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ABSTRACT

How do two individuals differ when performing the same action? In this work, we
introduce Video Action Differencing (VidDiff), the novel task of identifying subtle
differences between videos of the same action, which has numerous applications,
such as coaching and skill learning. To enable development on this new task,
we first create VidDiffBench, a benchmark dataset containing 549 video pairs,
with human annotations of 4,469 fine-grained action differences and 2,075 times-
tamps indicating where these differences occur. Our experiments demonstrate that
VidDiffBench poses a significant challenge for state-of-the-art large multimodal
models (LMMs), such as GPT-4o and Qwen2-VL. By analyzing the failure cases
of LMMs on VidDiffBench, we highlight two key challenges for this task: local-
izing relevant sub-actions over two videos and fine-grained frame comparison. To
overcome these, we propose the VidDiff method, an agentic workflow that breaks
the task into three stages: action difference proposal, keyframe localization, and
frame differencing, each stage utilizing specialized foundation models. To en-
courage future research in this new task, we release the benchmark1 and code2.

1 INTRODUCTION

The ability to compare two videos of the same action and discern their detailed differences plays a
critical role in a wide variety of applications. For instance, in fitness coaching, a novice learning
to perform a barbell squat typically watches instructional videos and then compares their actions
in a recorded video to identify discrepancies between their movements and those of an expert. In
medical training, junior surgeons compare videos of themselves performing surgical procedures with
reference videos from experts to identify errors and improve surgical skills.

There are two critical obstacles. First is precise localization of sub-actions where differences might
occur: finding differences requires aligning sub-action frames where differences might occur. Sec-
ond is fine-grained understanding: the ability to perceive subtle visual differences in motions.

Current research on video difference understanding largely emphasizes feature visualization (Bal-
akrishnan et al., 2015) or coarse-grained comparisons between different actions or interacting ob-
jects (Nagarajan & Torresani, 2024). However, many real-world applications demand fine-grained
comparisons between videos of the same action, a challenge that has received comparatively little
attention.

We introduce a new task, Video Action Differencing (VidDiff). Given two videos of the same action,
(vA, vB), along with a description of the action, the task is to generate two sets of statements: one
that is more true for vA and another for vB . For example, in a video pair featuring an expert and a
novice performing a barbell squat, key differences might include “knees caving in more in video A”
and “the squat is deeper in video B” (Figure 1). Since generating the initial difference candidates
relies heavily on language capabilities, we also introduce a simpler ‘closed’ setting that focuses on
video analysis. In this setting, the target difference strings are provided, and the task is to predict
whether each applies more to video A or B.

To facilitate research in this new direction, we present VidDiffBench, a comprehensive benchmark
designed for video action differencing. VidDiffBench contains 549 video pairs drawn from domains

1Benchmark: https://huggingface.co/datasets/jmhb/VidDiffBench
2Project page: http://jmhb0.github.io/viddiff

1

https://huggingface.co/datasets/jmhb/VidDiffBench
http://jmhb0.github.io/viddiff


Published as a conference paper at ICLR 2025

Figure 1: The Video Action Differencing task and benchmark (VidDiffBench). Given a pair of
videos and an action, the task is to generate a list of differences as natural language descriptions.
Our VidDiffBench consists of annotated differences across diverse domains, where the differences
are relevant to human skill learning. The first row emphasizses the first key challenge: localization
of sub-actions between segments of the video for comparison. The second row higlights the second
key challenge: fine-grained image understanding of actions in order to perform comparison.

that require expert feedback, such as fitness, sports, music, and surgery. The videos are annotated
with 4,469 fine-grained differences (⇠8 per video pair), along with 2,075 timestamp annotations
that identify where these differences occur. To ensure the annotated differences are relevant to skill
learning, we create a taxonomy of action differences that leverages domain expertise. This makes
VidDiffBench the first large-scale dataset dedicated to video action differencing.

In addition to introducing a new task and benchmark, we propose the VidDiff method, an agentic
workflow (Anthropic, 2025) that addresses the complexity of video action differencing. The method
incorporates large language models (LLMs) to propose differences, localizes relevant frames us-
ing contrastive language-image models (CLIP), and compares frames for differences using vision-
language models (VLMs). We further benchmark both open-source (Qwen2-VL, LLaVA-Video)
and proprietary (GPT-4o, Gemini-1.5 pro, Claude 3.5 Sonnet)) large multimodal models (LMMs)
on VidDiffBench. Our results demonstrate that VidDiff performs strongly over open and closed
settings, setting a new benchmark for this task and underscoring the importance of structured ap-
proaches in fine-grained video comparison.

2 RELATED WORK

Skilled Action Understanding in Videos Video comparison has many potential applications, and
our benchmark focuses on the specific goal of natural language feedback in skill learning. Most of
the video action comparison papers from this section’s first paragraph are systems for skill feedback,
showing that skill feedback is well-motivated. Many works give feedback by classifying coarse
motion errors, or by visualizing motions, with applications in yoga (Zhao et al., 2022; Thoutam et al.,
2022; Chen et al., 2018; Dittakavi et al., 2022; Chen & Yang, 2020; Xie et al., 2019), physical therapy
(Velloso et al., 2013), weightlifting (Parmar et al., 2022; Ogata et al., 2019), and general fitness
(Fieraru et al., 2021; Ashwin et al., 2023). The feedback tends to be coarse-grained. In contrast, our
task focuses on open natural language feedback, and identifying fine-grained feedback. Recently,
the Ego-Exo4D dataset (Grauman et al., 2023) provides videos with expert commentary on skilled
actions, which is promising for developing instructional feedback systems. This, along with existing
works that give language feedback (Fieraru et al., 2021; Parmar et al., 2022; Velloso et al., 2013),
support our claim that language is a good medium for providing skill feedback to humans. Zooming
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out from skills feedback, skilled action understanding – which includes foundational capabilities
for feedback systems – has attracted enormous interest. For example, in sports, music, dance, and
surgery, prior works have tackled action recognition (Verma et al., 2020; Shahroudy et al., 2016;
Soomro et al., 2012; Zhang et al., 2013; Wang & Zemel, 2016; Chung et al., 2021); spatial and
temporal action localization / segmentation (Shao et al., 2020; Liu et al., 2022; Li et al., 2021b;
Zhang et al., 2023b; Ibrahim et al., 2016; Garrow et al., 2021; Li et al., 2021b; Aklilu et al., 2024);
human pose and motion estimation / reconstruction (Cai et al., 2022; Tang et al., 2023; Wang et al.,
2023; Andriluka et al., 2014; Li et al., 2021a; Fieraru et al., 2021; Zhu et al., 2022; Bera et al., 2023;
Liu et al., 2024; Grauman et al., 2023); and hand and tool pose estimation (Doosti, 2019; Johnson
et al., 2020; 2016; Gao et al., 2014; Grauman et al., 2023). Skilled action domains also tackle
higher level reasoning tasks like question answering (Li et al., 2024), and action quality assessment
(Pirsiavash et al., 2014; Parmar & Tran Morris, 2017).

Visual Difference Understanding Only a few prior works have considered video comparison in
actions. They mostly emphasize skill learning in similar categories to our benchmark, but their
methods tend to tackle single domains. One approach visualizes the user’s motion against a target
expert motion in video or in augmented reality (AR) (Trout, 2013; Motokawa & Saito, 2006; Han
et al., 2016; Kyan et al., 2015; Kurillo et al., 2008). Since interpreting discrepancies between mo-
tions is challenging, especially for novices, other works generate visualizations of differences (Liu
et al., 2023; Liao et al., 2023; Balakrishnan et al., 2015). In contrast, we summarize action differ-
ences in natural language, which enables direct and interpretable feedback. Also, our benchmark
covers many skill categories, encouraging the development of generalizable methods that do not
require domain-specific training data and methods. The most related work by Nagarajan & Torre-
sani (2024) focuses on coarse-grained step differences in instructional videos using question-answer
pairs. In contrast, our approach targets fine-grained action differences, such as a “deeper squat”,
which offers more detailed insights for skill learning. Additionally, our VidDiff method is zero-shot
for a benchmark spanning multiple skilled domains, while their method requires instruction tun-
ing data and is specialized to cooking. Beyond inference-time comparison, a number of important
works in skill assessment leverage video pairs in training – here the supervision signal is typically
a binary variable indicating which video demonstrates greater skill Doughty et al. (2018; 2019);
Pan et al. (2021); Zhang et al. (2023a). In appendix E, we discuss all related datasets having video
pairs, finding that none have labels for fine-grained comparison while being large scale, unlike our
VidDiffBench

Describing differences between images in language is an established task called ‘difference caption-
ing’ or ‘change captioning’ (Jhamtani & Berg-Kirkpatrick, 2018; Park et al., 2019; Kim et al., 2021;
Yao et al., 2022; Hu et al., 2023). LMM evaluation and instruct-tuning papers address image differ-
encing for pairs or small sets of images (Alayrac et al., 2022; Li et al., 2023; Achiam et al., 2023;
Jiang et al., 2024). The task of image set differencing with large sets was introduced in (Dunlap
et al., 2023). Our video differencing framework uses image differencing with LMMs as a subrou-
tine, however the task of video action differencing with natural language has not previously been
explored.

3 VIDEO ACTION DIFFERENCING

Video Action Differencing (VidDiff) is a novel and challenging task, offering significant potential
for applications in coaching, skill acquisition, and automated performance feedback. To facilitate
the development of models capable of handling such a task, we define two complementary task
settings: a closed setting, evaluated via multiple-choice format, and a more complex open setting,
requiring generation of action differences. Both are essential for advancing video understanding,
especially in contexts where precise feedback on actions is critical.

3.1 TASK DEFINITION

The goal of video action differencing is to identify skill-based differences between two videos of
the same action, in a zero-shot setting. We first introduce the simpler closed-set version, followed
by the more difficult open-set variation.
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Closed-Set Video Action Differencing: In the closed-set task, the input is an action descrip-
tion string s, a video pair (vA, vB), and a list of k candidate difference statements D =
{d0, d1, . . . , dk�1}, such as “the jump is higher”. For each k, the model makes a predictions
P = {p0, p1, . . . , pk�1}, where each prediction is either ‘A’ if the statement applies more to vA,
or ‘B’ if it applies more to vB . This setup simulates real-world scenarios like coaching, where spe-
cific differences of interest are already known. For benchmark purposes, the dataset only includes
instances where there is a clear ground-truth label (‘A’ or ‘B’) for each difference, which makes
evaluation both reliable and automatic.

Open-Set Video Action Differencing: In the open-set task, the input is the action description string
s, a video pair (vA, vB), and an integer Ndiff. The model must generate at most Ndiff difference
statements D and their associated predictions P, which label the differences as ‘A’ for video vA or
‘B’ for video vB . This setting is more challenging, as the model must not only identify differences,
but also generate those differences without any pre-defined options, closely mimicking real-world
conditions.

3.2 EVALUATION METRIC

Our choice of benchmark evaluation metrics is driven by two major challenges for designing annota-
tions: ambiguity and calibration. First, there is ambiguity around what differences are important for
performing an action skillfully. Second, annotators are calibrated differently – they have different
thresholds for whether a difference like “wider feet stance” is different enough to be annotated.

Closed-Set Evaluation: In the closed-set task, the evaluation is straightforward: prediction ac-
curacy is measured as the percentage of correct predictions, where 50% corresponds to random
guessing and 100% represents perfect performance (assuming a balanced evaluation set). There is
no ambiguity because we provide the possible differences. There is no calibration issue because the
answer must be ‘A’ or ‘B’ (and not ‘C’ for “not different”). Overall, it’s an automatic metric that
focuses on video understanding.

Open-Set Evaluation: In the open-set task, we use an LLM query (GPT-4o) to match the ground
truth difference strings to predicted difference strings in a ‘partial matching’. Then we only consider
“positive differences” – where the ground-truth label is ‘A’ or ‘B’ and not ‘C’. Then the recall@Ndiff
is calculated as the number of correctly matched and predicted positive differences, divided by the
total number of positive differences. To handle the ambiguity of what differences are relevant, we
set Ndiff to be 1.5 times the number of labeled differences, so models can predict more differences
without penalty. This is a reasonable number because the annotation taxonomy is designed to cover
skill-relevant differences. Moreover, we handle the calibration challenge of whether a difference is
‘above a threshold’ by only considering the positive differences where ground truth is ‘A’ or ‘B’.

4 BENCHMARK DATASET AND ANNOTATIONS

The Video Action Differencing task presents a novel challenge in video understanding, requiring
precise comparison of subtle action differences. As no comprehensive benchmark to evaluate this
task exists, we introduce VidDiffBench, a comprehensive benchmark specifically designed to test
and advance the ability of models to detect fine-grained differences in complex actions. Our bench-
mark consists of publicly available videos and our human-created annotations are freely available
on HuggingFace Hub3. VidDiffBench covers a wide range of actions relevant to skill learning and
performance feedback, and is constructed to challenge models across varying levels of difficulty, en-
suring its relevance for long-term model development. Table 4 summarizes the key dataset statistics.

4.1 VIDEO DATASETS

The video collection for VidDiffBench was designed to capture a diverse range of actions where
performance feedback is essential, ranging from simple exercises to complex professional tasks.
This diversity ensures that models are challenged not only on temporal localization but also on the
subtlety and complexity of visual differences. Actions in VidDiffBench span multiple levels of

3https://huggingface.co/datasets/jmhb/VidDiffBench

4

https://huggingface.co/datasets/jmhb/VidDiffBench


Published as a conference paper at ICLR 2025

Category Source Dataset Activity Video Pair Difference Timestamp

Fitness HuMMan (Cai et al., 2022) 8 193 1,466 310
Ballsports Ego-Exo4d (Grauman et al., 2023) 4 98 996 595
Surgery JIGSAWS (Gao et al., 2014) 3 166 1,386 672
Music Ego-Exo4d (Grauman et al., 2023) 2 29 180 320
Diving FineDiving (Xu et al., 2022) 1 63 441 140

Total 18 549 4,469 2,075

Table 1: Summary of VidDiffBench statistics across categories and datasets: number of unique
activities, video pairs, annotations for differences, and timestamps.

difficulty—from the basic “hip rotations” in fitness exercises to the intricate “surgical knot tying.”
This wide coverage tests models across varying degrees of granularity and action complexity. The
are five categories:

• Fitness videos are simple, single-human exercises sourced from HuMMan (Cai et al.,
2022), characterized by clean consistent backgrounds, consistent camera viewing angles,
and consistent movement patterns.

• Ballsports includes basketball and soccer actions from Ego-Exo4D (Grauman et al., 2023),
recorded across various environments with some diversity in background and camera angle,
as well as action detail.

• Diving features high-level Olympic performances from the FineDiving dataset (Xu et al.,
2022), capturing subtle and complex movements in professional diving. The backgrounds
may different, but the camera angles are consistent.

• Music contains guitar and piano exercises from Ego-Exo4D (Grauman et al., 2023), focus-
ing on detailed finger and hand movements. Background and camera angles can vary.

• Surgery includes long, intricate procedures such as “knot tying” and “needle passing” from
the JIGSAWS dataset (Gao et al., 2014). The background and camera angles are consistent.

Within each action, video pairs are randomly sampled to ensure a wide range of comparison diffi-
culty. The range of tasks is broad in terms of action complexity and background variation.

4.2 VIDEO ACTION DIFFERENCE ANNOTATIONS

A critical innovation of VidDiffBench is its detailed human-annotated dataset, designed to address
two major challenges in annotating the video differencing task: ambiguity in identifying relevant
differences and calibration consistency among annotators. To tackle ambiguity, we introduce a
structured difference taxonomy for each action, ensuring clarity on what aspects are being com-
pared. Then we assign annotators to label video pairs with differences – to handle the calibration
challenge we ensure labeling consistency by maintaining a consistent annotator identity within each
action. Additionally, we provide frame-level localization annotations of differences, which can en-
able analysis for future model development. In the following section, we describe these components
in greater detail.

4.2.1 ANNOTATION TAXONOMY

For each action, we define a structured difference taxonomy – a list of key visual differences relevant
to the task. For instance, in the basketball jump shot, a skill-relevant difference might be “the ball
is more in front of the body”; on the other hand, we do not include differences not directly relevant
to skill performance like “the athlete is taller”. Annotators assign labels to video pairs as follows:
‘A’ if the difference is more pronounced in video A, ‘B’ if it’s more pronounced in video B, and
‘C’ if the difference is negligible. By fixing this taxonomy, we address the ambiguity challenge –
that different annotators may not focus on the same differences. This allows for more objective and
consistent comparisons.

We consulted domain experts to create the taxonomies for each action category. For Fitness and
Surgery, we worked with a personal trainer and an attending surgeon, respectively, to identify vi-
sually salient differences between novice and expert performers. For Ballsports and Music, we
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extracted relevant differences from expert commentary in the Ego-Exo4D dataset using a large lan-
guage model (LLM). For Diving, we leveraged the FINA diving manual, processed by an LLM, to
identify key differences. We filtered differences that were difficulty to visually asses, such as “more
wrist snap” in basketball jump shot (because video resolution was not high enough).

This method resulted in 148 distinct difference descriptions, which are detailed in Appendix G.2.
This fixed taxonomy allows for precise evaluation of model performance across video pairs and
helps identify failure cases where models struggle with particular types of differences.

4.2.2 ANNOTATING ACTION DIFFERENCES

For each action aj and its corresponding differences, annotators reviewed video pairs (vA, vB) side-
by-side, with the ability to step through frames. Each difference was labeled as ‘A’ if it applied
more to video vA, ‘B’ if it applied more to vB , or ‘C’ if the difference was insignificant. Consis-
tent annotation was achieved by assigning a single annotator to each action, ensuring that models
are evaluated uniformly across all samples. This avoids the calibration challenge, that different
annotators may have different thresholds for significance.

To verify annotation quality, a second annotator reviewed 25% of the samples. We assessed dis-
agreements where one annotator marked ‘A’ and the other marked ‘B’, which occurred in only 2%
of cases, indicating low error rates. Annotators were provided with clear visual guidelines to en-
sure accurate and impartial labeling. On average, annotators spent three minutes per video pair to
evaluate about eight differences.

4.2.3 ANNOTATING DIFFERENCE LOCALIZATIONS

In addition to action differences, VidDiffBench provides localization annotations, pinpointing the
exact frames in each video where key differences occur. Since identifying localizing frames and
aligning them across videos is a key step in performing video action differencing, these annotations
enable analysis of model weaknesses, for example through ablation tests in our results section.

We define specific key points for each action, representing critical frames where important move-
ments occur. For example, in a squat, key points might include “knees start to bend” and “reaches
lowest position.” Differences are then linked to these key points: for example the difference “faster
squat descent” is defined as the frame spanning “knees start to bend” and “reaches lowest position”.
Further details are provided in Appendix C.2.

4.3 DATASET SPLITS AND STATISTICS

Dataset Splits To account for varying levels of difficulty in VidDiffBench, we categorize actions
into easy, medium, and hard splits. GPT-4o was used to assign actions to these splits based on de-
scriptions, difference lists, and video lengths. The easy split includes simple movements like Fitness
exercises, while medium and hard splits contain more complex actions like Ballsports, Diving, Mu-
sic, and Surgery. This ensures that models are challenged across a range of difficulties, from basic
movements to subtle, fine-grained comparisons.

Dataset Statistics VidDiffBench includes 549 video pairs, 4,469 annotated differences, and 2,075
key point annotations across Fitness, Weightlifting, Ballsports, Surgery, Music, and Diving domains.
Video lengths range from a few seconds to several minutes, providing comprehensive coverage of
different action complexities. This diversity ensures that VidDiffBench is a robust benchmark for
testing and advancing models in fine-grained action comparison. Under the closed setting, the A/B
ratio is 0.493/0.507, and in the open setting, the A/B/C ratio is 0.259/0.264/0.476.

5 VIDDIFF METHOD

We propose a three-stage framework, the VidDiff method, that effectively addresses the video action
differencing task in a zero-shot setting. The method follows a structured pipeline consisting of three
key components: Difference Proposer, Frame Localizer, and Action Differencer. Each stage builds
on the previous one to progressively refine and validate the identified differences, as in Figure 2.
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Figure 2: VidDiff Method. One input is an action description (e.g. “weighted squat”). The Dif-
ference Proposer generates potential differences using a large language model (LLM). The Frame
Localizer assigns frames where these differences are observable. Finally, the Action Differencer
checks each difference using a vision-language model, determining whether it applies more to video
A or video B, or neither.

The method described is for the open setting. The method for the closed setting is the same, except
the LLM query for candidate differences in stage 1 is replaced with the ground truth differences.

1. Difference Proposer: The Difference Proposer module generates candidate differences for a
given action description s. It leverages the extensive knowledge embedded in large language models
(LLMs) to predict likely differences between the two videos. For example, given the description “A
practice basketball jump shot”, the module might generate difference candidates such as “the athlete
jumps higher”. These difference statements, which are visually assessable, form the basis for further
analysis. The goal of this stage is to create a diverse set of meaningful and relevant comparisons.

2. Frame Localizer: The Frame Localizer module focuses on identifying the most relevant frames
in the video where the proposed differences can be observed. By retrieving the most salient segments
from both frames, we solve the key challenge of temporal localization of sub-actions, which makes
the next stage more effective. Our approach is to do temporal sub-action segmentation. The LLM
takes uses the action description string to produce a list of sub-actions, along with retrieval strings
to guide localization. A pretrained CLIP model (Radford et al., 2021) is used to compute frame
similarity based on these retrieval strings, and then we assign each frame to one of the sub-actions.
Here, we use a Viterbi-based algorithm (Kukleva et al., 2019), which assigns each frame to a sub-
action based on its similarity score, while enforcing that the frames follow the fixed sequence of
sub-actions. Finally, the LLM predicts a mapping between the sub-actions and their corresponding
differences, yielding a set of precisely localized frames for each difference.

3. Action Differencer: In the final stage, the Action Differencer module validates the proposed
differences using vision-language models (VLMs). Given the localized frames from both videos,
this module poses multiple-choice questions (derived from the generated difference candidates) to a
VLM, which determines whether each difference is more pronounced in vA, vB , or if it is indistin-
guishable. This stage transforms the problem into a structured multiple-choice task. Moreover, by
providing the localized-frames relevant to each difference

6 RESULTS

In this section, we present the results of evaluating large multimodal models (LMMs) and our Vid-
Diff method and on the challenging task of video action differencing on our VidDiffBench bench-
mark. Our experiments show the complexity of this task, particularly in capturing subtle, fine-
grained action differences across diverse video categories. We demonstrate that existing state-of-
the-art LMMs, such as GPT-4o and Gemini, struggle with these challenges, while our proposed
VidDiff method outperforms the baselines, especially in the close-set evaluation. Through detailed
error analysis and ablation studies, we uncover key factors that influence model performance, shed-
ding light on future directions for improving video-based model capabilities.
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6.1 MAIN RESULTS

As described in Section 3.2, we evaluate our approach on both the closed-set and open-set tasks.
In the closed-set task, models are provided with predefined difference descriptions and must pre-
dict whether the difference applies to video A or B. In the open-set task, models are tasked with
both generating the difference description and making a prediction. These tasks are fundamental to
assessing models’ capabilities in fine-grained action comparison.

For our experiments, we benchmark large multimodal models (LMMs) that have demonstrated
strong performance in video tasks. Specifically, we use top models from the Video-MME bench-
mark (Fu et al., 2024): GPT-4o (Achiam et al., 2023), Gemini-1.5-Pro (Reid et al., 2024), Claude 3.5
Sonnet Anthropic (2024), and the leading open-source models, Qwen2-VL-7B (Wang et al., 2024;
Bai et al., 2023) and LLaVA-Video (Zhang et al., 2024). Following model guidelines, we provide
Gemini, Qwen, and VideoLLaVA with video inputs, while for GPT-4o and Claude we give frames,
with text prompts explaining which frames belong to which video. For categories with shorter, fine-
grained actions (e.g., Fitness, Ballsports, and Diving), we sample frames at 4-6 fps, while for longer
actions (e.g., Music and Surgery), we sample at 2 fps. Our method, VidDiff, is evaluated alongside
these baselines, were the proposer LLM is gpt-4o-2024-08-06, the localizer embedding model
is CLIP ViT-bigG-14, and frame differencer VLM is gpt-4o-2024-08-06. The results are
results shown in Table 2 and Table 3.

Closed-Set Benchmark Performance The closed-set results are in Table 2, revealing that video
action differencing is a highly challenging task. While some models surpass the random-guessing
baseline of 50% – where gray shading indicates better-than-random with statistical significance –
their improvements are modest, especially in the harder splits where no model performs signifi-
cantly better than chance. Gemini, which has emphasized its results in video understanding, has
the strongest overall performance. Our VidDiff method, which uses GPT-4o as a visual perception
backbone, outperforms GPT-4o on the raw video frames and is second overall, demonstrating the
value of our scaffolding for this task. LLava-Video is competitive with GPT and Claude, while
Qwen2-VL performs poorly, possibly related to instruction-following challenges appendix G.4

Table 2: Results for closed setting (accuracy). Best scores in bold, second best underlined. Scores
are better than random, with statistical significance highlighted in gray. Significance is p-value<
0.05 on a binomial test.

Easy Med Hard Avg
GPT-4o 58.3 53.2 48.9 53.5
Gemini-1.5-Pro 67.8 53.6 51.7 57.7
Claude-3.5-Sonnet 57.1 50.5 52.5 53.4
LLaVA-Video 56.6 52.0 48.3 52.3
Qwen2-VL-7B 49.0 52.6 49.6 50.4
VidDiff (ours) 62.7 56.2 50.0 56.3

Open-Set Benchmark Performance In the open-set task (Table 3), our method outperforms all
other models across most splits, except on the medium difficulty. Among the LMMs, GPT-4o per-
forms much better than Gemini. We analyze this gap by breaking down errors into two categories:
difference recall error, where the model fails to generate the ground-truth difference, and flipped pre-
diction error, where the generated difference is correct but the prediction (‘A’ or ‘B’) is incorrect.
The closed-set results show that Gemini has lower flipped prediction error, suggesting that Gemini’s
main weakness is in difference recall. Specifically, on the easy split, Gemini’s recall error is 66%
compared to GPT-4o’s 30%. Despite generating a similar number of differences as GPT-4o, Gemini
struggles to identify the most important ones in our taxonomy, which hampers its performance. Suc-
cess in the open setting requires strong language capabilities, and this limitation is the bottleneck for
handling subtle differences. This explains why, when using the same language proposer, our model
performs similarly to GPT-4o.
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Table 3: Results for open setting (recall@Ndiff). Best scores in bold, second best underlined.
Easy Med Hard Average

GPT-4o 45.7 41.5 38.0 41.7
Gemini-1.5-Pro 30.3 30.5 24.1 28.3
Claude-3.5-Sonnet 37.8 34.6 34.3 35.6
LLaVA-Video 7.8 9.0 8.5 8.4
Qwen2-VL-7B 11.2 8.8 1.6 7.2
VidDiff (ours) 49.9 37.9 38.5 42.1

6.2 ABLATION STUDIES

We conducted ablation studies to better understand the individual contributions of different compo-
nents within VidDiff. These studies focus on the Closed setting, isolating the effects of the frame
differencing and frame localization stages.

Frame Differencer Image Comparison In the final stage of VidDiff, the model performs visual
question answering (VQA) on frames retrieved from the two videos. To evaluate the effectiveness of
this process, we conducted a test using the ground-truth timestamp annotations from VidDiffBench.
The results (Table 4) show that even with perfect frame alignment, zero-shot VLMs struggle to
consistently detect subtle differences in images. Performance decreases significantly on the medium
and hard splits, which suggests room for improvement in zero-shot VLMs’ image understanding
capabilities.

Split Easy Medium Hard
Acc 78.6 61.2 51.0

Table 4: Ablation study results for
frame differencing VQA with ground
truth frames. Questions are 3-way
multiple-choice.

Frame Localization Design We also analyzed the per-
formance of the Frame Localizer in the closed-set case
for the easy split, using ground-truth difference proposals
to measure VQA accuracy. Table 5 shows that random
frame retrieval leads to significant performance drops,
while the addition of Viterbi-based decoding (which en-
forces a fixed action transcript) substantially improves ac-
curacy. The improvement suggests that temporal align-
ment plays a critical role in achieving robust video differ-
encing.

Method Accuracy
Oracle (GT timestamps) 78.6
Random 50.1
Ours w/o Viterbi Decoding 57.4
Ours 62.7

Table 5: Ablation on frame localization
using different retrieval techniques on
easy.

In summary, these ablation studies confirm that both ac-
curate frame localization and careful VQA processing are
essential to achieving strong performance in video action
differencing.

6.3 DIFFERENCE-LEVEL ERROR ANALYSIS

VidDiffBench’s predefined taxonomy allows us to ana-
lyze model performance on 148 specific types of action
differences, highlighting where models succeed and fail.
The results for each difference are detailed in Appendix
Table 14, and we perform a statistical significance test to
compare models against the random-guessing baseline.

We find that model performance is highly dependent on
the visual complexity of the action and the difficulty of localization. Successful examples (Figure 3,
left column) show high accuracy for simple, easily localized actions, such as “wider foot stance” in
hip rotations (83% accuracy) or “guiding the ball” in a basketball layup (90% accuracy). These cases
feature coarse differences that are apparent in most frames, or require only approximate localization.

Conversely, failure cases (Figure 3, right column) often involve precise localization or fine-grained
differences. For instance, identifying the angle of a diver’s entry into the water in a 10m dive’ re-
quires frame-perfect alignment, and recognizing subtle changes in speed in “piano scales” is difficult
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when reasoning over multi-frames. These challenges highlight the limitations of current models in
handling fine-grained video analysis.

• Coarse visual difference   • No localization

• Coarse visual difference   • Easy localization

• Multi-frame reasoning   • Easy localization

• Moderately fine difference   • Difficult localization

“Plays the scales faster”. Accuracy: random


Success cases Failure cases
“Wider foot stance”. Accuracy: 80%


“Non-shooting hand guides the ball”. Accuracy: 90%

“The step out is faster”. Accuracy: 93%

“Body closer to 90° at water entry”. Accuracy: random


• Fine-grained difference over multiple frames • Easy localization

• Fine-grained differencing over multiple frames • Complex motion

“Instrument applies more force to the tissue”. Accuracy: random


Figure 3: Examples of success cases (left) with high accuracy, and failure cases (right). Successful
cases typically involve coarse differences, easy localization, or simple actions, while failure cases
often involve fine differences, precise localization or complex actions.

7 CONCLUSION

In this paper, we introduce the novel task of Video Action Differencing (VidDiff), aimed at com-
paring actions in videos. We define this task, compile a meticulously annotated benchmark, and
propose a zero-shot agent-based framework. Our findings demonstrate that this task is feasible with
current foundation models, although more challenging splits in the benchmark reveal significant op-
portunities for further methodological improvements. We believe that Video Action Differencing
represents a promising research direction with broad applications in fields such as skill acquisition,
sports analytics, and scientific research.

8 FUTURE WORK AND LIMITATIONS

While our work demonstrates the potential of Video Action Differencing, there are several areas for
future improvement. Enhancing frame retrieval techniques could improve performance on more
complex video splits. Additionally, training Vision-Language Models (VLMs) on comparison-
specific data may result in better identification of nuanced differences. Further, developing methods
tailored to specialized domains such as healthcare or education could unlock more targeted appli-
cations. Limitations in our current approach include reliance on general foundation models, which
may struggle with domain-specific tasks or fine-grained comparisons. We hope this work encour-
ages further exploration into broader video comparison methods and inspires advancements in these
areas.
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