′(h̃(0)

v ))∥
(
∥Ω(1)∥δvu + ∥W(1)∥(c1

∑
j

Avjδvu + c2Avu)
)

≤ cσ(ωδvu + w(c1
∑
j

Avjδvu + c2Avu)) = cσwSvu,

which proves the estimate on the Jacobian for the case of m = 1. We now take the induction step,596

and follow the same argument above to write the node Jacobian after m layers as597

(∇uh
(m)
v )αβ = σ′(h̃(m−1),α

v )
(∑

r

Ω(m)
αr (∇uh

(m−1)
v )rβ

)
+ σ′(h̃(m−1),α

v )
(
W (m)

αr

∑
j

Avj

∑
p

(
∂1,pψ

(m),r(∇uh
(m−1)
v )pβ + ∂2,pψ

(m),r(∇uh
(m−1)
j )pβ

))
=

(
diag(σ′(h̃(m−1)

v ))Ω(m)∇uh
(m−1)
v

)
αβ

+
(
diag(σ′(h̃(m−1)

v ))W(m)
(∑

j

Avj∇1ψ
(m)∇uh

(m−1)
v + Avj∇2ψ

(m)∇uh
(m−1)
j )

))
αβ
.

Therefore, we can use the induction step to bound the Jacobian as598

∥∇uh
(m)
v ∥ ≤ cσω(cσw)

m−1(Sm−1)vu + (cσw)
m
(∑

j

Avjc1(S
m−1)vu + Avjc2(S

m−1)ju

)
= (cσw)

m
((ω

w
I+ c1diag(A1) + c2A

)
(Sm−1)

)
vu

= (cσw)
m(Sm)vu,

which completes the proof for the first-order bounds.599

Before we move to the second-order estimates, we introduce some additional preliminary notations.600

Given nodes i, v, u, a matrix S ∈ Rn×n – which will always be chosen as per (5) – and an integer ℓ,601

we write602

P
(ℓ)
i(vu) := (Sℓ)iv(AS

ℓ)iu + (Sℓ)iu(AS
ℓ)iv +

∑
j

(Sℓ)jv (diag(A1) + A)ij (S
ℓ)ju. (14)

In particular, we denote by P
(ℓ)
(vu) ∈ Rn the vector with entries (P(ℓ)

(vu))i = P
(ℓ)
i(vu), for 1 ≤ i ≤ n.603

Theorem C.2. Given MPNNs as in (2), let σ and ψ(t) be C2 functions and assume |σ′|, |σ′′| ≤ cσ,604

∥Ω(t)∥ ≤ ω, ∥W(t)∥ ≤ w, ∥∇1ψ
(t)∥ ≤ c1, ∥∇2ψ

(t)∥ ≤ c2, ∥∇2ψ(t)∥ ≤ c(2). Let S ∈ Rn×n be605

S :=
ω

w
I+ c1diag(A1) + c2A.

Given nodes i, v, u ∈ V, if P(ℓ)
(vu) ∈ Rn is as in (14) and m is the number of layers, then we derive606

∥∇2
uvh

(m)
i ∥ ≤

m−1∑
k=0

∑
j∈V

(cσw)
2m−k−1 w(Sm−k)jv(S

k)ij(S
m−k)ju

+ c(2)
m−1∑
ℓ=0

(cσw)
m+ℓ(Sm−1−ℓP

(ℓ)
(vu))i. (15)
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Proof. First, we note that ∇2
uvh

(m)
i is a matrix of dimension Rd×(d×d). We then use the following607

ordering for indexing the columns – which is consistent with a typical way of labelling columns of608

the Kronecker product of matrices, as detailed below (note that indices here start from 1):609

∂2h
(m),α
i

∂xβv∂x
γ
u

:=
(
∇2

uvh
(m)
i

)
α,d(β−1)+γ

. (16)

As above, we proceed by induction and start from the case m = 1:610 (
∇2

uvh
(1)
i

)
α,d(β−1)+γ

= σ′′(h̃
(0),α
i )

(
Ω(1)

αγ δiv +
∑
r

W (1)
αr

∑
j

Aij(δiv∂1,γψ
(1),r + δjv∂2,γψ

(1),r)
)

×
(
Ω

(1)
αβδiu +

∑
r

W (1)
αr

∑
j

Aij(δiu∂1,βψ
(1),r + δju∂2,βψ

(1),r)
)

+ σ′(h̃
(0),α
i )

∑
r

W (1)
αr

(∑
j

Aijδiu(∂1,γ∂1,βψ
(1),rδiv + ∂2,γ∂1,βψ

(1),rδjv)
)

+ σ′(h̃
(0),α
i )

∑
r

W (1)
αr

(
Aiu(∂1,γ∂2,βψ

(1),rδiv + ∂2,γ∂2,βψ
(1),rδuv)

)
:= (Q1)α,β,γ + (Q2)α,β,γ + (Q3)α,β,γ ,

where Q1 is the term containing second derivatives of ψ while Q2, Q3 are the remaining expressions611

including second-order derivatives of the message functions ψ. Using the same strategy as for the612

first-order estimates, we can rewrite the first term Q1 as613

(Q1)α,β,γ =
(
diag(σ′′(h̃(0)

v ))
(
Ω(1)δiv +W(1)(

∑
j

Aijδiv∇1ψ
(1) + Aiv∇2ψ

(1))
))

αγ

×
(
Ω(1)δiu +W(1)(

∑
j

Aijδiu∇1ψ
(1) + Aiu∇2ψ

(1))
)
αβ

We now observe that given two matrices B,C ∈ Rd×d and 1 ≤ α, α′, β, γ ≤ d, the entries of the614

Kronecker product B⊗C can be indexed as615

(B⊗C)d(α−1)+α′,d(β−1)+γ = BαβCα′γ .

We now introduce the d× (d× d) sub-matrix of B⊗C defined by616

(B⊗C)′α,d(β−1)+γ = BαβCαγ . (17)

Therefore, we can rewrite (Q1)α,β,γ as the entry (α, d(β − 1) + γ) of the d× (d× d) sub-matrix617

(Q1)α,d(β−1)+γ = (B⊗C)′α,d(β−1)+γ , (18)

where618

B := diag(σ′′(h̃(0)
v ))

(
Ω(1)δiv +W(1)(

∑
j

Aijδiv∇1ψ
(1) + Aiv∇2ψ

(1))
)
,

C := Ω(1)δiu +W(1)(
∑
j

Aijδiu∇1ψ
(1) + Aiu∇2ψ

(1)).

Next, we proceed to write (Q2)α,β,γ in matricial form. Before we do that, we observe that the619

Hessian of the message functions (xi,xj) 7→ ψ(t)(xi,xj) takes the form620

∇2ψ(t) =

(
∇2

11ψ
(t) ∇2

12ψ
(t)

∇2
21ψ

(t) ∇2
22ψ

(t)

)
,

where ∇2
abψ

(t) ∈ Rd×(d×d) and is indexed as follows621

(∇2
abψ

(t))r,d(β−1)+γ = ∂a,β∂b,γψ
(t),r,

where a, b ∈ {1, 2}. Using these notations, we note that622 ∑
r

W (1)
αr ∂1,γ∂1,βψ

(1),r =
(
W(1)∇2

11ψ
(1)

)
α,d(β−1)+γ

.
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Therefore, we derive623

(Q2)α,β,γ = (Q2)α,d(β−1)+γ =
∑
j

Aijδiuδiv(diag(σ
′(h̃

(0)
i ))W(1)∇2

11ψ
(1))α,d(β−1)+γ

+ Aivδiu(diag(σ
′(h̃

(0)
i ))W(1)∇2

12ψ
(1))α,d(β−1)+γ . (19)

A similar argument works for Q3:624

(Q3)α,β,γ = (Q3)α,d(β−1)+γ = Aiuδiv(diag(σ
′(h̃

(0)
i ))W(1)∇2

21ψ
(1))α,d(β−1)+γ

+ Aiuδuv(diag(σ
′(h̃

(0)
i ))W(1)∇2

22ψ
(1))α,d(β−1)+γ . (20)

Therefore, we can combine (18), (19), and (20) to write625

∥∇2
uvh

(1)
i ∥ ≤ ∥Q1∥+ ∥Q2∥+ ∥Q3∥

≤ cσ (ωδiv + w(c1diag(A1)iδiv + c2Aiv)) (ωδiu + w(c1diag(A1)iδiu + c2Aiu)

+ cσwc
(2) (diag(A1)iδivδiu + Aivδiu)

+ cσwc
(2) (Aiuδiv + Aiuδuv) .

Finally, we can rely on (14) to re-arrange the equation above as626

∥∇2
uvh

(1)
i ∥ ≤ (cσw)(w(S)iv(S)iu) + wc(2)cσ(δivAiu + δiuAiv +

∑
j

δjv (diag(A1) + A)ij δju)

= (cσw)(w(S)iv(S)iu) + c(2)cσwP
(0)
i(vu),

which proves the bound for the second-order derivatives in the case m = 1.627

We now assume that the claim holds for all layers t ≤ m−1, and compute the second order derivative628

after m layers:629 (
∇2

uvh
(m)
i

)
α,d(β−1)+γ

= σ′′(h̃
(m−1),α
i )

×
(∑

r

Ω(m)
αr (∇uh

(m−1)
i )rβ

+W (m)
αr

∑
j

Aij(
∑
p

∂1,pψ
(m),r(∇uh

(m−1)
i )pβ + ∂2,pψ

(m),r(∇uh
(m−1)
j )pβ)

)
×
(∑

r

Ω(m)
αr (∇vh

(m−1)
i )rγ

+W (m)
αr

∑
j

Aij(
∑
p

∂1,pψ
(m),r(∇vh

(m−1)
i )pγ + ∂2,pψ

(m),r(∇vh
(m−1)
j )pγ)

)
+ σ′(h̃

(m−1),α
i )

∑
r

W (m)
αr

∑
j

Aij

∑
p,q

∂1,p∂1,qψ
(m),r(∇uh

(m−1)
i )pβ(∇vh

(m−1)
i )qγ

+ σ′(h̃
(m−1),α
i )

∑
r

W (m)
αr

∑
j

Aij

∑
p,q

∂1,p∂2,qψ
(m),r(∇uh

(m−1)
i )pβ(∇vh

(m−1)
j )qγ

+ σ′(h̃
(m−1),α
i )

∑
r

W (m)
αr

∑
j

Aij

∑
p,q

∂1,p∂2,qψ
(m),r(∇uh

(m−1)
j )qβ(∇vh

(m−1)
i )pγ

+ σ′(h̃
(m−1),α
i )

∑
r

W (m)
αr

∑
j

Aij

∑
p,q

∂2,p∂2,qψ
(m),r(∇uh

(m−1)
j )pβ(∇vh

(m−1)
j )qγ

+ σ′(h̃
(m−1),α
i )

∑
r

Ω(m)
αr (∇2

uvh
(m−1)
i )r,d(β−1)+γ

+ σ′(h̃
(m−1),α
i )

∑
r

W (m)
αr

∑
j

Aij(
∑
p

∂1,pψ
(m),r(∇2

uvh
(m−1)
i )p,d(β−1)+γ

+ σ′(h̃
(m−1),α
i )

∑
r

W (m)
αr

∑
j

Aij(
∑
p

∂2,pψ
(m),r(∇2

uvh
(m−1)
j )p,d(β−1)+γ

:= Rα,β,γ +
∑

a,b∈{1,2}

(Qab)α,β,γ + Zα,β,γ ,

17



where R is the term containing second derivatives of the non-linear map σ, Qab is indexed according630

to the second derivatives of the message-functions ψ, and finally Z is the term containing second-631

order derivatives of the features. For the term Rα,β,γ we can argue as in the m = 1 case and use the632

sub-matrix notation in (17) to rewrite it as the entry (α, d(β − 1) + γ) of the d× (d× d) sub-matrix633

Rα,d(β−1)+γ = (B⊗C)′α,d(β−1)+γ , (21)

where634

B := diag(σ′′(h̃
(m−1)
i ))(Ω(m)∇uh

(m−1)
i +W(m)(

∑
j

Aij∇1ψ
(m)∇uh

(m−1)
i +∇2ψ

(m)∇uh
(m−1)
j )),

C := Ω(m)∇vh
(m−1)
i +W(m)(

∑
j

Aij∇1ψ
(m)∇vh

(m−1)
i +∇2ψ

(m)∇vh
(m−1)
j )

Next we consider the terms (Qab)α,β,γ . Without loss of generality, we focus on (Q11)α,β,γ and use635

again the same argument in the m = 1 case, to rewrite it as (Q11)α,β,γ = (Q11)α,d(β−1)+γ where636

Q11 = diag(σ′(h̃
(m−1)
i ))

∑
j

Aij(W
(m)∇2

11ψ
(m)∇uh

(m−1)
i ⊗∇vh

(m−1)
i ), (22)

where again we are indexing the matrix ∇2
11ψ

(m) by637

(∇2
11ψ

(m))r,p(d−1)+q = ∂1,p∂1,qψ
(m),r.

The other Q-terms can be estimated similarly. Finally, we rewrite Zα,β,γ = (Z)α,d(β−1)+γ , where638

Z = diag(σ′(h̃
(m−1)
i ))

(
Ω(m)∇2

uvh
(m−1)
i +W(m)

∑
j

Aij(∇1ψ
(m)∇2

uvh
(m−1)
i +∇2ψ

(m)∇2
uvh

(m−1)
j )

)
(23)

Therefore, we have rewritten the second-derivatives of the features in matricial form as639

∇2
uvh

(m)
i = R+

∑
a,b∈{1,2}

Qab + Z.

To complete the proof, we now simply need to estimate the three terms and show they fit the recursion640

claimed for m. For the case of R in (21), we find641

∥R∥ ≤ cσ(ω∥∇uh
(m−1)
i ∥+ w(c1diag(A1)i∥∇uh

(m−1)
i ∥+ c2

∑
j

Aij∥∇uh
(m−1)
j ∥))

× (ω∥∇vh
(m−1)
i ∥+ w(c1diag(A1)i∥∇vh

(m−1)
i ∥+ c2

∑
j

Aij∥∇vh
(m−1)
j ∥).

If we write Dh(m−1) ∈ Rn×n as the matrix with entries (Dh(m−1))ij = ∥∇jh
(m−1)
i ∥, then we642

obtain643

∥R∥ ≤ cσw(wSDh(m−1))iv(SDh(m−1))iu.

We can then plug the first-order estimates derived in Theorem C.1 and obtain644

∥R∥ ≤ cσw(wS(cσw)
m−1Sm−1)iv(S(cσw)

m−1Sm−1)iu = (cσw)
2m−1(w(Sm)iv(S

m)iu). (24)

Next, we move onto the Q-terms, and use again the first-order estimates in Theorem C.1 – and the645

fact that we can bound the norm of ∇2
abψ

(m) by c(2) – to derive646

∥
∑

a,b∈{1,2}

Qab∥ ≤ c(2)(cσw)
2m−1(diag(A1)i(S

m−1)iv(S
m−1)iu +

∑
j

Aij(S
m−1)ju(S

m−1)jv)

+ c(2)(cσw)
2m−1((Sm−1)iv(AS

m−1)iu + (Sm−1)iu(AS
m−1)iv)

= c(2)(cσw)
2m−1P

(m−1)
i(vu) . (25)

Finally, if we let D2hvu ∈ Rn be the vector with entries (D2hvu)i = ∥∇2
uvh

(m−1)
i ∥, then647
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∥Z∥ ≤ cσ

(
ω∥∇2

uvh
(m−1)
i ∥+ w

(
c1diag(A1)i∥∇2

uvh
(m−1)
i ∥+ c2

∑
j

Aij∥∇2
uvh

(m−1)
j ∥

))
(26)

= cσw(SD
2hvu)i.

Therefore, we can use the induction to derive648

∥Z∥ ≤ cσw
∑
s

Sis

m−2∑
k=0

∑
j∈V

(cσw)
2m−2−k−1 w(Sm−1−k)jv(S

k)sj(S
m−1−k)ju

+ cσw
∑
s

Sis(c
(2)

m−2∑
ℓ=0

(cσw)
m−1+ℓ(Sm−2−ℓP

(ℓ)
(vu))s)

=

m−2∑
k=0

∑
j∈V

(cσw)
2m−k−2 w(Sm−1−k)jv(S

k+1)ij(S
m−1−k)ju

+ c(2)(
m−2∑
ℓ=0

(cσw)
m+ℓ(Sm−1−ℓP

(ℓ)
(vu))i)

=

m−1∑
k=1

∑
j∈V

(cσw)
2m−k−1 w(Sm−k)jv(S

k)ij(S
m−k)ju + c(2)(

m−2∑
ℓ=0

(cσw)
m+ℓ(Sm−1−ℓP

(ℓ)
(vu))i)

By (24), we derive that the R-term corresponds to the k = 0 entry of the first sum, while (25)649

corresponds to the case ℓ = m− 1 of the second sum, which completes the induction and hence our650

proof.651

C.1 Proof of Theorem 3.2652

We can now use the previous characterization to derive estimates on the Hessian of the graph-level653

function computed by MPNNs. We restate Theorem 3.2 here for convenience.654

Theorem 3.2. Consider an MPNN of depth m as in (2), where σ and ψ(t) are C2 functions and we655

denote the bounds on their derivatives and on the norm of the weights as above. Let S and Qk be656

defined as in (5) and (6), respectively. If the readout is MAX,MEAN or SUM and θ in (3) has unit657

norm, then the mixing mix
y
(m)
G

(v, u) induced by the MPNN over the features of nodes v, u satisfies658

mix
y
(m)
G

(v, u) ≤
m−1∑
k=0

(cσw)
2m−k−1

(
w(Sm−k)⊤diag(1⊤Sk)Sm−k + c(2)Qk

)
vu
. (7)

Proof. First, we recall that according to Definition 3.1, we are interested in bounding the quantity659

mix
y
(m)
G

(v, u) = max
X

max
1≤β,γ≤d

∣∣∣∣∣∂2y(m)
G (X)

∂xβu∂x
γ
v

∣∣∣∣∣ .
Let us first consider the choice READ = SUM, so that by (3) we get660

mix
y
(m)
G

(v, u) ≤
∣∣∣∣∣

d∑
α=1

θα
∑
i∈V

∂2h
(m),α
i

∂xβu∂x
γ
v

∣∣∣∣∣
As before, we index the columns of the Hessian of hi as ∂2h

(m),α
i

∂xβ
u∂x

γ
v

= (∇2
uvh

(m)
i )α,d(β−1)+γ and661

hence obtain662

mix
y
(m)
G

(v, u) ≤
∑
i∈V

∥(∇2
uvh

(m)
i )⊤θ∥ ≤

∑
i∈V

∥∇2
uvh

(m)
i ∥, (27)
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since θ has unit norm. Note that the very same bound in (27) also holds if we replaced the SUM663

readout with either the MAX or the MEAN readout. We can then rely on Theorem C.2 and find664

mix
y
(m)
G

(v, u) ≤
∑
i∈V

m−1∑
k=0

∑
j∈V

(cσw)
2m−k−1 w(Sm−k)jv(S

k)ij(S
m−k)ju

+ c(2)
∑
i∈V

m−1∑
ℓ=0

(cσw)
m+ℓ(Sm−1−ℓP

(ℓ)
(vu))i

=

m−1∑
k=0

(cσw)
2m−k−1

(
w(Sm−k)⊤diag(1⊤Sk)Sm−k

)
vu

+ c(2)
m−1∑
ℓ=0

(cσw)
m+ℓ(1⊤Sm−1−ℓ)P

(ℓ)
(vu)

=

m−1∑
k=0

(cσw)
2m−k−1

(
w(Sm−k)⊤diag(1⊤Sk)Sm−k

)
vu

+ c(2)
m−1∑
k=0

(cσw)
2m−k−1(1⊤Sk)P

(m−k−1)
(vu) .

For the second term we can the simply use the formula in (14) to rewrite it in matricial form as665

claimed – recall that Qk is defined in (6).666

D Proofs and additional details of Section 4667

Throughout this Section, for simplicity, we assume cσ = max{|c′σ|, |c′′σ|} to be smaller or equal than668

one – this is satisfied by the vast majority of commonly used non-linear activations, and extending669

the results below to arbitrary cσ is straightforward.670

D.1 Proof of Theorem 4.3671

We begin by proving lower bounds on the operator norm of the weights, when the depth is the minimal672

one required to induce any non-zero mixing among nodes v, u. For convenience, we restate Theorem673

4.3 here as well.674

Theorem 4.3. Let A = Asym, r := dG(v, u), m = ⌈r/2⌉, and q be the number of paths of length675

r between v and u. For an MPNN satisfying Theorem 3.2 with capacity (m = ⌈r/2⌉,w), we find676

ÕSQv,u(m,w) · (c2w)r(Ar)vu ≥ 1. In particular, if the MPNN generates mixing mixyG
(v, u), then677

w ≥ dmin

c2

(
mixyG

(v, u)

q

) 1
r

.

Proof. Without loss of generality, we assume that r is even, so that by our assumptions, we can678

simply take m = r/2. According to Theorem 3.2, we know that the maximal mixing induced by an679

MPNN of depth m over the features associated with nodes v, u is bounded from above as680

mix
y
(m)
G

(v, u) ≤
m−1∑
k=0

w2m−k−1
(
wSm−kdiag(Sk1)Sm−k + c(2)Qk

)
vu
.

where we have replaced cσ with one, as per our assumption. Since m = r/2, where r is the681

distance among nodes v, u, then the only non-zero contribution for the first term is obtained for682

k = 0 – otherwise we would find a path of length 2(m− k) connecting v and u hence violating the683

assumptions – and is equal to w2m(S2m)vu, and note that 2m = r. Concerning the terms Qk instead,684

the longest-walk contribution for nodes v, u is 2m− 1 (when k = 0), meaning that Qk = 0 for all685

0 ≤ k ≤ m− 1 if m = 2r. Accordingly, we can reduce the bound above to:686

mix
y
(m)
G

(v, u) ≤ w2m
(
S2m

)
vu

= w2m
(
(c2A)

2m
)
vu
,
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where in the last equality we have again used that 2m = r, so when expanding the power of S only687

the highest-order term in the A-variable gives non-zero contributions. If we replace now 2m = r and688

use the characterization of over-squashing in Definition 4.2, then689

ÕSQv,u(m =
r

2
,w) ≥ (c2w)

−r 1

(Ar)vu
.

Therefore, if the MPNN generates mixing mix
y
(m)
G

(v, u) among the features of v and u, then (8) is690

satisfied, meaning that the operator norm of the weights must be larger than691

w ≥ 1

c2

(mix
y
(m)
G

(v, u)

(Ar)vu

) 1
r

.

The term Ar in general can be estimated sharply depending on the knowledge we have of the692

underlying graph. To get a universal – albeit potentially looser bound – it suffices to note that along693

each path connecting v and u, the product of the entries of A can be bounded from above by (dmin)
r,694

which completes the proof.695

We highlight that if A = Arw = D−1A – i.e. the aggregation over the neighbours consists of a696

mean-operation as for the GraphSAGE architecture – then one can apply the very same proof above697

and derive698

Corollary D.1. The same lower bound for w in Theorem 4.3, holds when A = D−1A.699

Some examples. We illustrate the bounds in Theorem 4.3 and for simplicity, we set c2 = 1.700

Consider a tree Td of arity d, with v the root and u a leaf at distance r and depth m = r/2; then701

ÕSQv,u(m,w) ≥ w−r(d+ 1)r−1 and the operator norm required to generate mixing y(v, u) is702

w ≥ (d+ 1)

(
y(v, u)

d+ 1

) 1
r

.

We note that by taking d = 1 we recover the case of the path-graph (1D grid). Since the operator703

norm of the weights grows with the branching factor, we see that, in general, the capacity required by704

MPNNs to solve long-range tasks could be higher on graphs than on sequences [2]. We also consider705

the case of a 1-layer MPNN on a complete graph Kn with v ̸= u. We find that ÕSQv,u(m,w) ≥706

(n− 1)/w and hence the operator norm required to generate mixing y(v, u) is w ≥ (n− 1)y(v, u).707

We note how the measure of over-squashing also captures the problem of redundancy of messages708

[14]. In fact, even if v, u are at distance 1, the more nodes are there in the complete graph and hence709

the more messages are exchanged, the more difficult for a shallow MPNN to induce enough mixing710

among those specific nodes.711

D.2 Spectral bounds712

Next, we study the case of fixed, bounded operator norm of the weights, but variable depth, since713

we are interested in showing that over-squashing hinders the expressive power of MPNNs for tasks714

requiring high-mixing of features associated with nodes at high commute time. We first provide a715

characterization of the maximal mixing (and hence of the over-squashing measure) in terms of the716

graph-Laplacian and its pseudo-inverse.717

Convention. In the proofs below we usually deal with matrices with nonnegative entries. Accordingly,718

we introduce the following convention: we write that A ≤ B ifAij ≤ Bij for all entries 1 ≤ i, j ≤ n.719

Theorem D.2. Let γ :=
√

dmax

dmin
and set A = Asym or A = Arw. Consider an MPNN as in Thm. 3.2720

with depth m, max{w, ω/w + c1γ + c2} ≤ 1. Define Z := I− c2∆. Then the maximal mixing of721

nodes v, u generated by such MPNN after m layers is722

mix
y
(m)
G

(v, u) ≤ γk
(
m

√
dvdu
2|E|

(
1 + 2c(2)(1 + γs)

)
+

1

c2

(
Z2(I− Z2m)(I+ Z)−1∆†

)
vu

)
+ 2

c(2)

c2
γk

((
(1 + γs)I−∆

)
(I− Z2m)(I+ Z)−1∆†

)
vu
,

where k = s = 1 if A = Asym or k = 4, s = 2 if A = Arw.723
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Proof. We first focus on the symmetrically normalized case A = Asym = D−1/2AD−1/2, which724

we recall that we can rewrite as Asym = I−∆, where ∆ is the (normalized) graph Laplacian (9).725

Since w ≤ 1 and the message-passing matrix is symmetric, by Theorem 3.2, we can bound the726

maximal mixing of an MPNN as in the statement by727

mix
y
(m)
G

(v, u) ≤
m−1∑
k=0

(
Sm−kdiag(Sk1)Sm−k + c(2)Qk

)
vu
.

We focus on the first sum. Since A = D1/2(D−1A)D−1/2, where D−1A is a row-stochastic matrix,728

we see that729

Sij ≤
ω

w
δij + c1γδij + c2Aij ,

meaning that we can write S ≤ αI+ c2A, where α = ω/w + c1γ, using the convention introduced730

above. Accordingly, we can estimate the row-sum of the powers of S by using (Ap1)i ≤ γ as731

(Sk1)i ≤
k∑

p=0

(
k

p

)
αk−pcp2(A

p1)i ≤ γ

k∑
p=0

(
k

p

)
αk−pcp2 = γ(α+ c2)

k ≤ γ,

where the last inequality simply follows from the assumptions. Therefore, we find732 (m−1∑
k=0

Sm−kdiag(Sk1)Sm−k
)
vu

≤ γ

m−1∑
k=0

(S2(m−k))vu = γ

m∑
k=1

(S2k)vu. (28)

By the assumptions on the regularity of the message-functions, we can estimate S from above by733

S ≤ αI+ c2A = (α+ c2)I− c2∆ ≤ Z, and derive734 (m−1∑
k=0

Sm−kdiag(Sk1)Sm−k
)
vu

≤ γ

m∑
k=1

(Z2k)vu.

From the spectral decomposition of the graph-Laplacian in (9) and the properties that λ0 = 0 and735

ϕ0(v) =
√
dv/2|E|, we find736

m∑
k=1

(Z2k)vu =

m∑
k=1

n−1∑
ℓ=0

(1− c2λℓ)
2kϕℓ(v)ϕℓ(u)

= m

√
dvdu
2|E| +

n−1∑
ℓ=1

(1− (1− c2λℓ)
2(m+1)

1− (1− c2λℓ)2
− 1

)
ϕℓ(v)ϕℓ(u)

= m

√
dvdu
2|E| +

n−1∑
ℓ=1

( (1− c2λℓ)
2(1− (1− c2λℓ)

2m)

(2− c2λℓ)c2λℓ

)
ϕℓ(v)ϕℓ(u).

Since c2 ≤ 1 and G is not bipartite, we derive that (I+ Z) = 2I− c2∆ is invertible and hence that737

the following decomposition holds:738

(I+ Z)−1 =
∑
ℓ≥0

1

2− c2λℓ
ϕℓϕ

⊤
ℓ .

Therefore, we can rely on the spectral-decomposition of the pseudo-inverse of the graph-Laplacian in739

(10) to get740 (m−1∑
k=0

Sm−kdiag(Sk1)Sm−k
)
vu

≤ γ
(
m

√
dvdu
2|E| +

1

c2

(
Z2(I− Z2m)(I+ Z)−1∆†

)
vu

)
. (29)

It now remains to bound the term c(2)
∑m−1

k=0 (Qk)vu. First, we note that by the symmetry of A and741

the estimate (Sk1)i ≤ γ, that we derived above, we obtain742

c(2)
m−1∑
k=0

(Qk)vu ≤ 2c(2)γ
(m−1∑

k=0

(AZ2(m−k−1))vu + γ(Z2(m−k−1))vu

)
.

22



Then we can use the identity A = I−∆, to find743

c(2)
m−1∑
k=0

(Qk)vu ≤ 2c(2)γ

m−1∑
k=0

(
((1 + γ)I−∆)Z2(m−k−1)

)
vu
. (30)

By relying on the spectral decomposition as above, we finally get744

c(2)
m−1∑
k=0

(Qk)vu ≤ 2c(2)γ
(
m

√
dvdu
2|E| (1 + γ)

)
+ 2c(2)γ

(∑
ℓ>0

(1 + γ − λℓ)
1− (1− c2λℓ)

2m

(2− c2λℓ)c2λℓ
ϕℓ(v)ϕℓ(u)

)
.

As done previously, we can rewrite the last terms via (I+ Z)−1 as745

c(2)
m−1∑
k=0

(Qk)vu ≤ 2c(2)γ
(
m

√
dvdu
2|E| (1 + γ)

)
+ 2

c(2)

c2
γ
(
(1 + γ)I−∆)(I− Z2m)(I+ Z)−1∆†

)
vu
. (31)

We can then combine (29) and (31) and derive the bound we claimed, when A = Asym. For the case746

A = Arw = D−1A, it suffices to notice that S ≤ α′I+ c2A, where α′ = ω/w + c1 and that747

(1⊤Sk)i ≤
∑
j

k∑
p=0

(
k

p

)
(α′)k−pcp2((D

−1A)p)ji ≤
dmax

dmin
(α′ + c2)

k ≤ γ2,

where we have used that by assumption α′ + c2 ≤ 1. Similarly, we get (Sm−k)⊤S(m−k) ≤748

γ2Z2(m−k). Finally, the Qk-term can be bounded by749

c(2)
m−1∑
k=0

(Qk)vu ≤ 2c(2)
(m−1∑

k=0

γ4AsymZ
2(m−k−1) + γ6Z2(m−k−1)

)
,

and we can follow the previous steps in the symmetric case to complete the proof.750

Corollary D.3. Under the assumptions of Theorem D.2, if the message functions in (2) are linear –751

as for GCN, SAGE, or GIN – then the maximal mixing induced by such an MPNN of m layers is752

mix
y
(m)
G

(v, u) ≤
(dmax

dmin

)k(
m

√
dvdu
2|E| +

1

c2

(
Z2(I− Z2m)(I+ Z)−1∆†

)
vu

Proof. This follows from Theorem D.2 simply by noticing that if the message-function ψ in (2) is753

linear, then the upper bound for the norm of the Hessian can be taken to be zero, i.e. c(2) = 0.754

D.3 Proof of Theorem 4.4755

We now expand the previous results to derive the minimal number of layers required to induce mixing756

in the case of bounded weights, showing that the depth may need to grow with the commute time of757

nodes. We recall that γ is
√
dmax/dmin while 0 = λ0 < λ1 ≤ . . . ≤ λn−1 are the eigenvalues of the758

symmetrically normalized graph Laplacian (9). We restate Theorem 4.4 below.759

Theorem 4.4. Consider an MPNN satisfying Theorem 3.2, with max{w, ω/w + c1γ + c2} ≤ 1,760

and A = Asym. If ÕSQv,u(m,w) · (mixyG
(v, u)) ≤ 1, i.e. the MPNN generates mixing mixyG

(v, u)761

among the features associated with nodes v, u, then the number of layers m satisfies762

m ≥ τ(v, u)

4c2
+

|E|√
dvdu

(mixyG
(v, u)

γµ
− 1

c2

(γ + |1− c2λ
∗|r−1

λ1
+ 2

c(2)

µ

))
,

where r = dG(v, u), µ = 1 + 2c(2)(1 + γ) and |1− c2λ
∗| = max0<ℓ≤n−1 |1− c2λℓ| < 1.763
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Proof. From now on we let r be the shortest-walk distance between v and u. If m < r/2, then we764

incur the under-reaching issue and hence we get zero mixing among the features associated with765

nodes v, u. Accordingly, we can choose m ≥ r/2. We need to provide an estimate on the maximal766

mixing induced by an MPNN as in the statement. We focus on the bound in Theorem 3.2, and recall767

that the first sum can be bounded as in (28) by768

(m−1∑
k=0

Sm−kdiag(Sk1)Sm−k
)
vu

≤ γ

m∑
k=1

(S2k)vu ≤ γ

m∑
k=1

(Z2k)vu,

where Z := I− c2∆. We can then bound the geometric sum by accounting for the odd powers too.769

Therefore, we get770

γ

m∑
k=1

(Z2k)vu ≤ γ

2m∑
k=0

(Zk)vu = γ

2m∑
k=0

∑
ℓ≥0

(1− c2λℓ)
kϕℓ(v)ϕℓ(u).

As for the proof of Theorem D.2, we separate the contribution of the zero-eigenvalue and that of the771

positive ones, so we find that772

2m∑
k=0

(Zk)vu ≤ (2m+ 1)

√
dvdu
2|E| +

∑
ℓ>0

(1− (1− c2λℓ)
2m+1

c2λℓ

)
ϕℓ(v)ϕℓ(u)

= (2m+ 1)

√
dvdu
2|E| +

∑
ℓ>0

1

c2λℓ
ϕℓ(v)ϕℓ(u)−

∑
ℓ>0

(1− c2λℓ)
2m+1

c2λℓ
ϕℓ(v)ϕℓ(u). (32)

Thanks to the characterization of commute-time provided in (11), we derive773

∑
ℓ>0

1

c2λℓ
ϕℓ(v)ϕℓ(u) = −τ(v, u)

4c2|E|
√
dvdu +

1

2c2

∑
ℓ>0

1

λℓ

(
ϕ2ℓ(v)

√
du
dv

+ ϕ2ℓ(u)

√
dv
du

)
≤ −τ(v, u)

4c2|E|
√
dvdu +

1

2c2λ1

(√dv
du

+

√
du
dv

−
√
dvdu
|E|

)
(33)

where in the last inequality we have used that
∑

ℓ>0 ϕ
2
ℓ(v) = 1 − ϕ20(v) since {ϕℓ} constitute an774

orthonormal basis, with ϕ0(v) =
√
dv/2|E|, and that λℓ ≥ λ1, for all ℓ > 0. Next, we estimate the775

second sum in (32), and we note that λ∗ in the statement is either λ1 or λn−1:776

−
∑
ℓ>0

(1− c2λℓ)
2m+1

c2λℓ
ϕℓ(v)ϕℓ(u) ≤

∑
ℓ>0

|1− c2λ
∗|2m+1

c2λℓ
|ϕℓ(v)ϕℓ(u)|

≤ |1− c2λ
∗|2m+1

2c2λ1

∑
ℓ>0

(ϕ2ℓ(v) + ϕ2ℓ(u))

≤ |1− c2λ
∗|r

2c2λ1

(
2− dv

2|E| −
du
2|E|

)
, (34)

where in the last inequality we have used that |1− c2λ
∗| < 1 and that m ≥ r/2 (otherwise we would777

have zero-mixing due to under-reaching). Therefore, by combining (33) and (34), we derive that the778

first sum on the right hand side of (7) can be bounded from above by779

(m−1∑
k=0

Sm−kdiag(Sk1)Sm−k
)
vu

≤ γ
(
(2m+ 1)

√
dvdu
2|E| − τ(v, u)

4c2|E|
√
dvdu

)
+

γ

2c2λ1

(√dv
du

+

√
du
dv

−
√
dvdu
|E|

)
+ γ

|1− c2λ
∗|r

2c2λ1

(
2− dv

2|E| −
du
2|E|

)
. (35)
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Next, we continue by estimating the second sum entering the right hand side of (7). We recall that by780

(30), we have781

c(2)
m−1∑
k=0

(Qk)vu ≤ 2c(2)γ

m−1∑
k=0

(
((1 + γ)I−∆)Z2(m−k−1)

)
vu

= 2c(2)γ

m−1∑
k=0

(
((1 + γ)I−∆)Z2k

)
vu

≤ 2c(2)γ

2(m−1)∑
k=0

(
((1 + γ)I−∆)Zk

)
vu

= 2c(2)γ

2(m−1)∑
k=0

∑
ℓ≥0

((1 + γ)− λℓ)(1− c2λℓ)
kϕℓ(v)ϕℓ(u).

We then proceed as above, and separate the contributions associated with the kernel of the Laplacian,782

to find783

m−1∑
k=0

(Qk)vu ≤ 2γ
(
(1 + γ)(2m− 1)

√
dvdu
2|E|

)
+ 2γ(1 + γ)

∑
ℓ>0

1

c2λℓ
(1− (1− c2λℓ)

2m−1)ϕℓ(v)ϕℓ(u) (36)

− 2γ

c2

∑
ℓ>0

(1− (1− c2λℓ)
2m−1)ϕℓ(v)ϕℓ(u). (37)

For the term in (36), we can apply the same estimate as for the case of (32). Similarly, we can bound784

(37) by785

−2γ

c2

∑
ℓ>0

(1− (1− c2λℓ)
2m−1)ϕℓ(v)ϕℓ(u) ≤

2γ

c2

∑
ℓ>0

1

2

(
ϕ2ℓ(v)+ϕ2ℓ(u)

)
≤ γ

c2

(
2− dv

2|E| −
du
2|E|

)
.

Therefore, we can finally bound the Qk-terms in (7) by786

c(2)
m−1∑
k=0

(Qk)vu ≤ 2c(2)γ
(
(1 + γ)(2m− 1)

√
dvdu
2|E| − (1 + γ)

τ(v, u)

4c2|E|
√
dvdu

)
+ c(2)γ

(1 + γ

c2λ1

(√dv
du

+

√
du
dv

−
√
dvdu
|E|

)
c(2)γ

1 + γ

c2λ1
|1− c2λ

∗|r−1
(
2− dv

2|E| −
du
2|E|

))
+
c(2)γ

c2

(
2− dv

2|E| −
du
2|E|

)
. (38)

We can the combine (35) and (38), to find that the maximal mixing induced by an MPNN of m layers787

as in the statement of Theorem 4.4, is788

mix
y
(m)
G

(v, u) ≤ γ
√
dvdu

(m
|E|µ+

1

2|E| −
τ(v, u)

4c2|E|
µ
)

+ γ
µ

2c2λ1

(√dv
du

+

√
du
dv

−
√
dvdu
|E|

)
+ γ

µ

2c2λ1
|1− c2λ

∗|r−1
(
2− dv

2|E| −
du
2|E|

)
+
γc(2)

c2

(
2− dv

2|E| −
du
2|E|

)
, (39)

where µ := 1 + 2c(2)(1 + γ) and we have removed the term −2c(2)γ(1 + γ)
√
dvdu/2|E| ≤ 0.789

Moreover, since λ1 < 1 unless G is the complete graph (and if that was the case, then we could take790

the distance r below to simply be equal to 1) and c2 ≤ 1, we find791

γ
√
dvdu

1

2|E|
(
1− µ

c2λ1

(
1 +

|1− c2λ
∗|r−1

2

(√dv
du

+

√
du
dv

))
≤ 0.
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Accordingly, we can simplify (39) as792

mix
y
(m)
G

(v, u) ≤ γ
√
dvdu

(m
|E|µ− τ(v, u)

4c2|E|
µ
)
+

γµ

2c2λ1

(√dv
du

+

√
du
dv

)
+

γµ

c2λ1
|1− c2λ

∗|r−1 + 2
γc(2)

c2
.

We can now rearrange the terms and obtain793

m ≥ τ(v, u)

4c2
+

|E|√
dvdu

(mixyG
(v, u)

γµ
− 1

2c2λ1

(√dv
du

+

√
du
dv

)
− 1

c2λ1
|1− c2λ

∗|r−1 − 2
c(2)

c2

1

µ

)
≥ τ(v, u)

4c2
+

|E|√
dvdu

(mixyG
(v, u)

γµ
− 1

2c2λ1
(2γ)− 1

c2λ1
|1− c2λ

∗|r−1 − 2
c(2)

c2

1

µ

)
≥ τ(v, u)

4c2
+

|E|√
dvdu

(mixyG
(v, u)

γµ
− 1

c2

(γ + |1− c2λ
∗|r−1

λ1
+ 2

c(2)

µ

))
,

which completes the proof.794

We note that the case of A = Arw follows easily since one can adapt the previous argument exactly as795

in the proof of Theorem D.2, which lead to the same bounds once we replace γ with γ′ = dmax/dmin.796

First, we note that the bounds again simplify further and become sharper if the message-functions ψ797

in (2) are linear.798

Corollary D.4. If the assumptions of Theorem 4.4 are satisfied, and the message-functions ψ are799

linear – as for GCN, GIN, GraphSAGE – then800

m ≥ τ(v, u)

4c2
+

|E|√
dvdu

(mixyG
(v, u)

γ
− 1

c2λ1

(
γ + |1− c2λ

∗|r−1
))
.

D.4 The case of the unnormalized adjacency matrix801

In this Section we extend the analysis on the depth required to induce mixing, to the case of the802

unnormalized adjacency matrix A. When A = A, the aggregation in (2) is simply a sum over the803

neighbours, a case that covers the classical GIN-architecture. In this way, the messages are no longer804

scaled down by the degree of (either) the endpoints of the edge, which means that, in principle, the805

whole GNN architecture is more sensitive but independent of where we are in the graph. First, we806

generalize Theorem 4.4 to this setting. We note that the same conclusions hold, provided that the807

maximal operator norm of the weights is smaller than the maximal degree dmax; this is not surprising,808

since it accounts for the lack of the normalization of the messages.809

Corollary D.5. Consider an MPNN as in (2) with A = A. If ω/(wdmax) + c1 + c2 ≤ 1 and810

wdmax ≤ 1, then the minimal depth m satisfies the same lower bound as in Theorem 4.4 with γ = 1.811

Proof. First, we note that in this case812

Sij ≤
ω

w
δij + c1dmaxδij + c2Aij ≤ dmax

(
αδij + c2(Asym)ij

)
,

where α = ω/(wdmax) + c1. In particular, we find that813

(Sk1)i ≤
k∑

p=0

(
k

p

)
αk−pcp2(A

p1)i ≤ (dmax)
k(α+ c2)

k.

Accordingly, we can bound the first sum in (7) as814 (m−1∑
k=0

w2m−k(dmax)
k(α+ c2)

k(dmax)
2(m−k)

(
αI+ c2Asym

)2(m−k))
vu

≤
(m−1∑

k=0

Z2(m−k)
)
vu
,

where we have used the assumptions α+ c2 ≤ 1, and wdmax ≤ 1, and the definition Z := I− c2∆815

in Theorem D.2. Since this term is the same one entering the argument in the proof of Theorem 4.4816

(once we set γ = 1) we can proceed in the same way to estimate it. A similar argument works for the817

sum of the Qk terms, which, thanks to our assumptions, can still be bounded as in (30) with γ = 1 so818

that we can finally simply copy the proof of Theorem 4.4.819
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A relative measurement for ÕSQ. To account for the fact that different message-passing matrices820

A may lead to inherently quite distinct scales (think of the case where the aggregation is a mean vs821

when it is a sum), one could modify the over-squashing characterization in Definition 4.2 as follows:822

Definition D.6. Given an MPNN with capacity (m,w), we define the relative over-squashing of823

nodes v, u as824

ÕSQ
rel

v,u(m,w) :=


∑m−1

k=0 w2m−k−1
(
w(Sm−k)⊤diag(1⊤Sk)Sm−k + c(2)Qk

)
vu

maxi,j∈V

∑m−1
k=0 w2m−k−1

(
w(Sm−k)⊤diag(1⊤Sk)Sm−k + c(2)Qk

)
ij


−1

.

The normalization proposed here is similar to the idea of relative score introduced in [53]. This way,825

a larger scale induced by a certain choice of the message-passing matrix A, is naturally accounted826

for by the relative measurement. In particular, the relative over-squashing is now quantifying the827

maximal mixing among a certain pair of nodes v, u compared to the maximal mixing that the same828

MPNN over the same graph can generate among any pair of nodes. In our theoretical development829

in Section 4 we have decided to rely on the absolute measurement since our analysis depends on830

the derivation of the maximal mixing induced by an MPNN (i.e. upper bounds) which translate831

into necessary criteria for an MPNN to generate a given level of mixing. In principle, to deal with832

relative measurements, one would also need some form of lower bound on the maximal mixing and833

hence address also whether the conditions provided are indeed sufficient. We reserve a thorough834

investigation of this angle to future work.835

E The case of node-level tasks836

In this Section we discuss how one can extend our analysis to node-level tasks and further comment837

on the novelty of our approach compared to existing results in [8, 21]. First, we emphasize that the838

analysis on the Jacobian of node features carried over in [8, 21] cannot be extended to graph-level839

functions and that in fact, our notion of mixing is needed to assess how two different node-features840

are communicating when the target is a graph-level function.841

From now on, let us consider the case where the function we need to learn is Y : Rn×d → Rn×d, and842

as usual we assume it to be equivariant with respect to permutations of the nodes. A natural attempt843

to connect the results in [8, 21] and the expressivity of the MPNNs – in the spirit of our Section 3 –844

could be to characterize the first-order interactions (or mixing of order 1) of the features associated845

with nodes v, u with respect to the underlying node-level task Y as846

mix
(1)
Y (v, u) = max

X
max

1≤α,β≤d

∣∣∣∣∂(Y(X))αv

∂xβu

∣∣∣∣ ,
where (Y(X))v ∈ Rd is the value of the node-level map at v. Accordingly, one can then use Theorem847

C.1 to derive upper bounds on the maximal first-order interactions that MPNNs (2) can induce among848

nodes. As a consequence of this approach, we would still find that MPNNs struggle to learn functions849

with large mix
(1)
Y (v, u) if nodes v, u have large commute time. In particular, in light of Theorem C.1,850

we can extend the measure of over-squashing to the case of first-order interactions for node-level tasks.851

Once again, below we tacitly assume that the non-linear activation σ satisfies |σ′| ≤ 1, although it is852

straightforward to extend the formulation to the general case.853

Definition E.1. Given an MPNN as in (2) with capacity (m,w), we define the first-order over-854

squashing of v, u as855

OSQ(1)
v,u(m,w) :=

(
mix

(1)
Y (v, u)

)−1

.

As for the case of graph-level tasks, we can then study a proxy (lower bound) for the node-level856

over-squashing of order 1 by:857

Definition E.2. Given an MPNN as in (2) with capacity (m,w) and S defined in (5), we approximate858

the first-order over-squashing of v, u as859

ÕSQ
(1)

v,u(m,w) :=
(
(cσw)

m(Sm)vu

)−1

.

27



It follows then from Theorem C.1, that a necessary condition for an MPNN to learn a node-level860

function Y with first-order mixing mix
(1)
Y (v, u) is861

ÕSQ
(1)

v,u(m,w) <
(
mix

(1)
Y (v, u)

)−1

.

It is straightforward to argue as in Theorem 4.4 and [8] for example, to derive that nodes at higher862

effective resistance will incur higher first-order over-squashing. Accordingly:863

An MPNN as in (2) with bounded capacity, cannot learn node-level functions with high first-order864

interactions among nodes v, u with high effective resistance.865

Building a hierarchy of measures. Although first-order derivatives might be enough to capture866

some form of over-squashing for node-level tasks, even in this scenario we can study the pairwise867

mixing induced at a specific node, and hence consider the curvature (or Hessian) of the node-level868

function Y – which is more expressive than the first-order Jacobian. Accordingly, for a node-level869

function Y : Rn×d → Rn×d, we say that it has second-order interactions (or mixing of order 2)870

mix
(2)
Y (i, v, u) of the features associated with nodes v, u at a given node i when871

mix
(2)
Y (i, v, u) = max

X

∥∥∥∥∂2(Y(X))i
∂xu∂xv

∥∥∥∥ .
We can then restate Theorem C.2 as follows – we let Y(m) be the node-level function computed by872

an MPNN after m layers.873

Corollary E.3. Given MPNNs as in (2), let σ and ψ(t) be C2 functions and assume |σ′|, |σ′′| ≤ cσ,874

∥Ω(t)∥ ≤ ω, ∥W(t)∥ ≤ w, ∥∇1ψ
(t)∥ ≤ c1, ∥∇2ψ

(t)∥ ≤ c2, ∥∇2ψ(t)∥ ≤ c(2). Let S ∈ Rn×n be875

defined as in (5). Given nodes i, v, u ∈ V, if P(ℓ)
(vu) ∈ Rn is as in (14) and m is the number of layers,876

then the maximal mixing of order 2 of the MPNN at node i satisfies877

mix
(2)

Y(m)(i, v, u) ≤
m−1∑
k=0

∑
j∈V

(cσw)
2m−k−1 w(Sm−k)jv(S

k)ij(S
m−k)ju

+ c(2)
m−1∑
ℓ=0

(cσw)
m+ℓ(Sm−1−ℓP

(ℓ)
(vu))i. (40)

Similarly to Definition 4.2, we can use the maximal mixing (at the node-level) to characterize the878

over-squashing of order two at a specific node as follows: as usual, for simplicity we assume that879

cσ = 1.880

Definition E.4. Given an MPNN as in (2) with capacity (m,w) and S defined in (5), we approximate881

the second-order over-squashing of v, u at node i as882

ÕSQ
(2)

i,v,u(m,w) :=
(m−1∑

k=0

∑
j∈V

w2m−k(Sm−k)jv(S
k)ij(S

m−k)ju

+ c(2)
m−1∑
ℓ=0

wm+ℓ(Sm−1−ℓP
(ℓ)
(vu))i

)−1

.

It is then straightforward to extend our theoretical analysis to derive how ÕSQ
(2)

prevents MPNNs883

from learning node-level functions with high-mixing at some specific node i of features associated884

with nodes v, u at large commute time. To support our claim, consider the setting in Theorem 4.4 and885

hence let A = Asym = D−1/2AD−1/2. Under the same assumptions of Theorem 4.4, we find886

(Sk)ij ≤ 1.

We can then simply copy the proof of Theorem 4.4 once we set γ = 1 and extend its conclusions as887

follows:888
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Corollary E.5. Consider an MPNN as in (2) and let the assumptions of Theorem 4.4 hold. If the889

MPNN generates second-order mixing mix
(2)
Y (i, v, u) at node i, with respect to the features associated890

with nodes v, u, then the number of layers m satisfy:891

m ≥ τ(v, u)

4c2
+

|E|√
dvdu

(mixyG
(v, u)

µ
− 1

c2

(1 + |1− c2λ
∗|r−1

λ1
+ 2

c(2)

µ

))
,

where µ = 1 + 4c(2).892

Accordingly, in this Section we have adapted our results from graph-level tasks to node-level tasks893

and proved that:894

The message of Section E. An MPNN of bounded capacity (m,w), cannot learn node-level functions895

that, at some node i, induce high (first order or second order) mixing of features associated with896

nodes v, u whose commute time is large.897

F Additional details of experiments and further ablations 5898

F.1 The role of mixing899

We further test the considered MPNN architectures on their performance with respect to different900

mixings. To this end, we consider again the tanh-based mixing as in our previous tasks (i.e., regressing901

targets yi = tanh(xiui + xivi) for each graph Gi in the dataset), as well as another mixing based on902

the exponential function (i.e., with targets yi = exp(xiui + xivi)). We note that these two tasks differ903

significantly in terms of their maximal mixing values (4) (shown in Table 1). Thus, according to (8)904

and Theorem 4.4, we would expect that MPNNs perform significantly worse in the case of higher905

maximal mixing, i.e., for the exponential-based mixing compared to the tanh-mixing. To confirm906

this empirically, we train the MPNNs on both types of mixing and provide the resulting relative907

MAEs (i.e., MAE divided by the L1-norm of the targets) in Table 1. We can see that all four MPNNs908

perform significantly better on the tanh-mixing than on the exponential-based mixing. Moreover,909

increasing the range for the exponential-based mixing from 1 to 1.5 further impairs the performance910

of all considered MPNNs. In order to check if this difference in performance can simply be explained911

by a higher capacity required by a neural network to accurately approximate the mapping exp(x+ y)912

compared to tanh(x+ y) for some inputs x, y ∈ R, we train a simple two-layer feed-forward neural913

network (with 2 inputs, i.e., x and y) on both mappings. The trained networks reach a similarly low914

relative MAE of 4.6× 10−4 for the tanh(x+ y) mapping as well as 4.1× 10−4 for the exp(x+ y)915

mapping using an input range of (0, 1) and 4.0× 10−4 for an input range of (0, 1.5). Thus, we can916

conclude that the significant differences in the obtained results in Table 1 are not caused by a higher917

capacity required by a neural network to learn the underlying mappings of the different mixings.918

Table 1: Relative MAE of GCN, GIN, GraphSAGE and GatedGCN on different choices of mixing on
synthetic ZINC for a fixed 0.8-quantile of the commute time distributions over graphs Gi.

Mixing input interval maximal mixing GCN GIN GraphSAGE GatedGCN

tanh(xiui + xivi) (0, 1) ≈ 0.77 0.024 0.014 0.006 0.004
exp(xiui + xivi) (0, 1) ≈ 7.4 0.043 0.021 0.033 0.008
exp(xiui + xivi) (0, 1.5) ≈ 20.1 0.054 0.035 0.075 0.014

F.2 Computing the commute time919

The commute time τ between two nodes u, v ∈ V on a graph G can be efficiently computed via the920

effective resistance R, with τ(u, v) = 2|E|R(u, v). In order to compute the effective resistance R, we921

introduce the (non-normalized) Laplacian matrix L = D−A, where D is the degree matrix. The922

effective resistance can then be computed by923

R(u, v) = Γuu + Γvv − 2Γuv,

where Γ is the the Moore-Penrose inverse of924

L+
1

|V |1|V |×|V |,
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with 1|V |×|V | ∈ R|V |×|V | being a matrix with all entries set to one.925

F.3 On the training error926

In this section, we report the training error of the MPNNs trained in section 5. Fig. 5 shows the927

training MAE corresponding to the experiment in section 5.1, while Fig. 6 shows the training MAE928

corresponding to section 5.2. We can see that in both cases, the training MAE exhibits the same929

qualitative behavior as the reported test MAE in the main paper, i.e., the training MAE increases930

for increasing levels of commute time τ , while it decreases for increasing number of MPNN layers,931

which further validates our claim that over-squashing hinders the expressive power of MPNNs.
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Figure 5: Train MAE of GCN, GIN, Graph-
SAGE, and GatedGCN on synthetic ZINC,
where the commute time of the underlying mix-
ing is varied, while the MPNN architecture is
fixed (e.g., depth, number of parameters), i.e.,
mixing according to increasing values of the
α-quantile of the τ -distribution over the ZINC
graphs.
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Figure 6: Train MAE of GCN, GIN, Graph-
SAGE, and GatedGCN on synthetic ZINC,
where the commute time is fixed to be high
(i.e., at the level of the 0.8-quantile), while only
the depth of the underlying MPNN is varied
between 5 and 32 (all other architectural compo-
nents are fixed).

932

F.4 On the over-squashing measure933

In this section, we examine how the over-squashing measure ÕSQ (as of Definition 4.2) depends on934

the commute time τ as well as on the depth of the underlying MPNN. To this end, we follow the935

experimental setup of section 5.1 and 5.2, but instead of training the models and presenting their936

performance in terms of the test MAE, we compute ÕSQ of the underlying models. We can see in937

Fig. 7 that ÕSQ increases for increasing values of the α-quantile of the τ -distribution for all MPNNs938

considered here. Moreover, we can see in Fig. 8 that ÕSQ decreases for increasing number of layers939

for all considered models.940
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Figure 7: ÕSQ (Definition 4.2) of GCN,
GIN, GraphSAGE, and GatedGCN on synthetic
ZINC, where the commute time of the underly-
ing mixing is varied, while the MPNN architec-
ture is fixed (e.g., depth, number of parameters),
i.e., mixing according to increasing values of the
α-quantile of the τ -distribution over the ZINC
graphs.
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Figure 8: ÕSQ (Definition 4.2) of GCN,
GIN, GraphSAGE, and GatedGCN on synthetic
ZINC, where the commute time is fixed to be
high (i.e., at the level of the 0.8-quantile), while
only the depth of the underlying MPNN is var-
ied between 5 and 32 (all other architectural
components are fixed).
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