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Abstract
The remarkable generalization of large-scale mod-
els has recently gained significant attention in mul-
timodal research. However, deploying heteroge-
neous large-scale models with different modalities
under Federated Learning (FL) to protect data pri-
vacy imposes tremendous challenges on clients’
limited computation and storage. In this work,
we propose M2FEDSA to address the above is-
sue. We realize modularized decomposition of
large-scale models via Split Learning (SL) and
only retain privacy-sensitive modules on clients,
alleviating storage overhead. By freezing large-
scale models and introducing two specialized
lightweight adapters, the models can better focus
on task-specific knowledge and enhance modality-
specific knowledge, improving the model’s adapt-
ability to different tasks while balancing effi-
ciency. In addition, M2FEDSA further improves
performance by transferring multimodal knowl-
edge to unimodal clients at both the feature and de-
cision levels, which leverages the complementar-
ity of different modalities. Extensive experiments
on various multimodal classification tasks vali-
date the effectiveness of our proposed M2FEDSA.
The code is made available publicly at https:
//github.com/M2FedSA/M-2FedSA.

1. Introduction
With the swift advancement of sensing technologies, there
has been an explosive growth in multimodal data. These
multimodal data, such as medical diagnostic records and ve-
hicular sensory data, are typically collected and stored in a
decentralized and privacy-sensitive manner. Therefore, fed-
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erated multimodal learning (MFL) has garnered widespread
attention (Liu et al., 2020; Xiong et al., 2022; Che et al.,
2023). MFL is centered on facilitating collaborative training
of models relevant to multimodal tasks among distributed
clients equipped with diverse sensors, all while ensuring the
protection of data privacy.

Previous work in MFL has primarily focused on addressing
the challenges of data heterogeneity and modality incon-
sistency (Chen & Li, 2022; Chen & Zhang, 2022; Yang
et al., 2022; Yu et al., 2023a), achieving notable progress in
the process. As large-scale models (Houlsby et al., 2019;
Howard & Ruder, 2018; Jiang et al., 2019; Radford et al.,
2021; Yuan et al., 2021; Tong et al., 2022; Jia et al., 2021;
Wang et al., 2022) have increasingly demonstrated remark-
able capabilities in fields such as Natural Language Pro-
cessing (NLP), and Computer Vision (CV), an increasing
number of efforts in MFL are beginning to harness large-
scale models for extracting superior features or directly
deploying such models on local clients within the FL frame-
work. However, these approaches are subject to at least two
significant shortcomings. Firstly, large-scale models usually
maintain a large number of parameters, and updating all
model parameters represents an impractical computational
and communication cost. To address this challenge, existing
work (Chen et al., 2023; Li et al., 2023; Chen et al., 2022a;
Zhao, 2023; Yu et al., 2023b; Cai et al., 2022; Jiang et al.,
2023) has introduced various efficient fine-tuning strategies
in FL. However, considering that the size of models is snow-
balling now, even efficient fine-tuning strategies will still
result in unavoidable storage costs. Moreover, the large-
scale model has significant intellectual property value and it
is questionable whether it is fully accessible to clients.

To address the above issues, we propose a unified MFL
framework for large-scale models, M2FEDSA. Specifically,
to alleviate the challenge of limited storage resources on
the client, we adopt a U-shaped split learning method
(Vepakomma et al., 2018) that splits the large-scale mod-
els and only keeps privacy-sensitive modules that inter-
act directly with the raw data and labels on the client.
In addition, to balance efficiency and performance, we
carefully design a Dual Adaptive Fine-tuning Strategy
(DAFS). We introduce task and modality adapters to focus
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on task-specific and modality-specific knowledge, respec-
tively. Compared with aggregating all model parameters, by
aggregating parameters of two lightweight adapters sepa-
rately, we can achieve efficient knowledge sharing within
and across modalities, thus improving the efficiency and
performance of the adapters. In addition, we devise a Dual
Knowledge Transfer Strategy (DKTS) to exploit the intrin-
sic connections between multimodal further and facilitate
cross-client multimodal knowledge complementarity. The
transformer-based multimodal fusion module deployed on
the main server learns semantically rich multimodal knowl-
edge and then transfers the multimodal knowledge to clients
at the feature and decision levels.

Our main contributions are summarized as follows:

• We introduce M2FEDSA, a first-of-its-kind frame-
work merging split learning with multimodal feder-
ated learning, achieving substantial reductions in com-
putational and memory requirements, and leveraging
inter-modality complementarities.

• The proposed Dual Adaptive Fine-tuning Strategy
makes the model more focused on task-specific and
modality-specific knowledge, balancing computational
efficiency and model performance. The simplicity of
this strategy renders it compatible with a broad spec-
trum of large-scale models.

• Our experiments on different types of multimodal tasks
(i.e., action recognition (Damen et al., 2022; Mon-
fort et al., 2019), hate speech recognition (Kiela et al.,
2020), and emotion recognition (Poria et al., 2018))
demonstrate that M2FEDSA significantly outperforms
existing MFL methods, achieving higher efficiency
with fewer trainable parameters.

2. Related Work
2.1. Multimodal Federated Learning

Existing MFL typically adopts a method of modular train-
ing and aggregation to facilitate knowledge sharing among
clients (Yang et al., 2022; Zhang et al., 2023b; Chen &
Zhang, 2022; Cho et al., 2022) or employs the concept
of contrastive learning, using public datasets for aligning
modality representations between clients (Yu et al., 2023a).
In addition, some methods (Xiong et al., 2022; Feng et al.,
2023) simulate a more straightforward setup, i.e., modal ho-
mogeneity between clients and perform multimodal fusion
within the client. With the rise of large-scale models, some
researchers have begun to exploit the large-scale models to
push the upper limit of MFL further. These methods (Chen
et al., 2023; Li et al., 2023) typically use efficient parameter
fine-tuning techniques to empower clients to fine-tune the
large-scale models. However, they overlook the substan-
tial storage cost required by the large-scale models and the
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Figure 1. Illustration of the data flow in Split Learning
(Vepakomma et al., 2018).

knowledge infringement issues faced by the full deployment
of the models, resulting in the limited scalability of such
methods in practical federated environments. Therefore,
there is a considerable research gap in effectively applying
large-scale models within a MFL framework.

2.2. Split Learning

Split Learning (SL) (Vepakomma et al., 2018) splits the
neural network into multiple parts, which will be deployed
on different devices. Like FL, all raw training data are
stored on the client and not transferred to the server. For
the simplest SL, the model is split into two parts deployed
on the client and server sides. The raw data pass through
the client’s submodel and become the smashed data, then
are sent to the server side to complete the forward propaga-
tion. After calculating the loss function, the server starts the
backward propagation, and the client waits for the gradient
of the smashed data from the server to update the local sub-
model. The forward and backward propagation between the
client and server continue until the whole model converges.
The above process is illustrated in Figure 1(a). Figure 1(b)
shows a variant of SL, i.e., U-shaped SL, in which the data
labels are no longer shared with the server.

Split Federated Learning (SFL) (Thapa et al., 2022) is a
recent collaborative training paradigm combining SL and
FL’s advantages. It offers significant advantages over FL
regarding reduced computation and memory usage. Cur-
rent works on SFL focus on unimodal settings (Thapa et al.,
2022; Park et al., 2021; Tian et al., 2022; Deng et al., 2023;
Tran et al., 2022), neglecting multimodal scenarios. The pro-
posed M2FEDSA innovatively applies SFL to multimodal
learning, filling this study gap.

2.3. Parameter-Efficient Fine-Tuning

Parameter-efficient fine-tuning technique is first proposed
in NLP. The goal is to achieve efficient adaptation of large-
scale models for various downstream tasks without the need
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to fine-tune all the parameters, thus reducing the computa-
tional cost while achieving performance comparable to full
fine-tuning. The most representative methods are adapters
(Chen et al., 2022b;c; Houlsby et al., 2019; Sung et al.,
2022), prompt tuning (Jia et al., 2022; Liu et al., 2023; Zhou
et al., 2022a;b), low-rank adaptation (Hu et al., 2021), and
their unified variants (He et al., 2021; Mao et al., 2021;
Zhang et al., 2022a). Several recent works have researched
efficient fine-tuning in the federated setting based on these
classical methods. Zhang et al. (Zhang et al., 2023a) intro-
duce Federated Instruction Tuning (FedIT), which utilizes
FL as the framework for guiding the fine-tuning of large
language models. Lu et al. (Lu et al., 2023) focus on
homogeneous data with the same input and output space.
PromptFL in (Guo et al., 2023) lets participants in a feder-
ated setup collaboratively learn prompts rather than entire
models. Other recent works include FedLLM (Xu et al.,
2023), FedAdapter (Cai et al., 2022), AUG-FedPrompt (Cai
et al., 2023), FedLogic (Xing et al., 2023), and FedPrompt
(Zhao et al., 2023). Similarly, the works above primarily
focus on unimodal or modality homogeneity scenarios and
cannot be directly applied to setups with cross-client modal-
ity heterogeneity.

3. Methodology
3.1. Problem Formulation

Under the SFL setting, we consider one main server Smain,
one federated server Sfed, and K clients, assuming each
client has M sensor devices (i.e., corresponding to M
modalities). The clients have relatively limited computa-
tional resources and storage capacity, while the Smain has
abundant computational resources and storage. The Sfed is
primarily used to aggregate the updated parameters.

The client k with m devices has a private multimodal dataset
Dk = {{xm,k}Mm=1,yk}. During training, all devices of
each client collaborate and interact synchronously with the
Smain. While in the inference stage, each device can per-
form inference independently based on its private unimodal
data. The overall objective of the proposed framework is:

min
θ

K∑
k=1

M∑
m=1

ℓ(θm,k, Dm,k), (1)

where θm,k is the complete model associated with the device
m of client k. ℓ is the total loss function.

3.2. Model Architecture after Splitting

We adopt SL to exploit the benefits of large-scale models
without overburdening client storage. We choose the U-
shaped variant (Figure 1(b)) for its ability to retain data
labels locally, bolstering privacy protection. Specifically,
for the k-th client’s device belonging to modality m, we

Figure 2. The proposed Modality Adapter (Serial) and Task
Adapter (Residual).

define the complete model θm,k into four parts:

• the embedded module θem (on Clients),
• the low-level encoder module θle (on Clients),
• the high-level encoder module θhe (on Main Server),
• the classifier module θc (on Clients).

The high-level encoder module, which has more parameters
(more layers), is deployed on the Smain. The other modules,
which have fewer parameters (fewer layers), are deployed
on the clients. The client’s data are sequentially fed into the
four modules, and then the loss is computed locally with
the groundtruth. Subsequently, the gradient is backward
propagated in the reverse direction of the above process to
update the parameters of the four modules.

3.3. Dual Adaptive Fine-tuning Strategy (DAFS)

Compared with full fine-tuning, efficient fine-tuning strate-
gies can significantly reduce computational resource con-
sumption and enable efficient porting of large-scale mod-
els to multimodal applications. Therefore, we propose
two lightweight adapters, Task Adapter (TA) and Modal-
ity Adapter (MA). As shown in Figure 2, the adapters are
bottlenecked, with the first layer downscaling to extract key
features, non-linear activations added in the middle, and the
third layer restoring the original dimensionality. This design
is both efficient and well-integrated with frozen large-scale
models. By selectively incorporating lightweight adapters
into frozen large-scale models, our method enables non-
intrusive task- and modality-specific enhancements while
improving training efficiency without overwriting the gener-
alizable representations.

Task Adapter θta. In order to adapt to target tasks, we pro-
pose incorporating task adapters in the high-level encoders
deployed on the Smain. This design choice is motivated
by the fact that task-discriminative features tend to emerge
in higher-level semantic feature space rather than lower-
level representations (Pan et al., 2023; Meng et al., 2022).
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Taking emotion recognition as an example, compared with
low-level features such as color and texture, a better un-
derstanding of high-level semantics such as scenery and
prosody is much more critical for improving performance.
As shown in Figure 2, we incorporate the TA in a residual
connection to the MLP of the transformer layers. It gener-
ates the task-adapted representation ztal given an immediate
input z′l by:

ztal = z′l + θta(LN(z′l)) +MLP(LN(z′l)). (2)

Modality Adapter θma. We incorporate modality adapters
into every layer of the low-level encoders deployed on edge
devices to enhance the sensitivity and discriminability of dis-
tinctive information in each modality. The modality adapters
re-encode the preliminary representations to accentuate se-
mantics tightly coupled with each modality. For instance,
the visual MA may amplify features for color when rec-
ognizing a lemon, while the text MA highlights sourness
semantics. As shown in Figure 2, we insert the MA serially
after the original MLP layer in each transformer layer. Given
an immediate input z′l, it generates the modality-adapted
representation zma

l by:

zma
l = z′l + θma(MLP(LN(z′l))). (3)

3.4. Dual Knowledge Transfer Strategy (DKTS)

Multimodal fusion can make better use of the complemen-
tary information between multimodal data. Therefore, we
incorporate an attention-based fusion module θfu in the
Smain. We use a late-fusion mechanism, which first con-
nects the output features of the high-level encoder of differ-
ent modalities {F̈1, ..., F̈m} to obtain F̄ and then inputs it
into a multi-head self-attention network to obtain the final
multimodal embedding F̃ . We use two methods to knowl-
edge transfer, complementing unimodal features {F̈m}Mm=1

with multimodal knowledge:

Feature-level Transfer: We encourage multimodal feature
F̃ and unimodal feature F̈m to exhibit consistent high-level
semantic information by bringing them closer together, rep-
resented as follows:

ℓftran =
1

M

M∑
m=1

(1− cos sim(F̈m, F̃)), (4)

where cos sim(·, ·) denotes the calculation of the cosine
similarity between two features.

Decision-level Transfer: We further refine the unimodal
model’s predictive capability through the adaptive distilla-
tion (Wu et al., 2022). This process strives to align the deci-
sion boundaries of the unimodal and multimodal classifiers
by minimizing the discrepancy in their output predictions,
represented as follows:

Algorithm 1 M2FEDSA (Stage 1⃝)

1: Input: Local Dataset, Dk = {{xm,k}Mm=1,yk}Kk=1;
learning rate, η; the low-level encoders output, Ḟ ; the
high-level encoders output, F̈ ; the number of rounds in
the Stage 1⃝, T ′.

2: Initialize models deployed on Smain and clients;
3: for each round t = 1, 2, ..., T ′ do
4: for each client k in parallel do
5: for each device m ∈ client k in parallel do
6: Send Ḟ t

m,k ←θle,tm,k(θ
em,t
m,k (xm,k)) to Smain;

7: F̈ t
m,k ← θhem (Ḟ t

m,k);
8: end for
9: F̄ t

k ← Concat(F̈ t
1,k, ..., F̈ t

m,k), F̃ t
k ← θfu,t(F̄ t

k),
ŷf,tk ← θfc,t(F̃ t

k);
10: Send {F̈ t

m,k}Mm=1, F̃ t
k, and ŷf,tk to the client k;

11: Compute ℓce,fk with {ŷf,tk ,yk}, then send to
Smain;

12: for each device m ∈ client k in parallel do
13: ŷtm,k ←θc,tm,k(F̈ t

m,k);
14: Compute ℓcem,k with ŷtm,k and yk;
15: Update θcm,k with ℓcem,k, get θc,t+1

m,k ;
16: Send dF̈ t

m,k := ∇ℓcem,k(θ
c,t
m,k) to Smain;

17: end for
18: Update θfu and θfc with ℓce,fk , get θfu,t+1

k and
θfc,t+1
k , update θtam with dF̈ t

m,k, get θta,t+1
m,k ;

19: Send {dḞ t
m,k := ∇dF̈ t

m,k(θ
ta,t
m )}Mm=1 to client k,

{θfu,t+1
k , θfc,t+1

k , {θta,t+1
m,k }Mm=1}Kk=1 to Sfed;

20: for each device m ∈ client k in parallel do
21: Update θma,t

m,k with dḞ t
m,k, get θma,t+1

m,k ;
22: Send θma,t+1

m,k and θc,t+1
m,k to Sfed;

23: end for
24: end for
25: Average aggregation of θfu,t+1

k and θfc,t+1
k for k

clients, get θfu,t+1 and θfc,t+1;
26: Intra-modality aggregation {{θta,t+1

m,k }Mm=1}Kk=1, get
θta,t+1;

27: Inter-modality aggregation θma,t+1
m,k and θc,t+1

m,k , get
θma,t+1 and θc,t+1;

28: Send the models of round t+ 1 to the clients and
Smain.

29: end for

ℓdtran =
KL(ŷf || ŷ)
ℓce,f + ℓce

, (5)

where ŷ and ŷf represent the logit features obtained by the
unimodal classifier θc on the client and multimodal clas-
sifier θfc on Smain, respectively. ℓce,f and ℓce represent
the cross-entropy loss calculated using multimodal and uni-
modal features, respectively.
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Algorithm 2 M2FEDSA (Stage 2⃝)

1: Input: Same as Algorithm 1
2: for each round t = T ′ + 1, T ′ + 2, ..., T do
3: for each client k in parallel do
4: for each device m ∈ client k in parallel do
5: See lines 6-7 of Algorithm 1;
6: end for
7: See lines 9-11 of Algorithm 1;
8: for each device m ∈ client k in parallel do
9: See line 13 of Algorithm 1;

10: Compute ℓm,k in Equation 1;
11: /* Replace ℓcem,k in Algorithm 1 with

ℓm,k */

12: See lines 15-16 of Algorithm 1;
13: end for
14: Update θtam with dF̈ t

m,k, get θta,t+1
m,k ;

15: Send {dḞ t
m,k := ∇dF̈ t

m,k(θ
ta,t
m )}Mm=1 to client k,

{{θta,t+1
m,k }Mm=1}Kk=1 to Sfed;

16: for each device m ∈ client k in parallel do
17: See lines 21-22 of Algorithm 1;
18: end for
19: end for
20: See lines 26-28 of Algorithm 1;
21: end for

3.5. Federated Optimization and Inference

We divide the M2FEDSA’s training into two stages. In Stage
1⃝, the parameters of the multimodal fusion module θfu and

multimodal classifier module θfc are randomly initialized;
directly transferring knowledge from the unoptimized mul-
timodal fused features would impair the semantic integrity
of the unimodal representations, resulting in fluctuations
or even decreases in model performance. Therefore, we
use separate optimization goals (i.e., ℓce and ℓce,f ) for the
unimodal clients and multimodal fusion module to realize
decoupled training between them in Stage 1⃝.

In Stage 2⃝, we freeze the multimodal fusion module θfu

and multimodal classifier θfc while supplementing multi-
modal knowledge to unimodal features through feature- and
decision-level transfers. At this stage, the local optimization
goal for each client’s device is as follows:

ℓ = λ0(ℓ
ce + ℓce,f ) + λ1ℓ

ftran + λ2ℓ
dtran, (6)

where λ0, λ1, and λ2 denote the trade-off hyperparame-
ters. Throughout the training process, the Sfed performs
intra-modality average aggregation for MAs and classifiers
deployed on clients and inter-modality average aggregation
for TAs deployed on the Smain after each round of commu-
nication.

We next describe the termination criteria for the Stage 1⃝
of training. To determine whether the performance of the

Table 1. Statistics for four multimodal datasets.

DATASET CLIENTS MODALITY INSTANCES CLASSES TASK

Epic-Kitchens-100 50/100 {V, A} 89K+ 97 MAR
MiT 50/100 {V, A} 1M 339 MAR
Hateful-Memes 100/200 {V, T} 10K 2 HSR
MELD 15/30 {V, A, T} 17K+ 7 MER

multimodal fusion module has reached stability, we retain
the cross-entropy loss values of the multimodal classifica-
tion feature from the last ten communication rounds and
calculate the coefficient of variation ζ of these values. When
the ζ is below the threshold γ, the training switches from
the Stage 1⃝ to the Stage 2⃝. Specifically, we first calculate
the absolute difference δ between two consecutive rounds
of multimodal classification losses as follows:

δt = |ℓce,ft − ℓce,ft−1 |, (7)

where ℓce,ft denotes the multimodal classification loss at
the t-th round. The coefficient of variation ζ serves as an
indicator of the relative change within the sequence. It is
defined as the ratio of the standard deviation σ(δ) to the
mean µ(δ) of these differences:

µ(δ) =

∑N
i=1 δi
N

, σ(δ) =

√∑N
i=1(δi − µ(δ))2

N
, (8)

ζ =
σ(δ)

µ(δ)
. (9)

We set N = 10 in our experiments. The ζ lower than
the threshold γ indicates that the change in loss has been
minimal, i.e., the performance of the multimodal fusion
module has reached stability.

Inference. In the test time, each sample x belonging to
modality m on client k will be classified according to the
following formula:

ŷk = θcm,k(θ
he
m,k(θ

le
m,k(θ

em
m,k(xm,k)))). (10)

We detail the two stages of the training process in Algorithm
1 and Algorithm 2, respectively1.

4. Experiment
4.1. Experimental setup

Datasets. We evaluate the proposed M2FEDSA using
four datasets from different tasks. (1) Epic-Kitchens-100
(Damen et al., 2022) is an egocentric video dataset for Mul-
timodal Action Recognition (MAR). It has 97 action classes

1We use orange text for steps on Smain, blue text for steps on
Sfed, and the rest for steps on the K clients.
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Table 2. Comparison to state-of-the-art on four datasets. “TPs.” represents the average number of trainable parameters per client. Bold
number: The best result in each column.

TYPE METHOD
EPIC-KITCHENS (ACC↑) MIT (ACC↑) HATEFUL-MEMES (AUC↑) MELD (UAR↑)

V A Avg. TPs. V A Avg. TPs. V T Avg. TPs. V T A Avg. TPs.

Model
Homo.

FedAvg 28.74 37.12 32.93±0.43 74.79K 34.49 36.15 35.32±0.28 74.79K 54.88 56.16 55.52±0.87 1.54K 50.75 48.92 46.55 48.74±0.37 5.99K
FedProx 29.21 39.97 34.59±0.25 74.79K 38.39 36.59 37.49±0.33 74.79K 54.09 59.83 56.96±0.53 1.54K 51.82 54.72 47.63 51.39±0.21 5.99K
SCAFFOLD 28.93 40.36 34.65±0.16 74.79K 38.21 38.01 38.11±0.21 74.79K 56.21 58.61 57.41±0.42 1.54K 52.89 53.73 44.52 50.38±0.11 5.99K
FedRS 28.69 39.75 34.22±0.26 74.79K 39.14 37.44 38.29±0.11 74.79K 56.49 59.21 57.85±0.68 1.54K 53.43 50.80 48.86 51.03±0.16 5.99K
FedOpt 29.92 41.34 35.63±0.50 74.79K 39.86 39.62 39.74±0.24 74.79K 56.52 60.14 58.61±0.34 1.54K 54.87 52.75 51.69 48.92±0.08 5.99K

Model
Hetero.

FedMSplit 31.39 40.66 36.03±0.31 1.36M 42.59 38.75 40.67±0.19 1.36M 60.21 63.15 61.68±0.49 1.58M 55.00 53.57 50.70 53.09±0.19 1.05M
FDARN 32.48 40.85 36.67±0.18 6.11M 43.02 39.68 41.35±0.40 6.11M 59.98 62.88 61.43±0.51 6.43M 54.36 53.69 50.89 52.98±0.25 6.09M
CreamFL 33.71 45.63 39.67±0.07 26.04M 43.75 40.21 41.98±0.22 26.04M 60.14 64.56 62.35±0.28 60.85M 54.12 51.54 - 52.83±0.23 63.16M
M2FedSA(ours) 35.45 45.57 40.51±0.23 0.12M 45.16 42.12 43.64±0.31 0.12M 63.21 64.27 63.74±0.36 62.49K 56.22 55.48 51.29 54.33±0.12 69.79K

Table 3. Ablation studies on the proposed Task Adapter and Modality Adapter. Yellow background: the baseline performance used per
column; Red background: negative transfer; Green background: positive transfer. “DP” indicates the use of differential privacy (Dwork,
2006).

METHOD MODEL SIZE
EPIC-KITCHENS (ACC↑) MIT (ACC↑) HATEFUL-MEMES (AUC↑) MELD (UAR↑)

TPs.(%) Avg. ∆ TPs.(%) Avg. ∆ TPs.(%) Avg. ∆ TPs.(%) Avg. ∆

Fine-Tune
Setup I :
Swin-T 2D/3D (Tiny)
RoBERTa (Base)
Whisper (Tiny)

0.0 37.03 0.0 0.0 40.33 0.0 0.0 60.54 0.0 0.0 52.02 0.0
Linear Probe -99.769 33.82 -3.21 -99.769 39.75 -3.21 -99.999 54.27 -6.27 -99.994 47.56 -4.46
M2FedSA(TA) -99.446 39.54 +2.51 -99.446 42.62 +2.51 -99.907 62.81 +2.27 -99.870 52.73 +0.71
M2FedSA(MA) -99.607 39.01 +1.98 -99.607 41.82 +1.98 -99.945 62.12 +1.58 -99.911 52.14 +0.12
M2FedSA(TA+MA) -98.714 39.88 +2.85 -98.714 43.11 +2.85 -99.855 63.19 +2.65 -99.785 53.62 +1.60
M2FedSA(TA+MA)+DP -98.714 36.97 -0.06 -98.714 40.78 -0.06 -99.855 60.35 -0.19 -99.785 50.99 -1.03

Fine-Tune
Setup II :
Swin-T 2D/3D (Base)
RoBERTa (Large)
Whisper (Base)

+152.015 38.67 +1.64 +152.015 41.03 +1.64 +197.145 61.33 +0.79 +161.343 52.29 +0.27
Linear Probe -98.251 34.15 -2.88 -98.251 40.27 -2.88 -99.158 56.42 -4.12 -99.235 48.31 -3.71
M2FedSA(TA) -98.036 40.13 +3.10 -98.036 43.19 +3.10 -99.033 63.27 +2.73 -98.738 53.74 +1.72
M2FedSA(MA) -98.193 39.68 +2.65 -98.193 42.56 +2.65 -99.099 62.59 +2.05 -98.924 53.82 +1.80
M2FedSA(TA+MA) -96.552 40.51 +3.48 -96.552 43.64 +3.48 -98.975 63.74 +3.20 -98.055 54.33 +2.31
M2FedSA(TA+MA)+DP -96.552 37.25 +0.22 -96.552 41.94 +0.22 -98.975 61.18 +0.64 -98.055 52.95 +0.93

and involves 89,979 video segments. Each video segment
contains audio of the participant’s narration of the current
behavior. To assess our method under varying scales of
distributed settings, we respectively scatter each modality
onto 25 and 50 clients, forming a total of 50 and 100 clients
for federated simulation. (2) MiT (Monfort et al., 2019) is a
large-scale MAR dataset (1M) with short (3 seconds) videos
with overall list of 339 action labels. Its data partitioning
strategy is the same as Epic-Kitchens-100. (3) Hateful
Memes (Kiela et al., 2020) is a multimodal dataset com-
piled for Hate Speech Recognition (HSR) in meme images.
It contains over 10,000 meme images with textual captions,
manually labeled as hateful or benign content. Similarly,
we partition the image and text modalities across 50 and
100 clients, forming 100 and 200 clients for exploring feder-
ated hate speech detection. (4) MELD (Poria et al., 2018)
is a Multimodal Emotion Recognition (MER) dataset with
text, audio, and visual modalities from dialog videos. It
contains over 17,000 utterances labeled with emotions like
joy, surprise, etc. We distribute each modality over 5 and 10
clients, forming 15 and 30 clients for federated simulation.

See Table 1 for details of the four datasets 2.

Implementation details. In FL, networks with a Trans-
formers architecture achieve higher similarity and syn-
chronization efficiency among the participants (Gao et al.,
2023). Therefore, for the three modalities involved in our
experiments (i.e., visual, text, and audio), we use Swin-
Transformer2D/3D (Liu et al., 2021; 2022), RoBERTa (Liu
et al., 2019), and Whisper (Radford et al., 2023) as back-
bones, respectively. The overall framework of our proposed
is implemented with Pytorch (Paszke et al., 2019). We
use eight NVIDIA Tesla V100 PCIe GPUs for training the
framework. The balance weights λ0, λ1, and λ2 of the loss
function in Equation 6 are set to 0.6, 0.2, and 0.2. We set
the threshold γ = 0.3 in our experiments. The multimodal
fusion module deployed on the main server side is imple-
mented as a multi-head attention network, where we set

2Unless otherwise noted, the results for the four datasets in
the main text are obtained under the K=50/50/100/15 setting. The
results for the more challenging client partitioning setting, i.e.,
K=100/100/200/30, are shown in the appendix.
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(a) EPIC-Kitchens-100 (b) MiT (c) Hateful-Memes (d) MELD

Figure 3. Effect of λ1, λ2, and λ3 for total loss on the three datasets. Note: λ1 + λ2 + λ3 = 1.

Table 4. Ablation studies on the proposed knowledge transfer
strategies.

METHOD EPIC-KITCHENS MIT HATEFUL-MEMES MELD

w/o ℓft 40.12 42.89 63.07 53.95
w/o ℓdt 39.98 40.77 62.76 53.06

w/o (ℓft, ℓdt) 38.54 40.09 60.93 52.24

M2FedSA 40.51 43.64 63.74 54.33

the head to 8 and the hidden dimension to 512. Addition-
ally, the multimodal classifier is implemented as two-layer
perceptrons with the activation function of GELU, where
the dimension of the hidden layer is set to 256. In the ini-
tial training phase (Stage 1⃝), we specifically tailored the
learning rates for the multimodal fusion module and the
classifier, setting them to 1e-2, 1e-3, and 1e-3 for the three
datasets. For unimodal classifiers deployed on the client
side, we use a one-layer perceptron that projects the feature
dimensions to a specific number of classification categories.
More implementation details are listed in the appendix.

Baselines. We consider two types of baselines: 1) Model
Homogeneity, including FedAvg (McMahan et al., 2017),
FedProx (Li et al., 2020), SCAFFOLD (Karimireddy et al.,
2020), FedRS (Li & Zhan, 2021), and FedOpt (Reddi et al.,
2020). 2) Model Heterogeneity, including FedMSplit (Chen
& Zhang, 2022), FDARN (Yang et al., 2022), and CreamFL
(Yu et al., 2023a). For the model homogeneity methods, we
use the same backbone network as M2FEDSA for feature
extraction. Subsequently, a MLP network of identical archi-
tecture is deployed across clients for each modality. For the
model heterogeneity methods, we follow its model setup.
We run experiments with three different random seeds. See
the appendix for more detailed results.

4.2. Comparisons to the State of the Art

Table 2 shows the main results of all methods on the four
datasets. Our method achieves an overall performance im-
provement of 0.84%, 1.66%, 1.39%, and 1.24% over the

second-best method in these four datasets. Methods with
homogeneous model (FedAvg, FedProx, Scaffold, FedRS,
FedOpt) generally perform poorly, as there are substantial
differences in feature representation between modalities
despite consistent model structure. Directly aggregating
model parameters across modalities can lead to confusion.
M2FEDSA also achieves superior performance compared
with modal heterogeneity MFL methods, which demon-
strates the effectiveness of our DAFS and DKTS, highlight-
ing the potential and benefits of the large-scale models. It
also supports our view on the importance of adequate knowl-
edge complementarity between modalities.

In addition, our method achieves a better balance between
performance and efficiency according to the statistics of
trainable parameters in Table 2. It eliminates the need for
an additional feature extraction step. Consequently, there
is no requirement to store extra feature models locally, sig-
nificantly reducing storage overhead. Compared with other
model heterogeneity methods, our method does not intro-
duce additional networks, thereby avoiding increased com-
plexity. Yet, it achieves superior performance with fewer
trainable parameters. For instance, our method improves the
accuracy by 4.48% compared with FedMSplit for the EPIC-
Kitchens dataset, and the average trainable parameters per
client are reduced by 91.18%.

4.3. Ablation Study

To demonstrate the effectiveness of our proposed two
adapters, we perform comprehensive ablation studies and
present the results in Table 3. Firstly, we compare our
method with both full fine-tuning and linear probing. Full
fine-tuning is slightly better than linear probing but is ex-
plosive for trainable parameters. Our method reduces the
trainable parameters by 98%+ on average and exceeds the
performance of full fine-tuning. Based on the results, it can
be found that both proposed adapters improve the perfor-
mance of fine-tuning, and the TA has a more significant
impact on the performance improvement. Furthermore, as
previous work shows (Qu et al., 2022), the larger-scale
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(a) (b) (c) (d) (e)

Figure 4. (a)-(d): The effect of communication rounds on the performance of the four datasets. (e): The effect of different data
heterogeneity on model performance.

Table 5. Comparison results on the different settings (position, connection type, and width) of the proposed adapters on four datasets. “R”
denotes the residual connection type and “S” denotes the serial connection type.

DATASET
Position (TA on the Smain) Connection Type (TA / MA) Width (TA & MA)

Top-1 Top-3 Bottom-1 Bottom-3 R / R R / S S / R S / S 8 16 32 64 128

EPIC-Kitchens (ACC↑) 40.24 40.51 37.38 37.49 40.22 40.51 39.57 39.12 39.16 39.77 40.03 40.51 40.48
MiT (ACC↑) 43.49 43.64 40.53 40.81 42.98 43.64 42.10 41.66 42.37 42.79 43.31 43.64 43.68
Hateful-Memes (AUC↑) 63.15 63.74 61.92 62.16 63.19 63.74 62.33 61.85 60.61 62.45 63.74 63.62 63.75
MELD (UAR↑) 53.89 54.33 50.75 51.27 53.94 54.33 53.79 53.11 52.29 53.18 53.85 54.33 54.37

model has a more robust performance. We also provide
results for the version using Differential Privacy (Dwork,
2006), and despite the added noise, our method still achieves
competitive results.

Table 4 shows the effectiveness of the proposed knowledge
transfer strategies. Both feature-level and decision-level
transfers significantly enhance overall performance, indi-
cating their indispensable roles in improving model perfor-
mance. Feature-level transfer deepens the understanding
of data, while decision-level transfer optimizes task deci-
sions. The absence of either would lead to a performance
decrement. Therefore, the comprehensive utilization of
multimodal information is crucial for achieving optimal
performance.

4.4. Hyperparametric Analysis

We validate the choice of λ1 = 0.6, λ2 = 0.2, and λ3 = 0.2
as illustrated in Figure 3. The axes of the figure represent the
values of λ2 and λ3, respectively. We observe an increment
in the evaluation metrics across all four datasets when λ2

and λ3 improve from 0.1 to 0.2. However, as the values of
λ2 and λ3 exceed 0.2, a decline in the evaluation metrics
ensues, suggesting that the combination of ℓce, ℓftran and
ℓdtran has reached optimal performance. Furthermore, an
overemphasis on knowledge transfer coefficients λ2 and λ3

results in performance inferior to scenarios where cross-
entropy loss operates in isolation. This phenomenon un-
derscores the detrimental impact of excessive reliance on
knowledge transfer mechanisms, potentially leading to an

overfitting scenario or the dilution of individual loss compo-
nent effectiveness. It highlights the necessity for a balanced
approach in integrating multiple objectives to avoid over-
shadowing the primary task objective, thereby ensuring a
synergistic effect.

4.5. Further Analysis

Number of Communication Rounds. Figure 4(a)-4(d)
show the average test result across all clients for different
communication rounds. With fewer rounds (e.g., less than
30 on the Epic-Kitchens), our framework performs similarly
to the baselines. Thanks to the proposed DAFS and DKTS,
our method consistently outperforms all baselines after more
rounds of training (e.g., about 70 on the Epic-Kitchens).

Degree of Heterogeneity of Data Distribution. We investi-
gate the performance of M2FEDSA under different degrees
of data heterogeneity. Following (Zhang et al., 2022b), we
use Dirichlet distribution D(β) to simulate the data hetero-
geneity of clients. As shown in previous work (Qu et al.,
2022; Yang et al., 2023), large-scale models are inherently
more generalizable and can ameliorate the data heterogene-
ity problem well. As shown in Figure 4(e), M2FEDSA still
exhibits competitive performance even with highly hetero-
geneous settings such as β = 0.1.

Position of Task Adapters. We study the effect of adding
Task Adapters in different layers. As shown in Table 5,
adding TA to the bottom layer of the high-level encoders
(Bottom-1) yields the worst performance compared with
other settings. We hypothesize that the shallow layers learn
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Table 6. Comparison of the storage size (MB) and the communication time (s) with the baselines. “MemTP”: the storage required
for trainable parameters, “MemFP”: the storage required for frozen parameters, “Memtotal”: the total storage required, “Time”: the
communication time required by the client during the testing stage. The results in table are averaged across all clients.

METHOD
EPIC-KITCHENS / MIT HATEFUL-MEMES MELD

MemTP MemFP Memtotal Time MemTP MemFP Memtotal Time MemTP MemFP Memtotal Time

FedAvg 0.3 309 309.3 0.45 0.01 832 832.01 0.18 0.02 649 649.02 0.25
FedProx 0.3 309 309.3 0.72 0.01 832 832.01 0.44 0.02 649 649.02 0.61
SCAFFOLD 0.3 309 309.3 0.63 0.01 832 832.01 0.37 0.02 649 649.02 0.55
FedRS 0.3 309 309.3 1.41 0.01 832 832.01 0.92 0.02 649 649.02 1.07
FedOpt 0.3 309 309.3 1.65 0.01 832 832.01 1.16 0.02 649 649.02 1.34

FedMSplit 5 309 314 3.73 6 832 838 2.76 4 649 653 3.24
FDARN 23 309 332 5.39 25 832 857 3.02 23 649 672 4.75
CreamFL 99 - 99 4.88 232 - 232 2.95 241 - 241 4.14
M2FedSA(ours) 0.5 11 11.5 7.59 0.2 121 121.2 5.97 0.3 66 66.3 6.31

generic representations that do not need much adaptation,
while deeper layers learn task-specific features. In contrast,
TAs in the top three layers (Top-3) performed similarly to
their placement in only the top layer (Top-1), suggesting that
Top-1 could be a more resource-efficient option in limited-
resource settings.

Connection types of Adapters. As shown in Table 5, the
combination of residual TAs and serial MAs achieves op-
timal performance. The residual TA adds task-specific en-
hancements without disturbing the original feature infor-
mation, thereby preserving the model’s original generaliza-
tion ability while fully utilizing information specific to the
task. Meanwhile, through serial layer-by-layer processing,
the MA effectively strengthens the capture of modality-
specific knowledge, significantly enhancing the model’s
performance in processing specific modality data.

Width of Adapters. We study how the width of the adapters
affects the final performance. The results in Table 5 show
that wider adapters tend to achieve better performance
but will introduce more tunable parameters. For the four
datasets, the width of the adapters gradually stabilizes be-
yond 64, 64, 32, and 64. It is worth noting that the adapters
with a width of only eight still achieve a performance of
39.16% on EPIC-Kitchens, which is competitive with the
other methods in Table 2.

Cost Analysis. As illustrated in Table 6, our methodology
eliminates the need for prior feature extraction, enabling
end-to-end training. We have notably reduced the storage
burden on local clients by employing SL. Compared to
the CreamFL method, which has the second-lowest storage
cost, our approach achieves a remarkable reduction in local
storage requirements by 88.4%, 88.4%, 47.7%, and 72.5%
across the four datasets, respectively.

Furthermore, despite the necessity of additional communica-
tion with the main server, our method remains time-efficient.

This efficiency is mainly because the model is almost frozen
except for the lightweight adapters and classifiers. Conse-
quently, compared with conventional MFL methods, our
method’s communication time is acceptable. This balance
of communication efficiency and reduced client-side stor-
age underscores the practicality and innovation of our FL
framework, particularly in multimodal contexts.

5. Conclusion & Limitation
In this paper, we investigate MFL based on large-scale mod-
els and introduce a novel framework, M2FEDSA, which
empowers resource-constrained clients to train large-scale
models using their data. The proposed dual adaptive fine-
tuning strategy and dual knowledge transfer strategy effi-
ciently leverage the complementarity of multimodal data,
balancing efficiency with performance. We achieve com-
parable or even better performance than prior arts on four
benchmarks. However, a limitation of the framework is that
M2FEDSA relies on complete multimodal data during the
training fine-tuning phase, a requirement that could pose
constraints in practical applications.
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A. Appendix
In this appendix, we first elaborate on additional implementation details (see Appendix B). Subsequently, we present
supplementary experimental results (see Appendix C). Finally, we show how to add modality and task adapters to the
original ViT block (see Appendix D).

B. Implementation Details
B.1. EPIC-Kitchens-100 / MiT

We process multimodal data encompassing video and audio modalities for the EPIC-Kitchens-100 and MiT datasets. We
implement a resolution standardization for video data, resizing the raw frame to a uniform 224× 224 pixels. In addition,
we extract a consistent set of 16 frames from each video, ensuring standardized dimensions in the data representation.
Regarding the audio modality, we employ Mel-Frequency Cepstral Coefficients (MFCC) to extract pivotal audio features,
effectively capturing the audio data’s essence.

The architecture of our model uses Swin-Transformer 3D and Whisper as the backbone networks for video and audio
modalities, respectively. The embedding module and the first transformer block are strategically deployed on the client
side, with the primary intent of ensuring data privacy by keeping modules that directly interact with raw data localized.
Subsequent transformer blocks of the encoder are established on the main server, handling more complex computations.
This architecture is further augmented by serial adding the Modality Adapter within the transformer block on the client side.
Concurrently, the Task Adapters are residual added within the selected transformer blocks on the main server side. Each
adapter maintains a standardized width of 64. The first FC layer in Adapters is randomly initialized, and the second FC layer
is initialized to zero. In this way, the adapted model is close to the pre-trained model at the beginning of training.

The entire framework is trained using the AdamW optimizer for 300 communication rounds with a batch size of 16. The
base learning rate is 1e-5, and the weight decay is 5e-2.

B.2. Hateful-Memes

For the Hateful-Memes dataset, we use both image and text data modalities. For image data processing, we adopt a
uniform resizing method, standardizing all images to a resolution of 224× 224 pixels, ensuring consistency in visual data
representation. In the realm of text modality, we utilize the RobertaTokenizer for token extraction. Moreover, we normalize
the token lengths to align the maximum found within the dataset, incorporating zero-padding for shorter sequences to
maintain data representation uniformity.

Our model’s architecture uses Swin-Transformer 2D and RoBERTa as the backbone networks for image and text modalities,
respectively. The configuration and deployment of the model, along with the settings for the adapters, are in line with the
methodologies applied to the EPIC-Kitchens dataset.

Table 7. Comparison to state-of-the-art on three datasets. “TPs.” represents the average number of trainable parameters per client. Bold
number: The best result in each column. Note: The results in the table are obtained under K = 50/50/100/15.

Model Size Type Method EPIC-Kitchens MiT Hateful-Memes MELD

ACC TPs. ACC TPs. AUC TPs. UAR TPs.

Setup I

Model
Homogeneity

FedAvg 32.69 55.97K 34.76 55.97K 54.79 1.23K 47.07 4.48K
FedProx 34.14 55.97K 36.21 55.97K 56.44 1.23K 48.12 4.48K

SCAFFOLD 34.08 55.97K 36.89 55.97K 56.82 1.23K 47.39 4.48K
FedRS 34.15 55.97K 37.33 55.97K 57.01 1.23K 48.24 4.48K
FedOpt 34.05 55.97K 39.08 55.97K 57.18 1.23K 48.37 4.48K

Model
Heterogeneity

FedMSplit 35.71 0.69M 39.97 0.69M 60.95 0.79M 52.05 0.66M
FDARN 35.25 5.58M 40.83 5.58M 60.51 5.78M 52.43 5.52M
CreamFL 39.19 25.35M 41.45 25.35M 62.18 7.2M 52.51 17.8M

M2FedSA(ours) 39.88 0.11M 43.17 0.11M 63.19 59.49K 53.62 65.19K
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Table 8. Comparison to state-of-the-art on three datasets. “TPs.” represents the average number of trainable parameters per client. Bold
number: The best result in each column. Note: The results in the table are obtained under K = 100/100/200/30.

Model Size Type Method EPIC-Kitchens MiT Hateful-Memes MELD

ACC TPs. ACC TPs. AUC TPs. UAR TPs.

Setup I

Model
Homogeneity

FedAvg 30.26 55.97K 31.58 55.97K 51.96 1.23K 45.82 4.48K
FedProx 31.82 55.97K 32.79 55.97K 53.28 1.23K 47.25 4.48K

SCAFFOLD 30.89 55.97K 33.14 55.97K 54.18 1.23K 46.66 4.48K
FedRS 31.97 55.97K 33.26 55.97K 54.62 1.23K 47.13 4.48K
FedOpt 32.47 55.97K 34.53 55.97K 55.89 1.23K 48.05 4.48K

Model
Heterogeneity

FedMSplit 35.09 0.69M 35.24 0.69M 58.61 0.79M 50.23 0.66M
FDARN 34.93 5.58M 35.82 5.58M 58.37 5.78M 50.72 5.52M
CreamFL 35.35 25.35M 37.09 25.35M 59.26 7.2M 50.39 17.8

M2FedSA(ours) 36.77 0.11M 39.17 0.11M 61.03 59.49K 52.19 65.19K

Setup II

Model
Homogeneity

FedAvg 31.29 74.79K 32.37 74.79K 53.18 1.54K 46.93 5.99K
FedProx 32.14 74.79K 33.26 74.79K 54.94 1.54K 47.42 5.99K

SCAFFOLD 31.95 74.79K 33.61 74.79K 54.63 1.54K 47.25 5.99K
FedRS 32.08 74.79K 34.14 74.79K 55.22 1.54K 47.87 5.99K
FedOpt 32.51 74.79K 35.38 74.79K 56.45 1.54K 48.11 5.99K

Model
Heterogeneity

FedMSplit 35.19 1.36M 36.02 1.36M 59.17 1.58M 51.17 1.05M
FDARN 35.24 6.11M 36.29 6.11M 59.63 6.43M 51.68 6.09M
CreamFL 36.28 26.04M 37.43 26.04M 60.55 60.85M 51.95 63.16M

M2FedSA(ours) 37.25 0.12M 39.95 0.12M 61.94 62.49K 53.28 69.79K

The entire framework is trained using the AdamW optimizer for 300 communication rounds with a batch size of 32. The
base learning rate is 1e-4, and the weight decay is 5e-2.

B.3. MELD

We use three modalities for the MELD dataset: video, audio, and text. The preprocessing steps for each modality are
consistent with the methods mentioned in our previous detailed descriptions of the Hateful-Memes and the EPIC-Kitchens
datasets. To this end, we incorporate Swin-Transformer 3D, RoBERTa, and Whisper as the backbone networks for video,
text, and audio modalities, respectively. Regarding model deployment and adapter configuration, we ensure consistency
with the methods adopted for the abovementioned datasets.

The entire framework is trained using the AdamW optimizer for 300 communication rounds with a batch size of 32. The
base learning rate is 1e-4, and the weight decay is 5e-2.

C. Additional Results
Table 7 shows a comparison of our M2FEDSA with other multimodal federated learning methods, where we set the total
number of clients to K = 50/50/100/15 and employ the Type I modal size setup, i.e., a relatively small model size. Table 8
shows similar comparison results while the total number of clients is expanded to K = 100/100/200/30.

The results in Table 7 and Table 8 suggest a notable trend: utilizing larger model sizes tends to enhance performance metrics.
This observation underscores the great potential of larger large-scale models in improving overall system performance. The
proposed M2FEDSA, characterized by its simplicity and broad applicability, is particularly well-suited for future integration
with more advanced large-scale models, potentially leading to substantial performance enhancements. Additionally, it is
evident that larger-scale models demonstrate superior generalizability. It is particularly apparent in the model homogeneity
methods (FedAvg, FedProx, SCAFFOLD, FedRS, and FedOpt), which performance is overly dependent on the quality of
the features extracted by the large-scale model. The results in Table 7 and Table 8 corroborate this assertion, with further
improvements in the performance of these methods as the model size increases.
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Algorithm 3 Pseudo-code of an adapted ViT block

1 class ViTBlockWithModalityAdapter(nn.Module):
2

3 def __init__(self, dim, num_heads, mlp_ratio, m_adapter):
4 # Layers in the original ViT block
5 self.mha = MultiHeadAttention(dim, num_heads)
6 self.ffn = FeedForwardNetwork(dim, int(dim * mlp_ratio))
7

8 # Modality Adapter
9 self.adapter = m_adapter

10

11 def forward(self, x):
12 x = self.mha(x)
13

14 # modality adaption (serial)
15 x = x + self.adapter(self.ffn(x))
16

17 return x
18

19 class ViTBlockWithTaskAdapter(nn.Module):
20

21 def __init__(self, dim, num_heads, mlp_ratio, t_adapter):
22 # Layers in the original ViT block
23 self.mha = MultiHeadAttention(dim, num_heads)
24 self.ffn = FeedForwardNetwork(dim, int(dim * mlp_ratio))
25

26 # Task Adapter
27 self.adapter = t_adapter
28

29 def forward(self, x):
30 x = self.mha(x)
31

32 # task adaption (residual)
33 x = x + self.ffn(x) + self.adapter(x)
34

35 return x

Furthermore, as shown in Table 8, the growth in the number of clients leads to severe performance degradation for all
methods. However, the proposed M2FEDSA consistently outperforms existing multimodal federated learning algorithms,
even under more challenging and complex training settings.

D. Pseudo-code of the ViT Block with Adapters
In Algorithm 3, we show the PyTorch style pseudo-code on how to add the Task Adapter and the Modality Adapter to a ViT
block.
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