
Masked Trajectory Models for Prediction, Representation, and Control

Philipp Wu 1 2 Arjun Majumdar † 3 Kevin Stone † 1 Yixin Lin † 1 Igor Mordatch 4

Pieter Abbeel 2 Aravind Rajeswaran 1

Abstract

We introduce Masked Trajectory Models (MTM)
as a generic abstraction for sequential decision
making. MTM takes a trajectory, such as a state-
action sequence, and aims to reconstruct the tra-
jectory conditioned on random subsets of the
same trajectory. By training with a highly ran-
domized masking pattern, MTM learns versatile
networks that can take on different roles or capa-
bilities, by simply choosing appropriate masks at
inference time. For example, the same MTM net-
work can be used as a forward dynamics model,
inverse dynamics model, or even an offline RL
agent. Through extensive experiments in several
continuous control tasks, we show that the same
MTM network – i.e. same weights – can match
or outperform specialized networks trained for
the aforementioned capabilities. Additionally, we
find that state representations learned by MTM

†Equal contribution 1Meta AI 2UC Berkeley 3Georgia
Tech 4Google Research. Correspondence to: Philipp <philip-
pwu@berkeley.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

can significantly accelerate the learning speed
of traditional RL algorithms. Finally, in offline
RL benchmarks, we find that MTM is competi-
tive with specialized offline RL algorithms, de-
spite MTM being a generic self-supervised learn-
ing method without any explicit RL components.
Code is available at https://github.com/
facebookresearch/mtm.

1. Introduction
Sequential decision making is a field with a long and il-
lustrious history, spanning various disciplines such as re-
inforcement learning (Sutton & Barto, 1998), control the-
ory (Bertsekas, 1995; Åström & Murray, 2008), and op-
erations research (Powell, 2007). Throughout this history,
several paradigms have emerged for training agents that
can achieve long-term success in unknown environments.
However, many of these paradigms necessitate the learn-
ing and integration of multiple component pieces to obtain
decision-making policies. For example, model-based RL
methods require the learning of world models and actor-
critic methods require the learning of critics. This leads to
complex and unstable multi-loop training procedures and
often requires various ad-hoc stabilization techniques. In
parallel, the emergence of self-supervised learning (Devlin

Future
Prediction

Imitation
Learning

State
Representation

Inverse
Dynamics

Inference

Masked
Trajectory

(Input)

Reconstructed
Trajectory
(Output)

s1 R1 a1
s2 R2 a2

s3 R3 a3
s4 R4 a4

Bi-Directional Transformer

s1 R1 a1
s2 R2 a2

s3 R3 a3
s4 R4 a4

Masked Trajectory Modeling
Train with random autoregressive mask

Tasks ⇔Masking Patterns

Figure 1. Masked Trajectory Modeling (MTM) Framework. (Left) The training process involves reconstructing trajectory segments
from a randomly masked view of the same. (Right) After training, MTM can enable several downstream use-cases by simply changing the
masking pattern at inference time. See Section 3 for discussion on training and inference masking patterns.

1

https://github.com/facebookresearch/mtm
https://github.com/facebookresearch/mtm

Masked Trajectory Models

et al., 2018; Jing & Tian, 2019) has led to the development
of simple training objectives such as masked prediction and
contrastive prediction, which can train generic backbone
models for various tasks in computer vision and natural lan-
guage processing (NLP). Motivated by this advancement,
we explore if self-supervised learning can lead to the cre-
ation of generic and versatile models for sequential decision
making with capabilities including future prediction, imita-
tion learning, and representation learning.

Towards this end, we propose the use of Masked Trajec-
tory Models (MTM) as a generic abstraction and framework
for prediction, representation, and control. Our approach
draws inspiration from two recent trends in Artificial Intel-
ligence. The first is the success of masked prediction, also
known as masked autoencoding, as a simple yet effective
self-supervised learning objective in NLP (Devlin et al.,
2018; Liu et al., 2019; Brown et al., 2020) and computer vi-
sion (Bao et al., 2021; He et al., 2021). This task of masked
prediction not only forces the model to learn good represen-
tations but also develops its conditional generative modeling
capabilities. The second trend that inspires our work is the
recent success of transformer sequence models, such as de-
cision transformers, for reinforcement (Chen et al., 2021;
Janner et al., 2021) and imitation learning (Reed et al., 2022;
Shafiullah et al., 2022). Motivated by these breakthroughs,
we investigate if the combination of masked prediction and
transformer sequence models can serve as a generic self-
supervised learning paradigm for decision-making.

Conceptually, MTM is trained to take a trajectory sequence
of the form: τ := (sk, ak, sk+1, ak+1, . . . st, at) and recon-
struct it given a masked view of the same, i.e.

τ̂ = hθ (Masked(τ)) (MTM)

where hθ(·) is a bi-directional transformer and Masked(τ)
is a masked view of τ generated by masking or
dropping some elements in the sequence. For exam-
ple, one masked view of the above sequence could
be: (sk, , , ak+1, , . . . , st,) where denotes a
masked element. In this case, MTM must infill intermediate
states and actions in the trajectory as well as predict the next
action in the sequence. A visual illustration of our paradigm
is shown in Figure 1. Once trained, MTM can take on mul-
tiple roles or capabilities at inference time by appropriate
choice of masking patterns. For instance, by unmasking ac-
tions and masking states in the sequence, MTM can function
as a forward dynamics model.

Our Contributions Our main contribution is the pro-
posal of MTM as a versatile modeling paradigm and pre-
training method. We empirically investigate the capabilities
of MTM on several continuous control tasks including planar
locomotion (Fu et al., 2020) and dexterous hand manipula-
tion (Rajeswaran et al., 2018). We highlight key findings

and unique capabilities of MTM below.

1. One Model, Many Capabilities: The same model
trained with MTM (i.e. the same set of weights) can
be used zero-shot for multiple purposes including in-
verse dynamics, forward dynamics, imitation learning,
offline RL, and representation learning.

2. Heteromodality: MTM is uniquely capable of con-
suming heteromodal data and performing missing data
imputation, since it was trained to reconstruct full tra-
jectories conditioned on randomly masked views. This
capability is particularly useful when different trajec-
tories in the dataset contain different modalities, such
as a dataset containing both state-only trajectories as
well as state-action trajectories (Baker et al., 2022).
Following the human heteromodal cortex (Donnelly,
2011), we refer to this capability as heteromodality.

3. Data Efficiency: Training with random masks enables
different training objectives or combinations, thus al-
lowing more learning signal to be extracted from any
given trajectory. As a result, we find MTM to be more
data efficient compared to other methods.

4. Representation Learning: We find that state repre-
sentations learned by MTM transfer remarkably well to
traditional RL algorithms like TD3 (Fujimoto et al.,
2018a), allowing them to quickly reach optimal perfor-
mance. This suggests that MTM can serve as a powerful
self-supervised pre-training paradigm, even for practi-
tioners who prefer to use conventional RL algorithms.

Overall, these results highlight the potential for MTM as a
versatile paradigm for RL, and its ability to be used as a tool
for improving the performance of traditional RL methods.

2. Related Work
Autoencoders and Masked Prediction. Autoencoders
have found several applications in machine learning. The
classical PCA (Jolliffe & Cadima, 2016) can be viewed
as a linear autoencoder. Denoising autoencoders (Vincent
et al., 2008) learn to reconstruct inputs from noise corrupted
versions of the same. Masked autoencoding has found recent
success in domains like NLP (Devlin et al., 2018; Brown
et al., 2020) and computer vision (He et al., 2021; Bao et al.,
2021). Our work explores the use of masked prediction as a
self-supervised learning paradigm for RL.

Offline Learning for Control Our work primarily studies
the offline setting for decision making, where policies are
learned from static datasets. This broadly falls under the
paradigm of offline RL (Lange et al., 2012). A large class of
offline RL algorithms modify their online counterparts by in-
corporating regularization to guard against distribution shift

2

Masked Trajectory Models

that stems from the mismatch between offline training and
online evaluation (Kumar et al., 2020; Kidambi et al., 2020;
Fujimoto et al., 2018b; Yu et al., 2021; Liu et al., 2020). In
contrast, our work proposes a generic self-supervised pre-
training paradigm for decision making, where the resulting
model can be directly repurposed for offline RL. Zheng et al.
(2022) introduces a self supervised approach for the hetero-
modal offline RL settings where only a small subset of the
trajectories have action labels. We leverage this setting in
the investigation of Heteromodal MTM, which can be trained
without any change to the algorithm.

Self-Supervised Learning for Control The broad idea
of self-supervision has been incorporated into RL in two
ways. The first is self-supervised data collection, such as
task-agnostic and reward-free exploration (Pathak et al.,
2017; Laskin et al., 2021; Burda et al., 2018). The second is
concerned with self-supervised learning for control, which
is closer to our work. Prior works typically employ self-
supervised learning to obtain state representations (Yang &
Nachum, 2021; Parisi et al., 2022; Nair et al., 2022; Xiao
et al., 2022) or world models (Hafner et al., 2020; Hansen
et al., 2022a;b; Seo et al., 2022), for subsequent use in
standard RL pipelines. In contrast, MTM uses self-supervised
learning to train a single versatile model that can exhibit
multiple capabilities.

Transformers and Attention in RL Our work is in-
spired by the recent advances in AI enabled by transformers
(Vaswani et al., 2017), especially in offline RL (Chen et al.,
2021; Janner et al., 2021; Jiang et al., 2022b) and imitation
learning (Reed et al., 2022; Shafiullah et al., 2022; Brohan
et al., 2022; Jiang et al., 2022a; Zhou et al., 2022). Of
particular relevance are works that utilize transformers in
innovative ways beyond the standard RL paradigm. De-
cision Transformers and related methods (Schmidhuber,
2019; Srivastava et al., 2019; Chen et al., 2021) use return-
conditioned imitation learning, which we also adopt in this
work. However, in contrast to Chen et al. (2021) and Jan-
ner et al. (2021) who use next token prediction as the self-
supervised task, we use a bi-directional masked prediction
objective. This masking pattern enables the learning of
versatile models that can take on different roles based on
inference-time masking pattern.

Recently, Liu et al. (2022) and Carroll et al. (2022) explore
the use of bi-directional transformers for RL and we build
off their work. In contrast to Liu et al. (2022) which studies
downstream tasks like goal reaching and skill prompting,
we study a different subset of tasks such as forward and
inverse dynamics. Liu et al. (2022) also studies offline RL
by applying TD3 and modifying the transformer attention
mask to be causal, while we study the return conditioned
behavior cloning setting. In contrast to Carroll et al. (2022),

we study the broader capabilities of our model on several
high-dimensional control tasks. VPT (Baker et al., 2022)
also tackles sequential decision making using transformers,
focusing primarily on extracting action labels with a sep-
arate inverse dynamics model. Furthermore, unlike prior
work, we also demonstrate that our model has unique and
favorable properties like data efficiency, heteromodality, and
the capability to learn good state representations.

3. Masked Trajectory Modeling
We now describe the details of our masked trajectory mod-
eling paradigm, such as the problem formulation, training
objective, masking patterns, and overall architecture used.

3.1. Trajectory Datasets

MTM is designed to operate on trajectory datasets that we
encounter in decision making domains. Taking the example
of robotics, a trajectory comprises of proprioceptive states,
camera observations, control actions, task/goal commands,
and so on. We can denote such a trajectory comprising of
M different modalities as

τ =
{(

x1
1, x2

1, . . . xM
1

)
, . . .

(
x1

T , x2
T , . . . xM

T

)}
, (1)

where xm
t refers to the mth modality in the tth timestep. In

our empirical investigations, following prior work (Chen
et al., 2021; Janner et al., 2021), we use state, action, and
return-to-go (RTG) sequences as the different data modali-
ties. Note that in-principle, our mathematical formulation is
generic and can handle any modality.

3.2. Architecture and Masked Modeling

To perform masked trajectory modeling, we first “tokenize”
the different elements in the raw trajectory sequence, by lift-
ing them to a common representation space using modality-
specific encoders. Formally, we compute

zm
t = Em

θ (xm
t) ∀t ∈ [1, T], m ∈ [1, M],

where Em
θ is the encoder corresponding to modality m. We

subsequently arrange the embeddings in a 1-D sequence of
length N = M × T as:

τ =
(
z1

1, z2
1, . . . zM

1 , . . . zm
t , . . . zM

T

)
.

The self-supervised learning task in MTM is to reconstruct the
above sequence conditioned on a masked view of the same.
We denote the latter with Masked(τ), where we randomly
drop or “mask” a subset of elements in the sequence. The
final self-supervised objective is given by:

max
θ

Eτ

T∑
t=1

M∑
m=1

log Pθ (zm
t | Masked(τ)) , (2)

3

Masked Trajectory Models

Figure 2. Tokenization of the trajectory sequence comprises
three components. A modality specific encoder lifts from the
raw modality space to a common representation space, where we
additionally add timestep embeddings and modality type embed-
dings. Collectively, these allow the transformer to distinguish
between different elements in the sequence.

where Pθ is the prediction of the model. This encourages
the learning of a model that can reconstruct trajectories from
parts of it, forcing it to learn about the environment as well
as the data generating policy, in addition to good representa-
tions of the various modalities present in the trajectory.

Architecture and Embeddings We adopt an encoder-
decoder architecture similar to He et al. (2021) and Liu
et al. (2022), where both the encoder and decoder are bi-
directional transformers. We use a modality-specific en-
coder to lift the raw trajectory inputs to a common represen-
tation space for tokens. Further, to allow the transformer to
disambiguate between different elements in the sequence,
a fixed sinusoidal timestep encoding and a learnable mode-
specific encoding are added, as illustrated in Figure 2. The
resulting sequence is then flattened and fed into the trans-
former encoder where only unmasked tokens are processed.
The decoder processes the full trajectory sequence, and uses
values from the encoder when available, or a mode-specific
mask token when not. The decoder is trained to predict the
original sequence, including the unmasked tokens, using an
MSE loss (He et al., 2021), which corresponds to a Gaus-
sian probabilistic model. We also note that the length of
episodes/trajectories in RL can be arbitrarily long. In our
practical implementation, we model shorter “trajectory seg-
ments” that are randomly sub-selected contiguous segments
of fixed length from the full trajectory.

Masking Pattern Intuitively, we can randomly mask ele-
ments in the sequence with a sufficiently high mask ratio to
make the self-supervised task difficult. This has found suc-
cess in computer vision (He et al., 2021). We propose to use
a variation of this – a random autoregressive masking pat-
tern. This pattern requires at least one token in the masked
sequence to be autoregressive, meaning it must be predicted
based only on previous tokens, and all future tokens are
masked. This means the last element in each sampled tra-
jectory segment is necessarily masked. See Figure 3 for an

illustration. We note that the autoregressive mask in our
context is not using a causal mask in attention weights, but
instead corresponds to masking at the input and output token
level, similar to MAE.

In the case of computer vision and NLP, the entire image or
sentence is often available at inference time. However, in the
case of RL, the sequence data is generated as the agent inter-
acts with the environment. As a result, at inference time, the
model is forced to be causal (i.e. use only the past tokens).
By using our random autoregressive masking pattern, the
model both learns the underlying temporal dependencies in
the data, as well as the ability to perform inference on past
events. We find that this simple modification is helpful in
most tasks we study.

3.3. MTM as a generic abstraction for RL

The primary benefit of MTM is its versatility. Once trained,
the MTM network can take on different roles, by simply using
different masking patterns at inference time. We outline a
few examples below. See Figure 3 for a visual illustration.

1. Firstly, MTM can be used as a stand-alone algorithm for
offline RL, by utilizing a return-conditioned behavior
cloning (RCBC) mask at inference time, analogous
to DT (Chen et al., 2021) and RvS (Emmons et al.,
2021). However, in contrast to DT and RvS, we use a
different self-supervised pre-training task and model
architecture. We find in Section 4.3 that using MTM in
“RCBC-mode” outperforms DT and RvS.

2. Alternatively, MTM can be used to recover various
components that routinely feature in traditional RL
pipelines, as illustrated in Figure 3. Conceptually, by
appopriate choice of masking patterns, MTM can: (a)
provide state representation that accelerates the learn-
ing of traditional RL algorithms; (b) perform policy
initialization through behavior cloning; (c) act as a
world model for model-based RL algorithms; (d) act as
an inverse dynamics model to recover action sequences
that track desired reference state trajectories.

4. Experiments
Through detailed empirical evaluations, we aim to study the
following questions.

1. Is MTM an effective algorithm for offline RL?

2. Is MTM a versatile learner? Can the same network
trained with MTM be used for different capabilities with-
out additional training?

3. Is MTM an effective heteromodal learner? Can it con-
sume heteromodal datasets, like state-only and state-
action trajectories, and effectively use such a dataset to
improve performance?

4

Masked Trajectory Models

Figure 3. Masking Pattern for Training and Inference. (Training: box in orange) MTM is trained to reconstruct trajectory segments
conditioned on a masked view of the same. We use a random autoregressive masking pattern, where elements in the input sequence are
randomly masked, with the added constraint that at least one masked token must have no future unmasked tokens. This means the last
element in the sequence must necessarily be masked. We note that the input sequence can start and end on arbitrary modalities. In this
illustrated example, R3 is the masked token that satisfies the autoregressive constraint. That is the prediction of R3 is conditioned on no
future tokens in the sequence. (Inference: boxes in gray) By changing the masking pattern at inference time, MTM can either be used
directly for offline RL using RCBC (Chen et al., 2021), or be used as a component in traditional RL pipelines as a state representation,
dynamics model, policy initialization, and more. These different capabilities are shown in gray. Modes not shown at the input are masked
out and modes not shown at the output are not directly relevant for the task of interest.

4. Can MTM learn good representations that accelerate
downstream learning with standard RL algorithms?

See Appendix for additional details about model architecture
and hyperparameters.

4.1. Benchmark Datasets

To help answer the aforementioned questions, we draw upon
a variety of continuous control tasks and datasets that lever-
age the MuJoCo simulator (Todorov et al., 2012). Addi-
tional environment details can be found in Appendix B.

D4RL (Fu et al., 2020) is a popular offline RL bench-

mark consisting of several environments and datasets. Fol-
lowing a number of prior work, we focus on the locomo-
tion subset: Walker2D, Hopper, and HalfCheetah.
For each environment, we consider 4 different dataset
settings: Expert, Medium-Expert, Medium, and
Medium-Replay. The Expert dataset is useful for
benchmarking imitation learning with BC, while the other
datasets enable studying offline RL and other capabilities of
MTM such as future prediction and inverse dynamics.

Adroit (Rajeswaran et al., 2018) is a collection of dexterous
manipulation tasks with a simulated five-fingered. We ex-
periment with the Pen, and Door tasks that test an agent’s

Table 1. Results on D4RL. Offline RL results on the V2 locomotion suite of D4RL are reported here, specified by the normalized score as
described in Fu et al. (2020). We find that MTM outperforms RvS and DT, which also use RCBC for offline RL.

Environment Dataset BC CQL IQL TT MOPO RsV DT MTM (Ours)

HalfCheetah Medium-Replay 36.6 45.5 44.2 41.9 42.3 38.0 36.6 43.0
Hopper Medium-Replay 18.1 95.0 94.7 91.5 28.0 73.5 82.7 92.9
Walker2d Medium-Replay 26.0 77.2 73.9 82.6 17.8 60.6 66.6 77.3

HalfCheetah Medium 42.6 44.0 47.4 46.9 53.1 41.6 42.0 43.6
Hopper Medium 52.9 58.5 66.3 61.1 67.5 60.2 67.6 64.1
Walker2d Medium 75.3 72.5 78.3 79.0 39.0 71.7 74.0 70.4

HalfCheetah Medium-Expert 55.2 91.6 86.7 95.0 63.7 92.2 86.8 94.7
Hopper Medium-Expert 52.5 105.4 91.5 110.0 23.7 101.7 107.6 112.4
Walker2d Medium-Expert 107.5 108.8 109.6 101.9 44.6 106.0 108.1 110.2

Average 51.9 77.6 77.0 78.9 42.2 71.7 74.7 78.7

5

Masked Trajectory Models

Table 2. Evaluation of various MTM capabilities. MTM refers to the model trained with the random autoregressive mask, and evaluated
using the appropriate mask at inference time. S-MTM (“Specialized”) refers to the model that uses the appropriate mask both during
training and inference time. We also compare with a specialized MLP baseline trained separately for each capability. Note that higher is
better for BC and RCBC, while lower is better for FD and ID. We find that MTM is often comparable or better than training on specialized
masking patterns, or training specialized MLPs. We use a box outline to indicate that a single model was used for all the evaluations
within it. The right most column indicates if MTM is comparable or better than S-MTM, and we find this to be true in most cases.

Domain Dataset Task MLP S-MTM (Ours) MTM (Ours) (MTM) ≳ (S-MTM)?

Expert (↑) BC 111.14 ± 0.33 111.81 ± 0.18 107.35 ± 7.77 ✓
D4RL Expert (↑) RCBC 111.17 ± 0.56 112.64 ± 0.47 112.49 ± 0.37 ✓
Hopper Expert (↓) ID 0.009 ± 0.000 0.013 ± 0.000 0.050 ± 0.026 ✗

Expert (↓) FD 0.072 ± 0.000 0.517 ± 0.025 0.088 ± 0.049 ✓

Medium Replay (↑) BC 35.63 ± 6.27 36.17 ± 4.09 29.46 ± 6.74 ✗
D4RL Medium Replay (↑) RCBC 88.61 ± 1.68 93.30 ± 0.33 92.95 ± 1.51 ✓
Hopper Medium Replay (↓) ID 0.240 ± 0.028 0.219 ± 0.008 0.534 ± 0.009 ✗

Medium Replay (↓) FD 2.179 ± 0.052 3.310 ± 0.425 0.493 ± 0.030 ✓

Expert (↑) BC 62.75 ± 1.43 66.28 ± 3.28 61.25 ± 5.06 ✓
Adroit Expert (↑) RCBC 68.41 ± 2.27 66.29 ± 1.39 64.81 ± 1.70 ✓
Pen Expert (↓) ID 0.128 ± 0.001 0.155 ± 0.001 0.331 ± 0.049 ✗

Expert (↓) FD 0.048 ± 0.002 0.360 ± 0.020 0.321 ± 0.048 ✓

Medium Replay (↑) BC 33.73 ± 1.00 54.84 ± 5.08 47.10 ± 7.13 ✗
Adroit Medium Replay (↑) RCBC 41.26 ± 4.99 57.50 ± 3.76 58.76 ± 5.63 ✓
Pen Medium Replay (↓) ID 0.308 ± 0.004 0.238 ± 0.004 0.410 ± 0.064 ✗

Medium Replay (↓) FD 0.657 ± 0.023 0.915 ± 0.007 0.925 ± 0.026 ✓

ability to carefully coordinate a large action-space to ac-
complish complex robot manipulation tasks. We collect
Medium-Replay and Expert trajectories for each task
using a protocol similar to D4RL.

ExORL (Yarats et al., 2022) dataset consists of trajectories
collected using various unsupervised exploration algorithms.
Yarats et al. (2022) showed that TD3 (Fujimoto et al., 2018a)
can be effectively used to learn in this benchmark. We use
data collected by a ProtoRL agent (Yarats et al., 2021) in
the Walker2D environment to learn three different tasks:
Stand, Walk, and Run.

4.2. Offline RL results

We first test the capability of MTM to learn policies in the
standard offline RL setting. To do so, we train MTM with
the random autoregressive masking pattern as described in
Section 3. Subsequently, we use the Return Conditioned
Behavior Cloning (RCBC) mask at inference time for evalu-
ation. This is inspired by DT (Chen et al., 2021) which uses
a similar RCBC approach, but with a GPT model.

Our empirical results are presented in Table 1. We find
that MTM outperforms the closest algorithms of DT and
RvS, suggesting that masked prediction is an effective pre-
training task for offline RL when using RCBC inference
mask. More surprisingly, MTM is competitive with highly
specialized and state-of-the-art offline RL algorithms like
CQL (Kumar et al., 2020) and IQL (Kostrikov et al., 2021)
despite training with a purely self-supervised learning ob-

jective without any explicit RL components.

4.3. MTM Capabilities

We next study if MTM is a versatile learner by evaluating
it across four different capabilities on Adroit and D4RL
datasets. We emphasize that we test these capabilities for
a single MTM-model (i.e. same weights) by simply altering
the masking pattern during inference time. See Figure 3 for
a visual illustration of the inference-time masking patterns.

1. Behavior Cloning (BC): Predict next action given
state-action history. This is a standard approach to
imitation learning as well as a popular initialization
method for subsequent RL (Rajeswaran et al., 2018).

2. Return Conditioned Behavior Cloning (RCBC) is
similar to BC, but additionally conditions on the de-
sired Return-to-Go. Recent works (Chen et al., 2021;
Emmons et al., 2021) have shown that RCBC can lead
to successful policies in the offline RL setting.

3. Inverse Dynamics (ID), where we predict the action
using the current and future desired state. This can
be viewed as a 1-step goal-reaching policy. It has
also found application in observation-only imitation
learning (Radosavovic et al., 2021; Baker et al., 2022).

4. Forward Dynamics (FD), where we predict the next
state given history and current action. Forward dy-
namics models are an integral component of several
model-based RL algorithms (Janner et al., 2019; Ra-
jeswaran et al., 2020; Hafner et al., 2020).

6

Masked Trajectory Models

Hopper
Expert

Hopper
Medium Replay

Walker2D
Expert

Walker2D
Medium Replay

Environment

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Pe
rfo

rm
an

ce
Random (BERT / MAE)
Random Autoregressive (Ours)

RCBC (Specialized)

Figure 4. Impact of Masking Patterns. This plot shows
MTM RCBC performance trained with three different masking
patterns, random, random autoregressive, and a specialized RCBC
mask. We find that autoregressive random often outperforms ran-
dom, and in most cases is even competitive with the specialized (or
oracle) RCBC mask. Y -axis normalized with using RCBC mask.

We consider two variations of MTM. The first variant, S-
MTM, trains a specialized model for each capability using
the corresponding masking pattern at train time. The sec-
ond variant, denoted simply as MTM, trains a single model
using the random autoregressive mask specified in Section
3. Subsequently, the same model (i.e. same set of weights)
is evaluated for all the four capabilities. We also compare
our results with specialized MLP models for each capabil-
ity. We evaluate the best checkpoint across all models and
report mean and standard deviation across 4 seeds, taking
the average of 20 trajectory executions per seed. For all
experiments we train on 95% of the dataset and reserve
5% of the data for evaluation. For BC and RCBC results,
we report the normalized score obtained during evaluation
rollouts. For ID and FD, we report normalized loss values
on the aforementioned 5% held-out data.

A snapshot of our results are presented in Table 2 for a sub-
set of environments. Please see Appendix A for detailed
results on all the environments. The last column of the
table indicates the performance difference between the ver-
satile MTM and the specialized S-MTM. We find that MTM is
comparable or even better than specialized masks, and also
matches the performance of specialized MLP models. We
suspect that specialized masks may require additional tuning
of parameters to prevent overfitting or underfitting, whereas
random autoregressive masking is more robust across tasks
and hyperparameters.

4.4. Impact of Masking Patterns

We study if the masking pattern influences the capabilities
of the learned model. Figure 4 shows that random autore-
gressive masking matches or outperforms purely random
masking on RCBC for a spread of environments for offline
RL. We note that pure random masking, as done in MAE and
BERT, which focuses on only learning good representations,

D4RL
Hopper

D4RL
HalfCheetah

D4RL
Walker2D

Adroit
Door

Adroit
Pen

Environment

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Pe
rfo

rm
an

ce

MLP-BC
MLP-RCBC

MTM (Ours)
Heteromodal MTM (Ours)

Figure 5. MTM can effectively learn from heteromodal datasets.
Real world data may not always contain action labels. We simulate
this setting by training a MTM models on Expert datasets across
domains where only a small fraction of the data have action labels.
Our Heteromodal MTM model is able to effectively improve task
with the additional data over baseline MTM and MLP that train
on only the subset of data with actions. Y -axis normalized with
respect to performance of Heteromodal MTM.

0

20

40

60

80

100

Re
tu

rn
(D

4R
L

- H
op

pe
r)

MLP
MTM (Ours)
Heteromodal MTM (Ours)

95.05.02.01.00.5
% of Dataset

0

50

100

150

Re
tu

rn
(A

dr
oi

t -
 D

oo
r)

Figure 6. Dataset efficiency. We train MTM in the D4RL Hopper
and Adroit Door environments across a range of dataset sizes,
measured by the percent of the original dataset (≈ 1 million tran-
sitions). We see that MTM is able to consistently outperform spe-
cialized MLP models in the low data regime. Furthermore, we
see that Heteromodal MTM (i.e. MTM trained on heteromodal data
containing both state-only and state-action trajectories) is further
able to provide performance improvement in low data regimes.

can lead to diminished performance for downstream capa-
bilities. Random autoregressive masking mitigates these
issues by allowing the learning of a single versatile model
while still matching or even exceeding the performance of

7

Masked Trajectory Models

Base TD3 MTM State (Finetuned) MTM State-Action (Finetuned) Asymptotic TD3

0 5000 10000 15000 20000 25000
Training Steps

200

400

600

800

1000

Re
tu

rn

(a) DM-Control Walker2D Stand Task.

0 5000 10000 15000 20000 25000
Training Steps

0

200

400

600

800

1000

Re
tu

rn
(b) DM-Control Walker2D Walk Task

0 5000 10000 15000 20000 25000
Training Steps

0

100

200

300

400

500

Re
tu

rn

(c) DM-Control Walker2D Run Task

Figure 7. MTM Representations enable faster learning. The plot visualizes a walker agent’s performance as it is trained using TD3
on different representations across 3 tasks (Stand, Walk, Run). The agent is trained completely offline using data from the ExORL
dataset. For MTM state representations, we encode the raw state with MTM. MTM state-action representations additionally jointly encode the
state and action for the critic of TD3. The learning curves show that finetuned MTM representations enable the agent to more quickly
learn the task at hand, reaching or exceeding the asymptotic performance of TD3 on raw states. Both MTM state representations and
MTM state-action representations are comparable in terms of learning speed and performance. In addition, we see that in some cases, like
the Run task, state-action representations from MTM help achieve better performance than alternatives. We also show the asymptotic
performance reached by TD3 on raw states and actions after training for 100000 iterations and plot the average of 5 seeds.

specialized masks, as seen in Table 2.

4.5. Heteromodal Datasets

MTM is uniquely capable of learning from heteromodal
datasets. This is enabled by the training procedure, where
any missing data can be treated as if it were masked. During
training we apply the loss only to modes that exist in the
dataset. For these experiments we take the Expert subset
of our trajectory data and remove action labels from the
majority of the dataset. The training data consists of 1% of
the data with all modes (states, actions, return-to-go) and
95% percent of the data with no action labels. As is done in
all experiments, the remainder is reserved for testing.

From our initial experiments, we found that naively adding
in the state only data during training, and evaluating with the
RCBC mask did not always result in improved performance.
This was despite improvement in forward dynamics predic-
tion as a result of adding state-only trajectories. Based on
this observation, we propose a two-stage action inference
procedure. First, we predict future states given current state
and desired returns. This can be thought of as a forward
dynamics pass where the desired returns are used instead
of actions, which are masked out (or more precisely, miss-
ing). Next, we predict actions using the current state and
predicted future states using the inverse dynamics mask. We
refer to this model trained on heteromodal data, along with
the two stage inference procedure, as Heteromodal MTM.
We present the results in Figure 5, where we find that Het-
eromodal MTM consistently improves performance over the
baseline MLP and MTM that are trained only on the subset
of data with action labels.

4.6. Data Efficiency

Figure 5 not only showed the effectiveness of MTM on hetero-
modal data, but also that MTM is able to achieve higher per-
formance than baseline (specialized) MLPs in the low data
regimes. To explicitly test the data efficiency of MTM, we
study the performance as a function of the training dataset
size, and present results in Figure 6. We observe that MTM is
more sample efficient and achieves higher performance for
any given dataset size. Heteromodal MTM also outperforms
MTM throughout, with the performance gap being quite sub-
stantial in the low-data regime. We hypothesize that the
data efficiency of MTM is due to better usage of the data.
Specifically, since the model encounters various masks dur-
ing training, it must learn general relationships between
different elements. As a result, MTM may be able to squeeze
out more learning signal from any given trajectory.

4.7. Representations of MTM

Finally, we study if the representations learned by MTM are
useful for downstream learning with traditional RL algo-
rithms. If this is the case, MTM can also be interpreted as
an offline pre-training exercise to help downstream RL. To
instantiate this in practice, we consider the setting of of-
fline RL using TD3 on the ExORL dataset. The baseline
method is to simply run TD3 on this dataset using the raw
state as input to the TD3 algorithm. We compare this to
our proposed approach of using MTM state representations
for TD3. To do this, we first pretrain an MTM model on
state-action sequences in the ExORL dataset. Subsequently,
to use state representations from MTM, we simply use the
MTM encoder to tokenize and encode each state individually.

8

Masked Trajectory Models

This latent representation of the state can be used in the
place of raw states for the TD3 algorithm. The critic of TD3
is conditioned on states and actions. We additionally test
state-action representations of MTM by using the latent rep-
resentation of the state and action encoded jointly with MTM.
We allow end to end finetuning of the representations during
training. We compare training TD3 on raw states to training
TD3 with (a) state representations from the MTM model, and
(b) state-action representations from the MTM model with
the offline RL loss (i.e. TD3 objective).

Figure 7 depicts the learning curves for the aforementioned
experiment. In all cases we see significant improvement in
training efficiency by using MTM representations – both with
state and state-action representations. In the Walk task, we
note it actually improves over the asymptotic performance of
the base TD3 (Fujimoto et al., 2018a) algorithm within 10%
of training budget. Additionally, we find that the state-action
representation from MTM can provide significant benefits, as
in the case of the Walk task. Here, finetuning state-action
representation from MTM leads to better asymptotic perfor-
mance compared to state-only representation or learning
from scratch. We provide additional plots of MTM frozen
representations in Appendix E.3

5. Summary
In this paper, we introduced MTM as a versatile and effective
approach for sequential decision making. We empirically
evaluated the performance of MTM on a variety of continu-
ous control tasks and found that a single pretrained model
(i.e. same weights) can be used for different downstream
purposes like inverse dynamics, forward dynamics, imita-
tion learning, offline RL, and representation learning. This
is accomplished by simply changing the masks used at in-
ference time. In addition, we showcase how MTM enables
training on heterogeneous datasets without any change to
the algorithm. Future work includes incorporating train-
ing in online learning algorithms for more sample efficient
learning, scaling MTM to longer trajectory sequences, and
more complex modalities like videos.

Acknowledgements
The authors thank researchers and students in Meta AI and
Berkeley Robot Learning Lab for valuable discussions. This
work was partially supported by the National Science Foun-
dation under grant NSF NRI #2024675. Philipp Wu was
supported in part by the NSF Graduate Research Fellow-
ship Program. Arjun Majumdar was supported in part by
ONR YIP and ARO PECASE. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of the U.S.

Government, any sponsor, or employer.

References
Åström, K. J. and Murray, R. M. Feedback systems: An

introduction for scientists and engineers. 2008.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization,
2016.

Baker, B., Akkaya, I., Zhokhov, P., Huizinga, J., Tang, J.,
Ecoffet, A., Houghton, B., Sampedro, R., and Clune,
J. Video pretraining (vpt): Learning to act by watching
unlabeled online videos. ArXiv, abs/2206.11795, 2022.

Bao, H., Dong, L., and Wei, F. Beit: Bert pre-training of
image transformers. ArXiv, abs/2106.08254, 2021.

Bertsekas, D. P. Dynamic programming and optimal control.
1995.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym,
2016.

Brohan, A., Brown, N., Carbajal, J., Chebotar, Y., Dabis, J.,
Finn, C., Gopalakrishnan, K., Hausman, K., Herzog, A.,
Hsu, J., et al. Rt-1: Robotics transformer for real-world
control at scale. arXiv preprint arXiv:2212.06817, 2022.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165, 2020.

Burda, Y., Edwards, H., Storkey, A., and Klimov, O. Ex-
ploration by random network distillation. arXiv preprint
arXiv:1810.12894, 2018.

Carroll, M., Paradise, O., Lin, J., Georgescu, R., Sun, M.,
Bignell, D., Milani, S., Hofmann, K., Hausknecht, M. J.,
Dragan, A. D., and Devlin, S. Unimask: Unified inference
in sequential decision problems. ArXiv, abs/2211.10869,
2022.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,
Laskin, M., Abbeel, P., Srinivas, A., and Mordatch, I. De-
cision transformer: Reinforcement learning via sequence
modeling. arXiv preprint arXiv:2106.01345, 2021.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Donnelly, K. Heteromodal cortex. In Encyclopedia of
Clinical Neuropsychology, 2011.

9

Masked Trajectory Models

Emmons, S., Eysenbach, B., Kostrikov, I., and Levine, S.
Rvs: What is essential for offline rl via supervised learn-
ing? ArXiv, abs/2112.10751, 2021.

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine,
S. D4rl: Datasets for deep data-driven reinforcement
learning, 2020.

Fujimoto, S., Hoof, H., and Meger, D. Addressing function
approximation error in actor-critic methods. 02 2018a.

Fujimoto, S., Meger, D., and Precup, D. Off-Policy Deep
Reinforcement Learning without Exploration. CoRR,
abs/1812.02900, 2018b.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft actor-
critic: Off-policy maximum entropy deep reinforcement
learning with a stochastic actor. 2017.

Hafner, D., Lillicrap, T., Norouzi, M., and Ba, J. Mas-
tering atari with discrete world models. arXiv preprint
arXiv:2010.02193, 2020.

Hansen, N., Lin, Y., Su, H., Wang, X., Kumar, V., and
Rajeswaran, A. Modem: Accelerating visual model-
based reinforcement learning with demonstrations. arXiv
preprint, 2022a.

Hansen, N., Wang, X., and Su, H. Temporal difference
learning for model predictive control. In ICML, 2022b.

He, K., Chen, X., Xie, S., Li, Y., Doll’ar, P., and Girshick,
R. B. Masked autoencoders are scalable vision learners.
2022 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 15979–15988, 2021.

Janner, M., Fu, J., Zhang, M., and Levine, S. When to trust
your model: Model-based policy optimization. ArXiv,
abs/1906.08253, 2019.

Janner, M., Li, Q., and Levine, S. Reinforcement learning
as one big sequence modeling problem. arXiv preprint
arXiv:2106.02039, 2021.

Jiang, Y., Gupta, A., Zhang, Z., Wang, G., Dou, Y., Chen, Y.,
Fei-Fei, L., Anandkumar, A., Zhu, Y., and Fan, L. Vima:
General robot manipulation with multimodal prompts.
arXiv preprint arXiv:2210.03094, 2022a.

Jiang, Z., Zhang, T., Janner, M., Li, Y., Rocktäschel, T.,
Grefenstette, E., and Tian, Y. Efficient planning in a com-
pact latent action space. arXiv preprint arXiv:2208.10291,
2022b.

Jing, L. and Tian, Y. Self-supervised visual feature learning
with deep neural networks: A survey. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 43:4037–
4058, 2019.

Jolliffe, I. T. and Cadima, J. Principal component analysis:
a review and recent developments. Philosophical Trans-
actions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 374, 2016.

Kidambi, R., Rajeswaran, A., Netrapalli, P., and Joachims, T.
MOReL : Model-Based Offline Reinforcement Learning.
In NeurIPS, 2020.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization, 2017.

Kostrikov, I., Nair, A., and Levine, S. Offline reinforcement
learning with implicit q-learning. 2021.

Kumar, A., Zhou, A., Tucker, G., and Levine, S. Conser-
vative Q-Learning for Offline Reinforcement Learning.
ArXiv, abs/2006.04779, 2020.

Lange, S., Gabel, T., and Riedmiller, M. Batch reinforce-
ment learning. In Reinforcement learning, pp. 45–73.
Springer, 2012.

Laskin, M., Yarats, D., Liu, H., Lee, K., Zhan, A., Lu,
K., Cang, C., Pinto, L., and Abbeel, P. Urlb: Unsuper-
vised reinforcement learning benchmark. arXiv preprint
arXiv:2110.15191, 2021.

Liu, F., Liu, H., Grover, A., and Abbeel, P. Masked autoen-
coding for scalable and generalizable decision making.
ArXiv, abs/2211.12740, 2022.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy,
O., Lewis, M., Zettlemoyer, L., and Stoyanov, V. Roberta:
A robustly optimized BERT pretraining approach. CoRR,
2019.

Liu, Y., Swaminathan, A., Agarwal, A., and Brunskill, E.
Provably good batch off-policy reinforcement learning
without great exploration. In Neural Information Process-
ing Systems, 2020.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization, 2019.

Nair, S., Rajeswaran, A., Kumar, V., Finn, C., and Gupta,
A. R3m: A universal visual representation for robot
manipulation. ArXiv, abs/2203.12601, 2022.

Parisi, S., Rajeswaran, A., Purushwalkam, S., and Gupta,
A. K. The unsurprising effectiveness of pre-trained vision
models for control. In ICML, 2022.

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T.
Curiosity-driven exploration by self-supervised predic-
tion. In International conference on machine learning,
pp. 2778–2787. PMLR, 2017.

10

Masked Trajectory Models

Powell, W. B. Approximate dynamic programming - solving
the curses of dimensionality. 2007.

Radosavovic, I., Wang, X., Pinto, L., and Malik, J. State-
only imitation learning for dexterous manipulation. 2021
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 7865–7871, 2021.

Rajeswaran, A., Kumar, V., Gupta, A., Vezzani, G., Schul-
man, J., Todorov, E., and Levine, S. Learning Complex
Dexterous Manipulation with Deep Reinforcement Learn-
ing and Demonstrations. In Proceedings of Robotics:
Science and Systems (RSS), 2018.

Rajeswaran, A., Mordatch, I., and Kumar, V. A Game
Theoretic Framework for Model-Based Reinforcement
Learning. In ICML, 2020.

Reed, S., Zolna, K., Parisotto, E., Colmenarejo, S. G.,
Novikov, A., Barth-Maron, G., Gimenez, M., Sulsky,
Y., Kay, J., Springenberg, J. T., Eccles, T., Bruce, J.,
Razavi, A., Edwards, A. D., Heess, N. M. O., Chen, Y.,
Hadsell, R., Vinyals, O., Bordbar, M., and de Freitas, N.
A generalist agent. ArXiv, abs/2205.06175, 2022.

Schmidhuber, J. Reinforcement learning upside down:
Don’t predict rewards – just map them to actions, 2019.

Seo, Y., Hafner, D., Liu, H., Liu, F., James, S., Lee, K.,
and Abbeel, P. Masked world models for visual control.
ArXiv, abs/2206.14244, 2022.

Shafiullah, N. M. M., Cui, Z. J., Altanzaya, A., and Pinto, L.
Behavior transformers: Cloning k modes with one stone.
ArXiv, abs/2206.11251, 2022.

Srivastava, R. K., Shyam, P., Mutz, F., Jaśkowski, W., and
Schmidhuber, J. Training agents using upside-down re-
inforcement learning. arXiv preprint arXiv:1912.02877,
2019.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction, volume 1. 1998.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems,
pp. 5026–5033, 2012. doi: 10.1109/IROS.2012.6386109.

Tunyasuvunakool, S., Muldal, A., Doron, Y., Liu,
S., Bohez, S., Merel, J., Erez, T., Lillicrap, T.,
Heess, N., and Tassa, Y. dm control: Software
and tasks for continuous control, 2020. ISSN 2665-
9638. URL https://www.sciencedirect.com/
science/article/pii/S2665963820300099.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L. u., and Polosukhin,

I. Attention is all you need. In Guyon, I., Luxburg,
U. V., Bengio, S., Wallach, H., Fergus, R., Vish-
wanathan, S., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems, volume 30. Curran As-
sociates, Inc., 2017. URL https://proceedings.
neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.
pdf.

Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A.
Extracting and composing robust features with denoising
autoencoders. In International Conference on Machine
Learning, 2008.

Xiao, T., Radosavovic, I., Darrell, T., and Malik, J.
Masked visual pre-training for motor control. ArXiv,
abs/2203.06173, 2022.

Yang, M. and Nachum, O. Representation matters: Offline
pretraining for sequential decision making, 2021.

Yarats, D., Fergus, R., Lazaric, A., and Pinto, L. Reinforce-
ment learning with prototypical representations. 2021.

Yarats, D., Brandfonbrener, D., Liu, H., Laskin, M., Abbeel,
P., Lazaric, A., and Pinto, L. Don’t change the algorithm,
change the data: Exploratory data for offline reinforce-
ment learning. arXiv preprint arXiv:2201.13425, 2022.

Yu, T., Kumar, A., Rafailov, R., Rajeswaran, A., Levine, S.,
and Finn, C. Combo: Conservative offline model-based
policy optimization. In NeurIPS, 2021.

Zheng, Q., Henaff, M., Amos, B., and Grover, A. Semi-
supervised offline reinforcement learning with action-free
trajectories, 10 2022.

Zhou, A., Kumar, V., Finn, C., and Rajeswaran, A. Policy
architectures for compositional generalization in control.
arXiv preprint arXiv:2203.05960, 2022.

11

https://www.sciencedirect.com/science/article/pii/S2665963820300099
https://www.sciencedirect.com/science/article/pii/S2665963820300099
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Masked Trajectory Models

A. Additional MTM Results

Table A.1. Evaluation of MTM capabilities on D4RL.
Domain Dataset Task MLP S-MTM (Ours) MTM (Ours)

Expert BC 111.14 ± 0.33 111.81 ± 0.18 107.35 ± 7.77
D4RL Expert RCBC 111.17 ± 0.56 112.64 ± 0.47 112.49 ± 0.37
Hopper Expert ID 0.009 ± 0.000 0.013 ± 0.000 0.050 ± 0.026

Expert FD 0.072 ± 0.000 0.517 ± 0.025 0.088 ± 0.049

Medium Expert BC 58.75 ± 3.79 60.85 ± 3.14 54.96 ± 2.44
D4RL Medium Expert RCBC 110.22 ± 0.99 113.00 ± 0.39 112.41 ± 0.23
Hopper Medium Expert ID 0.015 ± 0.000 0.015 ± 0.001 0.053 ± 0.003

Medium Expert FD 0.139 ± 0.001 0.938 ± 0.062 0.077 ± 0.005

Medium BC 55.93 ± 1.12 56.74 ± 0.56 57.64 ± 3.37
D4RL Medium RCBC 62.20 ± 3.41 69.20 ± 1.60 70.48 ± 4.62
Hopper Medium ID 0.022 ± 0.001 0.030 ± 0.001 0.143 ± 0.035

Medium FD 0.153 ± 0.002 1.044 ± 0.061 0.206 ± 0.064

Medium Replay BC 35.63 ± 6.27 36.17 ± 4.09 29.46 ± 6.74
D4RL Medium Replay RCBC 88.61 ± 1.68 93.30 ± 0.33 92.95 ± 1.51
Hopper Medium Replay ID 0.240 ± 0.028 0.219 ± 0.008 0.534 ± 0.009

Medium Replay FD 2.179 ± 0.052 3.310 ± 0.425 0.493 ± 0.030

Expert BC 109.28 ± 0.12 108.76 ± 0.32 107.08 ± 1.47
D4RL Expert RCBC 112.21 ± 0.31 109.83 ± 0.58 110.08 ± 0.82
Walker2D Expert ID 0.021 ± 0.000 0.055 ± 0.001 0.233 ± 0.038

Expert FD 0.077 ± 0.001 0.233 ± 0.012 0.177 ± 0.031

Medium Expert BC 108.45 ± 0.31 108.49 ± 1.00 75.64 ± 7.78
D4RL Medium Expert RCBC 110.47 ± 0.38 110.43 ± 0.30 110.21 ± 0.31
Walker2D Medium Expert ID 0.019 ± 0.000 0.038 ± 0.001 0.213 ± 0.030

Medium Expert FD 0.088 ± 0.001 0.221 ± 0.013 0.167 ± 0.032

Medium BC 75.91 ± 1.87 75.87 ± 0.44 59.82 ± 7.06
D4RL Medium RCBC 78.76 ± 2.26 78.64 ± 2.05 78.08 ± 2.04
Walker2D Medium ID 0.026 ± 0.001 0.055 ± 0.002 0.214 ± 0.145

Medium FD 0.116 ± 0.002 0.236 ± 0.012 0.175 ± 0.162

Medium Replay BC 23.39 ± 2.75 48.45 ± 2.84 21.98 ± 2.77
D4RL Medium Replay RCBC 72.85 ± 5.23 78.33 ± 2.11 77.32 ± 1.79
Walker2D Medium Replay ID 0.532 ± 0.017 0.493 ± 0.018 0.921 ± 0.032

Medium Replay FD 1.224 ± 0.011 0.883 ± 0.011 0.446 ± 0.016

Expert BC 93.14 ± 0.16 95.21 ± 0.44 94.19 ± 0.21
D4RL Expert RCBC 94.16 ± 0.35 95.12 ± 0.64 94.83 ± 0.72
HalfCheetah Expert ID 0.001 ± 0.000 0.003 ± 0.000 0.009 ± 0.001

Expert FD 0.009 ± 0.000 0.018 ± 0.003 0.005 ± 0.001

Medium Expert BC 68.04 ± 1.57 77.88 ± 7.21 65.73 ± 5.69
D4RL Medium Expert RCBC 93.49 ± 0.29 94.85 ± 0.32 94.78 ± 0.39
HalfCheetah Medium Expert ID 0.001 ± 0.000 0.001 ± 0.000 0.012 ± 0.002

Medium Expert FD 0.014 ± 0.000 0.043 ± 0.008 0.009 ± 0.001

Medium BC 42.87 ± 0.11 43.37 ± 0.14 43.19 ± 0.34
D4RL Medium RCBC 44.43 ± 0.26 43.83 ± 0.22 43.65 ± 0.08
HalfCheetah Medium ID 0.001 ± 0.000 0.005 ± 0.000 0.027 ± 0.017

Medium FD 0.020 ± 0.000 0.053 ± 0.011 0.020 ± 0.010

Medium Replay BC 36.81 ± 0.52 39.03 ± 0.78 19.64 ± 11.26
D4RL Medium Replay RCBC 40.55 ± 0.18 42.94 ± 0.33 43.08 ± 0.43
HalfCheetah Medium Replay ID 0.003 ± 0.000 0.005 ± 0.000 0.036 ± 0.012

Medium Replay FD 0.059 ± 0.000 0.058 ± 0.010 0.028 ± 0.007

12

Masked Trajectory Models

Table A.2. Evaluation of MTM capabilities on Adroit.
Domain Dataset Task MLP S-MTM (Ours) MTM (Ours)

Expert BC 62.75 ± 1.43 66.28 ± 3.28 61.25 ± 5.06
Adroit Expert RCBC 68.41 ± 2.27 66.29 ± 1.39 64.81 ± 1.70
Pen Expert ID 0.128 ± 0.001 0.155 ± 0.001 0.331 ± 0.049

Expert FD 0.048 ± 0.002 0.360 ± 0.020 0.321 ± 0.048

Medium Replay BC 33.73 ± 1.00 54.84 ± 5.08 47.10 ± 7.13
Adroit Medium Replay RCBC 41.26 ± 4.99 57.50 ± 3.76 58.76 ± 5.63
Pen Medium Replay ID 0.308 ± 0.004 0.238 ± 0.004 0.410 ± 0.064

Medium Replay FD 0.657 ± 0.023 0.915 ± 0.007 0.925 ± 0.026

Expert BC 147.68 ± 0.25 149.46 ± 0.29 149.19 ± 0.72
Adroit Expert RCBC 148.81 ± 0.32 150.50 ± 0.14 149.93 ± 0.19
Door Expert ID 0.385 ± 0.001 0.427 ± 0.003 0.484 ± 0.024

Expert FD 0.199 ± 0.011 0.541 ± 0.020 0.618 ± 0.210

Medium Replay BC 27.75 ± 5.03 49.24 ± 26.85 16.30 ± 10.10
Adroit Medium Replay RCBC 71.51 ± 8.62 75.41 ± 8.20 51.92 ± 9.13
Door Medium Replay ID 0.532 ± 0.001 0.589 ± 0.005 0.629 ± 0.014

Medium Replay FD 0.976 ± 0.033 2.225 ± 0.061 2.251 ± 0.230

B. Additional Environment Details

(a) D4RL: HalfCheetah Task (b) Adroit: Pen Task (c) DM-Control: Walker2D Task

Figure B.1. Continues Control Evaluation Settings.

Here we provide additional details on each experiment setting. In general, our empirical evaluations are based on the standard
versions of D4RL, Adroit, and ExORL. These benchmarks and setups are widely used in the community for studying various
aspects of offline learning. The raw state space provided by these benchmarks typically comprise a mix of positions and
velocities of different joints, bodies, and objects in the environment. We preprocess each dataset by normalizing the data
before training.

D4RL (Fu et al., 2020) is a popular offline RL benchmark. As mentioned in Section 4.1, we test MTM on the locomotion
suit of D4RL. The locomotion suite uses the Walker, Hopper, and HalfCheetah environments provided by OpenAI
Gym (Brockman et al., 2016). We consider 4 different dataset settings: Expert, Medium-Expert, Medium, and
Medium-Replay. These datasets are collected by taking trajectories of a SAC (Haarnoja et al., 2017) agent at various
points in training.

Adroit (Rajeswaran et al., 2018) is a collection of dexterous manipulation tasks with a simulated five-fingered. Our
MTM experiments use the Pen, and Door tasks. To match the setup of D4RL, we collect Medium-Replay and Expert
trajectories for each task. This is done by training an expert policy. The Expert dataset comprises of rollouts of the
converged policy with a small amount of action noise. The Medium-Replay dataset is a collection of trajectory rollouts
from various checkpoints during training of the expert policy, before policy convergence. The original Adroit environment
provides a dense reward and a sparse measure of task completion. For MTM experiments, we use the task completion signal

13

Masked Trajectory Models

as an alternative to reward, which provides a more grounded signal of task performance (a measure of the number of time
steps in the episode where the task is complete).

ExORL (Yarats et al., 2022) dataset consists of trajectories collected using various unsupervised exploration algorithms.
ExORL leverages dm control developed by Tunyasuvunakool et al. (2020). We use data collected by a ProtoRL agent (Yarats
et al., 2021) in the Walker2D environment to evaluate the effectiveness of MTM representations on three different tasks:
Stand, Walk, and Run. As the pretraining dataset has not extrinsic reward, MTM is trained with only states and actions.
During downstream TD3 learning, all trajectories are relabeled with the task reward.

C. Model and Training Details
C.1. MLP Baseline Hyperparameters

Table C.1. MLP Hyperparameters
Hyperparameter Value

MLP
Nonlinearity GELU
Batch Size 4096
Embedding Dim 1024
of Layers 2

Adam Optimizer
Learning Rate 0.0002
Weight Decay 0.005
Warmup Steps 5000
Training Steps 140000
Scheduler cosine decay

C.2. MTM Model Hyperparameters

Table C.2. MTM Hyperparameters
Hyperparameter Value

General
Nonlinearity GELU
Batch Size 1024
Trajectory-Segment Length 4
Scheduler cosine decay
Warmup Steps 40000
Training Steps 140000
Dropout 0.10
Learning Rate 0.0001
Weight Decay 0.01

Bidirectional Transformer
of Encoder Layers 2
Decoder Layers 1
Heads 4
Embedding Dim 512

Mode Decoding Head
Number of Layers 2
Embedding Dim 512

14

Masked Trajectory Models

C.3. MTM Training Details

In this section, we specify additional details of MTM for reproduction. Numerical values of the hyperparamters are found in
table C.1. The architecture follows the structure of (He et al., 2021) and (Liu et al., 2022), which involves a bidirectional
transformer encoder and a bidirectional transformer decoder. For each input modality there is a learned projection into
the embedding space. In addition we add a 1D sinusoidal encoding to provide time index information. The encoder only
processes unmasked tokens. The decoder processes the full trajectory sequence, replacing the masked out tokens with mode
specific mask tokens. At the output of the decoder, we use a 2 Layer MLP with Layer Norm (Ba et al., 2016). For training
the model we use the AdamW optimizer (Kingma & Ba, 2017; Loshchilov & Hutter, 2019) with a warm up period and
cosine learning rate decay.

As we rely on the generative capabilities of MTM which can be conditioned on a variety of different input tokens at inference
time, we train MTM with a range of mask ratios that are randomly sampled. We use a range between 0.0 and 0.6. Our random
autoregressive masking scheme also requires that at least one token is predicted without future context. This is done by
randomly sampling a time step and token, and masking out future tokens.

D. Effect of training trajectory length

1 2 4 8 16
Trajectory Length

0

20

40

60

80

Re
tu

rn
(D

4R
L

- W
al

ke
r)

1 2 4 8 16
Trajectory Length

0

20

40

60

80

Re
tu

rn
(A

dr
io

t -
 D

oo
r)

Figure D.1. Effect of Trajectory Training Length. This plot depicts the effect of changing the training trajectory length on RCBC
performance, all other hyperparameters held constant. The left side shows the performance of D4RL Walker2D and the right on Adroit
Door, both using their corresponding Medium-Replay Dataset.

Figure D.1 illustrates the effect of training trajectory length on performance. We observe that increased trajectory length
has benefits in training performance. We hypothesize that with longer trajectory lengths, MTM is able to provide richer
training objectives, as the model now must learn how to predict any missing component of a longer trajectory. This is
especially apparent in the Adroit Door task, where we see RCBC performance increasing strongly with trajectory training
length. This suggests that better results could be achieved with longer horizon models. We see that this benefit provides
diminishing returns for much longer trajectories (and additionally increases training time), which is most apparent in the
D4RL Walker2D task. However, for practicality, we fix the trajectory length to 4 for all other experiments, and tune
hyperparameters for this trajectory training length. Factors such as mask ratio could be tuned to optimize performance and
training time for longer trajectory lengths, but we leave this exploration for future work.

15

Masked Trajectory Models

E. Additional plots
E.1. Masking Patterns

Hopper
Expert

Hopper
Medium Replay

Walker2D
Expert

Walker2D
Medium Replay

Environment

0

20

40

60

80

100

Re
tu

rn

Random (BERT / MAE)
Random Autoregressive (Ours)
RCBC (Specialized)

Figure E.1. Impact of Masking Patterns. This plot shows MTM RCBC performance trained with three different masking patterns, random,
random autoregressive, and a specialized RCBC mask. This is a repeat of Figure 4, except the Y -axis is unscaled.

E.2. Heteromodal MTM

D4RL
Hopper

D4RL
HalfCheetah

D4RL
Walker2D

Adroit
Door

Adroit
Pen

Environment

0

20

40

60

80

100

120

140

Re
tu

rn

Model
MLP-BC (Full)
MLP-BC
MLP-RCBC
MTM (Ours)
Heteromodal MTM (Ours)

Figure E.2. MTM can effectively learn from heteromodal datasets. This figure, which shows the performance of our Heteromodal
MTM model, is a repeat of Figure 5, except the Y -axis is unscaled. Instead we observe the absolute return for each environment. In
addition we provide the performance of BC trained on the entire training set (95% of the provided dataset) as reference for the oracle
performance that can be achieved.

16

Masked Trajectory Models

E.3. Representation Learning

MTM State (Frozen)
Base TD3
MTM State (Finetuned)

Asymptotic TD3
MTM State-Action (Frozen) MTM State-Action (Finetuned)

0 5000 10000 15000 20000 25000
Training Steps

200

400

600

800

1000

Re
tu

rn

(a) DM-Control Walker2D Stand Task.

0 5000 10000 15000 20000 25000
Training Steps

0

200

400

600

800

1000

Re
tu

rn
(b) DM-Control Walker2D Walk Task

0 5000 10000 15000 20000 25000
Training Steps

0

100

200

300

400

500

Re
tu

rn

(c) DM-Control Walker2D Run Task

Figure E.3. Finetuned and frozen MTM representations. Here we additionally provide the learning curves for frozen MTM representations
on top of those provided in Figure 7. Both frozen MTM features and finetuned MTM features enable faster learning, but we do see that
finetuning offers the best learning benefits across tasks.

17

	Introduction
	Related Work
	Masked Trajectory Modeling
	Trajectory Datasets
	Architecture and Masked Modeling
	MTM as a generic abstraction for RL

	Experiments
	Benchmark Datasets
	Offline RL results
	MTM Capabilities
	Impact of Masking Patterns
	Heteromodal Datasets
	Data Efficiency
	Representations of MTM

	Summary
	Additional MTM Results
	Additional Environment Details
	Model and Training Details
	MLP Baseline Hyperparameters
	MTM Model Hyperparameters
	 MTM Training Details

	Effect of training trajectory length
	Additional plots
	Masking Patterns
	Heteromodal MTM
	Representation Learning

