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ABSTRACT

With the rapid development of foundation video generation technologies, long
video generation models have exhibited promising research potential thanks to
expanded content creation space. Recent studies reveal that the goal of long video
generation tasks is not only to extend video duration but also to accurately express
richer narrative content within longer videos. However, due to the lack of evaluation
benchmarks specifically designed for long video generation models, the current
assessment of these models primarily relies on benchmarks with simple narrative
prompts (e.g., VBench). To the best of our knowledge, our proposed NarrLV is the
first benchmark to comprehensively evaluate the Narrative expression capabilities
of Long Video generation models. Inspired by film narrative theory, (i) we first
introduce the basic narrative unit maintaining continuous visual presentation in
videos as Temporal Narrative Atom (TNA), and use its count to quantitatively mea-
sure narrative richness. Guided by three key film narrative elements influencing
TNA changes, we construct an automatic prompt generation pipeline capable of
producing evaluation prompts with a flexibly expandable number of TNAs. (ii)
Then, based on the three progressive levels of narrative content expression, we de-
sign an effective evaluation metric using the MLLM-based question generation and
answering framework. (iii) Finally, we conduct extensive evaluations on existing
long video generation models and the foundation generation models. Experimental
results demonstrate that our metric aligns closely with human judgments. The
derived evaluation outcomes reveal the detailed capability boundaries of current
video generation models in narrative content expression.

1 INTRODUCTION

Video generation has consistently been regarded as a long-term research goal (Xing et al., 2024),
from the earliest techniques with subtle motion effects (Vondrick et al., 2016) to recent foundation
models like Wan (Wang et al., 2025) that achieve high-fidelity dynamic video generation. Given that
these models are limited to producing short videos, recent studies have shifted focus toward designing
long video generation models (Xing et al., 2024). Benefiting from a broader content creation space,
long video generation models (Waseem & Shahzad, 2024) show greater potential to meet practical
needs in areas such as film production and world simulation (Cho et al., 2024).

Some approaches (Kim et al., 2024; Zhao et al., 2025) have incorporated innovative designs into
denoising models, enabling foundation video generation models (Chen et al., 2024a; Yang et al.,
2024b) to produce more frames. However, the goal of long video generation goes beyond extending
video duration. It critically involves accurately and appropriately conveying richer narrative content in
extended videos (Waseem & Shahzad, 2024; Bansal et al., 2024a). Existing long video models often
focus on leveraging temporally evolving narrative texts to guide video generation across different
time segments, thereby enhancing the narrative content in the generated videos. Models such as
FreeNoise (Qiu et al., 2024), Presto (Yan et al., 2024), and Mask2DiT (Qi et al., 2025) emphasize
efficient interaction between segmented texts with diverse narrative semantics and corresponding
video clip features, reflecting the field’s pursuit of generating narrative-rich long-duration videos.

Unlike the rapid development of long video generation models, the evaluation benchmarks for this
task appear somewhat lagging. Early models like NUWA-XL (Yin et al., 2023), Loong (Wang et al.,
2024b), and FreeNoise (Qiu et al., 2024) used conventional metrics (FID (Heusel et al., 2017), FVD
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(Unterthiner et al., 2019), CLIP-SIM (Radford et al., 2021)), which are often misaligned with human
judgment (Otani et al., 2023). To address this, numerous benchmarks (Huang et al., 2024a; Liu et al.,
2024b; Ling et al., 2025; Chen et al., 2025) for video generation have been proposed, yet there is still
a lack of benchmarks specifically designed for long video generation. This leads to recent models,
such as Prestro (Yan et al., 2024), GLC-Diffusion (Ma et al., 2025), and SynCoS (Kim et al., 2025),
typically being evaluated on a general benchmark, VBench (Huang et al., 2024a). Although VBench
encompasses a wide range of evaluation dimensions, its prompts generally consist of brief narratives,
limiting its effectiveness in assessing the models’ ability to convey rich narrative content.

To evaluate the Narrative expression capabilities of Long Video generation models, we propose a
novel benchmark, NarrLV, inspired by film narrative theory (Verstraten, 2009). Firstly, to quantify
the abstract concept of narrative content richness, we define the smallest narrative unit maintaining
continuous visual presentation as a Temporal Narrative Atom (TNA). The number of TNAs serves
as a quantitative measure of narrative richness, as illustrated by the prompts shown in Fig. 1 (a).
Fig. 1 (b) shows that representative benchmarks (Huang et al., 2024a; Wang et al., 2024a; Feng et al.,
2024a) concentrate on prompts with only a small number of TNAs in a narrow range (please see
App. A.1 for details), which limits their evaluation to simple narratives with limited richness. To
thoroughly assess the full narrative capabilities of long video generation models, we construct an
innovative prompt suite that can flexibly expand narrative content richness. Specifically, based on the
6D principles of film narratology (Cutting, 2016; Hu et al., 2023a), we identify three key dimensions
affecting TNA changes: scene attributes, object attributes, and object actions. Subsequently, we use
the Large Language Model (LLM) (Yang et al., 2024a) to establish an automatic prompt generation
pipeline capable of generating test prompts that cover a wide range of TNA numbers.

Corresponding to the prompt suite focused on narrative content, we design an effective evaluation
metric following a progressive narrative expression paradigm (Chatman & Chatman, 1980; Roberts
et al., 1996; Cowie, 2013). From the basic elements of scenes and objects to the narrative units
they form, our metric encompasses three evaluative dimensions: narrative element fidelity, narrative
unit coverage, and narrative unit coherence. Considering the flexible and diverse nature of narrative
content, our implementation leverages the MLLM-based (Bai et al., 2025; Hurst et al., 2024) question
generation and answering framework (Hu et al., 2023b; Yarom et al., 2023; Cho et al., 2023a) ,
which can create extensible question sets according to varying TNA numbers. Finally, we conduct
comprehensive evaluations of existing long video generation models (Bansal et al., 2024b; Kim et al.,
2024; Qiu et al., 2024; Lu et al., 2024; Zhao et al., 2025) and the foundation models (Wang et al.,
2025; Kong et al., 2024; Yang et al., 2024b; Zheng et al., 2024; Lin et al., 2024) they are often built
upon. The experimental results show that our metrics align well with human preferences and provide
detailed insights into the narrative expression boundaries of current models.

Our key contributions are as follows: (i) In light of the lack of benchmarks for long video generation
models, we propose NarrLV, a novel benchmark focusing on narrative content expression capabilities.
(ii) Inspired by film narrative theory, NarrLV comprises a thorough prompt suite with flexibly
expandable narrative content, and an effective evaluation metric based on progressive narrative
expression. (iii) We conduct comprehensive evaluations of existing long video and foundation
generation models using our metrics, which demonstrate high alignment with human preferences.

2 RELATED WORKS

Long video generation models. Owing to high computational costs in video feature processing
(Kim et al., 2024), foundation video generators (e.g., CogVideoX (Yang et al., 2024b) and Wan
(Wang et al., 2025)) typically produce short videos. Comparatively, long video generation models
generally refer to those capable of generating longer videos than these foundation models (Zhao
et al., 2025; Kim et al., 2024; Lu et al., 2024). In practice, most long video models are extensions of
short-video foundation models. FreeLong (Lu et al., 2024) generates more frames by balancing the
feature frequency distribution for long videos. RIFLEx (Zhao et al., 2025) achieves a 3× extension
of video duration by adjusting temporal position encoding. In addition to pursuing longer video
durations, long video generation tasks also focus on accurately conveying richer narrative content
in extended videos. Specifically, videos generated at different time intervals need to be guided by
textual narratives that evolve over time (Zhou et al., 2024; Tian et al., 2024; Bansal et al., 2024a;
Qiu et al., 2024; Yan et al., 2024; Qi et al., 2025). These temporally changing textual descriptions
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form rich narrative content and pose new challenges for model design. FreeNoise (Qiu et al., 2024)
progressively injects segmented texts regarding object movement evolution into different denoising
steps. Presto (Yan et al., 2024) proposes an innovative segmented cross-attention strategy, directly
facilitating the interaction between latent features of long videos and segmented narrative texts.
Addressing the current lack of benchmarks specifically designed for long video generation models,
we develope a novel benchmark, NarrLV, focused on narrative expression capabilities.
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(b)(a)

TNA=1 (from VBench)

Simple Rich

A person is riding a bike.

TNA=2 (from TC-Bench)

A chameleon's skin 
changing from brown to 
bright green.

TNA=3 (from Story-Eval)

A bear bathes in a pond, 
shakes off water, and 
then rolls in grass.

TNA=5 (from NarrLV)

A teacher stands at the 
podium in the 
classroom giving a 
lesson. Then, the 
teacher writes on the 
whiteboard. Next, the 
teacher explains the 
content. Afterwards, the 
teacher erases part of 
the writing. Finally, the 
teacher steps down 
from the podium.

…

Figure 1: (a) Prompt examples with vary-
ing numbers of TNAs. (b) Comparison of
TNA count distributions across different
benchmark.

Video generation evaluation. The growing capabilities
of video generation models continually introduce new de-
mands for effectively evaluating the generated videos (Liu
et al., 2024a). Early evaluations primarily rely on generic
metrics (e.g., FID (Heusel et al., 2017), IS (Salimans
et al., 2016), FVD (Unterthiner et al., 2019), which of-
ten exhibit significant deviations from human perception
(Huang et al., 2024a; Otani et al., 2023) and provide lim-
ited insight into model capabilities (Zheng et al., 2025).
To better evaluate various model capabilities, several spe-
cialized benchmarks have been proposed. For instance,
VBench (Huang et al., 2024a) defines 16 evaluation di-
mensions based on video quality and video-condition
consistency. DEVIL (Liao et al., 2024) emphasizes video
dynamism; TC-Bench (Feng et al., 2024a) evaluates tem-
poral compositionality; and VMBench (Ling et al., 2025)
thoroughly assesses motion quality. StoryEval (Wang
et al., 2024a) is another related benchmark that evaluates
event-level story presentation capability using prompts of
2 to 4 consecutive events. However, all these benchmarks
primarily object short-duration models. As shown in Fig. 1, their prompts contain relatively few
TNAs with a narrow distribution, making them insufficient for testing models on complex, extended
narrative content. In contrast, NarrLV is designed to fill this gap by providing a platform to evaluate
the generative capacity of long video generators under rich and comprehensive narrative content.

3 NARRLV

The overall framework of our NarrLV is illustrated in Fig. 2. First, building on film narrative theory
(Verstraten, 2009; Cutting, 2016), we introduce the Temporal Narrative Atom (TNA) as a unit to
measure the richness of narrative content and identify three key dimensions (Hu et al., 2023a) that
influence its count. Subsequently, we develop an automated prompt generation pipeline capable of
producing evaluation prompts with a flexibly expandable number of TNAs. The resulting prompt
suite enables comprehensive assessment of the model’s generation capability across various levels of
narrative content richness. Finally, leveraging the MLLM-based question generation and answering
framework (Hu et al., 2023b; Yarom et al., 2023; Cho et al., 2023a), we construct a comprehensive
evaluation metric founded on the three progressive levels of narrative content expression. In the
following sections, we will provide detailed introductions to each component.

3.1 PRELIMINARIES OF FILM NARRATIVE THEORY

Film narratology (Verstraten, 2009; Kuhn, 2009) is a discipline dedicated to the study of narrative
structures and expressive techniques in films. To evaluate video generation models with emphasis on
narrative expression, we draw upon relevant theories from this field. First, the richness of narrative
content is an abstract concept. To facilitate its quantification, it is necessary to define a basic unit for
measuring narrative richness (McKee, 2005). Drawing from the definition of Beat in film narratology
(McKee, 2005), we define the smallest narrative unit in continuous visual expression as the Temporal
Narrative Atom (TNA). Fig. 1 presents several prompt examples containing different numbers of
TNAs. Evidently, the greater the number of TNAs, the richer the corresponding narrative content.

Following this, a naturally arising question is: what factors influence the number of TNAs? The
6D principles of film narrative (Cutting, 2016; Hu et al., 2023a) divide the narrative content into six
critical elements based on spatiotemporal and causal relationships in video: total frame, temporal
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(b) Evaluated Models
Long video generation 

models

(a) Extensible TNA-Driven Prompt Suite

Prompt generation pipeline
RIFLEx

TALC

Foundation video
generation models

CogVideoXWan

Open-Sora

Open-Sora-Plan

FreeNoise
FreeLong

FIFO-Diffusion
Film

Narrative

TNA change factors

p Scene attribute
p Target attribute
p Target action

Evaluation 
prompts

1. Sampled scene-object
2. Given TNA change factor
3. Given TNA Numbers

Scene-Object 
Pair Set

(c) Progressive Narrative-Expressive Evaluation Metric

Evaluation prompts Generated videos

LLM

MLLM

Scene,
Object

1. Narrative element fidelity

2. Narrative unit coverage

3. Narrative unit coherence
Narrative 

unit

Evaluation dimensions Metric calculation

Dimension-
specific 

questions

Answers
&Metric results

constitute Human Preference Alignment

Well-Aligned !!!

HunyuanVideo

FreePCA

Figure 2: Framework of our NarrLV. (a) Our prompt suite is inspired by film narrative theory and
identifies three key factors influencing Temporal Narrative Atom (TNA) transitions. Based on these,
we construct a prompt generation pipeline capable of producing evaluation prompts with flexibly
adjustable TNA counts. (b) Our evaluation models include long video generation models and the
foundation models they often rely on. (c) Based on the progressive expression of narrative content,
we conduct evaluations from three dimensions, employing an MLLM-based question generation and
answering framework for calculations. Our metric is well-aligned with human preferences.

continuity, spatial continuity, scene, action, and object. In the context of video generation tasks, the
total frame count, i.e., video length, is determined by the inherent characteristics of the generation
model. Regarding temporal and spatial continuity, existing generation models typically assume
a setting of continuous spatio-temporal change (Cho et al., 2024; Liu et al., 2024a). Specifically,
when constructing training datasets, they explicitly exclude samples that are spatio-temporally
discontinuous due to factors like shot cuts (Kong et al., 2024). Therefore, the adjustable factors that
can alter the narrative richness are limited to scene, object, and action. Based on this, we identify three
key variable factors influencing the number of TNAs: scene attributes, object attributes, and object
actions, formalized as F = [satt, tact, tatt]. These factors are similar to the temporal composition
factors mentioned in TC-Bench (Feng et al., 2024a). However, unlike TC-Bench, which primarily
focuses on two TNAs, our prompt suite emphasizes the flexible extensibility of TNA count.

3.2 EXTENSIBLE TNA-DRIVEN PROMPT SUITE

A key feature of our benchmark is the introduction of prompts that enable flexible TNA extensibility
to thoroughly assess the narrative expression capabilities of video generation models. To achieve this
goal while minimizing the time-consuming and labor-intensive manual design processes (Huang et al.,
2024a; Feng et al., 2024a), we develop an automatic prompt generation pipeline based on the LLM
(Yang et al., 2024a). Considering that scenes and objects are the primary factors influencing TNA
numbers, our pipeline first aggregates a comprehensive set of scene-object pairs. Then, we sample
specific scene-object instances and utilize the LLM to generate specific test prompts by integrating
their potential attribute and action evolution.

Acquisition of scene-object pair set. To ensure that our test prompts closely align with the video
content that users typically focus on, our data source includes the recently released and user-focused
dataset VideoUFO (Wang & Yang, 2025), which effectively reflects real-world applicability scenarios
(Wang & Yang, 2024). Additionally, we incorporate the latest DropletVideo (Zhang et al., 2025)
dataset, which features rich narrative content. Specifically, we randomly sample 100k text prompts
from VideoUFO-1M (Wang & Yang, 2025) and DropletVideo-1M (Zhang et al., 2025), respectively.
Subsequently, we employ an LLM (Yang et al., 2024a) to analyze these 200k prompts individually,
extracting the scene s and major object list o corresponding to each text. Next, we merge the object
lists under the same scene to obtain the final scene-object pairs so. For instance, in a basketball court
scene, the object list includes basketballs, players, referees, and other related objects. Ultimately, the
aggregated so constitutes our scene-object pair set SO (see App. A.2 for for detailed implementation
and statistical analysis).

Automatic prompt generation. As shown in the pipeline of Fig. 2 (a), we first extract a specific
scene-object instance so from SO. Then, we randomly sample 1 to 2 objects from the object list in
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On an esports competition stage, a 
player wearing headphones is 
seated intently in front of a 
computer setup. 
Initially, the player rapidly types on 
the keyboard. 
Next, the player suddenly stands up. 
Then, the player removes the 
headphones. 
Finally, the player raises both arms 
in victory.

Narrative 
element fidelity

Narrative unit 
coverage

Narrative unit 
coherence

1. Does the scene take place on an esports competition stage?
2. Does the scene feature a player?
3. Does the scene feature headphones?
4. Does the scene feature a computer setup?
……

Evaluation promptGenerated videos

Video1 (from Wan)

Video2 (from FreeLong)

……

Metric calculation

Video1 Video2Metric Questions

1. Does the video contain any segments of the player rapidly typing on the 
keyboard?

2. Does the video contain any segments of the player suddenly standing up?
3. Does the video contain any segments of the player removing the headphones?
……
1. Does the player's action transition from rapidly typing on the keyboard to suddenly 

standing up over time?
2. Does the player's action transition from suddenly standing up to removing the 

headphones over time? 
3. Does the video contain any segments of the player removing the headphones?
……

1.0
1.0
1.0
1.0
……

0.89

0
1.0
1.0
1.0
……

0.77

1.0
0.8
0.4
……

0.79

0.8
0
0

……

0.47

0.8
0.2
0.2
……

0.76

0
0
0

……

0.26

Figure 3: Illustration of our metric evaluation process. Given an evaluation prompt, different
video generation models produce corresponding video outputs. Concurrently, based on the semantic
information within the prompt, judgment questions concerning different evaluation dimensions are
generated, resulting in evaluation outcomes for the generated videos. Better viewed with zoom-in.

so. Next, we specify the TNA change number n and the TNA change factor f , utilizing an LLM to
incorporate the potential attribute/action evolution process. For detailed prompt instructions, please
refer to App. A.3. Finally, we obtain a test prompt pf,n corresponding to n and f , formalized as:

(so, f, n)
LLM−−−→ pf,n, where so ∈ SO, f ∈ F, n ∈ [1, Ntna]. (1)

Post-processing. Based on the aforementioned pipeline, we can quickly generate large-scale prompts
encompassing different TNA change factors and numbers. Considering the rising computational
costs of video generation models (e.g., Wan2.1-14B (Wang et al., 2025) requires about 110 minutes
to produce a video on an H20 GPU), it is necessary to perform post-processing to carefully select a
small yet representative prompt suite (Huang et al., 2024a). First, for scene-object pair set SO with
large quantities, we categorize them into 14 major categories (see App. A.2 for more details). For
instance, under the sports venue category, there are subsets for football fields, basketball courts, etc.

Under each factor f and number n, we select 1 to 3 so from each major category, ultimately obtaining
20 evaluation prompts {pif,n}20i=1. In addition, we temporarily set the maximum TNA number Ntna

to 6, and observe that this range can already reveal some insightful conclusions (see Sec. 4.2). With 3
change factors, we evaluate the models under 20× 6× 3 = 360 prompts. It is important to note that
our prompt generation pipeline has good extensibility. For longer video generation in the future, we
can follow the same process to obtain prompts with a broader TNA distribution.

3.3 PROGRESSIVE NARRATIVE-EXPRESSIVE EVALUATION METRIC

To systematically evaluate the narrative quality of long video generation, we introduce three core
metrics—Narrative Element Fidelity, Narrative Unit Coverage, and Narrative Unit Coher-
ence—grounded in audiovisual storytelling principles (Chatman & Chatman, 1980; Roberts et al.,
1996; Cowie, 2013; Diniejko, 2010). These dimensions provide a rational approach for assessing
narrative expression by progressively focusing on the basic elements of scenes and objects and the
temporal narrative units they form.

Furthermore, given the inherently flexible and diverse nature of narrative content, traditional task-
specific models (Hinz et al., 2020; Cho et al., 2023b), due to their limited generalization capabilities,
find it challenging to perform effective evaluations. Hence, we adopt the recently popular MLLM-
based question generation and answer framework (Cho et al., 2023a; Yarom et al., 2023; Hu et al.,
2023b). As shown in Fig. 2 (b), given a evaluation prompt pf,n, the video generation model m
produces a video v that requires evaluation. Based on the semantic information in pf,n, we utilize
an LLM to generate the dimension-specific question set Q. Then, using the generated video v, we
employ the MLLM to answer each question in Q, resulting in an answer set A. Finally, the evaluation
results R are derived as a mapping from A. This can be formalized as:

(pf,n)
m−→ v, (pf,n)

LLM−−−→ Q, (Q, v)
MLLM−−−−→ A → R. (2)

Corresponding to the three evaluation dimensions mentioned above, our evaluation question set Q
comprises three categories: Qfid, Qcov, and Qcoh. Our three evaluation dimensions are represented
as Rfid, Rcov, and Rcoh. For some uncertain questions, during the process of deriving A from (Q, v),
we observe that the MLLM tends to produce inconsistent answers across multiple repetitions for the
same input. Moreover, the degree of uncertainty of a question directly influences the inconsistency of
its answers (please refer to App. B.1 for more details). Thus, for the same (Q, v) input, we instruct
the MLLM to provide answers consecutively five times and use the proportion of a specific answer
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among these five as the final result, i.e., [(Q, v)
MLLM−−−−→ A]×5 → R. Fig. 3 illustrates the calculation

process for each of our evaluation dimensions, as detailed below:

Narrative element fidelity (Rfid). To determine whether the generated video v accurately conveys the
narrative content of the prompt pf,n, it is first essential to examine the generation of basic narrative
elements represented by the scene and major objects in pf,n (Chatman & Chatman, 1980). Thus, in

the step (pf,n)
LLM−−−→ Qfid, we initially extract the following narrative elements based on the initial

description in pf,n: scene category, scene attributes, object categories, object attributes, object
actions, and initial layout of objects within the scene. Elements missing in the prompt are ignored
automatically. For each included element, we generate corresponding binary judgment questions qfid,
with answers afid in [yes, no]. As depicted in Fig. 3, these questions form the set Qfid = {qkfid}

Nfid
k=1,

where the number of questions Nfid is determined by the number of narrative elements in pf,n.

Next, we perform the [(Qfid, v)
MLLM−−−−→ Afid]×5 → Rfid processing. For each question qkfid, the MLLM

provides answers {ak,tfid }5t=1 through five iterations. We calculate the proportion of positive answers
akpos (i.e., yes) in the set {ak,tfid }5t=1 as the score rkfid for that question. Finally, by computing the mean
of all rkfid, we derive the final Rfid:

rkfid =
1

5

5∑
t=1

δ(ak,tfid , a
k
pos), Rfid =

1

Nfid

Nfid∑
k=1

rkfid, where δ(x, y) =

{
1, if x = y

0, otherwise
. (3)

Narrative unit coverage (Rcov). For the narrative elements evaluated by Rfid, their temporal evolution
forms the TNAs that encompass different narrative contents. Thus, Rcov is primarily used to assess
the coverage of the n TNAs involved in the prompt pf,n by the generated video v. In the step

(pf,n)
LLM−−−→ Qcov, we first extract the TNA list corresponding to pf,n. Then, we generate a judgment

question qcov for each TNA regarding its existence, forming the question set Qcov = {qkcov}
Ncov
k=1, where

the number of questions Ncov is determined by n, meaning the scope of the questions expands along
with the expansion of TNAs. For the calculation of Rcov, we employ the same approach as Eq. 3.

Narrative unit coherence (Rcoh). For the step (pf,n)
LLM−−−→ Qcoh, we first extract the TNA list

corresponding to pf,n. Then, we sequentially select pairs of adjacent TNA contents and generate
judgment questions qcoh regarding the existence of transitions between them. This forms the question
set Qcoh = {qkcoh}

Ncoh
k=1, where Ncoh is also determined by n. Based on this question set, we apply

the calculation method from Eq. 3 to obtain R′
coh. Additionally, considering that the existence of

TNAs is a prerequisite for determining transitions between them, we introduce the proportion of TNA
existence ρtna, which, along with R′

coh, determines the final Rcoh:

ρtna =
1

Ncov

Ncov∑
k=1

Θ(rkcov−τcov), Rcoh =
1

2
(R′

coh+ρtna), where Θ(x) =

{
1, if x > 0

0, otherwise
. (4)

Here, we consider a TNA to exist if its corresponding rkcov exceeds the threshold τcov.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS.

Evaluation models. Our evaluation focuses on text-to-video models, a fundamental scenario in
video generation (Li et al., 2019; Singer et al., 2022). First, our scope includes recently open-
sourced long video generation models: TALC (Bansal et al., 2024b), FIFO-Diffusion (Kim et al.,
2024), FreeNoise (Qiu et al., 2024), FreeLong (Lu et al., 2024), FreePCA (Tan et al., 2025), and
RIFLEx (Zhao et al., 2025). Additionally, considering that many long-video generation models are
derived from foundation video generation models, we find it necessary to include some of the latest
mainstream open-source models. These include Wan2.1-14B (Wang et al., 2025), HunyuanVideo
(Kong et al., 2024), CogVideoX1.5-5B (Yang et al., 2024b), Open-Sora 2.0 (Zheng et al., 2024), and
Open-Sora-Plan V1.3 (Lin et al., 2024). For the implementation details, please refer to App. C.

Human annotation. To analyze the alignment between our metric and human perception of narrative
content expression, we perform human preference labeling on a large set of generated videos. Given
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(b) Evaluation results of the long video generation models

(a) Evaluation results of the foundation video generation models
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Figure 4: Evaluation results across three evaluation dimensions. Evaluated models include: (a)
foundation video generation models and (b) long video generation models.

a prompt pf,n and the models to be evaluated {mj}9j=1, we randomly select two different models
(mx,my), where x ̸= y, to generate the corresponding video pairs (vx, vy) for preference comparison.
Corresponding to the three progressive dimensions in our metric, each video pair includes three
questions (see App. D.1 for more details). Since n = 1 does not involve transition coherence between
TNAs, we select test prompts within the range of n ∈ [2, 6]. Additionally, for each prompt, we select
two video pairs, ultimately forming 600 pairs (i.e., 1.8k questions) that require annotation. For each
pair, we invite three human annotators. To ensure the correct understanding of the annotation task,
we provide detailed training instructions to the annotators prior to the annotation process.

Implementation settings. In our prompt suite construction process, we utilized Qwen2.5-32B-
Instruct (Yang et al., 2024a), which excels in text analysis and instruction-following capabilities, to
extract scene and object elements from 200k text prompts. For the prompt generation pipeline, we
chose GPT-4o (Hurst et al., 2024). For our evaluation metric, we employ the latest Qwen2.5-VL-72B-
Instruct (Bai et al., 2025) as our MLLM. For the video input, we extract visual input by sampling
2 frames per second to feed into the MLLM. The threshold τcov is set to 0.3. All experiments were
conducted on machines equipped with 8 × H20 GPUs.

4.2 EVALUATION RESULTS

𝑁 !
"#

Results on the number of TNA expressions

Figure 5: Evaluation on the num-
ber of TNA expressions Nexp.

Building on the NarrLV benchmark, we perform a series of eval-
uations (see App. D.2 for calculation details.) and distill four key
observations regarding current video generation models.

(i) Richer narrative semantics in text prompts weaken the
model’s representation of narrative units, while its ability to
represent basic elements remains relatively unaffected. As
shown in Fig. 4, we present the performance of foundation and
long video generation models across three evaluation dimensions.
As the number of TNAs increases, metrics for narrative units,
namely Rcov and Rcoh, exhibit a noticeable downward trend, while
the metric for narrative elements, Rfid, fluctuates within a small
range. This suggests that even with text enriched in narrative
content, the model is able to extract key elements for generation. However, constructing narrative
content that evolves over time using these elements remains a challenge.

(ii) Current models can only represent a very limited number of narrative units. Considering
that Rcov reflects the average generation rate of TNAs, we introduce a new metric Nexp = Rcov × n,
which represents the number of TNAs that the model can effectively express. As shown in Fig. 5,
with the increase in TNA numbers, Nexp for both types of models shows a very slow increase, with
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Evaluation results of the VideoCraft-based video generation models

Figure 6: Evaluation results across three evaluation dimensions. Evaluated models include the
foundation video generation model VideoCraft and the extended long video generation models (i.e.,
FIFO-Diffusion, FreeLong, FreeNoise and FreePCA).

the gap to the upper bound gradually widening. Therefore, when applying existing models, it is
advisable that the number of TNAs contained in a given prompt does not exceed 2.

(iii) The foundation model determines the narrative expression capability of the long video
generation models derived from it. Existing long video generation models are typically constructed
by introducing specially designed modules onto the foundation model. For instance, FIFO-Diffusion,
FreeLong, FreePCA and FreeNoise are all derived from VideoCraft (Chen et al., 2023; 2024a). Fig. 6
illustrates their performance. Interestingly, these models showcase similar capabilities in narrative
elements (i.e., Rfid). However, in terms of narrative unit expression capabilities (i.e., Rcov and
Rcoh), all long video models outperform VideoCraft, demonstrating the effectiveness of existing long
video module designs. Nevertheless, the Rcov and Rcoh of these long video models are quite similar,
indicating that the capability of long video generation models largely depends on the foundation
model employed. Although existing long video models perform less effectively than the latest
foundation models (as shown in Fig. 4 and Fig. 5), these foundation models provide broad research
opportunities for the advancement of long video generation.

Table 1: Comparison of model scores across three change factors
under various metrics.

Model Rfid Rcov Rcoh

satt tatt tact satt tatt tact satt tatt tact

Wan 74.9 77.8 82.5 68.8 72.7 70.3 50.1 52.4 54.5
HunyuanVideo 74.4 77.2 76.9 64.3 64.6 57.9 44.7 44.2 40.8
CogVideoX 67.3 69.9 69.1 62.9 60.2 58.6 44.5 38.9 43.1
Open-Sora 71.6 71.4 76.8 59.0 63.2 56.7 41.4 44.1 41.1
Open-Sora-Plan 68.5 67.8 73.6 59.3 60.6 52.7 38.9 39.0 35.2
RIFLEx 59.6 62.4 67.8 56.1 59.4 52.7 39.2 39.9 39.2
FreeLong 74.4 72.3 76.3 56.7 64.2 52.8 38.2 42.2 35.7
FreeNoise 77.6 71.5 74.5 58.5 63.0 51.2 40.7 43.1 34.4
FreePCA 69.6 67.8 72.3 55.7 60.5 53.2 37.1 40.4 35.8
FIFO-Diffusion 71.3 68.4 75.0 58.9 61.2 53.1 39.1 40.3 35.5
TALC 38.0 37.1 40.4 31.0 33.0 31.6 21.9 23.4 21.7

Mean 67.9 67.6 71.4 57.4 60.3 53.7 39.6 40.7 37.9

(iv) The impact of TNA change
factors. As shown in Tab. 1,
we summarize the subsets cor-
responding to three factors (i.e.,
satt, tact, tatt), and calculate
the model’s performance on
the three evaluation dimensions.
With respect to narrative element
generation (Rfid), the model
demonstrates superior average
performance on the initial ob-
ject action (tact) compared to the
other two factors (satt, tatt). How-
ever, for narrative units (Rcov,
Rcoh), the model’s performance
is poorest along the object action
factor (tact). This indicates that
the model excels in accurately
generating a object action, but struggles with achieving diverse action variations.

4.3 ADDITIONAL ANALYSIS

Figure 7: Word cloud analysis
results of our prompt suite.

Statistical analysis of our prompts suite. Fig. 1 presents a sta-
tistical distribution of TNA numbers for our prompts compared
to other representative benchmark prompts. Clearly, our prompt
suite covers a broader and more uniform range of TNA numbers,
facilitating a comprehensive evaluation of video generation mod-
els’ narrative expression capability. Additionally, as shown in
Fig. 7, we perform a word cloud analysis on 600 meticulously
selected prompts. It is evident that words like suddenly, next, and
finally, which pertain to the progression of narrative content, hold
significant weight, aligning with our narrative-centric evaluation objectives.
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Table 2: Comparison of metrics across different
benchmarks. Consist-n/3 denotes the subset with
n consistent results out of three annotations.

Metric Consist-2/3 Consist-3/3

Rfid Rcov Rcoh Rfid Rcov Rcoh

VBench-2.0 0.33 0.32 0.28 0.31 0.27 0.29
StoryEval 0.41 0.51 0.51 0.55 0.55 0.56

Ours 0.63 0.67 0.67 0.81 0.80 0.79

Analysis of alignment with human judgments.
We use the video preference dataset annotated by
three human participants, selecting data where
two or three participants choose the same answers,
which form subsets Consist-2/3 and Consist-3/3,
and consider these annotations as groundtruth.
Then, we analyze the evaluation accuracy of our
metric and related metrics in alignment with this
groundtruth (see App. D.1 for more details). The
results in Tab. 2 indicate a high level of alignment
between our metric and human perception, ensur-
ing the reliability of the above evaluation conclu-
sions. We compare our metric with the recent benchmarks involving narrative content evaluation,
i.e., VBench-2.0 (plot) (Zheng et al., 2025) and StoryEval (Wang et al., 2024a). Unlike VBench2.0,
which uses video descriptions to make judgments, and StoryEval, which requires the model to assess
all narrative units at once, our progressive, question-driven approach demonstrates a significant
performance advantage.

Table 3: Ablation results on our metric.

# Variation Consist-2/3 Consist-3/3

Rfid Rcov Rcoh Rfid Rcov Rcoh

1 baseline 0.63 0.67 0.67 0.81 0.80 0.79
2 1-response 0.61 0.63 0.64 0.81 0.77 0.78
3 3-responses 0.62 0.66 0.67 0.81 0.78 0.80
4 adjust MLLM 0.65 0.63 0.64 0.78 0.72 0.75

Ablation analysis of metric design. Tab. 3 (#1)
presents the alignment accuracy of our metric with
human judgments. Tab. 3 (#2) and Tab. 3 (#3) repre-
sent using MLLM to generate answers once and three
times, respectively. As the frequency of responses
increases, the accuracy correspondingly improves.
However, when comparing Tab. 3 (#3) with Tab. 3
(#1), which uses 5-responses, accuracy shows signs
of convergence. Hence, we choose the 5-responses
approach. Finally, Tab. 3 (#4) denotes the replace-
ment of the Qwen2.5-VL-72B with Qwen2.5-VL-

32B. The results indicate that a reduction in MLLM capacity adversely affects accuracy.

𝐷 !

Results on Inter-Frame Feature Distance

Figure 8: Analysis results on
inter-frame feature distance Df.

Feature-level visualization analysis. In addition to analyzing the
generated result videos, we also aim to provide explanations from
an intermediate feature level. Specifically, we introduce a metric
Df , defined as the average feature distance between consecutive
frames. We obtain measurement results using the Wan2.1-14B
under 6 TNAs and show the results in Fig. 8. Intuitively, an
increase in the number of TNAs leads to a more information-
rich video, resulting in a corresponding increase in inter-frame
distances. However, due to the limited amount of information that
can be conveyed within a unit of time, Df ultimately shows a
converging trend. For implementation details, See App. D.3.

To intuitively understand the narrative expression capability of the
model, we present in App. C.2 shows video generation results for

prompts with different TNA counts and change factors.

5 CONCLUSION

To accommodate the pursuit of long video generation models for expressing rich narrative content
over extended durations, we propose NarrLV, a novel benchmark dedicated to comprehensively
assessing the narrative expressiveness of long video generation models. Inspired by the film narrative
theory, we introduce a prompt suite with flexibly extendable narrative richness and an effective metric
based on progressive narrative content expression. Consequently, we conduct extensive evaluations
of existing long video generation models and the foundation generation models they typically depend
on. Experimental results reveal the capability boundaries of these models across various narrative
expression dimensions, providing valuable insights for further advancements. Moreover, our metric
shows a high consistency with human judgments. We hope this reliable evaluation tool can facilitate
future assessments of long video generation models.
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APPENDIX

A MORE DETAILS ON OUR PROMPT SUITE

In this section, we will provide a comprehensive overview of the implementation details of our prompt
suite.

A.1 STATISTICAL ANALYSIS OF TNA NUMBERS IN EXISTING BENCHMARKS

Fig. 1 presents a statistical analysis of the number of TNAs in existing representative benchmarks
such as VBench (Huang et al., 2024a), TC-Bench (Feng et al., 2024a), and StoryEval (Wang et al.,
2024a). For StoryEval (Wang et al., 2024a), since it provides an event list corresponding to each
prompt, and each event element in this list is a TNA of interest, we consider the length of this list
as the number of TNAs contained in each prompt. However, for VBench (Huang et al., 2024a) and
TC-Bench (Feng et al., 2024a), which lack corresponding structured representations, we follow recent
evaluation and analysis studies based on LLMs (Li et al., 2024a;d;b;c), and employ GPT-4o (Hurst
et al., 2024) to perform this text analysis task. Specifically, we employ the following instruction to
analyze each text prompt to determine its corresponding number of TNAs.

The prompt instruction for analyzing the number of TNAs in the text.

As an expert in video narrative structure analysis, please analyze the given text based on the
Temporal Narrative Atom (TNA). TNA is the minimal narrative unit in video generation that
maintains continuous visual representation. It can be further understood through the following
examples:
1. "A man is running" → TNA count is 1, as there is one continuous action.
2. "A person stands up from a chair and starts walking" → TNA count is 2, due to two actions
("stands up" → "walking").
3. "A room changes from bright to dim" → TNA count is 2, due to two environmental attributes
("bright" → "dim").

# Task Description
Given a text, please analyze the number of TNAs contained in this text.

# Example Demonstration
Input: A chameleon changes from brown to green
Output: 2

Based on the information provided above, please help me analyze the following text and only
output the final result.
Input: {User-provided information}

Table A1: The major scene categories we study and their corresponding examples.

Scene Category Examples
Artificial Landscape Garden, Fountain, Tree Nursery, Rice Field, Wheat Field,

Hayfield, Cornfield, Vineyard, Lawn
Dining & Food Venue Restaurant, Kitchen, Diner, Cafeteria, Fast Food Restau-

rant, Café, Dessert Shop, Food Court, Beer Hall
Commercial & Retail Clothing Store, Bookstore, Jewelry Store, Gift Shop, Hard-

ware Store, Pharmacy, Grocery Store, Pet Store, Shoe
Store

Residential & Lodging Apartment Building, Beach Villa, Cottage, Cabin, Man-
sion, Prefab Home, Treehouse, Mountain Lodge, Igloo

Transportation Hub Airport, Raft, Bus Stop, Subway Station, Train Station,
Parking Lot, Parking Garage, Highway, Port
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Sports Venue Soccer Field, Basketball Court, Baseball Field, Tennis
Court, Golf Course, Race Track, Gymnasium, Volleyball
Court, Boxing Ring

Industrial & Production Facility Car Factory, Assembly Line, Repair Shop, Oil Rig, Indus-
trial Zone, Energy Facility, Landfill, Warehouse, Assem-
bly Line

Public Facility & Service Fire Station, Police Station, Courthouse, Embassy, Post
Office, School, Library, Lecture Hall, Science Museum

Arts & Entertainment Art Gallery, Art Studio, Music Studio, Cinema, TV Studio,
Nightclub, Carousel, Arcade, Amusement Park

Architectural Structure Bridge, Arch, Corridor, Viaduct, Dam, Moat, Pavilion,
Gazebo, Porch

Cultural & Religious Site Church, Mosque, Temple, Synagogue, Mausoleum, Ceme-
tery, Castle, Pagoda, Palace

Gaming & Virtual Environment Game Scene, Sandbox Environment, Sci-Fi Scene, Ani-
mation Scene, VR/AR Enhanced Environment

Natural Geography Forest, Rainforest, Desert, Beach, Coast, Glacier, Volcano,
Canyon, Monolith

Other Special Scene Military Base, Catacomb, Archaeological Dig, Battlefield,
Trench

A.2 MORE DETAILS ON THE SCENE-OBJECT PAIR SET

Scenes and objects are the primary factors influencing TNA that we focus on, and they play a
significant role in constructing our evaluation prompts. For 200k text prompts from VideoUFO
(Wang & Yang, 2025) and DropletVideo (Zhang et al., 2025), we utilize Qwen2.5-32B-Instruct (Yang
et al., 2024a) to extract the list of scenes and main objects corresponding to each text prompt. The
prompt instruction used is as follows:

The prompt instruction for analyzing the scene-object pair in the text.

As an expert in video narrative structure analysis, please analyze the essential elements of the text
description related to the video clip, to extract the corresponding scene and main objects set.

# Task Description
For a given text description about a video clip, you need to analyze its corresponding scene
categories and list of main objects.
a. The scene category may appear directly in the text description. For texts without direct
provision, you need to infer based on semantic content.
b. For the analysis of the main objects, please ignore some unimportant redundant information,
such as subtitles in the video or OCR content on objects.

# Example Demonstration
Input: The video opens with a person standing in a dark room, surrounded by various digital
screens displaying data and charts. The screens are colorful and dynamic, with different types
of graphs and icons. The person appears to be in a virtual or augmented reality environment,
as indicated by the holographic elements and the way the screens interact with the space. As
the video progresses, the person turns around and looks at a smartphone, which is displaying a
message that reads "LET’S KICKSTART THE FUTURE."
Output: {"Virtual Augmented Reality Environment": ["Person", "Smartphone", "Digital
screens"]}

Based on the information provided above, please help me analyze the following text prompt
strictly following the above JSON format and only outputting this JSON.
Input: {User-provided information}
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Figure A1: Statistical distribution of the number of object categories across different scenes.

For each text prompt, we extract and obtain the corresponding scene and list of main objects.
Subsequently, we merge objects within the same scene and record the frequency of occurrence for
each object. Hence, each scene and its associated object list are considered as a scene-object pair
s0, forming our scene-object set SO = {so}. After aggregation, we obtained 16k such so. We have
compiled statistics on the number of object categories under different scenes, as shown in Fig. A1.

Due to the high computational cost of video generation, it is challenging to evaluate each specific
scene comprehensively. Given the similarity among many scenes, we have classified these scenes
into 14 major categories. Tab. A1 presents the names of these 14 categories along with examples of
representative scenes. Considering that human-related scenes are more complex and diverse than
natural scenes (Zhou et al., 2017; Feng et al., 2023; Yang et al., 2023), these categories are primarily
constructed around human-related scenes. Although it is impractical to cover every individual scene,
our evaluation prompts can encompass all of these 14 major scene categories, thus ensuring the
diversity of scenes in our evaluation prompts.

A.3 MORE DETAILS ON THE AUTOMATED PROMPT GENERATION PIPELINE

As illustrated in Fig. 2 (a) and Eq. 1, we utilize the sampled scene-object pair information s0, the
specified TNA number n, and the factor for TNA change f , to generate a specific evaluation prompt
pf,n using GPT-4o. The prompt instruction we employ is as follows:

The prompt instruction for evaluation prompt generation.

As an expert in video narrative structure analysis, please analyze the given text based on the
Temporal Narrative Atom (TNA). TNA is the minimal narrative unit in video generation that
maintains continuous visual representation. It can be further understood through the following
examples:
1. "A man is running" → TNA count is 1, as there is one continuous action.
2. "A person stands up from a chair and starts walking" → TNA count is 2, due to two actions
("stands up" → "walking").
3. "A room changes from bright to dim" → TNA count is 2, due to two environmental attributes
("bright" → "dim").
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The reasons for TNA change in a video narrative are primarily:
1.Scene attribute changes
2.Object attribute changes
3.Object action changes

# Task Description
Your task is to generate a video segment description resulting in {User-specified TNA count}
TNAs due to {User-specified TNA change factor} based on provided scene information and
main objects:
1.Imagine an initial scene based on the provided scene information and objects. From this,
describe the scene’s overall attribute style (e.g., "overall grayish scene," "overall sunny") and
position layout of main objects in the scene.
a. The number of provided objects is 1. Evaluate the reasonableness of including the object in the
scene based on scene type. If unreasonable, the object may be omitted.
b. Extra objects may be introduced to meet the imagined scene requirements, but the total number
of objects should not exceed 3.

2.Based on the initial scene, generate narrative content due to {User-specified TNA change
factor} resulting in {User-specified TNA count} TNAs.
a. If the TNA change factor is "scene attribute changes," consider the potential attribute categories
of scene and design a reasonable attribute evolution process.
b. If the TNA change factor is "object attribute changes," consider the potential attribute categories
of object and design a reasonable attribute evolution process.
c. If the TNA change factor is "object action changes," consider the potential action categories of
object and design a reasonable action evolution process.

3. Consolidate the initial scene description and subsequent TNA evolution into one text.
a. The final text should contain two parts: the initial scene and object layout description, followed
by the TNA evolution description. Each part can be expressed in various forms.
b. Object layout description should introduce all potential objects, including those potentially
involved in the TNA evolution description.
c. Object state and action description should be concise and clear.
d. The TNA count in the video segment text should match the specified count, and the type of
TNA change should match the specified type.

# Example Demonstration
For generating video content descriptions due to {User-specified TNA change factor} with a
TNA count of {User-specified TNA count}, here are reference examples:

<Examples of text for specific TNA count and TNA change factor >
Based on the above prompt, please help generate the textual description for the following input.
Note: Only output the final description text without additional explanations.
Input: {User-provided information}

For the aforementioned <Examples of text for specific TNA count and TNA change factor >
, taking a TNA count of 3 and the change factor as "object action changes" as an example, we provide
the following example:

The evaluation prompt examples for 3 TNAs with the "object action changes" factor.

1. Example1:
Input:
- Scene: Undersea
- Object: Coral
Output: In the tranquil undersea world, vibrant corals spread out with a sea turtle hovering just
above. Initially, the sea turtle slowly descends toward the corals. Then, the turtle stops and rests
on a coral. Finally, the turtle starts swimming upwards.
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Q1:Does the scene 
feature potted plants?

Yes, Yes, Yes, 
Yes, Yes

Q2:Does the scene 
feature a cozy chair?

Yes, Yes, Yes, 
Yes, Yes

No, No, No, 
No, No

Yes, Yes, Yes, 
Yes, Yes

Q3:Is the scene 
characterized by the sun 
shining brightly in a blue sky?

Yes, Yes, Yes, 
Yes, Yes

Yes, No, No, 
Yes, No

Figure A2: An example illustrating the inconsistent responses of MLLM to uncertain questions.
For Q1 and Q2, MLLM provides consistent answers five times due to the clarity of judgment based
on video frames. However, for Q3, the uncertainty present in the top image results in inconsistent
responses from MLLM.

2. Example2:
Input:
- Scene: Bench
- Object: Person
Output: In the gentle afternoon sunlight, a person sits quietly on a bench, reading a book. Then,
the person puts the book away. Finally, the person stands up from the bench.

B MORE DETAILS ON OUR METRIC

In this section, we provide further implementation details of our evaluation metric.

B.1 DISCUSSION ON MLLM ANSWERS TO UNCERTAIN QUESTIONS

Our evaluation metric computation employs a recently widely-adopted MLLM-based question
generation and answering framework (Cho et al., 2023a; Yarom et al., 2023; Hu et al., 2023b), which
leverages the powerful content understanding capabilities (Chu et al., 2025) of MLLMs to perform
robust evaluation (Chen et al., 2024b). For each question, we have an MLLM respond five times,
and use the proportion of a specific answer among these five responses as the final outcome. We
utilize this method because we have found that MLLMs tend to produce inconsistent answers across
multiple repetitions for uncertain questions. Moreover, the degree of uncertainty of a question directly
influences the inconsistency of its answers. As illustrated in Fig. A2, we present three questions
concerning two video frame images, with each question requiring Qwen2.5-VL-72B (Bai et al.,
2025) to provide answers five times. The first two questions about the existence of objects yield
consistent answers across all five responses from the MLLM due to the clear determination possible
from the frame images. However, the third question concerning scene attributes shows inconsistency
in answers based on top image, indicating uncertainty, whereas the bottom image, providing a clear
basis for the question, results in completely consistent answers from the MLLM.

Reproducibility of the proposed metrics. As mentioned previously, MLLMs may produce inconsis-
tent answers to the same question, and this variance is associated with the inherent ambiguity of the
question. Therefore, we use the mean of multiple responses as the final answer. To assess the impact
of this randomness (i.e., non-zero temperature) on result reproducibility, we conducted a random
error analysis under different sampling counts. Specifically, for a given sample count n, we draw n
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responses for each evaluation and repeat this process three times. The mean absolute error between
each pair among the three sets of results is then calculated and taken as the measure of random error.
As shown in Tab. A2, the random error decreases monotonically with increasing n and eventually
stabilizes. When using five samples, the random error falls below 0.1%, indicating that our evaluation
results are highly reproducible.

Table A2: Mean absolute error under different sample counts for various models.

Model 1 2 3 4 5
Wan (Wang et al., 2025) 0.0031 0.0025 0.0013 0.0009 0.0009
CogVideoX (Yang et al., 2024b) 0.0035 0.0019 0.0017 0.0008 0.0007
HunyuanVideo (Kong et al., 2024) 0.0024 0.0020 0.0013 0.0009 0.0008
RIFLEx (Zhao et al., 2025) 0.0044 0.0025 0.0013 0.0008 0.0008
FreeNoise (Qiu et al., 2024) 0.0038 0.0022 0.0014 0.0010 0.0009
FIFO-Diffusion (Kim et al., 2024) 0.0027 0.0024 0.0013 0.0009 0.0009

B.2 MORE DETAILS ON THE IMPLEMENTATION OF OUR METRIC

The overall computation process of our progressive narrative-expressive evaluation metric is presented
in Sec. 3.3. Here, we provide additional implementation details. Firstly, for the calculation of narrative
element fidelity (Rfid), it is expected that the information on the scene and main objects of interest
is well generated at the initial frame. Therefore, in the step [(Qfid, v)

MLLM−−−−→ Afid]×5, we only use
v containing the initial frame image. Additionally, considering that the aesthetic quality of the
generated video affects narrative effectiveness at various levels (Arnheim, 1957; Doherty, 2013), we
incorporate the aesthetic score of the initial video frame as a fixed offset, treating aesthetic questions
as part of the question set and integrating it into the final metric calculation across the three metric
dimensions. Specifically, we utilize the latest aesthetic evaluation model, Q-align (Wu et al., 2023),
and map its aesthetic score to a 0 to 1 range. Since a dedicated aesthetic evaluation model is used for
this aesthetic question, it needs to be answered only once by the model.

Additionally, given an evaluation prompt, we use GPT-4o to automatically generate corresponding
questions. First, we utilize GPT-4o to organize the evaluation prompt into structured text. For the
first evaluation dimension that focuses on scene and object elements, the structured text includes
information on "Scene Type," "Main Object Category," "Initial Scene Attributes," and "Main Object
Layout." For the second and third evaluation dimensions that focus on narrative unit information,
the structured text contains list information derived from various TNA evolution states. The prompt
instruction for implementing this operation is as follows:

The prompt instruction for structured text extraction of the evaluation prompt.

As an expert in video narrative structure analysis, please analyze the given text based on the
Temporal Narrative Atom (TNA). TNA is the minimal narrative unit in video generation that
maintains continuous visual representation. It can be further understood through the following
examples:
1. "A man is running" → TNA count is 1, as there is one continuous action.
2. "A person stands up from a chair and starts walking" → TNA count is 2, due to two actions
("stands up" → "walking").
3. "A room changes from bright to dim" → TNA count is 2, due to two environmental attributes
("bright" → "dim").

The reasons for TNA change in a video narrative are primarily:
1. Scene attribute changes
2. Object attribute changes
3. Object action changes

# Task Description
You will be provided with a text list describing the TNA evolution process of video narrative
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content. Your task is to analyze the scene category and main objects, and from that, organize the
evolution process concerning specific TNA change factors.

1. Regarding the text list, here are some additional introductions:
a. Each element describes only one TNA state, meaning the length of the list equals the TNA
count of this entire video narrative content.
b. The elements in the list evolve sequentially over time; the first element in the list contains the
initial scene description, also indicating the scene and main objects of the entire video narrative
content, as well as the initial position layout information of the main objects in the scene.
c. The subsequent elements in the list focus primarily on specific TNA evolution descriptions.
d. Accompanying this list is the reason for TNA evolution for the entire timeline narrative content,
being one of the three reasons mentioned above.

2. First, analyze the scene category, main object category, initial attributes of the scene, and initial
position layout information of the main objects in the scene, mainly based on the initial scene
description in the first element of the list.

3. Then, based on the subsequent list elements reflecting the TNA evolution situation and the
reason for TNA change, extract the evolution states of the scene or object. The number of
extracted evolution states should match the number of list elements.

4. The final output should follow a specific JSON format. Please refer to the format in the
examples below for precise output.

# Example Demonstration
1. Example1:
Input: - Text narrative content: ["At the foot of the hill, lush vegetation thrives in the warm
afternoon sunlight.", "Suddenly, rain begins to pour down, enveloping the entire scene."]
- TNA Change Reason: Scene Attribute Changes
- TNA Count: 2
Output: { "Scene Type": "foot of the hill", "Main Object Category": ["lush vegetation"], "Initial
Scene Attributes": "warm afternoon sunlight", "Main Object Layout": "lush vegetation thrives at
the foot of the hill.", "TNA Evolution States": ["warm afternoon sunlight", "rain enveloping the
entire scene"] }

2. Example2:
Input:
- Text narrative content: ["On the balcony, there is a potted plant next to a watering can, and a man
stands on the balcony gazing into the distance.", "The man begins to water the potted plant on the
balcony.", "The man retreats back into the house, leaving the balcony."]
- TNA Change Reason: Object Action Changes
- TNA Count: 3
Output:{ "Scene Type": "balcony", "Main Object Category": ["potted plant", "watering can",
"man"], "Initial Scene Attributes": null, "Main Object Layout": "a potted plant next to a watering
can, and a man stands on the balcony gazing into the distance", "TNA Evolution States": ["the
man stands on the balcony gazing into the distance", "the man waters the potted plant", "the man
retreats back into the house"] }

Based on the above prompt, please assist me in extracting the structured text for the following
input. Note: Only output the final structured text without additional explanations.
Input: {User-provided information }

Subsequently, based on this structured text, we utilize GPT-4o to generate corresponding judgment
questions. The prompt instruction used is as follows:
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The prompt instruction for question generation.

As an expert in video narrative structure analysis, please analyze the given text based on the
Temporal Narrative Atom (TNA). TNA is the minimal narrative unit in video generation that
maintains continuous visual representation. It can be further understood through the following
examples:
1. "A man is running" → TNA count is 1, as there is one continuous action.
2. "A person stands up from a chair and starts walking" → TNA count is 2, due to two actions
("stands up" → "walking").
3. "A room changes from bright to dim" → TNA count is 2, due to two environmental attributes
("bright" → "dim").

The reasons for TNA change in a video narrative are primarily:
1. Scene attribute changes
2. Object attribute changes
3. Object action changes

# Task Description
You will be provided with a JSON data analyzing the elements of the video narrative content.
Your task is to generate a series of corresponding questions based on this JSON data. Each
key-value pair corresponds to specific questions to be generated as follows:

1. "Scene Type": Corresponds to the scene location where the entire video narrative occurs. The
question template to be generated is: “Does the scene take place in the xx(scene name)?”

2. "Main Object Category": Corresponds to the main objects involved in the entire video narrative.
The question template to be generated is: “Does the scene feature xx(main object name)?”
a. Note: If multiple main objects are involved, a corresponding question needs to be generated for
each object separately.

3. "Initial Scene Attributes": Corresponds to the initial attributes of the scene in the entire video
narrative. The question template to be generated is: “Is the scene characterized by xx(initial scene
attribute)?”

4. "Main Object Layout": Corresponds to the positional layout information of the main objects
in the entire video narrative. The question template to be generated is: “Is the xx positioned as
xxx(object and its positional layout information)?”
a. Note: If there is a positional layout relationship between multiple objects, a corresponding
question needs to be generated for each layout relationship separately.

5. "TNA Evolution States": Corresponds to the information on the evolution of TNA states. This
is a list data type, e.g., [TNA state 1, TNA state 2, xxx]. The method of generating questions and
the corresponding template are as follows:
a. First, for each TNA state, generate a question separately, e.g., “Does the video contain any
segments that xx(TNA state 1)?”, “Does the video contain any segments that xx(TNA state 2)?”,...
This type of question matches the number of elements in the list.
b. Then, generate questions regarding the transition between adjacent TNA states. For adjacent
TNA state 1 and 2, the question is: “Does the scene transition from xxx(TNA state 1) to xxx(TNA
state 2) over time? To judge this question, it must first be determined that the scene exhibits
xxx(TNA state 1) at a certain time and subsequently exhibits xxx(TNA state 2), with a clear
transition process over time.

6. When generating specific questions, analyze the specific content to make adjustments. Feel
free to adjust the templates to ensure the questions flow smoothly. The final output must fol-
low a specific JSON format for structured output. Refer to the examples below for the exact format.

# Example Demonstration
1. Example1:
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Input:
- TNA Element Information: { "Scene Type": "foot of the hill", "Main Object Category": ["lush
vegetation"], "Initial Scene Attributes": "warm afternoon sunlight", "Main Object Layout": "lush
vegetation thrives at the foot of the hill.", "TNA Evolution States": ["warm afternoon sunlight",
"rain enveloping the entire scene"] }
- TNA Change Reason: Scene Attribute Changes
- TNA Count: 2
Output: { "Scene Type": ["Does the scene take place at the foot of the hill?"], "Main Object
Category": ["Does the scene feature lush vegetation?"], "Initial Scene Attributes": ["Is the
scene characterized by warm afternoon sunlight?"], "Main Object Layout": ["Does the lush
vegetation thrive at the foot of the hill?"], "TNA Evolution States0": [“Does the video contain
any segments showing warm afternoon sunlight?”, "Does the video contain any segments where
rain engulfs the entire scene?"], "TNA Evolution States1": ["Does the scene transition from
warm afternoon sunlight to rain enveloping the entire scene over time? To judge this question, it
must first be determined that the scene exhibits warm afternoon sunlight at a certain time and
subsequently exhibits rain enveloping the entire scene, with a clear transition process over time."] }

2. Example2:
Input:
- TNA Element Information: { "Scene Type": "balcony", "Main Object Category": ["potted
plant", "watering can", "man"], "Initial Scene Attributes": null, "Main Object Layout": "a potted
plant next to a watering can, and a man stands on the balcony gazing into the distance", "TNA
Evolution States": ["the man stands on the balcony gazing into the distance", "the man waters the
potted plant", "the man retreats back into the house"] }
- TNA Change Reason: Object Action Changes
- TNA Count: 3
Output: { "Scene Type": ["Does the scene take place on a balcony?"], "Main Object Category":
["Does the scene feature a potted plant?", "Does the scene feature a watering can?", "Does the
scene feature a man?"], "Initial Scene Attributes": null, "Main Object Layout": ["Is the potted
plant positioned next to a watering can?", "Is the man standing on the balcony gazing into the
distance?"], "TNA Evolution States0": ["Does the video contain any segments showing the man
standing on the balcony and gazing into the distance?", "Does the video contain any segments
showing the man watering the potted plant?", "Does the video contain any segments of the man
retreating back into the house?"], "TNA Evolution States1": ["Does the man’s action transition
from standing on the balcony gazing into the distance to watering the potted plant over time? To
judge this question, it must first be determined that the man is standing on the balcony gazing into
the distance at a certain time and subsequently waters the potted plant, with a clear transition
process over time.", "Does the man’s action transition from watering the potted plant to retreating
back into the house over time? To judge this question, it must first be determined that the man is
watering the potted plant at a certain time and subsequently retreats back into the house, with a
clear transition process over time."] }

Based on the above prompt, please assist me in extracting the structured text for the following
input. Note: Only output the final structured text without additional explanations.
Input: {User-provided information }

C MORE DETAILS ON OUR EVALUATED MODELS

In this section, we will provide further implementation details regarding our evaluated models and
visualize some evaluation results.

C.1 ADDITIONAL INTRODUCTION TO THE EVALUATED MODELS

We present the video duration, frame rate, and resolution information of the evaluated models in
Tab. A5, with all data obtained based on the configuration of the official code. Long video generation
models typically extend from foundation models. For TALC (Bansal et al., 2024a), it is implemented
based on the foundation model ModelScopeT2V (Wang et al., 2023). For FreeLong (Lu et al.,
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Video0： Video1： Prompt：
On an overcast day aboard a ship, a 
person stands on the deck, gazing out at 
the sea. Suddenly, the person begins to 
hoist the sails.

In order to facilitate answering the 
following questions, the main element 
information corresponding to this prompt 
is as follows:
Scene Type : Sailing at sea;
Main Target Category : Person, Deck, Sea;
Initial Scene Attributes : Overcast;
Main Target Layout : A person stands on 
the deck, gazing at the sea.
Narrative Evolution States : [
A person stands on the deck, gazing at the 
sea.
The person begins to hoist the sail
]

Q1：This question focuses on the basic narrative elements involved in the 
initial scene description, such as scene type and attributes, object type, as 
well as the layout relationship of objects within the scene. Please analyze 
which video demonstrates better generation quality based on the initial 
frames of the two videos?

Q2：This question focuses on the basic narrative units involved in the 
prompts. Please analyze which generated video covers a greater number of 
basic narrative units?

Q3：This question focuses on the transitions between basic narrative units 
involved in the prompts. Please analyze which generated video covers a 
greater number of transitions between basic narrative units?

Video0 Video1 Same

Video0 Video1 Same

Video0 Video1 Same

Figure A3: Interface for human preference annotation. From left to right, the interface includes
a pair of videos to be compared, an evaluation prompt with corresponding structured element
information, as well as three multiple-choice questions to be answered.

2024), FreeNoise (Qiu et al., 2024), and FIFO-Diffusion (Kim et al., 2024), we adopted the official
implementation based on VideoCraft2 (Chen et al., 2024a). For RIFLEx (Zhao et al., 2025), we opted
for a twofold duration extension approach based on CogVideoX-5B (Yang et al., 2024b).

Furthermore, we analyze the computational efficiency of several representative foundation and long
video generation models on an H20 GPU. Specifically, we evaluate the number of parameters in
their key denoising networks (Params), the computational cost per forward operation (FLOPs), the
time required for each forward operation (T), and the total number of forward steps needed for a
complete generation process (Steps). The results in Tab. A6 indicate that recent foundation video
generators, such as Wan2.1-14B and HunyuanVideo, possess extremely large parameter counts and
correspondingly high computational costs. Additionally, current long-video models—including
FreeLong, FreeNoise, and FIFO-Diffusion—are all built upon the same early foundation model
(VideoCraft), resulting in identical parameter counts. However, their per-forward FLOPs differ due to
each model employing a distinct strategy for long-video feature modeling.

Due to the substantial computational costs involved, existing long video generation models generally
face challenges in generating significantly longer videos, and are typically limited to producing
videos approximately 2 to 3 times the duration of their foundation counterparts. Unlike conventional
video generation approaches, FIFO-Diffusion employs a unique denoising mechanism that enables
the recursive generation of longer videos without a significant increase in computational cost. We
extended its official default setting from 10 seconds to 60 seconds to analyze our benchmark’s
evaluation capability for minute-long videos. Tab. A3 shows that increasing the video duration led to
an improvement in the model’s narrative capability (the mean score increased from 0.57 to 0.59). We
speculate that this is mainly because longer videos provide more space for content creation, thereby
enabling the model to express narratives more effectively.

Table A3: Performance of FIFO-Diffusion on 10-second and 60-second video generation.

Model Rfid Rcov Rcoh Mean
satt tatt tact satt tatt tact satt tatt tact

FIFO-Diffusion (10s) 0.75 0.74 0.79 0.59 0.61 0.53 0.39 0.41 0.35 0.57
FIFO-Diffusion (60s) 0.75 0.73 0.78 0.61 0.65 0.58 0.41 0.43 0.41 0.59

C.2 VISUALIZATION OF EVALUATION RESULTS

To intuitively understand the narrative expression capability of the model, we present the video
generation outcomes corresponding to prompts under different TNA counts and change factors, as
shown in Fig. A4, Fig. A5 and Fig. A6. For more video generation results, please refer to our project
page. Intuitively, the increase in video length brings more challenges to the model (Feng et al.,
2024b; 2025a;b), highlighting that there remains substantial room for improvement in the generative
capabilities of existing long-video generation models.
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Table A4: Analysis of answer consistency across different questions. Consist-n/3 denotes the subset
with n consistent answers out of three annotations.

Metric Consist-1/3 Consist-2/3 Consist-3/3
Rfid (Q1) 81 361 158
Rcov (Q2) 69 305 226
Rcoh (Q3) 73 309 218

D MORE DETAILS ON THE EXPERIMENTS

In this section, we provide additional implementation details regarding our experiments.

Table A5: Information on duration, frame Rate, and resolution of videos generated by our evaluation
models.

Model Duration Frame Rate Resolution
Wan (Wang et al., 2025) 5 s 16 FPS 1280 × 720
HunyuanVideo (Kong et al., 2024) 5 s 24 FPS 1280 × 720
CogVideoX (Yang et al., 2024b) 5 s 16 FPS 1360 × 768
Open-Sora (Zheng et al., 2024) 5 s 24 FPS 336 × 192
Open-Sora-Plan (Lin et al., 2024) 5 s 18 FPS 640 × 352
RIFLEx (Zhao et al., 2025) 12 s 8 FPS 720 × 480
FreeLong (Lu et al., 2024) 12 s 10 FPS 512 × 320
FreeNoise (Qiu et al., 2024) 6 s 10 FPS 512 × 320
FIFO-Diffusion (Kim et al., 2024) 10 s 10 FPS 512 × 320

TALC (Bansal et al., 2024b) 2n s, if n < 5
8 s, otherwise 8 FPS 256 × 256

D.1 ANALYSIS OF METRIC ALIGNMENT WITH HUMANS

As introduced in Sec. 4.1, we conduct human preference annotations, which lay the foundation
for subsequent analysis of the alignment between our metric and human perception. The human
annotation interface is shown in Fig. A3. For each video pair, we provide the corresponding
text prompt description. Additionally, to facilitate annotation, we also provide annotators with
the structured information extracted from the evaluation prompts (see App. B.2). Based on this
information, annotators are required to complete three judgment questions sequentially, which directly
correspond to our three evaluation dimensions.

Statistical analysis of the annotation results reveals that some video pairs have situations where
three annotators choose three different answers. This means each option is selected a maximum
of once, and we denote this subset as Consist-1/3. Additionally, we denote subsets with two or
three participants selecting the same answers as Consist-2/3 and Consist-3/3. The sample sizes
corresponding to these three subsets are shown in Tab. A4. Due to its poor consistency, we do not
perform experimental analysis on the Consist-1/3 subset. For Consist-2/3 and Consist-3/3, we analyze
the alignment between our metric and human preference. As indicated in Tab. 2, for the subset
with higher human consistency (Consist-3/3), our metric also shows better alignment with human
preference.

IRB review. Previous studies (Geirhos et al., 2021) have demonstrated that experiments solely
involving interaction with computer systems (i.e., screen and mouse) pose no risk to participants and
therefore do not require IRB approval. Since our experiment follows the same procedure, we did not
seek IRB review.

D.2 MORE DETAILS ON THE EVALUATION RESULTS ANALYSIS.

Our evaluation results involve three different dimensions: TNA count n ∈ [1, 6], TNA change
factors f ∈ [satt, tact, tatt], and our metric R ∈ [Rfid, Rcov, Rcoh]. For each evaluation model, there are
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TNA=1: In the calm, serene sea, a boat is gently floating with the horizon in the background.

TNA=2: At the foot of the hill, lush vegetation thrives in the warm afternoon sunlight. Suddenly, rain begins 
to pour down, enveloping the entire scene.

TNA=3: In a tranquil forest and grassland landscape, a helicopter hovers above the meadow, surrounded by lush 
greenery. Suddenly, a downpour occurs, enveloping the entire scene. Subsequently, the rain turns to snow, 
blanketing the forest and grassland with a thick layer of white.

TNA=4: In a barren canyon with rugged, rocky walls and dry, dusty ground. Suddenly, a sandstorm approaches, 
reducing visibility as the entire scene becomes engulfed in swirling sand. Then, as the sandstorm passes, it 
begins to rain, and the ground darkens as it absorbs the water. Finally, the rain stops and the sun breaks 
through the clouds, leaving the canyon brighter with glistening wet rocks.

TNA=5: In an outdoor arid environment, a solitary man stands on a dusty, cracked earth under a bright, hot 
sun. Suddenly, clouds gather and cast shadows over the landscape, creating a cooler, dim atmosphere. Then, a 
sandstorm sweeps through, reducing visibility and covering the ground with a thin layer of sand. After the 
storm passes, a rare, gentle rain begins to fall, bringing a refreshing wetness to the scene. Finally, as the 
rain ceases, the sun sets, painting the sky with vibrant hues of orange and purple, casting long shadows 
over the transformed terrain.

TNA=6: Beside a stretch of green grass and a gently flowing stream, tall trees and bushes grow under the 
bright sun. As time passes, the sunlight gradually diminishes, and the scene transitions into dusk, with a 
warm golden glow spreading across the area. Then, night falls, casting a deepening blue twilight. Soon, the 
sky becomes completely dark, and the entire scene is illuminated by the soft silver light of the moon. As 
dawn approaches, the sky and scenery are brushed with delicate pink hues. Finally, the sun rises fully, 
bringing back the vibrant colors and life to the grassy area by the stream.

Figure A4: Evaluation prompts and corresponding generated videos under varying TNA numbers (1
to 6) induced by scene attribute change factors. The viewing order of video frames is from left to
right, top to bottom.
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TNA=2: In a serene wetland, a cluster of green palm trees stands tall by the water. As the scene 
progresses, the palm trees' leaves change from green to brown.

TNA=3: A yellowing leaf floats on the surface of the river. Gradually, the yellow leaf changes to green. 
Finally, the green leaf turns red.

TNA=4: A brown mushroom is growing in a damp meadow. Gradually, the color of these mushrooms changes from 
brown to red. Then, the color of the mushrooms changes from red to purple. Finally, the mushrooms turn blue.

TNA=5: In a natural habitat or zoo setting, a tree kangaroo is perched on a branch. Initially, the tree 
kangaroo's fur is a vibrant reddish-brown. Suddenly, the fur changes from reddish-brown to dark brown. 
Next, the fur color transitions from dark brown to gray. Then, the gray fur shifts to white. Finally, the 
fur changes from white to black.

TNA=6: At a lively beach party, a person is dancing gleefully near the shoreline. Initially, the person's 
face is adorned with a bright, cheerful expression. Suddenly, the expression on the face changes to 
surprise. Next, the face transitions to a look of confusion. Then, the expression shifts to one of 
contemplation. After that, the face changes to a look of determination. Finally, the expression evolves 
into one of sheer joy.

Figure A5: Evaluation prompts and corresponding generated videos under varying TNA numbers (1
to 6) induced by target attribute change factors. The viewing order of video frames is from left to
right, top to bottom.
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TNA=1: The lush green pathway is lined with tall grasses gently swaying in the breeze.

TNA=2: In the tranquil ocean brimming with coral, a sea turtle glides slowly above the coral. Subsequently, 
the turtle stops atop a piece of coral.

TNA=3: In a bright forest under a clear blue sky, a man with a backpack strolls leisurely. Then, he pauses 
for a moment. Shortly after, the man takes out a water cup from his backpack.

TNA=4: In a dark, narrow alley, a man with a flashlight walks slowly forward. Suddenly, he stops and looks 
around cautiously. Then, the man bends down to pick up a stone from the ground. Finally, he stands up and 
continues walking forward.

TNA=5: In a dense jungle, surrounded by lush green leaves, several banana trees stand tall as a monkey nimbly 
weaves between the branches. Then, the monkey stops and sits on a branch of a rubber tree. Next, it picks a 
banana from the tree. After that, the monkey peels the banana and begins to eat. Finally, the monkey tosses 
away the banana peel and continues to leap between the trees.

TNA=6: Under a clear blue sky in a vast rural landscape with rolling green hills, a group of people stands 
in a circle, chatting happily. Suddenly, they begin to walk together towards a nearby farmhouse. Then, the 
group stops in front of the farmhouse to admire the view. After that, one person waves their arms to 
gather everyone's attention. Next, the group sits down on the grass for a leisurely picnic. Finally, the 
group stands up and starts playing a game of catch.

Figure A6: Evaluation prompts and corresponding generated videos under varying TNA numbers (1
to 6) induced by target action change factors. The viewing order of video frames is from left to right,
top to bottom.
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(a) Evaluation results of the foundation video generation models regarding the scene attribute change factor.
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(b) Evaluation results of the foundation video generation models regarding the object attribute change factor.

(c) Evaluation results of the foundation video generation models regarding the object action change factor.

Figure A7: Evaluation results across three evaluation dimensions and three TNA change factors.
The evaluated models comprise mainstream foundation video generation models (Wang et al., 2025;
Yang et al., 2024b; Zheng et al., 2024; Lin et al., 2024; Kong et al., 2024).

6× 3× 3 evaluation result data, denoted as A. We present all these evaluation results for foundation
video generation models and long video generation models in Fig. A7 and Fig. A8, respectively.
Although these results provide a detailed display of model performance across various dimensions,
they do not readily facilitate the derivation of corresponding conclusions. The key observations
presented in Sec. 4.2 are synthesized based on these evaluation results. Next, we introduce the specific
process of this synthesis:

For observation (i), we focus on the variations of the three metric indicators under different TNA
counts. Thus, the results in Fig. 4 are obtained by averaging A over the three TNA change factors.
Observation (ii) focuses on the TNA expression quantity Nexp, which is constructed based on the
Rcov indicator and also averaged over the three TNA change factors. Furthermore, the results shown in
Fig. 5 are statistically derived for both foundation video generation models and long video generation
models. The solid lines represent the medians, and the shaded areas are determined by the 5th
and 95th percentiles. Observation (iii) focuses on the variation in the three metric indicators for
VideoCraft-based models (Chen et al., 2024a; Kim et al., 2024; Lu et al., 2024; Qiu et al., 2024) under
different TNA counts. The calculation method in Fig. 6 is the same as that used in observation (i).
Observation (iv) focuses on the variation in the three metric indicators under different TNA change
factors. Therefore, the results in Tab. 1 are obtained by averaging A over the six TNA change ranges.

D.3 IMPLEMENTATION DETAILS OF FEATURE-LEVEL VISUALIZATION ANALYSIS

In addition to evaluating based on the final video generation results, we introduce the inter-frame
feature average distance metric Df in Sec. 4.3, which facilitates analysis at the intermediate feature
level. Specifically, for a given diffusion-based video generation model, we select the video latent
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Table A6: Computational efficiency of different video generation models. Params, FLOPs, T, and
Steps denote the number of parameters, computational cost per forward operation, time per forward
operation, and total number of forward steps per generation, respectively.

Model Params (G) FLOPs (T) T (s) Steps
Wan2.1-14B (Wang et al., 2025) 14.3 904.9 111.6 50
HunyuanVideo (Kong et al., 2024) 12.8 351.6 131.8 50
Open-Sora-Plan (Lin et al., 2024) 2.8 100.8 3.5 100
FreeLong (Lu et al., 2024) 1.4 51.9 13.7 50
FreeNoise (Qiu et al., 2024) 1.4 23.5 6.6 50
FIFO-Diffusion (Kim et al., 2024) 1.4 5.9 1.1 800

(a) Evaluation results of the long video generation models regarding the scene attribute change factor.
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(b) Evaluation results of the long video generation models regarding the object attribute change factor.

(c) Evaluation results of the long video generation models regarding the object action change factor.

Figure A8: Evaluation results across three evaluation dimensions and three TNA change factors.
The evaluated models comprise mainstream long video generation models (Kim et al., 2024; Qiu
et al., 2024; Lu et al., 2024; Zhao et al., 2025; Bansal et al., 2024a).

space features Z = {zi}
Nf

i=1 at the last denoising timestep, where Nf denotes the number of video
frames. Then, Df is obtained through the following operation:

Df =

∑Nf

i=1

∑Nf

j=1 (zi − zj)
2

(Nf )2
(A1)

This metric represents the average inter-frame feature distance for each video. For the results shown in
Fig. 8, we select 15 prompts under each TNA for evaluation to ensure the reliability of the assessment
outcomes. The solid lines represent the means, and the shaded areas are determined by the 30th and
70th percentiles.
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E LIMITATIONS AND BROADER IMPACT

In this work, we propose a novel benchmark, NarrLV, which aims to comprehensively assess the
narrative expressiveness of long video generation models. Currently, our evaluation primarily focuses
on open-source text-to-video models, which represent the fundamental task setting in the video
generation domain. In the future, we intend to continually expand the scope of our evaluation models
to include image-to-video models and cutting-edge open-source models. It is worth noting that,
utilizing our established evaluation platform, we can directly test these models without requiring
complex additional design.

Our NarrLV effectively reveals the narrative expressiveness of video generation models. Similar to
many technologies centering around generative models, this work carries potential societal implica-
tions that warrant careful consideration (Katirai et al., 2024; Chen, 2023). Specifically, the models
we assess with stronger narrative expression capabilities might facilitate the creation of deceptive
or harmful video content. However, as advancements in video generation safety and regulatory
technologies continue (He & Fang, 2024; Wang et al., 2024c; Dai et al., 2024), we believe these
negative impacts will be progressively mitigated.

F USAGE OF LARGE LANGUAGE MODELS

Consistent with recent benchmarks (Zheng et al., 2025; Huang et al., 2024b; Wang et al., 2024a) in
the field of video generation, we explore the integration of large language models (LLMs) into the
design of benchmarks to enable automated evaluation. Specifically, existing LLMs are utilized as
tools in both the construction of prompt generation pipelines and the implementation of MLLM-based
question answering metrics. Detailed configurations of the employed LLMs are provided in the main
text (please refer to Sec. 4.1). Moreover, we have employed GPT-4o to assist with the language
polishing of this manuscript during its preparation.
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