
Published as a conference paper at ICLR 2024

LEARNING HIERARCHICAL POLYNOMIALS WITH
THREE-LAYER NEURAL NETWORKS

Zihao Wang
Peking University
zihaowang@stu.pku.edu.cn

Eshaan Nichani & Jason D. Lee
Princeton University
{eshnich,jasonlee}@princeton.edu

ABSTRACT

We study the problem of learning hierarchical polynomials over the standard
Gaussian distribution with three-layer neural networks. We specifically consider
target functions of the form h = g ◦ p where p : Rd → R is a degree k polyno-
mial and g : R→ R is a degree q polynomial. This function class generalizes the
single-index model, which corresponds to k = 1, and is a natural class of functions
possessing an underlying hierarchical structure. Our main result shows that for a
large subclass of degree k polynomials p, a three-layer neural network trained via
layerwise gradient descent on the square loss learns the target h up to vanishing
test error in Õ(dk) samples and polynomial time. This is a strict improvement
over kernel methods, which require Θ̃(dkq) samples, as well as existing guaran-
tees for two-layer networks, which require the target function to be low-rank. Our
result also generalizes prior works on three-layer neural networks, which were
restricted to the case of p being a quadratic. When p is indeed a quadratic, we
achieve the information-theoretically optimal sample complexity Õ(d2), which is
an improvement over prior work (Nichani et al., 2023) requiring a sample size of
Θ̃(d4). Our proof proceeds by showing that during the initial stage of training
the network performs feature learning to recover the feature p with Õ(dk) sam-
ples. This work demonstrates the ability of three-layer neural networks to learn
complex features and as a result, learn a broad class of hierarchical functions.

1 INTRODUCTION

Deep neural networks have demonstrated impressive empirical successes across a wide range of
domains. This improved accuracy and the effectiveness of the modern pretraining and finetuning
paradigm is often attributed to the ability of neural networks to efficiently learn input features from
data. On “real-world” learning problems posited to be hierarchical in nature, conventional wisdom is
that neural networks first learn salient input features to more efficiently learn hierarchical functions
depending on these features. This feature learning capability is hypothesized to be a key advantage
of neural networks over fixed-feature approaches such as kernel methods (Wei et al., 2020; Allen-
Zhu & Li, 2020b; Bai & Lee, 2020).

Recent theoretical work has sought to formalize this notion of a hierarchical function and understand
the process by which neural networks learn features. These works specifically study which classes
of hierarchical functions can be efficiently learned via gradient descent on a neural network, with a
sample complexity improvement over kernel methods or shallower networks that cannot utilize the
hierarchical structure. The most common such example is the multi-index model, in which the target
f∗ depends solely on the projection of the data onto a low-rank subspace, i.e f∗(x) = g(Ux) for a
projection matrix U ∈ Rr×d and unknown link function g : Rr → R. Here, a hierarchical learning
process simply needs to extract the hidden subspace U and learn the r-dimensional function g. Prior
work (Abbe et al., 2022; 2023; Damian et al., 2022; Bietti et al., 2022) shows that two-layer neural
networks trained via gradient descent indeed learn the low-dimensional feature Ux, and thus learn
multi-index models with an improved sample complexity over kernel methods.

Beyond the multi-index model, there is growing work on the ability of deeper neural networks
to learn more general classes of hierarchical functions. (Safran & Lee, 2022; Ren et al., 2023;

1

Published as a conference paper at ICLR 2024

Nichani et al., 2023) show that three-layer networks trained with variants of gradient descent can
learn hierarchical targets of the form h = g◦p, where p is a simple nonlinear feature such as the norm
p(x) = ∥x∥2 or a quadratic p(x) = x⊤Ax. However, it remains an open question to understand
whether neural networks can more efficiently learn a broader class of hierarchical functions.

1.1 OUR RESULTS

In this work, we study the problem of learning hierarchical polynomials over the standard d-
dimensional Gaussian distribution. Specifically, we consider learning the target function h : Rd →
R, where h is equipped with the hierarchical structure h = g ◦ p for polynomials g : R → R
and p : Rd → R of degree q and k respectively. This class of functions is a generalization of the
single-index model, which corresponds to k = 1.

Our main result, Theorem 1, is that for a large class of degree k polynomials p, a three-layer neural
network trained via layer-wise gradient descent can efficiently learn the hierarchical polynomial
h = g ◦ p in Õ(dk) samples. Crucially, this sample complexity is a significant improvement over
learning h via a kernel method, which requires Ω̃(dqk) samples (Ghorbani et al., 2021). Our high
level insight is that the sample complexity of learning g ◦p is the same as that of learning the feature
p, as p can be extracted from the low degree terms of g ◦p. Since neural networks learn in increasing
complexity (Abbe et al., 2022; 2023; Xu, 2020), such learning process is easily implemented by GD
on a three-layer neural network. We verify this insight both theoretically via our layerwise training
procedure (Algorithm 1) and empirically via simulations in Section A.

Our proof proceeds by showing that during the initial stage of training the network implements
kernel regression in d-dimensions to learn the feature p even though it only sees g ◦ p, and in the
next stage implements 1D kernel regression to fit the link function g. This feature learning during
the initial stage relies on showing that the low-frequency component of the target function g ◦ p is
approximately proportional to the feature p, by the “approximate Stein’s Lemma” stated in Lemma 2,
which is our main technical contribution. This demonstrates that three-layer networks trained with
gradient descent, unlike kernel methods, do allow for adaptivity and thus the ability to learn features.

1.2 RELATED WORKS

Kernel Methods. Initial learning guarantees for neural networks relied on the Neural Tangent
Kernel (NTK) approach, which couples GD dynamics to those of the network’s linearization about
the initialization (Jacot et al., 2018; Soltanolkotabi et al., 2018; Du et al., 2018; Chizat et al., 2019).
However, the NTK theory fails to capture the success of neural networks in practice (Arora et al.,
2019; Lee et al., 2020; E et al., 2020). Furthermore, Ghorbani et al. (2021) presents a lower bound
showing that for data uniform on the sphere, the NTK requires Ω̃(dk) samples to learn any degree
k polynomial in d dimensions. Crucially, networks in the kernel regime cannot learn features (Yang
& Hu, 2021), and hence cannot adapt to low-dimensional structure. An important question is thus
to understand how neural networks are able to adapt to underlying structures in the target function
and learn salient features, which allow for improved generalization over kernel methods.

Two-layer Neural Networks. Recent work has studied the ability of two-layer neural networks to
learn features and as a consequence learn hierarchical functions with a sample complexity improve-
ment over kernel methods. For isotropic data, two-layer neural networks are capable of efficiently
learning multi-index models, i.e. functions of the form f∗(x) = g(Ux). Specifically, for Gaussian
covariates, Damian et al. (2022); Abbe et al. (2023); Dandi et al. (2023) show that two-layer neu-
ral networks learn low-rank polynomials with a sample complexity whose dimension dependence
does not scale with the degree of the polynomial, and Bietti et al. (2022); Ba et al. (2022) show
two-layer networks efficiently learn single-index models. For data uniform on the hypercube, Abbe
et al. (2022) shows learnability of a special class of sparse boolean functions in O(d) steps of SGD.
These prior works rely on layerwise training procedures which learn the relevant subspace in the first
stage, and fit the link function g in the second stage. Relatedly, fully connected networks trained
via gradient descent on standard image classification tasks have been shown to learn such relevant
low-rank features (Lee et al., 2007; Radhakrishnan et al., 2022).

Three-layer Neural Networks. Prior work has also shown that three-layer neural networks can
learn certain classes of hierarchical functions. Chen et al. (2020) shows that three-layer networks can

2

Published as a conference paper at ICLR 2024

more efficiently learn low-rank polynomials by decomposing the function zp as (zp/2)2. Allen-Zhu
et al. (2019) uses a modified version of GD to improperly learn a class of three-layer networks via
a second-order variant of the NTK. Safran & Lee (2022) shows that certain ball indicator functions
of the form 1∥x∥⩾λ are efficiently learnable via GD on a three-layer network. They accompany this
with a lower bound showing that such targets are not even approximatable by polynomially-sized
two-layer networks. Ren et al. (2023) shows that a multi-layer mean-field network can learn the
target ReLU(1− ∥x∥). Our work considers a broader class of hierarchical functions and features.

Our work is most similar to Allen-Zhu & Li (2019; 2020a); Nichani et al. (2023). Allen-Zhu &
Li (2019) considers learning target functions of the form p + αg ◦ p with a three-layer residual
network similar our architecture (1). They consider a similar hierarchical learning procedure where
the first layer learns p while the second learns g. However Allen-Zhu & Li (2019) can only learn
the target up to O(α4) error, while our analysis shows learnability of targets of the form g ◦ p,
corresponding to α = Θ(1), up to od(1) error. Allen-Zhu & Li (2020a) shows that a deeper network
with quadratic activations learns a similar class of hierarchical functions up to arbitrarily small error,
but crucially requires α to be od(1). We remark that our results do require Gaussianity of the input
distribution, while Allen-Zhu & Li (2019; 2020a) hold for a more general class of data distributions.
Nichani et al. (2023) shows that a three-layer network trained with layerwise GD, where the first
stage consists of a single gradient step, efficiently learns the hierarchical function g ◦ p when p is a
quadratic, with width and sample complexity Θ̃(d4). Our Theorem 1 extends this result to the case
where p is a degree k polynomial. Furthermore, when p is quadratic, Corollary 1 shows that our
algorithm only requires a width and sample complexity of Θ̃(d2), which matches the information-
theoretic lower bound. Our sample complexity improvement for quadratic features relies on showing
that running gradient descent for multiple steps can more efficiently extract the feature p during
the feature learning stage. Furthermore, the extension to degree k polynomial features relies on a
generalization of the approximate Stein’s lemma, a key technical innovation of our work.

1.3 NOTATIONS

We let
∑

ij
denote the sum over increasing sequences (i1, . . . iz), i.e

∑
i1<i2<···<iz

. We useX ≲ Y

to denote X ⩽ CY for some absolute positive constant C and X ≳ Y is defined analogously.
We use poly(z1, . . . , zp) to denote a quantity that depends on z1, . . . , zp polynomially. We also
use the standard big-O notations: Θ(·), O(·) and Ω(·) to only hide absolute positive constants. In
addition, we use Õ and Ω̃ to hide higher-order terms, e.g., O((log d)(log log d)2) = Õ(log d) and
O(d log d) = Õ(d). Let a∧ b = min(a, b), [k] = {1, 2, . . . , k} for k ∈ N. For a vector v, denote by
∥v∥p := (

∑
i |vi|p)1/p the ℓp norm. When p = 2, we omit the subscript for simplicity. For a matrix

A, let ∥A∥ and ∥A∥F be the spectral norm and Frobenius norm, respectively. We use λmax(·) and
λmin(·) to denote the maximal and the minimal eigenvalue of a real symmetric matrix. For a vector
w ∈ RR and k ⩽ R, we use w⩽k ∈ Rk to denote the first k coordinates of w and w>k to denote the
last R− k coordinates of w. That is to say, we can write w = (w⩽k, w>k).

2 PRELIMINARIES

2.1 PROBLEM SETUP

Our aim is to learn the target function h : Rd → R, where Rd is the input domain equipped with the
standard normal distribution γ := N (0, Id). We assume our target has a compositional structure,
that is to say, h = g ◦ p for some g : R→ R and p : Rd → R.

Assumption 1. p is a degree k polynomial with k ⩾ 2, and g is a degree q polynomial.

The degree of h is at most r := kq. We treat k, q as absolute constants, and hide constants that
depend only on k, q using big-O notation. We require the following mild regularity condition on the
coefficients of g.

Assumption 2. Denote g(z) =
∑

0⩽i⩽q giz
i. We assume supi |gi| = O(1).

Three Layer Network. Our learner is a three-layer neural network with a bottleneck layer and
residual link. Let m1,m2 be the two hidden layer widths, and σ1(·), σ2(·) be two activation func-

3

Published as a conference paper at ICLR 2024

𝑥 𝑔!,#,$(𝑥) ℎ%(𝑥)𝑉 𝑢 𝑎 𝑐

+

+𝑠 +𝑏

𝜎& 𝜎'

Figure 1: Three-layer network with bottleneck layer and residual link, defined in (1).

tions. The network, denoted by hθ, is formally defined as follows:

hθ(x) := gu,s,V (x) + c⊤σ2(agu,s,V (x) + b) = gu,s,V (x) +

m2∑
i=1

ciσ2(aigu,s,V (x) + bi)

gu,s,V (x) := u⊤σ1(V x+ s)

(1)

where a, b, c ∈ Rm2 , u, s ∈ Rm1 and V ∈ Rm1×d. Here, the intermediate embedding gu,s,V is a
two-layer neural network with input x and width m1, while the mapping gu,s,V 7→ hθ is another
two-layer neural network with input dimension 1, width m2, and a residual connection. We let
θ := (a, b, c, u, s, V) be an aggregation of all the parameters. We remark that the bottleneck layer
and residual connection are similar to those in the ResNet architecture (He et al., 2016), as well as
architectures considered in prior theoretical work (Ren et al., 2023; Allen-Zhu & Li, 2019; 2020a).
See Figure 1 for a diagram of the network architecture.

The parameters θ(0) := (a(0), b(0), c(0), u(0), s(0), V (0)) are initialized as c(0) = 0, u(0) = 0,
a
(0)
i ∼iid Unif{−1, 1}, s(0)i ∼iid N (0, 1/2), and v(0)i ∼iid Unif{Sd−1(1/

√
2)}, the sphere of

radius 1/
√
2, where {v(0)i }i∈[m1] are the rows of V (0). Furthermore, we will assume b(0)i ∼iid τb,

where τb is a distribution with density µb(·). We make the following assumption on µb:
Assumption 3. µb(t) ≳ (|t|+ 1)−p for an absolute constant p > 0, and Eb∼µb

[b8] ≲ 1.
Remark 1. For example, we can choose τb to be the Student’s t-distribution with a degree of free-
dom larger than 8. Student’s t-distribution has the probability density function (PDF) given by

µν(t) =
Γ
(
ν+1
2

)
√
νπΓ

(
ν
2

) (1 + t2

ν

)−(ν+1)/2

where ν is the number of degrees of freedom and Γ is the gamma function.

Training Algorithm. The network (1) is trained via layer-wise gradient descent with sample split-
ting. We generate two independent datasets D1,D2, each of which has n independent samples
(x, h(x)) with x ∼ γ. We denote L̂Di

(θ) as the empirical square loss on Di, i.e

L̂Di
(θ) :=

1

n

∑
x∈Di

(hθ(x)− h(x))2 .

In our training algorithm, we first train u via gradient descent for T1 steps on the empirical loss
L̂D1

(θ), then train c via gradient descent for T2 steps on L̂D2
(θ). In the whole training process,

a, b, s, V are held fixed. The pseudocode for this training procedure is presented in Algorithm 1.

2.2 HERMITE POLYNOMIALS

Our main results depend on the definition of the Hermite polynomials. We briefly introduce key
properties of the Hermite polynomials here, and defer further details to Appendix E.1.
Definition 1 (1D Hermite polynomials). The k-th normalized probabilist’s Hermite polynomial,
hk : R→ R, is the degree k polynomial defined as

hk(x) =
(−1)k√
k!

dkµβ

dxk (x)

µβ(x)
, (2)

where µβ(x) = exp(−x2/2)/
√
2π is the density of the standard Gaussian.

4

Published as a conference paper at ICLR 2024

Algorithm 1 Layer-wise Training Algorithm

Input: Initialization θ(0), learning rate η1, η2, weight decay ξ1, ξ2, time T1, T2.
for t = 1, . . . , T1 do

u(t) ← u(t−1) − η1(∇uL̂D1
(θ(t−1)) + ξ1u

(t−1))
θ(t) ← (a(0), b(0), c(0), u(t), s(0), V (0))

end for
for t = T1 + 1, . . . , T1 + T2 do

c(t) ← c(t−1) − η2(∇cL̂D2
(θ(t−1)) + ξ2c

(t−1))
θ(t) ← (a(0), b(0), c(t), u(T1), s(0), V (0))

end for
θ̂ ← θ(T1+T2)

Output: θ̂.

The first such Hermite polynomials are

h0(z) = 1, h1(z) = z, h2(z) =
z2 − 1√

2
, h3(z) =

z3 − 3z√
6

, · · ·

Denote β = N (0, 1) to be the standard Gaussian in 1D. A key fact is that the normalized Hermite
polynomials form an orthonormal basis of L2(β); that is Ex∼β [hj(x)hk(x)] = δjk.

The multidimensional analogs of the Hermite polynomials are Hermite tensors:

Definition 2 (Hermite tensors). The k-th Hermite tensor in dimension d, Hek : Rd → (Rd)⊗k, is
defined as

Hek(x) :=
(−1)k√
k!

∇kµγ(x)

µγ(x)
,

where µγ(x) = exp(− 1
2∥x∥

2)/(2π)d/2 is the density of the d-dimensional standard Gaussian.

The Hermite tensors form an orthonormal basis of L2(γ); that is, for any f ∈ L2(γ), one can write
the Hermite expansion

f(x) =
∑
k⩾0

⟨Ck(f), Hek(x)⟩ where Ck(f) := Ex∼γ [f(x)Hek(x)] ∈ (Rd)⊗k.

As such, for any integer k ⩾ 0 we can define the projection operator Pk : L2(γ)→ L2(γ) onto the
span of degree k Hermite polynomials as follows:

(Pkf)(x) := ⟨Ck(f), Hek(x)⟩.

Furthermore, denote P⩽k :=
∑

0⩽i⩽k Pi and P<k :=
∑

0⩽i<k Pi as the projection operators onto
the span of Hermite polynomials with degree no more than k, and degree less than k, respectively.

3 MAIN RESULTS

Our goal is to show that the network defined in (1) trained via Algorithm 1 can efficiently learn
hierarchical polynomials of the form h = g ◦ p.

First, we consider a restricted class of degree k polynomials for the hidden feature p. Consider p
with the following decomposition:

p(x) =
1√
L

(
L∑

i=1

λiψi(x)

)
. (3)

Assumption 4. The feature p can be written in the form (3). We make the following additional
assumptions on p:

5

Published as a conference paper at ICLR 2024

• There is a set of orthogonal vectors {vi,j}i∈[L],j∈[Ji], satisfying Ji ⩽ k and ∥vi,j∥ = 1,
such that ψi(x) only depends on v⊤i,1x, . . . , v

⊤
i,Ji

x.

• For each i, Pkψi = ψi. Equivalently, ψi lies in the span of degree k Hermite polynomials.

• E
[
ψi(x)

2
]
= 1 and E

[
p(x)2

]
= 1.

• The λi are balanced, i.e supi |λi| = O(1), and L = Θ(d).
Remark 2. The first assumption tells us that eachψi depends on a different rank ⩽ k subspace, all of
which are orthogonal to each other. As a consequence of the rotation invariance of the Gaussian, the
quantities ψi(x) are thus independent when we regard x as a random vector. The second assumption
requires p to be a degree k polynomial orthogonal to lower-degree polynomials, while the third is a
normalization condition. The final condition requires p to be sufficiently spread out, and depend on
many ψi. Our results can easily be extended to any L = ωd(1), at the expense of a worse error floor.
Remark 3. Since Pkψi = ψi for each i, we have Pkp = p. We can thus write p(x) as ⟨A,Hek(x)⟩
for some A ∈ (Rd)⊗k. There are two important classes of A which satisfy Assumption 4:

First, let A be an orthogonally decomposable tensor

A =
1√
L

(
L∑

i=1

λiv
⊗k
i

)
where ⟨vi, vj⟩ = δij . Using identities for the Hermite polynomials (Appendix E.1), one can rewrite
the feature p as

p(x) =
1√
L

(
L∑

i=1

λi⟨v⊗k
i , Hek(x)⟩

)
=

1√
L

(
L∑

i=1

λihk(v
⊤
i x)

)
. (4)

p thus satisfies Assumption 4 with Ji = 1 for all i, assuming the regularity conditions hold.

Next, we show that Assumption 4 is met when p is a sum of sparse parities, i.e.,

A =
1√
L

(
L∑

i=1

λi · vi,1 ⊗ · · · ⊗ vi,k

)
where ⟨vi1,j1 , vi2,j2⟩ = δi1i2δj1j2 . In that case, the feature p can be rewritten as

p(x) =
1√
L

(
L∑

i=1

λi⟨vi,1 ⊗ · · · ⊗ vi,k, Hek(x)⟩

)
=

1√
L

 L∑
i=1

λi

 k∏
j=1

⟨vi,j , x⟩

For example, taking L = d/k and choosing vi,j = ek(i−1)+j , the standard basis elements in Rd, the
feature p becomes

p(x) =
1√
d/k

(
λ1x1x2 · · ·xk + xk+1 · · ·x2k + λd/kxd−k+1 · · ·xd

)
and hence the name “sum of sparse parities.” This feature satisfies Assumption 4 with Ji = k for all
i, assuming that the regularity conditions hold.

We next require the following mild assumptions on the link function g and target h. The assumption
on h is purely for technical convenience and can be achieved by a simple pre-processing step. The
assumption on g, in the single-index model literature (Arous et al., 2021), is referred to as g having
an information exponent of 1.
Assumption 5. Ex∼γ [h(x)] = 0 and Ez∼N (0,1) [g

′(z)] = Θ(1).

Finally, we make the following assumption on the activation functions σ1, σ2:
Assumption 6. We assume σ1 is a k degree polynomial. Denote σ1(z) =

∑
0⩽i⩽k oiz

i, we further
assume supi |oi| = O(1) and |ok| = Θ(1). Also, set σ2(z) = max{z, 0}, i.e., the ReLU activation.

With our assumptions in place, we are ready to state our main theorem.

6

Published as a conference paper at ICLR 2024

Theorem 1. Under the above assumptions, for any constant α ∈ (0, 1), any m1 ⩾ dk+α and any
n ⩾ dk+3α, set m2 = dα, T1 = poly(d,m1, n), T2 = poly(d,m1,m2, n), η1 = 1

poly(d,m1,n)
,

η2 = 1
poly(d,m1,m2,n)

, ξ1 = 2m1

dk+α and ξ2 = 2. Then, for any absolute constant δ ∈ (0, 1), with
probability at least 1 − δ over the sampling of initialization and the sampling of training dataset
D1,D2, the estimator θ̂ output by Algorithm 1 satisfies∥∥hθ̂ − h∥∥2L2(γ)

= Õ(d−α).

Theorem 1 states that Algorithm 1 can learn the target h = g ◦p in n = Õ(dk) samples, with widths
m1 = Θ̃(dk),m2 = Θ̃(1). Up to log factors, this is the same sample complexity as directly learning
the feature p. On the other hand, kernel methods such as the NTK require n = Ω̃(dkq) samples to
learn h, and are unable to take advantage of the underlying hierarchical structure.

A simple corollary of Theorem 1 follows when k = 2. In this case the feature p is a quadratic
polynomial and can be expressed as the following for some symmetric A ∈ Rd×d

p(x) = ⟨A, xx⊤ − I⟩ = x⊤Ax− tr(A).

Taking tr(A) = 0, and noting that since A always has an eigendecomposition, Assumption 4 is
equivalent to ∥A∥F = 1 and ∥A∥op = O(1/

√
d), one obtains the following:

Corollary 1. Let h(x) = g(x⊤Ax) where tr(A) = 0, ∥A∥F = 1, and ∥A∥op = O(1/
√
d). Then

under the same setting of hyperparameters as Theorem 1, for any sample size n ⩾ d2+3α, with
probability at least 1− δ over the initialization and data, the estimator θ̂ satisfies∥∥hθ̂ − h∥∥2L2(γ)

= Õ(d−α).

Corollary 1 states that Algorithm 1 can learn the target g(x⊤Ax) in Õ(d2) samples, which matches
the information-theoretically optimal sample complexity. This improves over the sample complexity
of the algorithm in Nichani et al. (2023) when g is a polynomial, which requires Θ̃(d4) samples. See
Section 5.1 for discussion on why Algorithm 1 is able to obtain this sample complexity improvement.

4 PROOF SKETCH

The proof of Theorem 1 proceeds by analyzing each of the two stages of training. First, we show
that after the first stage, the network learns to extract the hidden feature p out (Section 4.1). Next,
we show that during the second stage, the network learns the link function g (Section 4.2).

4.1 STAGE 1: FEATURE LEARNING

The first stage of training is the feature learning stage. Here, the network learns to extract the degree
k polynomial feature so that the intermediate layer satisfies gu,s,V ≈ p (up to a scaling constant).

At initialization, the network satisfies hθ = gu,s,V . Thus during the first stage of training, the
network trains u to fit gu,s,V to the target h. Since the activation σ1 is a degree k polynomial with
ok = Θ(1), we can indeed prove that at the end of the first stage gu,s,V will learn to fit the best
degree k polynomial approximation to h, P⩽kh (Lemma 9). During the first stage the loss is convex
in u, and thus optimization and generalization can be handled via straightforward kernel arguments.
The following lemma formalizes the above argument, and shows that at the end of the first stage the
network learns to approximate P⩽kh.

Lemma 1. For any constant α ∈ (0, 1), any m1 ⩾ dk+α and any n ⩾ dk+3α, set T1 =
poly(n,m1, d), η1 = 1

poly(n,m1,d)
and ξ1 = 2m1

dk+α . Then, for any absolute constant δ ∈ (0, 1),
with probability at least 1− δ/2 over the initialization V, s and training data D1, we have

∥hθ(T1) − P⩽kh∥2L2(γ) = Õ(d
−α).

It thus suffices to analyze the quantity P⩽kh. Our key technical result, and a main innovation of our
paper, is Lemma 2. It shows that the term P⩽kh is approximately equal to Pkh, and furthermore,
up to a scaling constant, Pkh is approximately equal to the hidden feature p:

7

Published as a conference paper at ICLR 2024

Lemma 2. Under the previous assumptions, we have∥∥Pkh− Ez∼N (0,1) [g
′(z)] p

∥∥
L2(γ)

= O(d−1/2) and ∥P<kh∥L2(γ) = O(d
−1/2)

A proof sketch of Lemma 2 is deferred to Section 4.3, with the full proof in Appendix B.

Combining Lemma 1 and Lemma 2, we obtain the performance after the first stage:
Corollary 2. Under the setting of hyperparameters in Theorem 1, for any constants α, δ ∈ (0, 1),
with probability 1− δ/2 over the initialization and the data D1, the network after time T1 satisfies∥∥hθ(T1) − Ez∼N (0,1) [g

′(z)] p
∥∥2
L2(γ)

= Õ(d−α).

Proofs for stage 1 are deferred to Appendix C.

4.2 STAGE 2: LEARNING THE LINK FUNCTION

After the first stage of training, gu,s,V is approximately equal to the true feature p up to a scaling
constant. The second stage of training uses this feature to learn the link function g. Specifically, the
second stage aims to fit the function g using the two-layer network z 7→ z + c⊤σ2(az + b). Since
only c is trained during stage 2, the network is a random feature model and the loss is convex in c.

Our main lemma for stage 2 shows that there exists c∗ with low norm such that the parameter vector
θ∗ := (a(0), b(0), c∗, u(T1), s(0), V (0)) satisfies hθ∗ ≈ h. Let p̂ be an arbitrary degree k polynomial
satisfying

∥∥p̂− Ez∼N (0,1) [g
′(z)] p

∥∥2
L2(γ)

= O((log d)r/2d−α) (and recall that after stage 1, gu,s,V
satisfies this condition with high probability). The main lemma is the following.
Lemma 3. Let m = dα. With probability at least 1 − δ/4 over the sampling of a, b, there exists
some c∗ such that ∥c∗∥∞ = O((log d)k(p+q)d−α) and

L(θ∗) =

∥∥∥∥∥p̂(x) +
m∑
i=1

c∗i σ(aip̂(x) + bi)− h(x)

∥∥∥∥∥
2

L2(γ)

= O((log d)r/2+2k(p+q)d−α)

Since the regularized loss is strongly convex in c, GD converges linearly to some θ̂ with L̂2(θ̂) ≲
L̂2(θ

∗) and ∥ĉ∥2 ≲ ∥c∗∥2. Finally, we invoke standard kernel Rademacher arguments to show that,
since the link function g is one-dimensional, n = Õ(1) sample suffice for generalization in this
stage. Combining everything yields Theorem 1. Proofs for stage 2 are deferred to Appendix D.

4.3 THE APPROXIMATE STEIN’S LEMMA

To conclude the full proof of Theorem 1, it suffices to prove Lemma 2. Lemma 2 can be inter-
preted as an approximate version of Stein’s lemma, generalizing the result in Nichani et al. (2023)
to polynomials of degree k > 2. To understand this intuition, we first recall Stein’s lemma:
Lemma 4 (Stein’s Lemma). For any g : R→ R and g ∈ C1, one has

Ez∼N (0,1)[zg(z)] = Ez∼N (0,1)[g
′(z)].

Recall that the feature is of the form p(x) = 1√
L

∑L
i=1 λiψi(x). Since each ψi depends only on the

projection of x onto {vi,1, . . . , vi,Ji}, and these vectors are orthonormal, the individual terms ψi(x)
are independent random variables. Furthermore they satisfy E[ψi(x)] = 0 and E[ψi(x)

2] = 1. Since
L = Θ(d), the Central Limit Theorem tells us that in the d→∞ limit

1√
L

L∑
i=1

λiψi →d N (0, 1)

when the λi are balanced. The distribution of the feature p is thus “close” to a Gaussian. As a
consequence, one expects that

Ex∼γ [p(x)g(p(x))] ≈ Ez∼N (0,1)[zg(z)] = Ez∼N (0,1)[g
′(z)]. (5)

8

Published as a conference paper at ICLR 2024

Next, let q be another degree k polynomial such that ∥q∥L2(γ) = 1 and ⟨p, q⟩L2(γ) = 0. For most q,
we can expect that (p, q) is approximately jointly Gaussian. In this case, p and q are approximately
independent due to ⟨p, q⟩L2(γ) = 0, and as a consequence

Ex∼γ [q(x)g(p(x))] ≈ Ex∼γ [q(x)]Ex∼γ [g(p(x))] = 0. (6)
(5) and (6) imply that the degree k polynomial g ◦ p has maximum correlation with is p, and thus

Pk(g ◦ p) ≈ Ez∼N (0,1)[g
′(z)]p.

Similarly, if q is a degree < k polynomial, then since Pkp = p one has ⟨p, q⟩L2(γ) = 0. Again, we
can expect that p, q are approximately independent, which implies that ⟨h, q⟩L2(γ) ≈ 0.

We remark that the preceding heuristic argument, and in particular the claim that p and q are ap-
proximately independent, is simply to provide intuition for Lemma 2. The full proof of Lemma 2,
provided in Appendix B, proceeds by expanding the polynomial g ◦ p into sums of products of
monomials, and carefully analyzes the degree k projection of each of the terms.

5 DISCUSSION

5.1 COMPARISON TO NICHANI ET AL. (2023)

In the case where k = 2 and the feature is a quadratic, Corollary 1 tells us that Algorithm 1 re-
quires Õ(d2) samples to learn h, which matches the information-theoretic lower bound. This is an
improvement over Nichani et al. (2023), which requires Θ̃(d4) samples.

The key to this sample complexity improvement is that our algorithm runs GD for many steps
during the first stage to completely extract the feature p(x), whereas the first stage in Nichani
et al. (2023) takes a single large gradient step, which can only weakly recover the true feature.
Specifically, Nichani et al. (2023) considers three-layer neural networks of the form hθ(x) =
a⊤σ2(Wσ1(V x) + b), and shows that after the first large step of GD on the population loss, the
network satisfies w⊤

i σ1(V x) ≈ d−2p(x). As a consequence, due to standard 1/
√
n concentration,

n = Ω̃(d4) samples are needed to concentrate this term and recover the true feature.

On the other hand, the first stage of Algorithm 1 directly fits the best degree 2 polynomial to the
target. It thus suffices to uniformly concentrate the loss landscape, which only requires Õ(d2)
samples as the learner is fitting a quadratic. Running GD for many steps is thus key to obtaining this
optimal sample complexity. We remark that Nichani et al. (2023) handles a slightly larger class of
link functions g (1-Lipschitz functions) and activations σ1 (nonzero second Hermite coefficient).

5.2 LAYERWISE GRADIENT DESCENT ON THREE-LAYER NETWORKS

Algorithm 1 takes advantage of the underlying hierarchical structure in h to learn in Θ̃(dk) samples.
Regular kernel methods, however, cannot utilize this hierarchical structure, and thus require Θ̃(dkq)
samples to learn h up to vanishing error. Each stage of Algorithm 1 implements a kernel method:
stage 1 uses kernel regression to learn p in Õ(dk) samples, while stage 2 uses kernel regression to
learn g in Õ(1) samples. Crucially, however, our overall algorithm is not a kernel method, and can
learn hierarchical functions with a significantly improved sample complexity over naively using a
single kernel method to learn the entire function. It is a fascinating question to understand which
other tasks can be learned more efficiently via such layerwise GD. While Algorithm 1 is layerwise,
and thus amenable to analysis, it still reflects the ability of three-layer networks in practice to learn
hierarchical targets; see Appendix A for experiments with more standard training procedures.

5.3 FUTURE WORK

In this work, we showed that three-layer neural networks are able to efficiently learn hierarchical
polynomials of the form h = g ◦ p, for a large class of degree k polynomials p. An interesting
direction is to understand whether our results can be generalized to all degree k polynomials. We
conjecture that our results should still hold as long as p is homogeneous and close in distribution
to a Gaussian, which should be true for more general tensors A. Additionally, the target functions
we consider depend on only a single hidden feature p. It is interesting to understand whether deep
networks can efficiently learn targets that depend on multiple features, i.e. of the form h(x) =
g(p1(x), . . . , pR(x)) for some g : RR → R.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENTS

Zihao Wang is partially supported by the elite undergraduate training program of School of Math-
ematical Sciences at Peking University. Eshaan Nichani acknowledges support from a National
Defense Science & Engineering Graduate Fellowship. Eshaan Nichani and Jason D. Lee acknowl-
edge support of the ARO under MURI Award W911NF-11-1-0304, the Sloan Research Fellowship,
NSF CCF 2002272, NSF IIS 2107304, NSF CIF 2212262, ONR Young Investigator Award, and
NSF CAREER Award 2144994.

REFERENCES

Emmanuel Abbe, Enric Boix Adsera, and Theodor Misiakiewicz. The merged-staircase property: a
necessary and nearly sufficient condition for sgd learning of sparse functions on two-layer neural
networks. In Conference on Learning Theory, pp. 4782–4887. PMLR, 2022.

Emmanuel Abbe, Enric Boix Adserà, and Theodor Misiakiewicz. Sgd learning on neural networks:
leap complexity and saddle-to-saddle dynamics. In The Thirty Sixth Annual Conference on Learn-
ing Theory, pp. 2552–2623. PMLR, 2023.

Zeyuan Allen-Zhu and Yuanzhi Li. What can resnet learn efficiently, going beyond kernels? Ad-
vances in Neural Information Processing Systems, 32, 2019.

Zeyuan Allen-Zhu and Yuanzhi Li. Backward feature correction: How deep learning performs deep
learning. arXiv preprint arXiv:2001.04413, 2020a.

Zeyuan Allen-Zhu and Yuanzhi Li. What can resnet learn efficiently, going beyond kernels?, 2020b.

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparame-
terized neural networks, going beyond two layers. Advances in neural information processing
systems, 32, 2019.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang. On
exact computation with an infinitely wide neural net. Advances in neural information processing
systems, 32, 2019.

Gerard Ben Arous, Reza Gheissari, and Aukosh Jagannath. Online stochastic gradient descent on
non-convex losses from high-dimensional inference. The Journal of Machine Learning Research,
22(1):4788–4838, 2021.

Jimmy Ba, Murat A Erdogdu, Taiji Suzuki, Zhichao Wang, Denny Wu, and Greg Yang. High-
dimensional asymptotics of feature learning: How one gradient step improves the representation.
Advances in Neural Information Processing Systems, 35:37932–37946, 2022.

Yu Bai and Jason D. Lee. Beyond linearization: On quadratic and higher-order approximation of
wide neural networks, 2020.

Alberto Bietti, Joan Bruna, Clayton Sanford, and Min Jae Song. Learning single-index models with
shallow neural networks. Advances in Neural Information Processing Systems, 35:9768–9783,
2022.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.
doi: 10.1017/CBO9780511804441.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/google/jax.

Minshuo Chen, Yu Bai, Jason D Lee, Tuo Zhao, Huan Wang, Caiming Xiong, and Richard Socher.
Towards understanding hierarchical learning: Benefits of neural representations. Advances in
Neural Information Processing Systems, 33:22134–22145, 2020.

10

http://github.com/google/jax
http://github.com/google/jax

Published as a conference paper at ICLR 2024

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.
Advances in neural information processing systems, 32, 2019.

Alexandru Damian, Jason Lee, and Mahdi Soltanolkotabi. Neural networks can learn representations
with gradient descent. In Conference on Learning Theory, pp. 5413–5452. PMLR, 2022.

Yatin Dandi, Florent Krzakala, Bruno Loureiro, Luca Pesce, and Ludovic Stephan. Learning two-
layer neural networks, one (giant) step at a time. arXiv preprint arXiv:2305.18270, 2023.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. arXiv preprint arXiv:1810.02054, 2018.

Weinan E, Chao Ma, and Lei Wu. A comparative analysis of optimization and generalization prop-
erties of two-layer neural network and random feature models under gradient descent dynamics.
Science China Mathematics, 63(7):1235–1258, jan 2020. doi: 10.1007/s11425-019-1628-5. URL
https://doi.org/10.1007%2Fs11425-019-1628-5.

Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Linearized two-layers
neural networks in high dimension. The Annals of Statistics, 49(2):1029 – 1054, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. Advances in neural information processing systems, 31, 2018.

Honglak Lee, Chaitanya Ekanadham, and Andrew Ng. Sparse deep belief net model for visual area
v2. volume Vol 20, 01 2007.

Jaehoon Lee, Samuel Schoenholz, Jeffrey Pennington, Ben Adlam, Lechao Xiao, Roman Novak,
and Jascha Sohl-Dickstein. Finite versus infinite neural networks: an empirical study. Advances
in Neural Information Processing Systems, 33:15156–15172, 2020.

Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Learning with invariances in random
features and kernel models. In Conference on Learning Theory, pp. 3351–3418. PMLR, 2021.

Eshaan Nichani, Alex Damian, and Jason D Lee. Provable guarantees for nonlinear feature learning
in three-layer neural networks. arXiv preprint arXiv:2305.06986, 2023.

Ryan O’Donnell. Analysis of boolean functions. Cambridge University Press, 2014.

Giuseppe Da Prato and Luciano Tubaro. Wick powers in stochastic pdes: an introduction. 2007.
URL https://api.semanticscholar.org/CorpusID:55493217.

Adityanarayanan Radhakrishnan, Daniel Beaglehole, Parthe Pandit, and Mikhail Belkin. Feature
learning in neural networks and kernel machines that recursively learn features. arXiv preprint
arXiv:2212.13881, 2022.

Yunwei Ren, Mo Zhou, and Rong Ge. Depth separation with multilayer mean-field networks. arXiv
preprint arXiv:2304.01063, 2023.

Itay Safran and Jason Lee. Optimization-based separations for neural networks. In Conference on
Learning Theory, pp. 3–64. PMLR, 2022.

Mahdi Soltanolkotabi, Adel Javanmard, and Jason D Lee. Theoretical insights into the optimization
landscape of over-parameterized shallow neural networks. IEEE Transactions on Information
Theory, 65(2):742–769, 2018.

Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. arXiv preprint
arXiv:1011.3027, 2010.

Roman Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge university press, 2018.

11

https://doi.org/10.1007%2Fs11425-019-1628-5
https://api.semanticscholar.org/CorpusID:55493217

Published as a conference paper at ICLR 2024

Martin J. Wainwright. High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Cambridge Series
in Statistical and Probabilistic Mathematics. Cambridge University Press, 2019.

Colin Wei, Jason D. Lee, Qiang Liu, and Tengyu Ma. Regularization matters: Generalization and
optimization of neural nets v.s. their induced kernel, 2020.

Zhi-Qin John Xu. Frequency principle: Fourier analysis sheds light on deep neural networks.
Communications in Computational Physics, 28(5):1746–1767, jun 2020. doi: 10.4208/cicp.
oa-2020-0085. URL https://doi.org/10.4208%2Fcicp.oa-2020-0085.

Greg Yang and Edward J Hu. Tensor programs iv: Feature learning in infinite-width neural networks.
In International Conference on Machine Learning, pp. 11727–11737. PMLR, 2021.

12

https://doi.org/10.4208%2Fcicp.oa-2020-0085

Published as a conference paper at ICLR 2024

Appendix

A Experiments 13

B Proof of Lemma 2 14

B.1 Results for General Features . 14

B.2 Special Cases . 19

C Proof of Lemma 1 20

C.1 Approximation . 20

C.2 Empirical Performance . 24

C.3 Uniform Generalization Bounds . 26

D Proof of Theorem 1 30

D.1 Approximation . 31

D.2 Empirical Performance . 33

D.3 Uniform Generalization Bounds . 36

E Technical Background 38

E.1 Hermite Polynomials . 38

E.2 Gaussian Hypercontractivity . 39

E.3 Polynomial Concentration . 40

E.4 Uniform Generalization Bounds . 40

E.5 Convex Optimization . 41

E.6 Univariate Approximation . 42

A EXPERIMENTS

We empirically verify Theorem 1, and demonstrate that three-layer neural networks indeed learn
hierarchical polynomials g ◦ p by learning to extract the feature p.

Our experimental setup is as follows. The target feature is of the form h = g ◦ p, p(x) =∑d
i=1 λih3(xi), where the λi are drawn i.i.d from

{
± 1√

d

}
uniformly, and the link function is

g(z) = Cdz
3, where Cd is a normalizing constant chosen so Ex[h(x)

2] = 1. Our architecture
is the same ResNet-like architecture defined in (1), with activations σ1(z) = z3 and σ2 = ReLU.
We additionally use the µP initialization (Yang & Hu, 2021). For a chosen input dimension d and
sample size n, we choose hidden layer widths m1 = d2 and m2 = 1000. We optimize the empir-
ical square loss to convergence by simultaneously training all parameters (u, s, V, a, b, c) using the
Adam optimizer. We then compute the test loss of the learned predictor, as well as the correlation
between the “learned feature” (defined to be gu,s,V) and the “true feature” p on these test points.

In Figure 2, we plot both the test loss and feature correlation as a function of n, for d ∈
{16, 24, 32, 40}. We observe that, across varying values of depth, roughly d3 samples are needed to

13

Published as a conference paper at ICLR 2024

0 1 2 3 4

logd n

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Te
st

L
os

s

Test Loss

0 1 2 3 4

logd n

0.0

0.2

0.4

0.6

0.8

1.0

R
2

be
tw

ee
n

g u
,s
,V

an
d

p

Correlation of Features

k = 3,d = 16,m1 = 256,m2 = 1000

0 1 2 3 4

logd n

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Te
st

L
os

s

Test Loss

0 1 2 3 4

logd n

0.0

0.2

0.4

0.6

0.8

1.0

R
2

be
tw

ee
n

g u
,s
,V

an
d

p

Correlation of Features

k = 3,d = 24,m1 = 576,m2 = 1000

0 1 2 3 4

logd n

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Te
st

L
os

s

Test Loss

0 1 2 3 4

logd n

0.0

0.2

0.4

0.6

0.8

1.0

R
2

be
tw

ee
n

g u
,s
,V

an
d

p

Correlation of Features

k = 3,d = 32,m1 = 1024,m2 = 1000

0 1 2 3 4

logd n

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Te
st

L
os

s

Test Loss

0 1 2 3 4

logd n

0.0

0.2

0.4

0.6

0.8

1.0

R
2

be
tw

ee
n

g u
,s
,V

an
d

p

Correlation of Features

k = 3,d = 40,m1 = 1600,m2 = 1000

Figure 2: We train the ResNet architecture (1) to learn the hierarchical polynomial h = g ◦ p when
the degree of p is k = 3. We observe that the network learns the true feature p, as measured by the
correlation between gu,s,V and p (right panel of each figure). As a consequence, the network can
learn h in d3 samples (left panel of each figure).

learn h up to near zero test error. Additionally, we observe that as n grows past d3, the correlation
between the true feature and learned feature approaches 1. This demonstrates that the network is
indeed performing feature learning, and learns to fit p using gu,s,V in order to learn the entire func-
tion. Overall, this demonstrates that our high-level insight that the sample complexity of learning
g ◦ p is equal to the sample complexity of p, and that three-layer neural networks implement the
more efficient algorithm of learning to first extract p out of g ◦ p, holds in the more realistic setting
where all parameters of the network are trained jointly.

Experimental Details. Our experiments were written in JAX (Bradbury et al., 2018) and run on a
single NVIDIA RTX A6000 GPU.

B PROOF OF LEMMA 2

B.1 RESULTS FOR GENERAL FEATURES

In this subsection, we will consider the following feature class

p(x) =
1√
L

(
L∑

i=1

λiψi(x)

)
Recall our assumptions on p:
Assumption 4. The feature p can be written in the form (3). We make the following additional
assumptions on p:

• There is a set of orthogonal vectors {vi,j}i∈[L],j∈[Ji], satisfying Ji ⩽ k and ∥vi,j∥ = 1,
such that ψi(x) only depends on v⊤i,1x, . . . , v

⊤
i,Ji

x.

• For each i, Pkψi = ψi. Equivalently, ψi lies in the span of degree k Hermite polynomials.

• E
[
ψi(x)

2
]
= 1 and E

[
p(x)2

]
= 1.

• The λi are balanced, i.e supi |λi| = O(1), and L = Θ(d).

Next, recall that the link function g(z) =
∑

0⩽i⩽q giz
i satisfies supi |gi| = O(1) by Assumption 2.

Denote h = g ◦ p. Due to Assumption 5, we naturally have P0h = Ex∼γ [h(x)] = 0. Next, we will
prove the following two Lemmas, which directly implies Lemma 2.

14

Published as a conference paper at ICLR 2024

Lemma 5. Under all the assumptions above, we have∥∥Pkh− Ez∼N (0,1) [g
′(z)] p

∥∥
L2(γ)

= O(L−1/2)

Lemma 6. Under all the assumptions above, for any 1 ⩽ m ⩽ k − 1 we have

∥Pmh∥L2(γ) = O(L
−1/2)

Proof of Lemma 5. Firstly, we will compute the Hermite degree k components of p(x)w, w ⩾ 2.
From the definition of Pk and multinomial expansion theorem, we know

Pk(p(x)
w) =

1

Lw/2

 L∑
i=1

λiψi(x)P0

 ∑
zi⩾2,q,z1+···+zq=w−1,ij ̸=i

w!

z1! . . . zq!
λz1i1 . . . λ

zq
iq
ψi1(x)

z1 . . . ψiq (x)
zq

+

1

Lw/2
Pk

 ∑
zi⩾2,q,z1+···+zq=w,ij

w!

z1! . . . zq!
λz1i1 . . . λ

zq
iq
ψi1(x)

z1 . . . ψiq (x)
zq

(7)

by expanding
(

1√
L

(∑
1⩽i⩽L λiψi(x)

))w
and computing the projection for each term. The key

observation that leads to (7) is the following:

Lemma 7. Let ϕ1, ϕ2 ∈ L2(γ) be two functions such that ϕ1 lies in the span of degree k1 Hermite
polynomials and ϕ2 lies in the span of degree k2 Hermite polynomials. That is to say, Pki

ϕi = ϕi
for i = 1, 2.

If ϕ1, ϕ2 only depend on the projection of x onto subspaces V1, V2 respectively, and V1, V2 are
orthogonal to each other, i.e V1V ⊤

2 = 0, then Pk1+k2
(ϕ1ϕ2) = ϕ1ϕ2.

Lemma 7 follows directly from the fact that the d-dimensional Hermite basis is formed from taking
products of the 1-dimensional Hermite basis elements.

In the above expansion, if there are two indices i1, i2 each with exponent 1, then we get a
ψi1(x)ψi2(x)

∏
j⩾3 ψij (x)

zj term. By Lemma 7, this term is a polynomial with Hermite degree
at least 2k. Equivalently

Pk

ψi1(x)ψi2(x)
∏
j⩾3

ψij (x)
zj

 = 0.

This is becauseψi(x) only depends on v⊤i,1x, . . . , v
⊤
i,Ji

x and {vi,j}i∈[L],j∈[Ji] are orthogonal vectors.
Similarly, for terms of the form ψi1(x)

∏
j⩾2 ψij (x)

zj , we have that

Pk

ψi1(x)
∏
j⩾2

ψij (x)
zj

 = ψi1(x)P0

∏
j⩾2

ψij (x)
zj

 .

Altogether, this gives (7) above.

Let us firstly compute the P0 terms in the above equation (7).

Case I. Firstly consider the case that w is odd and w = 2s+ 1. Then we have∑
zi⩾2,q,z1+···+zq=w−1,ij ̸=i

w!

z1! . . . zq!
λz1i1 . . . λ

zq
iq
ψi1(x)

z1 . . . ψiq (x)
zq =

∑
ij ̸=i

w!

2s
λ2i1 . . . λ

2
isψi1(x)

2 . . . ψis(x)
2

+
∑

zi⩾2,q<s,z1+···+zq=w−1,ij ̸=i

w!

z1! . . . zq!
λz1i1 . . . λ

zq
iq
ψi1(x)

z1 . . . ψiq (x)
zq

For the first term, we have

P0

∑
ij ̸=i

w!

2s
λ2i1 . . . λ

2
isψi1(x)

2 . . . ϕSis
(x)2

 =
∑
ij ̸=i

w!

2s
λ2i1 . . . λ

2
is E

[
ψi1(x)

2 . . . ψis(x)
2
]
=
w!

2s

∑
ij ̸=i

λ2i1 . . . λ
2
is

(8)

15

Published as a conference paper at ICLR 2024

For the second term, we count the number of monomials to get∣∣∣∣∣∣P0

 ∑
zi⩾2,q<s,z1+···+zq=w−1,ij ̸=i

w!

z1! . . . zq!
λz1i1 . . . λ

zq
iq
ψi1(x)

z1 . . . ψiq (x)
zq

∣∣∣∣∣∣
⩽

∑
zi⩾2,q<s,z1+···+zq=w−1,ij ̸=i

w!

z1! . . . zq!

∣∣∣λz1i1 . . . λzqiq E
[
ψi1(x)

z1 . . . ψiq (x)
zq
]∣∣∣

≲
∑

zi⩾2,q<s,z1+···+zq=w−1,ij ̸=i

∣∣∣λz1i1 . . . λzqiq ∣∣∣
≲ Ls−1

(9)

In the second inequality, we use Gaussian hypercontractivity, Lemma 31.

Combining equation (8) and (9) together, and noticing that∣∣∣∣∣∣
∑
ij ̸=i

λ2i1 . . . λ
2
is −

∑
ij

λ2i1 . . . λ
2
is

∣∣∣∣∣∣ ⩽ sλ2i
∑
ij ̸=i

λ2i1 . . . λ
2
is−1

≲ Ls−1

which can help us substitute
∑

ij
λ2i1 . . . λ

2
is

for
∑

ij ̸=i λ
2
i1
. . . λ2is , we can have

1

Lw/2

 L∑
i=1

λiψi(x)P0

 ∑
zi⩾2,q,z1+···+zq=w−1,ij ̸=i

w!

z1! . . . zq!
λz1i1 . . . λ

zq
iq
ψi1(x)

z1 . . . ψiq (x)
zq

=

1

Lw/2

w!
2s

∑
ij

λ2i1 . . . λ
2
is

(L∑
i=1

λiψi(x) (1 +Ki)

)
where supi |Ki| ≲ 1/L.

Case II. Secondly we will consider the case that w is even and denote w = 2s. In that case, we
observe that ∑

zi⩾2,q,z1+···+zq=w−1,ij ̸=i

w!

z1! . . . zq!
λz1i1 . . . λ

zq
iq
ψi1(x)

z1 . . . ψiq (x)
zq

=
∑

zi⩾2,q<s,z1+···+zq=w−1,ij ̸=i

w!

z1! . . . zq!
λz1i1 . . . λ

zq
iq
ψi1(x)

z1 . . . ψiq (x)
zq

By a similar argument like equation (9),

sup
1⩽i⩽L

∣∣∣∣∣∣
∑

zi⩾2,q<s,z1+···+zq=w−1,ij ̸=i

w!

z1! . . . zq!
λz1i1 . . . λ

zq
iq
E
[
ψi1(x)

z1 . . . ψiq (x)
zq
]∣∣∣∣∣∣ ≲ Ls−1

Therefore, we have the following bound for the P0 terms in our equation (7).

1

Lw/2

 L∑
i=1

λiψi(x)P0

 ∑
zi⩾2,q,z1+···+zq=w−1,ij ̸=i

w!

z1! . . . zq!
λz1i1 . . . λ

zq
iq
ψi1(x)

z1 . . . ψiq (x)
zq

=

L∑
i=1

λiKiψi(x)

where supi |Ki| ≲ 1/L.

Then let us compute the Pk terms. Firstly, we divide the monomials into two groups∑
zi⩾2,q,z1+···+zq=w,ij

w!

z1! . . . zq!
λz1i1 . . . λ

zq
iq
ψi1(x)

z1 . . . ψiq (x)
zq

=
∑

zi⩾2,2q<w,z1+···+zq=w,ij

w!

z1! . . . zq!
λz1i1 . . . λ

zq
iq
ψi1(x)

z1 . . . ψiq (x)
zq +

∑
2q=w,ij

w!

2q
λ2i1 . . . λ

2
iqψi1(x)

2 . . . ψiq (x)
2

16

Published as a conference paper at ICLR 2024

For the first group, we have the following∥∥∥∥∥∥Pk

 ∑
zi⩾2,2q<w,z1+···+zq=w,ij

w!

z1! . . . zq!
λz1i1 . . . λ

zq
iq
ψi1(x)

z1 . . . ψiq (x)
zq

∥∥∥∥∥∥
2

L2(γ)

⩽

∥∥∥∥∥∥
∑

zi⩾2,2q<w,z1+···+zq=w,ij

w!

z1! . . . zq!
λz1i1 . . . λ

zq
iq
ψi1(x)

z1 . . . ψiq (x)
zq

∥∥∥∥∥∥
2

L2(γ)

⩽ (wL)⌈w/2⌉−1
∑

zi⩾2,2q<w,z1+···+zq=w,ij

∥∥∥∥ w!

z1! . . . zq!
λz1i1 . . . λ

zq
iq
ψi1(x)

z1 . . . ψiq (x)
zq

∥∥∥∥2
L2(γ)

≲ L2⌈w/2⌉−2

In the second equality we use Gaussian hypercontractivity, Lemma 31.

For the second group, we have that∥∥∥∥∥Pk

(∑
il

w!

2s
λ2i1 . . . λ

2
isψi1(x)

2 . . . ψis(x)
2

)∥∥∥∥∥
2

L2(γ)

=

∥∥∥∥∥∑
il

Pk

(
w!

2s
λ2i1 . . . λ

2
isψi1(x)

2 . . . ψis(x)
2

)∥∥∥∥∥
2

L2(γ)

=

(
w!

2s

)2∑
il

∑
jl

⟨Pk

(
λ2i1 . . . λ

2
isψi1(x)

2 . . . ψis(x)
2
)
,Pk

(
λ2j1 . . . λ

2
jsψj1(x)

2 . . . ψjs(x)
2
)
⟩L2(γ)

=

(
w!

2s

)2 ∑
il,jl,{il}

⋂
{jl}̸=∅

⟨Pk

(
λ2i1 . . . λ

2
isψi1(x)

2 . . . ψis(x)
2
)
,Pk

(
λ2j1 . . . λ

2
jsψj1(x)

2 . . . ψjs(x)
2
)
⟩L2(γ)

⩽

(
w!

2s

)2

s2L2s−1 sup
il

∥∥Pk

(
λ2i1 . . . λ

2
isψi1(x)

2 . . . ψis(x)
2
)∥∥2

L2(γ)

≲ Lw−1

From the second line to the third line, we use the fact that if {il}
⋂
{jl} = ∅, then

Pk

(
λ2i1 . . . λ

2
is
ψi1(x)

2 . . . ψis(x)
2
)

and Pk

(
λ2j1 . . . λ

2
js
ψj1(x)

2 . . . ψjs(x)
2
)

are two independent
mean-zero random variables. Also, the third line to the fourth line is just counting the number
of pairs of tuples with nonempty intersections. The fourth line to the fifth line is using gaussian
hypercontractivity, Lemma 31, to bound the moments.

In a word, we have derived for any k ⩾ 2, and any w ⩾ 2 that∥∥∥∥∥∥ 1

Lw/2
Pk

 ∑
zi⩾2,q,z1+···+zq=w,ij

w!

z1! . . . zq!
λz1i1 . . . λ

zq
iq
ψi1(x)

z1 . . . ψiq (x)
zq

∥∥∥∥∥∥
L2(γ)

= O(L−1/2)

Sum up all the derivations above, and we get the following conclusion.

Lemma 8. Given k ⩾ 2,

• When w = 2s+ 1 with s ⩾ 1, we have∥∥∥∥∥∥Pk(p(x)
w)− w!

2sLs

∑
ij

λ2i1 . . . λ
2
is

 p(x)

∥∥∥∥∥∥
L2(γ)

= O(L−1/2)

• When w = 2s with s ⩾ 1, we have

∥Pk(p(x)
w)∥L2(γ) = O(L

−1/2)

17

Published as a conference paper at ICLR 2024

Recall our g(z) =
∑

0⩽i⩽q giz
i. After the projection, the feature that we get is approximately(∑

s
1

2sLs (2s+ 1)!g2s+1

(∑
ij
λ2i1 . . . λ

2
is

))
p. Precisely speaking, we have

∥∥∥∥∥∥Pkh−

∑
s

1

2sLs
(2s+ 1)!c2s+1

∑
ij

λ2i1 . . . λ
2
is

 p

∥∥∥∥∥∥
L2(γ)

= O(L−1/2) (10)

Let’s recall
∑

i λ
2
i = L, so that informally speaking, we expect p(x) ∼ N (0, 1) in a limiting sense

due to central limit theorem when L is large and λi are somehow balanced. Again, from the main
text, it is tempting to conjecture some kind of approximated Stein’s Lemma like

Pk(g ◦ p) ≈ Ez∼N (0,1) [g
′(z)] p

Now we will verify this is indeed right. In our case, the derivative of g is g′(z) = g1+2g2z+3g3z
2+

· · ·+ qgqz
q−1, and we can compute that Ez∼N (0,1) [g

′(z)] =
∑

s g2s+1(2s+1)!!. Furthermore, we
have

Ls =

(∑
i

λ2i

)s

= O(Ls−1) + s!

∑
ij

λ2i1 . . . λ
2
is

And as a direct consequence, we have

1

2sLs
(2s+ 1)!g2s+1

∑
ij

λ2i1 . . . λ
2
is

 = (2s+ 1)!!g2s+1 +O(L−1)

Simply plugging the above equation in equation (10), we get our final result.

Proof of Lemma 6. Firstly, we compute the hermite degree m components of p(x)w, w ⩾ 2. From
the definition of Pm and multinomial theorem, we know

Pm(p(x)w) =
1

Lw/2
Pm

 ∑
zi⩾2,q,z1+···+zq=w,ij

w!

z1! . . . zq!
λz1i1 . . . λ

zq
iq
ψi1(x)

z1 . . . ψiq (x)
zq

by expanding

(
1√
L

(∑
1⩽i⩽L λiψi(x)

))w
and computing the projection for each term. In the above

expansion, if there is one index i1 with exponent 1, then we get a ψi1(x)
∏

j⩾2 ψij (x)
zj term. By

Lemma 7, this term is a polynomial with Hermite degree at least k. As a result,

Pm

ψi1(x)
∏
j⩾2

ψij (x)
zj

 = 0.

This is becauseψi(x) only depends on v⊤i,1x, . . . , v
⊤
i,Ji

x and {vi,j}i∈[L],j∈[Ji] are orthogonal vectors.

Firstly, notice that

∑
zi⩾2,q,z1+···+zq=w,ij

w!

z1! . . . zq!
λz1i1 . . . λ

zq
iq
ψi1(x)

z1 . . . ψiq (x)
zq

=
∑

zi⩾2,2q<w,z1+···+zq=w,ij

w!

z1! . . . zq!
λz1i1 . . . λ

zq
iq
ψi1(x)

z1 . . . ψiq (x)
zq +

∑
2q=w,ij

w!

2q
λ2i1 . . . λ

2
iqψi1(x)

2 . . . ψiq (x)
2

18

Published as a conference paper at ICLR 2024

For the first term, we have the following estimation∥∥∥∥∥∥Pm

 ∑
zi⩾2,2q<w,z1+···+zq=w,ij

w!

z1! . . . zq!
λz1i1 . . . λ

zq
iq
ψi1(x)

z1 . . . ψiq (x)
zq

∥∥∥∥∥∥
2

L2(γ)

⩽

∥∥∥∥∥∥
∑

zi⩾2,2q<w,z1+···+zq=w,ij

w!

z1! . . . zq!
λz1i1 . . . λ

zq
iq
ψi1(x)

z1 . . . ψiq (x)
zq

∥∥∥∥∥∥
2

L2(γ)

≲ d⌈w/2⌉−1
∑

zi⩾2,2q<w,z1+···+zq=w,ij

∥∥∥∥ w!

z1! . . . zq!
λz1i1 . . . λ

zq
iq
ψi1(x)

z1 . . . ψiq (x)
zq

∥∥∥∥2
L2(γ)

≲ d2⌈w/2⌉−2

From the third line to the fourth line we use Gaussian hypercontractivity, Lemma 31 in Appendix
E.2 to bound the high order moments of hermite polynomials. And for the second term, we only
need to consider the case that w = 2s is even. In that case,∥∥∥∥∥Pm

(∑
il

w!

2s
λ2i1 . . . λ

2
isψi1(x)

2 . . . ψis(x)
2

)∥∥∥∥∥
2

L2(γ)

=

∥∥∥∥∥∑
il

Pm

(
w!

2s
λ2i1 . . . λ

2
isψi1(x)

2 . . . ψis(x)
2

)∥∥∥∥∥
2

L2(γ)

=

(
w!

2s

)2∑
il

∑
jl

⟨Pm

(
λ2i1 . . . λ

2
isψi1(x)

2 . . . ψis(x)
2
)
,Pm

(
λ2j1 . . . λ

2
jsψj1(x)

2 . . . ψjs(x)
2
)
⟩L2(γ)

=

(
w!

2s

)2 ∑
il,jl,{il}

⋂
{jl}̸=∅

⟨Pm

(
λ2i1 . . . λ

2
isψi1(x)

2 . . . ψis(x)
2
)
,Pm

(
λ2j1 . . . λ

2
jsψj1(x)

2 . . . ψjs(x)
2
)
⟩L2(γ)

≲ sup
il

∥∥Pm

(
λ2i1 . . . λ

2
isψi1(x)

2 . . . ψis(x)
2
)∥∥2

L2(γ)
d2s−1

≲ dw−1

From the second line to the third line, we use the fact that if {il}
⋂
{jl} = ∅, then

Pm

(
λ2i1 . . . λ

2
is
ψi1(x)

2 . . . ψis(x)
2
)

and Pm

(
λ2j1 . . . λ

2
js
ψj1(x)

2 . . . ψjs(x)
2
)

are two independent
mean-zero random variables. From the third line to the fourth line, we are just counting the number
of pairs of tuples with nonempty intersection which is O(d2s−1).

In a word, we have derived that∥∥∥∥∥∥ 1

Lw/2
Pm

 ∑
zi⩾2,q,z1+···+zq=w,ij

w!

z1! . . . zq!
λz1i1 . . . λ

zq
iq
ψi1(x)

z1 . . . ψiq (x)
zq

∥∥∥∥∥∥
L2(γ)

= O(L−1/2)

Write g(z) =
∑

0⩽i⩽q giz
i and sum over all the terms, and we get the desired result.

B.2 SPECIAL CASES

Orthogonal Decomposable Tensors. Firstly, we will consider the case that p(x) := ⟨A,Hek(x)⟩
and A is an orthogonal decomposable tensor

A =
1√
L

(
L∑

i=1

λiv
⊗k
i

)
where ⟨vi, vj⟩ = δij . Using identities for the Hermite polynomials (Appendix E.1), one can rewrite
the feature as

p(x) =
1√
L

(
L∑

i=1

λi⟨v⊗k
i , Hek(x)⟩

)
=

1√
L

(
L∑

i=1

λihk(v
⊤
i x)

)
This kind of feature satisfies Assumption 4 with Ji = 1 for all i, if we further assume the regularity
conditions supi |λi| = O(1) and

∑
i λ

2
i = L.

19

Published as a conference paper at ICLR 2024

Sum of Sparse Parities. Secondly, we will consider the case that

A =
1√
L

(
L∑

i=1

λi · vi,1 ⊗ · · · ⊗ vi,k

)
where ⟨vi1,j1 , vi2,j2⟩ = δi1i2δj1j2 . In that case, our feature can be rewritten as

p(x) =
1√
L

(
L∑

i=1

λi⟨vi,1 ⊗ · · · ⊗ vi,k, Hek(x)⟩

)
=

1√
L

 L∑
i=1

λi

 k∏
j=1

⟨vi,j , x⟩

This kind of feature also satisfies Assumption 4 with Ji = k for all i, if we further assume the
regularity conditions supi |λi| = O(1) and

∑
i λ

2
i = L.

For a concrete example, when vi,j = ek(i−1)+j and L = d/k,

p(x) =
1√
d/k

(
λ1x1x2 . . . xk + · · ·+ λd/kxd−k+1 . . . xd

)
and hence the name “sum of sparse parities”.

C PROOF OF LEMMA 1

The goal in this appendix is to prove Lemma 1, which is restated below:
Lemma 1. For any constant α ∈ (0, 1), any m1 ⩾ dk+α and any n ⩾ dk+3α, set T1 =
poly(n,m1, d), η1 = 1

poly(n,m1,d)
and ξ1 = 2m1

dk+α . Then, for any absolute constant δ ∈ (0, 1),
with probability at least 1− δ/2 over the initialization V, s and training data D1, we have

∥hθ(T1) − P⩽kh∥2L2(γ) = Õ(d
−α).

Proof Outline. Throughout the first stage of Algorithm 1, c remains at 0. Consequently, during
this stage, the network is given by

gu,s,V (x) = u⊤σ1(V x+ s)

where σ1 is a degree k polynomial. Given that V, s is kept constant and only u is trained, the network
is equivalent to a random feature model with the random feature σ1(V x+ s).

The proof proceeds in three steps:

• First, we show that there exists u∗ such that gu∗,s,V approximates Pkh, the degree k com-
ponent of the target.

• Next, we leverage strong convexity of the empirical loss minimization problem to show
that GD can find an approximate global minimizer in polynomial time.

• Finally, we invoke a kernel Rademacher complexity argument to bound the test perfor-
mance.

In this section, we may use σ(·) to refer σ1(·), and m to refer m1 due to notation simplicity.

C.1 APPROXIMATION

First, we show that when σ is a k degree polynomial, the random feature model can and only can
approximate the degree ⩽ k part of the target function.
Lemma 9. For any u ∈ Rm, we have the following equality for any function h ∈ L2(Rd, γ)

∥gu,s,V − h∥2L2(γ) = ∥gu,s,V − P⩽kh∥2L2(γ) + ∥P⩽kh− h∥2L2(γ)

Remark 4. From Lemma 9, we can see when we try to approximate h using gu,s,V , we are actually
trying our best to approximate P⩽kh. That is to say,

argmin
u
∥gu,s,V − h∥2L2(γ)

= argmin
u
∥gu,s,V − P⩽kh∥2L2(γ)

20

Published as a conference paper at ICLR 2024

Proof. By a direct computation, we have

∥gu,s,V − h∥2L2(γ) =

∥∥∥∥∥∥u⊤σ(V x+ s)−
∑
j

⟨Hj , Hej(x)⟩

∥∥∥∥∥∥
2

L2(γ)

=

∥∥∥∥∥∥u⊤σ(V x+ s)−
∑
j⩽k

⟨Hj , Hej(x)⟩

∥∥∥∥∥∥
2

L2(γ)

+

∥∥∥∥∥∥
∑

j⩾k+1

⟨Hj , Hej(x)⟩

∥∥∥∥∥∥
2

L2(γ)

= ∥gu,s,V − P⩽kh∥2L2(γ) + ∥h− P⩽kh∥2L2(γ)

(11)
where Hj = Ex [h(x)Hej(x)]. Here we use the hermite expansion which we state in Appendix
E.1.

We next show that Pkh can be expressed by an infinite-width network by the following three lem-
mas.

Lemma 10. There exists f : Sd−1 → R such that

Ev[f(v)hk(v
⊤x)] = (Pkh)(x) and Ev[f(v)

2] = O(dk).

where v obeys the uniform distribution on Sd−1.

Proof. Recall that (Pkh)(x) can be represented as ⟨A,Hek(x)⟩ for some symmetric tensor A ∈
(Rd)⊗k. Furthermore, observing that

Ev

[
f(v)hk(v

⊤x)
]
= ⟨Ev

[
f(v)v⊗k

]
, Hek(x)⟩

by Lemma 28, it suffices to solve for u(·) such that Ev[f(v)v
⊗k] = A.

Let Vec : (Rd)⊗k → Rdk

be the unfolding operator. We claim that one solution for f is

f(v) = Vec(v⊗k)⊤
(
Ev Vec(v

⊗k)Vec(v⊗k)⊤
)†

Vec(A).

First, by Corollary 42 in Damian et al. (2022), we have

Ex∼γ

[
Vec(x⊗k)Vec(x⊗k)⊤

]
⪰ k!ΠSymk(Rd), (12)

where ΠSymk(Rd) is the projection operator onto symmetric k tensors. Since A is symmetric, we
indeed see that

Vec
(
Ev

[
f(v)v⊗k

])
= Ev Vec(v

⊗k)Vec(v⊗k)⊤
(
Ev Vec(v

⊗k)Vec(v⊗k)⊤
)†

Vec(A) = Vec(A).

Plugging this back to Ev

[
f(v)2

]
and applying the Cauchy inequality, we get

Ev

[
f(v)2

]
⩽ λmax

((
Ev Vec(v

⊗k)Vec(v⊗k)⊤
)†) ∥Vec(A)∥2 (13)

Therefore, to estimate the L2 norm of f(v) we only need to look at the spectrum of the matrix above.

For X ∼ N (0, Id), it is clear that Y Z shares the same distribution with X , where Y ∼ χ(d) and
Z ∼ Unif(Sd−1) and Y,Z are independent. Therefore,

EX

[
Vec(X⊗k)Vec(X⊗k)⊤

]
= EY

[
Y 2k

]
EZ

[
Vec(Z⊗k)Vec(Z⊗k)⊤

]
⩽ dk EZ

[
Vec(Z⊗k)Vec(Z⊗k)⊤

]
due to Lemma 44 in Damian et al. (2022). Furthermore, we get
λmax

((
EX

[
Vec(X⊗k)Vec(X⊗k)⊤

])†)
⩽ 1

k! by equation (12). Plugging this back to equation
(13), we will have

Ev

[
f(v)2

]
⩽

1

k!
dk∥Vec(A)∥2 ≲ dk,

where we used the fact that ∥Vec(A)∥22 = ∥A∥2F = E
[
(Pkh)(x)

2
]
= O(1).

21

Published as a conference paper at ICLR 2024

Lemma 11. Let s ∼ N (0, 1). Then, there exists w : R→ R with Es[w(s)
2] = O(1) and

Es

[
w(s)σ

(
z + s√

2

)]
= hk(z).

Proof. One has the following Hermite addition formula:

hi

(
z + s√

2

)
= 2−i/2

i∑
j=0

(
i

j

)1/2

hi−j(s)hj(z).

Thus writing σ(z) =
∑

i⩾0 cihi(z), we have

σ

(
z + s√

2

)
=
∑
i⩾0

i∑
j=0

ci2
−i/2

(
i

j

)1/2

hi−j(s)hj(z)

=
∑
j⩾0

hj(z)

k∑
i=j

ci2
−i/2

(
i

j

)1/2

hi−j(s).

Define w0, . . . , wk recursively by

w0 = c−1
k 2k/2

wj = −c−1
k 2k/2

(
k

j

)−1/2
(

j−1∑
i=0

ck+i−j2
−(k+i−j)/2

(
k + i− j

i

)1/2

wi

)
.

As a consequence, for j ⩾ 1, we have

0 =

j∑
i=0

ck+i−j2
−(k+i−j)/2

(
k + i− j

i

)1/2

wi.

Therefore for all 0 ≤ j ≤ k − 1, we have

0 =

k−j∑
i=0

ci+j2
−(i+j)/2

(
i+ j

i

)1/2

wi

=

k∑
i=j

ci2
−i/2

(
i

j

)1/2

wi−j .

Setting w(s) =
∑k

i=0 wihi(s), we thus have that

Es

[
w(s)σ

(
z + s√

2

)]
=

k∑
j⩾0

hj(z)

k∑
i=j

ci2
−i/2

(
i

j

)1/2

wi−j

= 2−k/2ckw0hk(z) +

k−1∑
j⩾0

hj(z)

 k∑
i=j

ci2
−i/2

(
i

j

)1/2

wi−j

= hk(z),

as desired. Since we regard k as a constant, and we have supi |ci| = O(1) and ck = Θ(1) due to
Assumption 6, the norm bound follows.

Lemma 12. There exists u : Sd−1 × R→ R such that

Ev,s

[
u(v, s)σ

(
v⊤x+ s√

2

)]
= (Pkh)(x) and Ev,s

[
u(v, s)2

]
= O(dk)

22

Published as a conference paper at ICLR 2024

Proof. By Lemma 11, we get Es

[
w(s)σ

(
z+s√

2

)]
= hk(z) for some Es

[
w(s)2

]
= O(1) and w(·)

is a k degree polynomial. Substitute z with v⊤x, and then use Lemma 10, we have

Ev,s

[
f(v)w(s)σ

(
v⊤x+ s√

2

)]
= Ev

[
f(v)hk(v

⊤x)
]
= (Pkh)(x)

Set u(v, s) = f(v)w(s). We next bound the L2 norm of u(v, s) by the independence between v and
s.

E
[
u(v, s)2

]
= E

[
f(v)2w(s)2

]
= E

[
f(v)2

]
E
[
w(s)2

]
≲ dk

Remark 5. In the above lemma, our feature is σ
(

vT x+s√
2

)
with v uniformly sampled from the unit

sphere and s sampled fromN (0, 1). This is equivalent with our feature σ(vTx+s) in the main text,
with v uniformly sampled from the sphere of radius 1√

2
and s sampled fromN (0, 1/2). We will use

the σ
(

vT x+s√
2

)
formulation in the remainder of the section without loss of generality.

Next, we show that we can use this infinite width construction to construct a finite-width network
that approximates Pkh.

Lemma 13. For any absolute constant δ ∈ (0, 1) and m ∈ N+, with probability at least 1 − δ/8
over the sampling of V, s, there exists u∗ such that

∥gu∗,s,V − Pkh∥2L2(γ) = O(m
−1dk) and ∥u∗∥2 = O(m−1dk)

Remark 6. Due to Lemma 2 and utilizing the lemma above, we have

∥gu∗,s,V − P⩽kh∥2L2(γ) ≲ d−1 +m−1dk

Proof of Lemma 13. We use Monte Carlo sampling to help us construct the u∗. Let u(·, ·) be
the function from Lemma 12, so that (Pkh)(x) = Ev,s

[
u(v, s)σ

(
v⊤x+s√

2

)]
. We sample Θ =

{vi, si}mi=1 i.i.d. and set u∗i := 1
mu(vi, si). As such, one has that

EΘEx |gu∗,s,V (x)− (Pkh)(x)|2 = ExEΘ

∣∣∣∣∣∣ 1m
m∑
j=1

u(vj , sj)σ

(
v⊤j x+ sj√

2

)
− (Pkh)(x)

∣∣∣∣∣∣
2

=
1

m2
Ex

m∑
j,l=1

EΘ

[(
u(vj , sj)σ

(
v⊤j x+ sj√

2

))(
u(vl, sl)σ

(
v⊤l x+ sl√

2

))]

=
1

m2

m∑
j=1

ExEvj ,sj

(u(vj , sj)σ(v⊤j x+ sj√
2

))2

≲
1

m
Ev,s

[
f(v)2w(s)2(1 + s2k)

]
≲

1

m
Ev,s

[
u(v, s)2

]
(14)

and

EΘ

 1

m

m∑
j=1

u(vj , sj)
2

 = Ev,s

[
u(v, s)2

]
Therefore, from Markov inequality, we can derive that for any constant K > 0 we have

PΘ

(
E |gu∗,s,V − Pkh|2 ⩾ Θ(1)

K

m
E
[
u(v, s)2

])
⩽

1

K
(15)

23

Published as a conference paper at ICLR 2024

and

PΘ

 1

m

m∑
j=1

u(vj , sj)
2 ⩾ K E

[
u(v, s)2

] ⩽
1

K

for some Θ(1). Setting 1/K = δ/16, plugging in the bound on E
[
u(v, s)2

]
from Lemma 12 and

noting that ∥u∗∥2 = 1
m2

∑m
i=1 u(vj , sj)

2 yields the desired result.

Throughout the remainder of this section, we let ϵ1 = Θ(1)Km E
[
u(v, s)2

]
for notation simplicity

where the Θ(1) is from equation (15). Since we see δ,K as absolute constants, we have ϵ1 =
O(dk/m).

C.2 EMPIRICAL PERFORMANCE

Next, we focus on the concentration over the population loss given by

L(u) = ∥gu,s,V − h∥2L2(γ)

evaluated at the point u = u∗, which is defined in our Lemma 13. Our primary tool for
this concentration is Corollary 3. For the sake of notational clarity, let us define L̂(u) :=
1
n

∑n
i=1 (gu,s,V (xi)− h(xi))

2 to represent the empirical loss based on the initial dataset D1.

Lemma 14. Under the setup and the results in Lemma 13, we will have with probability at least
1− δ/4, ∣∣∣L̂(u∗)− L(u∗)∣∣∣ ≲ 1√

n

Proof. By Corollary 3, for any β > 0, we have

P
[∣∣∣L̂(u∗)− L(u∗)∣∣∣ ⩾ β

1√
n

√
Var ((gu∗,s,V − h)2)

]
⩽ 2 exp

(
−Θ(1)min(β2, β1/r)

)
Moreover,

Var
(
(gu∗,s,V − h)2

)
⩽ Ex

[
(gu∗,s,V (x)− h(x))4

]
≲
(
Ex

[
(gu∗,s,V (x)− h(x))2

])2
≲
(
ϵ1 + Ex

[
h(x)2

])2
≲ 1,

where the second inequality relies on Gaussian hypercontractivity (Lemma 31), and the final step
sets m ⩾ dk+α so that ϵ1 ≲ 1. Plugging this back and choosing some β = Θ(1) finishes the
proof.

Observe that during the first stage of Algorithm 1, we are solving the following minimization prob-
lem:

min
u
L̂(u) +

1

2
ξ1 ∥u∥2 (16)

Since this problem is strongly convex and smooth, plain GD can converge to an approximate mini-
mizer exponentially fast. The next lemma bounds the time needed to obtain a small empirical loss:

Lemma 15. Set ξ1 = 2m
dk+α . For any ϵ2 ∈ (0, 1), let T1 ≳ m(logm)k log(m/ϵ2). Then, when m,n

are larger than some absolute constant, with probability at least 1− 3δ/8, the predictor û := u(T1)

satisfies

L̂(û) ⩽ ϵ1 + ∥h− P⩽kh∥2L2(γ) +O(d
−α) +O(1) 1√

n
+ ϵ2

and ∥û∥2 ≲ dk+α

m .

24

Published as a conference paper at ICLR 2024

Proof. If û is an ϵ2-minimizer of (16), then we have

L̂(û) +
1

2
ξ1 ∥û∥2 ⩽ L̂(u∗) +

1

2
ξ1 ∥u∗∥2 + ϵ2 ⩽ L(u∗) +

1

2
ξ1 ∥u∗∥2 +O(1)

1√
n
+ ϵ2

By choosing ξ1 = 2m
dk+α , we get

m

dk+α
∥û∥2 ≲ ϵ1 + d−α + ∥h− P⩽kh∥2L2(γ) +

1√
n
+ ϵ2 ≲ 1

At the same time, we will also have

L̂(û) ⩽ ϵ1 +O(d−α) + ∥h− P⩽kh∥2L2(γ) +O(1)
1√
n
+ ϵ2

It thus suffices to analyze the optimization problem (16).

Clearly, this convex optimization problem is at least 2-strongly convex. To estimate the time com-
plexity, we also need to estimate the smoothness of our optimization objective.

Lemma 16. With probability at least 1−O(1/m),∥∥∥∇L̂(u1)−∇L̂(u2)∥∥∥ ≲ m(logm)k ∥u1 − u2∥

Proof. We calculate the gradient out

∇L̂(u) = 1

n

n∑
i=1

2

(
u⊤σ

(
V xi + s√

2

)
− h(xi)

)
σ

(
V xi + s√

2

)
and then bound the Lipschitz constant of the gradient∥∥∥∇L̂(u1)−∇L̂(u2)∥∥∥ =

∥∥∥∥∥ 2n
n∑

i=1

⟨u1 − u2, σ
(
V xi + s√

2

)
⟩σ
(
V xi + s√

2

)∥∥∥∥∥
⩽

(
2

n

n∑
i=1

∥∥∥∥σ(V xi + s√
2

)∥∥∥∥2
)
∥u1 − u2∥

Using Corollary 3, we have the following concentration inequality for any β ⩾ 1

P

∣∣∣∣∣∣ 1n

n∑
i=1

σ

(
v⊤j xi + sj√

2

)2

− Ex

σ(v⊤j x+ sj√
2

)2
∣∣∣∣∣∣ ⩾ β

1√
n

√√√√√Var

σ(v⊤j x+ sj√
2

)2

 ⩽ 2e−Θ(1)β1/k

Furthermore, estimating Ex

[
σ

(
v⊤
j x+sj√

2

)2
]

, Var

(
σ

(
v⊤
j x+sj√

2

)2
)

and doing union bound over

all vj , we get the following inequality with probability at least 1− 2me−Θ(1)β1/k

1

n

n∑
i=1

∥∥∥∥σ(V xi + s√
2

)∥∥∥∥2 ≲

(
1 + β

1√
n

) m∑
j=1

(1 + s2kj)

By Corollary 3 again, we can concentrate 1
m

∑m
j=1(1 + s2kj) and get the following with probability

at least 1− 2e−Θ(1)m1/2k

1

m

m∑
j=1

(1 + s2kj) ≲ 1

In that case, we choose β = Θ(1)(logm)k for some large Θ(1) and the lemma is proved.

25

Published as a conference paper at ICLR 2024

Having derived the above Lemma, using Lemma 36 in Appendix E.5, we can choose the learning
rate η1 = 1

m(logm)kΘ(1)
and have∥∥∥u(t) − uopt∥∥∥2 ⩽

(
1− 1

Θ(1)m(logm)k

)t

∥uopt∥2

where uopt is the unique optimal solution for that optimization problem.

In addition, in order to bound the empirical performance, we also need to upper bound the gradient.

sup
∥u∥⩽R

∥∥∥∇L̂(u) + 2u
∥∥∥ ⩽ 2R+

2

n

n∑
i=1

∥∥∥∥σ(V xi + s√
2

)∥∥∥∥ ∣∣∣∣u⊤σ(V xi + s√
2

)
− h(xi)

∣∣∣∣
⩽ 2R+

2

n

n∑
i=1

(∥∥∥∥σ(V xi + s√
2

)∥∥∥∥ h(xi) + ∥∥∥∥σ(V xi + s√
2

)∥∥∥∥2 ∥u∥
)

⩽ 2R+
2

n

n∑
i=1

(
(1 +R)

∥∥∥∥σ(V xi + s√
2

)∥∥∥∥2 + h(xi)
2

)

≲ (1 + 3R)m(logm)k +
2

n

n∑
i=1

h(xi)
2

with probability at least 1 −O(1/m). In order to bound 1
n

∑
i h(xi)

2, by Corollary 3, we have the
following for any β ⩾ 1

P

(∣∣∣∣∣ 1n
n∑

i=1

h(xi)
2 − Ex h(x)

2

∣∣∣∣∣ ⩾ β
1√
n

√
Var(h(x)2)

)
⩽ 2e−Θ(1)β1/r

Therefore, by choosing β = Θ(1)(logn)r with some large Θ(1), with probability at least 1− 1/n,
we have 1

n

∑n
i=1 h(xi)

2 ≲ 1. In that case, we have

L̂(u(t)) +
∥∥∥u(t)∥∥∥2 ⩽ L̂(uopt) + ∥uopt∥2 + sup

∥u∥⩽2∥uopt∥

∥∥∥∇L̂(u) + 2u
∥∥∥ ∥∥∥u(t) − uopt∥∥∥

Since ∥uopt∥ = O(1), sup∥u∥⩽2∥uopt∥

∥∥∥∇L̂(u) + 2u
∥∥∥ = O(m(logm)k), if we want

sup
∥u∥⩽2∥uopt∥

∥∥∥∇L̂(u) + 2u
∥∥∥ ∥∥∥u(t) − uopt∥∥∥ ⩽ ϵ2

it is sufficient to have T1 ≳ m(logm)k log(m/ϵ2).

C.3 UNIFORM GENERALIZATION BOUNDS

To conclude, we need to do a union bound over u for our population loss ∥gu,s,V − h∥2L2(γ). We
first consider a truncated version of population loss, which allows us to invoke standard Rademacher
complexity generalization bounds. We conclude by properly handling the truncation.

Proof of Lemma 1. Let us denote ℓτ (x, y) = (x − y)2 ∧ τ2. Via standard Rademacher complexity
generalization bounds, detailed in Lemmas 33, 34 and 35, recall that we see δ as an absolute constant,
when m,n, d are larger than some absolute constant, we have that with probability at least 1− δ/16

sup
∥u∥⩽Mu

∣∣∣∣∣ 1n
n∑

i=1

ℓτ (gu,s,V (xi), h(xi))− Ex [ℓτ (gu,s,V (x), h(x))]

∣∣∣∣∣ ≲ 2Radn(F) + τ2
√

1

n

⩽ 4τ Radn(G) + τ2
√

1

n

≲ 4τMu

√
m

n
+ τ2

√
1

n

26

Published as a conference paper at ICLR 2024

where G = {gu,s,V : ∥u∥ ⩽ Mu} and F = {ℓτ (gu,s,V (·), h(·)) : ∥u∥ ⩽ Mu}. The first step
is just standard uniform generalization bounds for bounded function class. The second step is via
contraction lemma to compute the Rademacher complexity, and the third step is a direct calculation.
So, by that bound, we can see Ex [ℓτ (gû,s,V (x), h(x))] is well controlled for moderate large τ .
Combining this with Lemma 15, with probability 1− 7δ/16, we have

Ex [ℓτ (gû,s,V (x), h(x))]− ∥h− P⩽kh∥2L2(γ) ≲ τMu

√
m

n
+ τ2

√
1

n
+ ϵ1 + d−α +

1√
n
+ ϵ2

Dealing with the Truncation. Based on the above arguments, to bound the L2 generalization
error, it suffices to control the quantity

Ex

[(
(gû,s,V (x)− h(x))2

)
1|gû,s,V (x)−h(x)|⩾τ

]
This is done in the following lemma, whose proof is deferred to Appendix C.3.1

Lemma 17. With probability at least 1− δ/32, for any τ ≳ 1, we have

Ex

[(
(gû,s,V (x)− h(x))2

)
1|gû,s,V (x)−h(x)|⩾τ

]
≲ e−Θ(1)τ2/r

Altogether, when m,n, d are larger than some absolute constant, with probability at least 1 − δ/2,
we have the following inequality

∥gû,s,V − h∥2L2(γ) − ∥h− P⩽kh∥2L2(γ)

⩽ Ex [ℓτ (gû,s,V (x), h(x))]− ∥h− P⩽kh∥2L2(γ) + Ex

[(
(gû,s,V (x)− h(x))2

)
1|gû,s,V (x)−h(x)|⩾τ

]
≲ τMu

√
m

n
+ τ2

√
1

n
+ ϵ1 + d−α +

1√
n
+ ϵ2 + exp

(
−Θ(1)τ2/r

)
where we recall ϵ1 = O(m−1dk).

For any α ∈ (0, 1), select ϵ2 = d−α. Clearly we have T1 = poly(n,m, d) and η1 = 1
poly(n,m,d)

in that case. Recall that we have chosen the width m ⩾ dk+α, the sample size n ⩾ dk+3α, and
we choose the truncation level to be τ = Θ(1)(log d)r/2 and M2

u = Θ
(

dk+α

m

)
. Plugging those in

yields

∥gû,s,V − P⩽kh∥2L2(γ) ⩽ ∥gû,s,V − h∥
2
L2(γ) − ∥h− P⩽kh∥2L2(γ) +O(1/d)

≲ (log d)r/2d−α + (log d)rd−k/2−3α/2

= Õ(d−α),

as desired.

C.3.1 PROOF OF LEMMA 17

Proof of Lemma 17. We will first use Cauchy inequality, then estimate the moments.(
Ex

[(
(gû,s,V (x)− h(x))2

)
1|gû,s,V (x)−h(x)|⩾τ

])2
⩽ Ex

[
(gû,s,V (x)− h(x))4

]
P (|gû,s,V (x)− h(x)| ⩾ τ)

≲
(
Ex

[
gû,s,V (x)

4
]
+ Ex

[
h(x)4

])
P (|gû,s,V (x)− h(x)| ⩾ τ)

≲
(
Ex

[
gû,s,V (x)

2
]2

+ Ex

[
h(x)2

]2)P (|gû,s,V (x)− h(x)| ⩾ τ)

(17)
The last step is by Gaussian hypercontractivity, Lemma 31. Recall gu,s,V (x) = u⊤σ

(
V x+s√

2

)
.

Notice that

Ex

[
gu,s,V (x)

2
]
= u⊤ Ex

[
σ

(
V x+ s√

2

)
σ

(
V x+ s√

2

)⊤
]
u (18)

27

Published as a conference paper at ICLR 2024

Therefore, we just need to give a tight bound for û⊤ Ex

[
σ
(

V x+s√
2

)
σ
(

V x+s√
2

)⊤]
û. For notation

simplicity, in this proof, we will temporarily denote Zi := σ
(

V xi+s√
2

)
, Z := σ

(
V x+s√

2

)
, Σ :=

Ex

[
ZZ⊤].

Noticing that we have

1

n

n∑
i=1

gû,s,V (xi)
2 ⩽

2

n

n∑
i=1

(gû,s,V (xi)− h(xi))2 +
2

n

n∑
i=1

h(xi)
2 ≲ 1

with probability at least 1− δ/64, due to the small training loss and some standard concentration for
1
n

∑
i h(xi)

2. That is to say,

û⊤

(
1

n

n∑
i=1

ZiZ
⊤
i

)
û =

1

n

n∑
i=1

(
û⊤Zi

)2
=

1

n

n∑
i=1

gû,s,V (xi)
2 ≲ 1

Next, we bound the difference between û⊤
(
1
n

∑n
i=1 ZiZ

⊤
i

)
û and û⊤Σû. To this end, we or-

thogonally decompose Σ as Σ = K⊤OK, where O is a diagonal matrix and K is an or-
thogonal matrix. Write O = diag{γ1, . . . , γt, 0, . . . , 0} for some integer t = rank(Σ), where
γi > 0 for i ∈ [t]. Notice that O1/2 = diag{γ1/21 , . . . , γ

1/2
t , 0, . . . , 0}, and we formally denote

O−1/2 = diag{γ−1/2
1 , . . . , γ

−1/2
t , 0, . . . , 0}. Due to the fact that Ex

[
KZZ⊤K⊤] = O, we know

KZ lies in the span of {e1, . . . , et}. Therefore, we have

∣∣∣∣∣û⊤
(
1

n

n∑
i=1

ZiZ
⊤
i − Σ

)
û

∣∣∣∣∣ =
∣∣∣∣∣û⊤K⊤O1/2

(
1

n

n∑
i=1

O−1/2KZiZ
⊤
i K

⊤O−1/2 −
(
It

0

))
O1/2Kû

∣∣∣∣∣
⩽ û⊤Σû

∥∥∥∥∥ 1n
n∑

i=1

O−1/2KZiZ
⊤
i K

⊤O−1/2 −
(
It

0

)∥∥∥∥∥
Denote Wi := O−1/2KZi and W := O−1/2KZ. We see that the second moment of W⩽t is equal
to identity matrix in t dimensions: Ex

[
W⩽tW

⊤
⩽t

]
= It. That is to say, W⩽t is isotropic. Next, we

will bound the following operator norm∥∥∥∥∥ 1n
n∑

i=1

O−1/2KZiZ
⊤
i K

⊤O−1/2 −
(
It

0

)∥∥∥∥∥ =

∥∥∥∥∥ 1n
n∑

i=1

W⩽t,iW
⊤
⩽t,i − It

∥∥∥∥∥
by the following concentration lemma.

Lemma 18. Let W = W (x) ∈ Rm be a random vector which is a function of x ∼ γ. Assume for
each i ∈ [m], the i-th coordinate Wi is a k degree polynomial w.r.t. x. Also assume Ex

[
WW⊤] =

I . Let W1, . . . ,Wn be i.i.d. generated samples. Then with probability at least 1− δ/64, we have

max1⩽j⩽m

∣∣∣sj(W̃)−
√
n
∣∣∣ ≲√m logm(log n)k

where W̃ = (W1, . . . ,Wn)
⊤ and sj is the singular value.

Proof. For any z ⩾
√
Var(∥W∥2), we have the following estimation for the tail probability

P
(
max1⩽i⩽n ∥Wi∥2 ⩾ z +m

)
⩽ nP

(
∥W∥2 ⩾ z +m

)
⩽ nP

(
∥W∥2 − Ex

[
∥W∥2

]
⩾ z
)

⩽ 2n exp

−Θ(1)

 z√
Var(∥W∥2)

1/k

28

Published as a conference paper at ICLR 2024

due to polynomial concentration, Corollory 3, where

Var(∥W∥2) ⩽ Ex

[
∥W∥4

]
≲ m

m∑
i=1

E
[
W 4

i

]
≲ m

m∑
i=1

(
E
[
W 2

i

])2
≲ m2

Therefore, to estimate E
[
max1⩽i⩽n ∥Wi∥2

]
, we can choose a truncation level

Θ(1)(log n)k
√

Var(∥W∥2) +m with a large Θ(1).

E
[
max1⩽i⩽n ∥Wi∥2

]
≲ m(log n)k + Ex

[
max1⩽i⩽n ∥Wi∥2 1max1⩽i⩽n∥Wi∥2⩾Θ(1)(logn)k

√
Var(∥W∥2)+m

]
≲ m(log n)k +

∫ +∞

Θ(1)(logn)k
√

Var(∥W∥2)

2 exp

−Θ(1)

 z√
Var(∥W∥2)

1/k

+ log n

 dz

≲ m(log n)k +

∫ +∞

Θ(1) logn

exp(−Θ(1)z̃ + log n)z̃k−1dz̃

≲ m(log n)k

We will use the above estimation and the following Lemma from Theorem 5.45, Vershynin (2010)
to estimate the singular values of W̃ .

Lemma 19. Let A be an N ×n matrix whose rows Ai are independent isotropic random vectors in
Rn. Let m := Emaxi⩽N ∥Ai∥22. Then

Emax
j⩽n

∣∣∣sj(A)−√N ∣∣∣ ≲√m logmin(N,n)

Therefore, combining that lemma and Markov inequality to gain a high probability bound, with
probability at least 1− δ/64, we have

max1⩽j⩽m

∣∣∣sj(W̃)−
√
n
∣∣∣ ≲√m logm(log n)k

Applying Lemma 18 to W⩽t, we have∥∥∥∥∥ 1n
n∑

i=1

W⩽t,iW
⊤
⩽t,i − It

∥∥∥∥∥ ≲

√
t log t(log n)k

n

with probability at least 1−δ/64. Next, we give an upper bound over t, the rank of our kernel matrix
Σ. Using the Hermite addition formula, we have

σ

(
V x+ s√

2

)
=

k∑
j=0

hj(V x)⊙Aj

where Aj ∈ Rm is some vector that only depends on σ(·), j and s. Plugging that in our Σ, we have
the following decomposition

Ex

[
σ

(
V x+ s√

2

)
σ

(
V x+ s√

2

)T
]
= Ex

 k∑

j=0

hj(V x)⊙Aj

 k∑
j=0

hj(V x)⊙Aj

T

=

k∑
j=0

Ex

[
(hj(V x)⊙Aj)(hj(V x)⊙Aj)

T
]
:=

k∑
j=0

Σj

For each 0 ⩽ j ⩽ k, we have

Σj(p, q) = Aj,pAj,q⟨v⊗j
p , v⊗j

q ⟩ = ⟨Aj,pv
⊗j
p , Aj,qv

⊗j
q ⟩

29

Published as a conference paper at ICLR 2024

where Aj,l is the l-th element of Aj , and Σj(p, q) is the (p, q) element of our matrix Σj . Therefore,

defineMj =
(
Aj,1v

⊗j
1 , . . . , Aj,mv

⊗j
m

)
∈ Rdj×m, and we have Σj =MT

j Mj and thus rank(Σj) ⩽

dj . Therefore, rank(Σ) ⩽
∑k

j=0 rank(Σj) ≲ dk and t ≲ dk.

Therefore, we have∥∥∥∥∥ 1n
n∑

i=1

W⩽t,iW
⊤
⩽t,i − It

∥∥∥∥∥ ≲

√
t log t(log n)k

n
≲

√
dk log d(log n)k

n

and∣∣∣∣∣û⊤
(
1

n

n∑
i=1

ZiZ
⊤
i − Σ

)
û

∣∣∣∣∣ ⩽ û⊤Σû

∥∥∥∥∥ 1n
n∑

i=1

W⩽t,iW
⊤
⩽t,i − It

∥∥∥∥∥ ≲

√
dk log d(log n)k

n
û⊤Σû.

As a consequence, we have

E
[
gû,s,V (x)

2
]
= û⊤Σû ≲ û⊤

(
1

n

n∑
i=1

ZiZ
⊤
i

)
û ≲ 1

when d is larger than some absolute constant. Recall that Ex

[
h(x)2

]
= O(1) and plug everything

back into equation (17), we have(
Ex

[(
(gû,s,V (x)− h(x))2

)
1|gû,s,V (x)−h(x)|⩾τ

])2
≲ P (|gû,s,V (x)− h(x)| ⩾ τ)

Therefore, we only need to bound the P (|gû,s,V (x)− h(x)| ⩾ τ) by polynomial concentration.
From Lemma 32, we get

P
(
|gû,s,V (x)− h(x)| ⩾ β

√
Var(gû,s,V (x)− h(x))

)
⩽ 2 exp(−Θ(1)β2/r)

for any β > 1. Furthermore, notice that

Var(gû,s,V (x)− h(x)) ⩽ Ex

[
(gû,s,V (x)− h(x))2

]
≲ E

[
gû,s,V (x)

2
]
+ E

[
h(x)2

]
≲ 1

which is from the arguments above. Thus, for every τ ≳ 1, we have

P (|gû,s,V (x)− h(x)| ⩾ τ) ⩽ 2 exp
(
−Θ(1)τ2/r

)
and the proof is complete.

D PROOF OF THEOREM 1

At the end of the first stage, our learner is hθ(T1) = gû,s,V . In the second stage of our training
algorithm, letting p̂ := gû,s,V , the network becomes

hθ(x) = p̂(x) +

m2∑
i=1

ciσ2(aip̂(x) + bi)

with ai, bi random and fixed and ci trainable. The network thus implements 1-D kernel regression
over the new input p̂ in the second stage of our training algorithm.

By Corollary 2, with probability 1− δ/2 we have

∥gû,s,V − Pkh∥2L2(γ) = O((log d)
r/2d−α) and

∥∥Pkh− Ez∼N (0,1) [g
′(z)] p

∥∥2
L2(γ)

= Õ(d−α).

For notational convenience, in the remainder of this section we let p̂ be an arbitrary k degree poly-
nomial satisfying the following assumption:
Assumption 7. We have a k-degree polynomial p̂ which satisfies∥∥p̂− Ez∼N (0,1) [g

′(z)] p
∥∥2
L2(γ)

= O((log d)r/2d−α)

where α ∈ (0, 1). Also, recall that we have assumed Ez∼N (0,1) [g
′(z)] = Θ(1) and we denote this

quantity as Cg .

30

Published as a conference paper at ICLR 2024

To prove Theorem 1, we condition on the event that p̂ = gû,V satisfies this assumption, which occurs
with probability 1− δ/2.

In the following we may use σ(·) to denote σ2(·), and usem to referm2, for notation simplicity. The
proof strategy will be very similar with the proof in Appendix C. We begin by constructing a low-
norm solution that obtains small loss. Next, we show GD converges to an approximate minimizer.
We conclude by invoking Kernel Rademacher arguments to show generalization.

D.1 APPROXIMATION

Define g̃(z) = g(1
Cg
z). The target can thus be represented as g̃(Cgp(x)). We will proceed using the

following two steps to bound the approximation error in L2(γ).

• Step I. Bound the difference between g̃ ◦ p̂ and g̃ ◦ (Cgp).

• Step II. Using a 1-D two-layer neural network to approximate the 1-D link function g̃.

For step I, we have the following simple Lemma.

Lemma 20. Under the assumptions above, ∥g̃ ◦ p̂− h∥2L2(γ) = O((log d)r/2d−α).

Proof of Lemma 20. We have that

∥g̃ ◦ p̂− g̃ ◦ (Cgp)∥2L2(γ) ≲
q∑

k=1

∥∥(p̂(x))k − (Cgp(x))
k
∥∥2
L2(γ)

⩽
q∑

k=1

Ex

[
(p̂(x)− Cgp(x))

2(p̂(x)k−1 + p̂(x)k−2(Cgp(x)) + · · ·+ (Cgp(x))
k−1)2

]
⩽

q∑
k=1

√
Ex [(p̂(x)− Cgp(x))4]Ex [(p̂(x)k−1 + p̂(x)k−2(Cgp(x)) + · · ·+ (Cgp(x))k−1)4]

≲
q∑

k=1

Ex

[
(p̂(x)− Cgp(x))

2
]
Ex

[
(p̂(x)k−1 + p̂(x)k−2(Cgp(x)) + · · ·+ (Cgp(x))

k−1)2
]

≲ ∥p̂− Cgp∥2L2(γ) ≲ (log d)r/2d−α

where the fourth inequality and the fifth inequality are due to Lemma 31, Gaussian hypercontractiv-
ity. We implicitly use ∥p̂∥L2(γ) = O(1) and ∥Cgp∥L2(γ) = O(1) in the fifth inequality, too.

Step II relies on Lemma 3, which is restated below:

Lemma 3. Let m = dα. With probability at least 1 − δ/4 over the sampling of a, b, there exists
some c∗ such that ∥c∗∥∞ = O((log d)k(p+q)d−α) and

L(θ∗) =

∥∥∥∥∥p̂(x) +
m∑
i=1

c∗i σ(aip̂(x) + bi)− h(x)

∥∥∥∥∥
2

L2(γ)

= O((log d)r/2+2k(p+q)d−α)

Proof of Lemma 3. We will firstly control the typical value of p̂. From Lemma 32, we have

P
[
|p̂(x)| ⩾ β

√
Var(p̂(x))

]
⩽ 2 exp

(
−Θ(1)min

(
β2, β2/k

))
for any β > 0. That is to say, when β ⩾ 1, with probability at least 1 − 2e−Θ(1)β2/k

we have
|p̂(x)| ≲ β. We implicitly use ∥p̂∥L2(γ) = O(1) in this argument to bound Var(p̂(x)).

Next, we will use Lemma 39 to give a representation for g̃ in the bounded domain. There exists
v(·, ·) supported on {−1, 1} × [0, 2Cβ] such that for any x satisfying |p̂(x)| ⩽ Cβ,

Ea,b [v(a, b)σ(ap̂(x) + b)] = g̃(p̂(x))− p̂(x)

31

Published as a conference paper at ICLR 2024

where a ∼ Unif{−1, 1} and b has density µb(t). Furthermore, recall that we have assumed µb(t) ≳
(1 + |t|)−p, and we have the following estimation supa,b |v(a, b)| = O(βp+q).

Next, we will do a Monte Carlo sampling to approximate the target.

Ea,b Ex

(
1

m

m∑
i=1

v(ai, bi)σ(aip̂(x) + bi)− (g̃(p̂(x))− p̂(x))

)2

⩽ Ea,b Ex

(
1

m

m∑
i=1

v(ai, bi)σ(aip̂(x) + bi)− (g̃(p̂(x))− p̂(x))

)2

1|p̂(x)|⩾Cβ

+ Ea,b Ex

(
1

m

m∑
i=1

v(ai, bi)σ(aip̂(x) + bi)− (g̃(p̂(x))− p̂(x))

)2

1|p̂(x)|⩽Cβ

(19)

For the second term, we have

Ea,b Ex

(
1

m

m∑
i=1

v(ai, bi)σ(aip̂(x) + bi)− (g̃(p̂(x))− p̂(x))

)2

1|p̂(x)|⩽Cβ

⩽ Ea,b Ex

(
1

m

m∑
i=1

v(ai, bi)σ(aip̂(x) + bi)− Ea,b [v(a, b)σ(ap̂(x) + b)]

)2

⩽
1

m
Ex Ea,b (v(a, b)σ(ap̂(x) + b))

2

⩽
1

m
O(β2p+2q)

(
Ex p̂(x)

2 + Eb b
2
)
=

1

m
O(β2p+2q)

(20)

Here we implicitly use the fact that Eb b
2 = O(1) which is from our assumptions on µb(t). For the

first term, by Cauchy inequality,

Ea,b Ex

(
1

m

m∑
i=1

v(ai, bi)σ(aip̂(x) + bi)− (g̃(p̂(x))− p̂(x))

)2

1|p̂(x)|⩾Cβ

⩽

√√√√Ea,b,x

(
1

m

m∑
i=1

v(ai, bi)σ(aip̂(x) + bi)− (g̃(p̂(x))− p̂(x))

)4

P (|p̂(x)| ⩾ Cβ)

≲ e−Θ(1)β2/k

√√√√Ea,b,x

(
1

m

m∑
i=1

v(ai, bi)σ(aip̂(x) + bi)− (g̃(p̂(x))− p̂(x))

)4

≲ e−Θ(1)β2/k

√√√√Ea,b,x

(
1

m

m∑
i=1

v(ai, bi)σ(aip̂(x) + bi)

)4

+ Ex(g̃(p̂(x))− p̂(x))4

≲ e−Θ(1)β2/k
√
Ea,b,x (v(a, b)σ(ap̂(x) + b))

4
+O(1)

≲ e−Θ(1)β2/k

β2p+2q

Here we implicitly use the fact that Eb b
4 = O(1) which is again from our assumptions on µb(t).

We also use gaussian hypercontractivity, Lemma 31 to show Ex(g̃(p̂(x)) − p̂(x))4 = O(1). Since
p̂(x) is a k degree polynomial with Gaussian input distribution, its higher order moments can be
bounded by a polynomial of its second moment which is clearly O(1).
From the above arguments, we already derive

Ea,b Ex

(
1

m

m∑
i=1

v(ai, bi)σ(aip̂(x) + bi)− (g̃(p̂(x))− p̂(x))

)2

≲

(
1

m
+ e−Θ(1)β2/k

)
β2p+2q

32

Published as a conference paper at ICLR 2024

Therefore, for any absolute constant δ ∈ (0, 1), with probability at least 1 − δ/4 over the sampling
of the random features ai, bi, using Markov inequality, we have

Ex

(
1

m

m∑
i=1

v(ai, bi)σ(aip̂(x) + bi)− (g̃(p̂(x))− p̂(x))

)2

≲

(
1

m
+ e−Θ(1)β2/k

)
β2p+2q

Combining this with our previous result, Lemma 20, with probability at least 1 − δ/4 over the
sampling of the random features, we can find the parameters c∗ in the third layer with supi |c∗i | =
O(βp+q/m), such that

L(θ∗) =

∥∥∥∥∥p̂(x) +
m∑
i=1

c∗i σ(aip̂(x) + bi)− h(x)

∥∥∥∥∥
2

L2(γ)

≲

(
1

m
+ e−Θ(1)β2/k

)
β2p+2q+(log d)r/2d−α

where θ∗ = (a(0), b(0), c∗, û, V (0)). Let us further set β = Θ(1)(log d)k where Θ(1) is some large
absolute constant. Set m = dα. In this case, we will have

L(θ∗) ≲ (d−α + e− log2 d)(log d)2k(p+q) + (log d)r/2d−α ≲ (log d)r/2+2k(p+q)d−α

D.2 EMPIRICAL PERFORMANCE

Next we will show the existence of good estimators in our empirical landscape. Firstly, we need to
concentrate the landscape at the special point c∗ we constructed. With a little abuse of notations,
denote the empirical version of the square loss as

L̂(θ) =
1

n

n∑
j=1

(
p̂(xj) +

m∑
i=1

ciσ(aip̂(xj) + bi)− h(xj)

)2

where we recall that xj ∈ D2 is newly generated data which is independent of D1.

Lemma 21. With probability at least 1− 3δ/8−O(1)d−α, we will have

L̂(θ∗) ⩽
1√
n
O((log d)2k(p+q)) +O((log d)r/2+2k(p+q)d−α)

Proof of Lemma 21. In the following, we compute the variance term.

Ex

(
L̂(θ∗)− L(θ∗)

)2
=

1

n
Var

(m∑
i=1

c∗i σ(aip̂(x) + bi)− (h(x)− p̂(x))

)2

⩽
1

n
Ex

(
m∑
i=1

c∗i σ(aip̂(x) + bi)− (h(x)− p̂(x))

)4

≲
1

n

Ex

(
m∑
i=1

c∗i σ(aip̂(x) + bi)

)4

+ Ex(h(x))
4 + Ex p̂(x)

4

⩽

1

n

(
m3

m∑
i=1

Ex c
∗4
i (aip̂(x) + bi)

4 +O(1)

)

≲
1

n

(
1 + β4p+4q 1

m

m∑
i=1

(b4i + Ex p̂(x)
4)

)

≲
1

n
β4p+4q

(
1 +

1

m

m∑
i=1

b4i

)

33

Published as a conference paper at ICLR 2024

Here are some technical arguments to bound 1
m

∑m
i=1 b

4
i . We have

Eb

(
1

m

m∑
i=1

b4i − Eb b
4

)2

⩽
1

m
Eb b

8

and

Pb

(1

m

m∑
i=1

b4i − Eb b
4

)2

⩾ 1

 ⩽ Eb

(
1

m

m∑
i=1

b4i − Eb b
4

)2

⩽
1

m
Eb b

8

Therefore, recall that Eb b
8 = O(1) based on our assumption on µb(t), we will have with probability

1−O(1)d−α, 1
m

∑m
i=1 b

4
i ≲ 1. In that case, we have

Ex

(
L̂(θ∗)− L(θ∗)

)2
≲

1

n
β4p+4q =

1

n
(log d)4k(p+q)

Therefore, by Markov inequality, we have
∣∣∣L̂(θ∗)− L(θ∗)∣∣∣ ≲ 1√

n
(log d)2k(p+q) with probability at

least 1− δ/8. In this case, we have

L̂(θ∗) ≲
1√
n
(log d)2k(p+q) + (log d)r/2+2k(p+q)d−α

In the second stage of our training algorithm, we are doing the following minimization problem

min
c
L̂(θ) +

1

2
ξ2 ∥c∥2

via vanilla GD, where θ = (a(0), b(0), c, û, V (0)). Since this problem is strongly convex and smooth,
the optimization problem can be easily solved by plain GD.
Lemma 22. Set ξ2 = 2. For any ϵ ∈ (0, 1), let T2 ≳ m log(m/ϵ). Then, when m,n, d are larger
than some absolute constant, with probability at least 1 − 7δ/16, the predictor ĉ := c(T2) and
θ̂ = (a(0), b(0), ĉ, û, V (0)) satisfies

L̂(θ̂) ≲
1√
n
(log d)2k(p+q) + ϵ+ (log d)r/2+2k(p+q)d−α

and
∥ĉ∥2 ≲

1√
n
(log d)2k(p+q) + ϵ+ (log d)r/2+2k(p+q)d−α

Proof. For any given threshold ϵ ∈ (0, 1), assuming ĉ is an ϵminimizer of the optimization problem,
then we will have

L̂(θ̂)+
1

2
ξ2 ∥ĉ∥2 ⩽ L̂(θ∗)+

1

2
ξ2 ∥c∗∥2+ϵ ≲

1√
n
(log d)2k(p+q)+ϵ+(1 + ξ2) (log d)

r/2+2k(p+q)d−α

Plug ξ2 = 2 in, then we will have

L̂(θ̂) ≲
1√
n
(log d)2k(p+q) + ϵ+ (log d)r/2+2k(p+q)d−α

and
∥ĉ∥2 ≲

1√
n
(log d)2k(p+q) + ϵ+ (log d)r/2+2k(p+q)d−α

It thus suffices to analyze the optimization problem.

Clearly, this convex optimization problem is at least 2-strongly convex. To estimate the time com-
plexity, we also need to estimate the smoothness of our optimization objective.

Lemma 23. With probability at least 1−O(1)d−α − 2e−Θ(1)n1/2k

, we have∣∣∣∇L̂(c1)−∇L̂(c2)∣∣∣ ≲ m

34

Published as a conference paper at ICLR 2024

Proof. We first calculate the gradient

∇L̂(θ) = 2

n

n∑
j=1

(
p̂(xj) + c⊤σ(ap̂(xj) + b)− h(xj)

)
σ(ap̂(xj) + b)

then bound the Lipschitz constant for the gradient∣∣∣∇L̂(c1)−∇L̂(c2)∣∣∣ =
∣∣∣∣∣∣ 2n

n∑
j=1

⟨c1 − c2, σ(ap̂(xj) + b)⟩σ(ap̂(xj) + b)

∣∣∣∣∣∣
⩽

2

n

n∑
j=1

∥c1 − c2∥ ∥σ(ap̂(xj) + b)∥2

⩽ ∥c1 − c2∥

 2

n

n∑
j=1

m∑
i=1

(aip̂(xj) + bi)
2

⩽ ∥c1 − c2∥

4m

n

n∑
j=1

p̂(xj)
2 + 4

m∑
i=1

b2i

Here are some technical arguments to estimate

∑
i b

2
i . We have

Eb

(
1

m

m∑
i=1

b2i − Eb b
2

)2

⩽
1

m
Eb b

4

and

Pb

(1

m

m∑
i=1

b2i − Eb b
2

)2

⩾ 1

 ⩽ Eb

(
1

m

m∑
i=1

b2i − Eb b
2

)2

⩽
1

m
Eb b

4

Therefore, recall that m = dα, and also Eb b
4 = O(1) due to our assumption on µb(t), we will

have with probability 1 − O(1)d−α, 1
m

∑m
i=1 b

2
i ≲ 1. Moreover, we can use Corollary 3 to con-

centrate
∑

j p̂(xj)
2. More concretely, we will have 1

n

∑
j p̂(xj)

2 ≲ 1 with probability at least

1 − 2e−Θ(1)n1/2k

, since p̂(x)2 is a degree 2k polynomial and Var(p̂(x)2) ≲ 1 via Gaussian hy-
percontractivity, Lemma 31. Therefore, with probability at least 1 − O(1)d−α − 2e−Θ(1)n1/2k

, we
have ∣∣∣∇L̂(c1)−∇L̂(c2)∣∣∣ ≲ 1

Having derived the above Lemma, using Lemma 36 in Appendix E.5, we can choose the learning
rate η1 = 1

Θ(m) and have ∥∥∥c(t) − copt∥∥∥2 ⩽

(
1− 1

Θ(m)

)t

∥copt∥2

where copt is the unique optimal solution for that optimization problem. Furthermore, we have the
following

sup
∥c∥⩽R

∥∥∥∇L̂(c) + 2c
∥∥∥ ⩽ sup

∥c∥⩽R

∥∥∥∇L̂(c)∥∥∥ + 2R

⩽
2

n

n∑
j=1

∥σ(ap̂(xj) + b)∥
(
|p̂(xj)− h(xj)|+R ∥σ(ap̂(xj) + b)∥

)
+ 2R

⩽
2

n

n∑
j=1

(
(R+ 1) ∥σ(ap̂(xj) + b)∥2 + (p̂(xj)− h(xj))2

)
+ 2R

⩽ (R+ 1)O(m) +
2

n

n∑
j=1

(p̂(xj)− h(xj))2 + 2R

35

Published as a conference paper at ICLR 2024

with probability at least 1−O(1)d−α−2e−Θ(1)n1/2k

. The last inequality follows from the same ar-
gument in Lemma 23. Moreover, we can use Corollary 3 to concentrate

∑
j(p̂(xj)−h(xj))2. More

concretely, we will have 1
n

∑
j(p̂(xj) − h(xj))

2 ≲ 1 with probability at least 1 − 2e−Θ(1)n1/2r

,
since (p̂(x) − h(x))2 is a degree 2r polynomial and Var ((p̂(x)− h(x))2) ≲ 1 via Gaussian hy-
percontractivity, Lemma 31. Therefore, with probability at least 1 − O(1)d−α − 2e−Θ(1)n1/2r

, we
have

sup
∥c∥⩽R

∥∥∥∇L̂(c) + 2c
∥∥∥ ≲ (R+ 1)m

Utilizing that fact, we have

L̂(c(t)) +
∥∥∥c(t)∥∥∥2 ⩽ L̂(copt) + ∥copt∥2 + sup

∥c∥⩽2∥copt∥

∥∥∥∇L̂(c) + 2c
∥∥∥ ∥∥∥c(t) − copt∥∥∥

Since ∥copt∥ = O(1), sup∥c∥⩽2∥copt∥

∥∥∥∇L̂(c) + 2c
∥∥∥ = O(m), if we want

sup
∥c∥⩽2∥copt∥

∥∥∥∇L̂(c) + 2c
∥∥∥ ∥∥∥c(t) − copt∥∥∥ ⩽ ϵ2

it is sufficient to have T2 ≳ m log(m/ϵ2).

In addition, for any truncation level τ > 0, we will also have

1

n

n∑
j=1

ℓτ (hθ̂(xj), h(xj)) ⩽ L̂(θ̂) ≲
1√
n
(log d)2k(p+q) + ϵ+ (log d)r/2+2k(p+q)d−α

which we will use later. Here we recall ℓτ (x, y) := (x− y)2 ∧ τ2.

D.3 UNIFORM GENERALIZATION BOUNDS

To conclude, we need a uniform generalization bound over c for our population loss L(θ) =

∥hθ − h∥2L2(γ). As in Appendix C, we bound the truncated loss via a Rademacher complexity
argument, and deal with the truncation term later.

Proof of Theorem 1. Recall that ℓτ (x, y) = (x−y)2∧τ2. From Lemma 33 and 34, with probability
at least 1− δ/32, we will have

sup
∥c∥⩽Mc

∣∣∣∣∣ 1n
n∑

i=1

ℓτ (hθ(xi), h(xi))− Ex [ℓτ (hθ(x), h(x))]

∣∣∣∣∣ ⩽ 4τ Radn(H) + τ2
√
O(1)
n

whereH := {hθ : ∥c∥ ⩽Mc}. Then we will compute Radn(H).

Lemma 24. With probability at least 1−O(1)d−α over the sampling of a, b, we have

Radn(H) ≲Mc

√
m

n

36

Published as a conference paper at ICLR 2024

Proof.

Radn(H) = Ex Eξ

 sup
∥c∥⩽Mc

1

n

n∑
j=1

ξj

(
m∑
i=1

ciσ(aip̂(xj) + bi)

)
=

1

n
Ex Eξ

 sup
∥c∥⩽Mc

m∑
i=1

ci

 n∑
j=1

ξjσ(aip̂(xj) + bi)

⩽
Mc

n
Ex Eξ

√√√√√ m∑
i=1

 n∑
j=1

ξjσ(aip̂(xj) + bi)

2

⩽
Mc

n

√√√√√Ex Eξ

m∑
i=1

 n∑
j=1

ξjσ(aip̂(xj) + bi)

2

=
Mc

n

√√√√√Ex

 m∑
i=1

n∑
j=1

(σ(aip̂(xj) + bi))
2

≲
Mc√
n

√√√√mEx p̂(x)2 +

m∑
i=1

b2i

Here are some technical arguments to estimate
∑

i b
2
i . We have

Eb

(
1

m

m∑
i=1

b2i − Eb b
2

)2

⩽
1

m
Eb b

4

and

Pb

(1

m

m∑
i=1

b2i − Eb b
2

)2

⩾ 1

 ⩽ Eb

(
1

m

m∑
i=1

b2i − Eb b
2

)2

⩽
1

m
Eb b

4

Therefore, recall thatm = dα, and also Eb b
4 ≲ 1 due to our assumption on µb(t), we will have with

probability 1−O(1)d−α, 1
m

∑m
i=1 b

2
i ≲ 1. In that case, plugging that in, we get our Lemma.

As a consequence, with probability at least 1− δ/32−O(1)d−α,

sup
∥c∥⩽Mc

∣∣∣∣∣ 1n
n∑

i=1

ℓτ (hθ(xi), h(xi))− Ex [ℓτ (hθ(x), h(x))]

∣∣∣∣∣ ≲ 4τMc

√
m

n
+ τ2

√
1

n

Lastly, we also need to deal with the truncation to get a L2 generalization bound. That is to say, we
need to bound

sup
∥c∥⩽Mc

Ex

[
(hθ(x)− h(x))21|hθ(x)−h(x)|⩾τ

]
Lemma 25. We will have with probability at least 1−O(1)d−α,

sup
∥c∥⩽Mc

Ex

[
(hθ(x)− h(x))21|hθ(x)−h(x)|⩾τ

]
≲

1

τ2
(1 +m4M4

c)

Proof. By Cauchy inequality, we have(
Ex

[(
(hθ(x)− h(x))2

)
1|hθ(x)−h(x)|⩾τ

])2
⩽ Ex

[
(hθ(x)− h(x))4

]
P (|hθ(x)− h(x)| ⩾ τ)

≲
(
Ex

[
hθ(x)

4
]
+ Ex

[
h(x)4

])
P (|hθ(x)− h(x)| ⩾ τ)

(21)

37

Published as a conference paper at ICLR 2024

Recall that Ex h(x)
4 = O(1). In addition, we have

Ex

[
hθ(x)

4
]
= Ex

(m∑
i=1

ciσ(aip̂(x) + bi)

)4

⩽ m3
m∑
i=1

Ex

[
c4i (aip̂(x) + bi)

4
]

≲ m4M4
c

(
O(1) + 1

m

m∑
i=1

b4i

)
≲ m4M4

c

if under the high probability event 1
m

∑m
i=1 b

4
i ≲ 1. Furthermore, we have

P (|hθ(x)− h(x)| ⩾ τ) ⩽
1

τ4
Ex

[
(hθ(x)− h(x))4

]
≲

1

τ4
(1 +m4M4

c)

Plugging this back, we will have with probability at least 1−O(1)d−α,

sup
∥c∥⩽Mc

Ex

[
(hθ(x)− h(x))21|hθ(x)−h(x)|⩾τ

]
≲

1

τ2
(1 +m4M4

c)

We now combine everything together. Let us choose ϵ = d−α and n ⩾ dk+3α and recall m = dα.
In that case, ∥ĉ∥2 = O((log d)r/2+2k(p+q)d−α). Therefore, when d is larger than some constant
that is only depending on r, p, α, we are allowed to set Mc = (log d)Θ(1)d−α for some large Θ(1).
In that case, we have∥∥hθ̂ − h∥∥2L2(γ)

≲ (log d)r/2+2k(p+q)d−α+4τ(log d)Θ(1)d−α
√
d−k−2α+τ2d−k/2−3α/2+τ−2(log d)Θ(1)

We will pick up our truncation level τ = dα/2. In that case, for any α ∈ (0, 1), we will have∥∥hθ̂ − h∥∥2L2(γ)
= O((log d)Θ(1)d−α) = Õ(d−α)

E TECHNICAL BACKGROUND

E.1 HERMITE POLYNOMIALS

Definition 3 (1D Hermite polynomials). The k-th normalized probabilist’s Hermite polynomial,
hk : R→ R, is the degree k polynomial defined as

hk(x) =
(−1)k√
k!

dkµβ

dxk (x)

µβ(x)
, (22)

where µβ(x) = exp(−x2/2)/
√
2π is the density of the standard Gaussian.

The first such Hermite polynomials are

h0(z) = 1, h1(z) = z, h2(z) =
z2 − 1√

2
, h3(z) =

z3 − 3z√
6

, · · ·

Denote β = N (0, 1) to be the standard Gaussian in 1D. A key fact is that the normalized Hermite
polynomials form an orthonormal basis of L2(β); that is Ex∼β [hj(x)hk(x)] = δjk.

Given a f ∈ L2(β), denote by f(z) =
∑

k f̂khk(z) be the Hermite expansion of f where

f̂k = Ez∼β [f(z)hk(z)] =
1√
2π

∫
R
f(z)hk(z)e

− z2

2 dz

is the Hermite coefficient of f . The following lemma will be useful, which can be found in Propo-
sition 11.31 of O’Donnell (2014).

38

Published as a conference paper at ICLR 2024

Lemma 26. Given f, g ∈ L2(β), we have for any u, v ∈ Sd−1 that

Ex∼γ

[
f(u⊤x)g(v⊤x)

]
=

∞∑
k=0

f̂kĝk(u
⊤v)k

The multidimensional analog of the Hermite polynomials is Hermite tensors:
Definition 4 (Hermite tensors). The k-th Hermite tensor in dimension d, Hek : Rd → (Rd)⊗k, is
defined as

Hek(x) =
(−1)k√
k!

∇kµγ(x)

µγ(x)
,

where µγ(x) = exp(− 1
2∥x∥

2)/(2π)d/2 is the density of the d-dimensional standard Gaussian.

The Hermite tensors form an orthonormal basis of L2(γ); that is, for any f ∈ L2(γ), one can write
the Hermite expansion

f(x) =
∑
k⩾0

⟨Ck(f), Hek(x)⟩ where Ck(f) := Ex∼γ [f(x)Hek(x)].

We define the Hermite projection operator as (Pkf)(x) := ⟨Ck(f), Hek(x)⟩. Intuitively speaking,
the operator Pk extracts out the k degree part of a function when the input distribution is standard
Gaussian. Furthermore, denote P⩽k :=

∑
0⩽i⩽k Pi and P<k :=

∑
0⩽i<k Pi as the projection

operator onto the span of Hermite polynomials with degree no more than k, and degree less than k.
It is clear that ∥P⩽kf∥L2 ⩽ ∥f∥L2 for any f ∈ L2(γ). This can be shown by a simple Hermite
expansion for f .

The next lemma can be shown by direct verification.
Lemma 27. We have

Hek(x) =
1√
k!

Ez∼γ

[
(x+ iz)⊗k

]
.

Lemma 28. If ∥u∥ = 1, we have

hk(u
⊤x) =

〈
Hek(x), u

⊗k
〉
.

Proof. 〈
Hek(x), u

⊗k
〉
=

1√
k!

〈
Ez∼γ

[
(x+ iz)⊗k

]
, u⊗k

〉
=

1√
k!
Ez∼γ

[
(u⊤x+ i(u⊤z))k

]
=

1√
k!
Ez∼β

[
(u⊤x+ iz)k

]
= hk(u

⊤x).

E.2 GAUSSIAN HYPERCONTRACTIVITY

By Holder’s inequality, we have ∥X∥Lp ⩽ ∥X∥Lq for any random variable X and any p ⩽ q. The
reverse inequality does not hold in general, even up to a constant. However, for some measures like
Gaussian, the reverse inequality will hold for some sufficiently nice functions like polynomials. The
following lemma comes from Lemma 20 in Mei et al. (2021).
Lemma 29. For any ℓ ∈ N and f ∈ L2(β) to be a degree ℓ polynomial on R where β is the standard
Gaussian distribution, for any q ⩾ 2, we have

(Ez∼β [f(z)
q])

2/q ⩽ (q − 1)ℓ Ez∼β

[
f(z)2

]
The next Lemma is also from Mei et al. (2021) and is designed for uniform distribution on the sphere
in d dimension.

39

Published as a conference paper at ICLR 2024

Lemma 30. For any ℓ ∈ N and f ∈ L2(Sd−1) to be a degree ℓ polynomial, for any q ⩾ 2, we have(
Ez∼Unif(Sd−1) [f(z)

q]
)2/q

⩽ (q − 1)ℓ Ez∼Unif(Sd−1)

[
f(z)2

]
For the case where the input distribution is standard Gaussian in d dimension, we shall use the next
Lemma from Theorem 4.3, Prato & Tubaro (2007).
Lemma 31. For any ℓ ∈ N and f ∈ L2(γ) to be a degree ℓ polynomial, for any q ⩾ 2, we have

Ez∼γ [f(z)
q] ⩽ Oq,ℓ(1)

(
Ez∼γ

[
f(z)2

])q/2
where we use Oq,ℓ(1) to denote some universal constant that only depends on q, ℓ.

E.3 POLYNOMIAL CONCENTRATION

In this subsection, we will introduce several Lemmas to control the deviation of random variables
which polynomially depend on some Gaussian random variables. We will use a slightly modified
version of Lemma 30 from Damian et al. (2022).
Lemma 32. Let g be a polynomial of degree p and x ∼ N (0, Id). Then there exists an absolute
positive constant Cp depending only on p such that for any δ > 0,

P
[
|g(x)− E[g(x)]| ⩾ δ

√
Var(g(x))

]
⩽ 2 exp

(
−Cp min

(
δ2, δ2/p

))
Consider the case that x = (x1, . . . , xn) and g(x) = 1

n

∑
i g(xi), xi ∼i.i.d. N (0, Id) ∈ Rd and

x ∈ Rd×n. Plug them into the above Lemma, and we get the following corollary.
Corollary 3. Let g be a polynomial of degree p and xi ∼ N (0, Id), i ∈ [n]. Then there exists an
absolute positive constant Cp depending only on p such that for any δ > 0,

P

[
| 1
n

n∑
i=1

g(xi)− E[g(x)]| ⩾ δ
1√
n

√
Var(g(x))

]
⩽ 2 exp

(
−Cp min

(
δ2, δ2/p

))
E.4 UNIFORM GENERALIZATION BOUNDS

Definition 5 (Rademacher complexity). The empirical Rademacher complexity of a function class
F on finite samples is defined as

R̂adn(F) = Eξ

[
sup
f∈F

1

n

n∑
i=1

ξif(Xi)

]
(23)

where ξ1, ξ2, . . . , ξn are i.i.d. Rademacher random variables: P(ξi = 1) = P(ξi = −1) = 1
2 . Let

Radn(F) = E[R̂ad(F)] be the population Rademacher complexity.

Then we recall the uniform law of large number via Rademacher complexity, which can be found in
Wainwright (2019, Theorem 4.10).
Lemma 33. Assume that f ranges in [0, R] for all f ∈ F . For any n ⩾ 1, for any δ ∈ (0, 1), w.p. at
least 1− δ over the choice of the i.i.d. training set S = {X1, . . . , Xn}, we have

sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

f (Xi)− Ef(X)

∣∣∣∣∣ ⩽ 2Radn(F) +R

√
log(4/δ)

n
(24)

Then we recall the contraction Lemma in Vershynin (2018, Exercise 6.7.7) to compute Rademacher
complexity.
Lemma 34 (Contraction Lemma). Let φi : R 7→ R with i = 1, . . . , n be β-Lispchitz continuous.
Then,

1

n
Eξ sup

f∈F

n∑
i=1

ξiφi ◦ f (xi) ⩽ βR̂adn(F)

40

Published as a conference paper at ICLR 2024

Next, we estimate the Rademacher complexity for random feature models. Denote gu,s,V (x) =

u⊤σ
(

V x+s√
2

)
=
∑m

i=1 uiσ
(

v⊤
i x+si√

2

)
with vi i.i.d. sampled from the uniform distribution on the

unit sphere, and si i.i.d. N (0, 1) generated. Here σ(·) is a k degree polynomial with O(1) coeffi-
cients. Denote our kernel function class G as

G := {gu,s,V : ∥u∥ ⩽Mu}
Then we have the following lemma for the Rademacher complexity of G.

Lemma 35. With probability at least 1 − 2e−Θ(1)m1/2k

, we have the following estimation for the
Rademacher complexity of our function class G

Radn(G) ≲Mu

√
m

n

Proof.

Radn(G) = Ex,ξ

[
sup
gθ∈G

1

n

n∑
i=1

ξiu
⊤σ

(
V xi + s√

2

)]

=
1

n
Ex,ξ

[
sup
gθ∈G

u⊤

(
n∑

i=1

ξiσ

(
V xi + s√

2

))]

⩽
Mu

n
Ex,ξ

[∥∥∥∥∥
n∑

i=1

ξiσ

(
V xi + s√

2

)∥∥∥∥∥
2

]

⩽
Mu

n

√√√√√Ex,ξ

∥∥∥∥∥
n∑

i=1

ξiσ

(
V xi + s√

2

)∥∥∥∥∥
2

2

=
Mu

n

√√√√√Ex

 m∑
j=1

Varξ

(
n∑

i=1

ξiσ

(
v⊤j xi + sj√

2

))

=
Mu√
n

√√√√√Ex

 m∑
j=1

σ

(
v⊤j x+ sj√

2

)2
 ≲Mu

√
m

√
1
m

∑m
j=1(1 + s2kj)

n

(25)

By Corollary 3, we can concentrate 1
m

∑m
j=1(1 + s2kj) and get

1

m

m∑
j=1

(1 + s2kj) ≲ 1

with probability at least 1− 2e−Θ(1)m1/2k

. Plug that in and we get our final bound.

E.5 CONVEX OPTIMIZATION

Denote f(x) as a C1 function defined in Rd. Assume that

• There exists m > 0 such that f(x)− m
2 ∥x∥

2 is convex.
• ∥∇f(x)−∇f(y)∥ ⩽ L ∥x− y∥.

The following result is standard and can be found in most convex optimization textbooks like Boyd
& Vandenberghe (2004).
Lemma 36. There exists a unique x∗ such that f(x∗) = infx f(x). And if we start at the point x0
and do gradient descent with learning rate η, if η ⩽ 1

m+L , then we will get∥∥xk − x∗∥∥2 ⩽ ck
∥∥x0 − x∗∥∥2

where c = 1− η 2mL
m+L .

41

Published as a conference paper at ICLR 2024

E.6 UNIVARIATE APPROXIMATION

In this subsection, we use σ(z) to denote ReLU(z) and set A ⩾ 1.

Lemma 37. Let a ∼ Unif({−1, 1}) and let b have density µb(t). Then there exists v(a, b) supported
on {−1, 1} × [A, 2A] such that for any |x| ⩽ A,

Ea,b[v(a, b)σ(ax+ b)] = 1 and sup
a,b
|v(a, b)| ⩽ 1∫ 2A

A
tµb(t)dt

Proof. Let v(a, b) = c1b∈[A,2A] where c = 1∫ 2A
A

tµb(t)dt
. Then for |x| ⩽ A,

Ea,b[v(a, b)σ(ax+ b)] = c

∫ 2A

A

1

2
[σ(x+ t) + σ(−x+ t)]µb(t)dt

= c

∫ 2A

A

tµb(t)dt

= 1

Lemma 38. Let a ∼ Unif({−1, 1}) and let b have density µb(t). Then there exists v(a, b) supported
on {−1, 1} × [A, 2A] such that for any |x| ⩽ A,

Ea,b[v(a, b)σ(ax+ b)] = x and sup
a,b
|v(a, b)| ⩽ 1∫ 2A

A
µb(t)db

Proof. Let v(a, b) = ca1b∈[A,2A] where c = 1∫ 2A
A

µb(t)dt
. Then for |x| ⩽ A,

Ea,b[v(a, b)σ(ax+ b)] = c

∫ 2A

A

1

2
[σ(x+ t)− σ(−x+ t)]µb(t)dt

= cx

∫ 2A

A

µb(t)dt

= x

Lemma 39. Let a ∼ Unif({−1, 1}) and let b have density µb(t). Let f : R → R be any C2

function. Then there exists v(a, b) supported on {−1, 1} × [0, 2A] such that for any |x| ⩽ A,

Ea,b[v(a, b)σ(ax+ b)] = f(x)

and

sup
a,b
|v(a, b)| = O

(
sup

x∈[−A,A],k=0,1,2

∣∣∣f (k)(x)∣∣∣(1∫ 2A

A
µb(t)dt

+
1

inft∈[0,A] µb(t)

))

Proof. First consider v(a, b) = 1b∈[0,A]

µb(t)
2f ′′(−ab). Then when x ⩾ 0 we have the following equa-

tion by integration by parts:

Ea,b[v(a, b)σ(ax+ b)]

=

∫ A

0

[f ′′(−t)σ(x+ t) + f ′′(t)σ(−x+ t)] dt

= x(f ′(0)− f ′(−A))−Af ′(−A) + f(0)− f(−A) +Af ′(A)− f(A) + f(x)− xf ′(A)
= f(x) + C1 + C2x

42

Published as a conference paper at ICLR 2024

where C1 = −Af ′(−A) + f(0)− f(−A) +Af ′(A)− f(A) and C2 = f ′(0)− f ′(−A)− f ′(A).
In addition when x < 0,

Ea,b[v(a, b)σ(ax+ b)]

=

∫ A

0

[f ′′(−t)σ(x+ t) + f ′′(t)σ(−x+ t)] dt

= x(f ′(0)− f ′(−A))−Af ′(−A) + f(0)− f(−A) +Af ′(A)− f(A) + f(x)− xf ′(A)
= f(x) + C1 + C2x

so this equality is true for all x. We can use the previous two lemmas to subtract the C1+C2x term.
That is to say, we can set

v(a, b) := −C1
1∫ 2A

A
tµb(t)dt

1b∈[A,2A] − C2
a∫ 2A

A
µb(t)dt

1b∈[A,2A] +
1

µb(t)
1b∈[0,A]2f

′′(−ab)

in order to have Ea,b[v(a, b)σ(ax+ b)] = f(x) for any |x| ⩽ A. In this case, we have

sup
a,b
|v(a, b)| = O

(
sup

x∈[−A,A],k=0,1,2

∣∣∣f (k)(x)∣∣∣(1∫ 2A

A
µb(t)dt

+
1

inft∈[0,A] µb(t)

))

Remark 7. When f is a polynomial and µb(t) has a heavy tail, supa,b |v(a, b)| will only depend on
A polynomially. More concretely, consider the case f(z) =

∑
0⩽i⩽q ciz

i where supi |ci| = O(1).
In this case, we have

sup
x∈[−A,A],k=0,1,2

∣∣∣f (k)(x)∣∣∣ = O(Aq)

Furthermore, since we have assumed µb(t) ≳ (|t|+ 1)−p, we have(
1∫ 2A

A
µb(t)dt

+
1

inft∈[0,A] µb(t)

)
= O(Ap) and sup

a,b
|v(a, b)| = O(Ap+q)

43

	Introduction
	Our Results
	Related Works
	Notations

	Preliminaries
	Problem Setup
	Hermite Polynomials

	Main Results
	Proof Sketch
	Stage 1: Feature Learning
	Stage 2: Learning the Link Function
	The Approximate Stein's Lemma

	Discussion
	Comparison to nichani2023provable
	Layerwise Gradient Descent on Three-Layer Networks
	Future Work

	Experiments
	Proof of lem:approximatestein
	Results for General Features
	Special Cases

	Proof of thm:kernelstage1
	Approximation
	Empirical Performance
	Uniform Generalization Bounds

	Proof of Theorem 1
	Approximation
	Empirical Performance
	Uniform Generalization Bounds

	Technical Background
	Hermite Polynomials
	Gaussian Hypercontractivity
	Polynomial Concentration
	Uniform Generalization Bounds
	Convex Optimization
	Univariate Approximation

