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Abstract

Large Language Models (LLMs) have been increasingly used to optimize code
efficiency. Evaluating their effectiveness and further suggesting optimization
opportunities often rely on high-quality tests to demonstrate the performance bot-
tlenecks presented in the program. However, existing approaches rely on a limited
set of hand-curated inputs or LLM-generated uninteresting length-stressing tests,
failing to reveal more nuanced optimization opportunities. We present WEDGE,
a framework for generating performance-stressing input given the program un-
der test. WEDGE synthesizes explicit performance-characterizing constraints in
the form of branch conditions to partition the programs’ execution space into
performance-specific regions. When integrated with the coverage-guided fuzzer,
reaching different regions introduces explicit rewards for test generation to ex-
plore inefficient implementations. Our evaluation shows that WEDGE introduces
a significant slowdown compared to the tests in CodeContests and those claimed
to be optimized by existing approaches. From the utility perspective, integrating
our tests substantially improves the existing code optimization approaches that
rely on test-driven execution feedback. We release PERFFORGE, the performance
tests generated by WEDGE, to benchmark future approaches for efficient code
generation at https://github.com/UChiSeclab/perfforge.

1 Introduction

Large Language Models (LLMs) have shown intriguing promise in optimizing code efficiency beyond
compiler techniques [1-9]. Evaluating the effectiveness of these LM-based code optimizations relies
on performance-stressing tests. For example, an optimization from recursion to iteration in Fibonacci
number calculation incurs only a negligible performance improvement when evaluated with a default
test (n = 3) that focuses on testing correctness, while a performance-stressing input (n = 40) reveals
the orders (10%) of the larger gap. Moreover, as some approaches integrate execution feedback
to further optimize the code [3, 7, 10], running performance-stressing tests reveals more precise
optimization opportunities by exposing performance bottlenecks.

Unfortunately, most existing code optimization approaches still leverage correctness tests to evaluate
and suggest optimizations [3, 5, 7]. However, the correctness tests alone are often insufficient to
expose the inefficient code implementation. For example, existing tests in the common benchmarks,
e.g., HumanEval [11] has been shown to have limited scope and low complexity and thus fail to
adequately stress the code performance against more demanding conditions [12]. As a result, they are
also more susceptible to the noise introduced in the execution environment, thus failing to reliably
quantify the optimization and reveal insightful optimization opportunities.

To generate performance-stressing tests, recent works have started to leverage LLMs by prompting
them to generate test generators [12]. For example, EvalPerf [12] introduced a scale parameter to
control the input size, with the assumption that it is the key determining factor for performance-
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Figure 1: Workflow of WEDGE. First, our tool profiles the code-under-test to identify a pair of inputs
with contrastive execution profile (“fast” vs “slow” execution). Second, with this information, it asks
a LLM to infer performance-characterizing constraints and instrument the code with checkers. Third,
it runs the instrumented code through a customized fuzzing tool to find performance-stressing inputs.

stressing. However, such a biased preference over large tests misses the opportunity to reason about
their relationship to inefficient program behaviors beyond the size. For example, calling quicksort
can suffer from the suboptimal performance [13] when its input is reversely sorted (O(n?) in the
worst case). When two inputs are both at the maximum length n, the reversely sorted one is more
stressing than another randomly ordered one (O(nlogn)) on average.

Our approach. We present WEDGE, a framework that generates performance test inputs beyond
simply stressing the sizes. Our key insight is that the limitation of LLMs in generating performance-
stressing tests boils down to the inherent challenge of connecting the local performance-related
program behavior all the way back to the program inputs [14, 15], while directly reasoning about
the local behaviors is comparatively easier. For example, we can easily specify the local variable
arr, the argument to a quicksort deeply nested inside the program, to be reversely sorted to trigger
its inefficient behavior, while predicting what program inputs lead arr to be reversely sorted is
more challenging as that requires reasoning about the control and data flow based on the precise
understanding of the program semantics. Such reasoning is extremely challenging due to the
overwhelming search space, e.g., tracking a combinatorial number of program paths [16, 17, 14, 18].

Based on such insight, WEDGE alleviates LLM reasoning on performance-related behavior by asking
it to synthesize the performance-characterizing constraints as condition checkers, e.g., al1(1[1i]
> 1[i+1] for i in range(len(1)-1)), and instrument the program with these checkers at the
appropriate program points. WEDGE then leverages the coverage-guided fuzzers, the search-based
testing technique [19, 20] with the goal to maximize the code coverage, to scale test input generation
that sidesteps the expensive iterative queries to LLMs. As the inputs achieving new coverage are
rewarded and prioritized in the fuzzer, checker branches inserted by WEDGE serve as the coverage
signal to bias the fuzzing to generate likely-stressing inputs more efficiently.

To enhance performance constraint reasoning, we develop a reasoning template that elaborates on
the procedures to contrast the pair of disparate execution profiles to gain insight into inefficient
implementations. We then instruct the LLM to reason about performance constraints (in natural
language and code) in multiple phases to localize the appropriate program points and implement the
corresponding constraint checkers. Besides guiding the fuzzer using constraint checkers, WEDGE
further accelerates the input search by replacing the fuzzer’s default input mutator [19] with a
constraint-aware one that steers the input mutation towards likely constraint-satisfying inputs, while
also enforcing the mutation to respect the input grammars [21-24]. Figure 1 presents our workflow
(see Section 3 for details).

Results. Our extensive evaluation shows that the tests generated by WEDGE are substantially
more performance-stressing than the default ones in the existing benchmark and those generated
by the state-of-the-art techniques [12, 25] by 84.5% (vs. EVALPERFg, ow). With more stressing
tests, WEDGE precisely pinpoints the potential inefficient implementations and thus introduces
approximately 10 percentage points more efficiency improvement on the generated code than that of
default tests when used to guide the iterative code optimization approaches via test-driven execution
feedback [3]. Our ablations confirm the effectiveness of the synthesized constraints in guiding the
fuzzing and input mutation, i.e., achieving 4 x improvement over plain fuzzing using AFL++. In
addition, we show that the generated constraints effectively characterize the performance, where the
constraint-satisfying inputs are 38.6x slower than constraint-violating inputs.



2 Overview

We start with an overview of existing works on code efficiency evaluation and stress test generation.
We then use an example to demonstrate the advantage of WEDGE over the existing approaches.

2.1 Benchmarking Code Efficiency and Performance-Stressing Test Generation

While traditional code generation primarily focused on generating correct code [26-28, 11, 29-32],
there are growing efforts to generate efficient code beyond correctness [5, 12, 33, 34]. However,
existing efficient code generation techniques still largely rely on correctness tests to evaluate the
performance improvement [5, 7, 35], which cannot faithfully measure the performance improve-
ment [12, 34, 33, 9]. Some of them rely on the execution feedback to further optimize the code [7, 9].
These approaches can miss optimization opportunities when the tests do not reveal the performance
bottleneck (see Section 4.3).

To address these challenges, recent works have focused on performance test generation to benchmark
efficient code generation [36-38, 33, 34, 8, 12]. However, these approaches either generate infeasible
inputs that do not stress and thus rely on manual correction, or their task formulation often prevents
the LLM from reliably reasoning about the program behavior, i.e., by directly prompting the LLM to
generate the stressing inputs for the entire long-spanning program. With such a nontrivial task, LLMs
have to identify the inefficient implementation, understand the run-time behavior to exercise it, and
reason all the way to program inputs. Therefore, they often end up taking “shortcuts” and reduce to
only generating length-stressing inputs that fail to reveal more intricate inefficient implementation.

In addition to performance benchmarking using competitive-programming level code, GSO [39]
extends the evaluation to repository-level and real-world workloads by prompting an LLM with the
performance-optimizing commit. It shares the high-level idea of direct prompting but requires more
challenging inter-procedural analysis across a much longer context [40, 41]. WEDGE complements
the direct prompting approaches for performance testing by decomposing the test generation into
local code behavior reasoning and efficient input search.

Performance testing has been studied extensively before LLM-based approaches based on symbolic
execution and fuzzing [13, 25, 42—44]. While the former can suffer from poor scalability, the latter can
also incur expensive instrumentation for collecting and parsing profiling information, e.g., customized
coverage metrics and scheduling algorithms to guide fuzzing and input search, and can lack test
oracles to precisely capture inefficient behaviors or symptoms.

WEDGE restricts LLMs to focus exclusively on local performance-characterizing constraints to avoid
relying on the LLMs to reason globally about the input, while leveraging efficient input search from
fuzzing. Therefore, it captures the inefficient behaviors without expensive profiling and explicitly
encourages test generation towards reaching inefficient implementation beyond being length-stressing.

2.2 Motivating Example

Let us consider an example from CodeContests, Codeforces problem 633A [45] (gray box, Figure 2).
Given three integers a, b, and ¢ (1 < a,b < 100,1 < ¢ < 10,000), the goal is to decide whether
there exist non-negative integers x, y such that a - x + b - y = c. This problem is classically known as
finding solutions to a two-variable linear Diophantine equation [46].

The code snippet (blue region) shows an implementation that solves this problem. The code system-
atically tries every pair of values by iterating two nested loops over fixed upper bounds of 10, 000
(lines 6-7), computing the value of the Diophantine equation, and checking whether it is equal or
exceeds c. Because the loops use fixed upper bounds rather than adapting to the value of c, the code
could examine nearly the entire 10,0007 value space. Apart from skipping sums greater than ¢ or
breaking once a match is found (lines 9-11), the code bears the full brute-force cost.

The right half of Figure 2 (green and purple boxes) shows how WEDGE infers performance-
characterizing constraints specific to this program, inspired by the contrasting execution traces
that share similar inputs but have disparate behavior (manifested by the per-statement execution
counts). In particular, our tool identifies specific relations among the local variables a, b, c to stress
the nested loops to exhaust their maximum iterations. The green box shows the LLM’s reasoning
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Figure 2: Motivating example from Codeforces (prob. 633A, sol. 622) showing how WEDGE reasons
about and generate performance-characterizing constraints, and implements corresponding checkers.

process, while the purple box shows the performance-characterizing constraints synthesized as a C++
checker by the LLM to be instrumented in the program.

Our key observation is that these constraints are more local, fine-grained, easier to generate, and
cannot be captured by state-of-the-art techniques (e.g., [12, 34, 25]), which focus primarily on
maximizing the input values and size. Therefore, such performance-stressing constraints serve as
more appropriate interfaces for LLMs to communicate their reasoning to the existing test generation
tools than directly asking them to generate performance-stressing inputs.

3 WEDGE Framework

Problem Statement We formally define the performance-stressing test generation problem. Given
a program P accepting a valid input (conforming to a validity specification V) , the set of all valid
inputs is denoted as 7). With a valid input Vi € 7,,, the execution of P (denoted as E; = P - 1)
yields an execution time ! T}. The goal of stress test generation is to generate a subset of valid inputs
I* C Iy, such that the average execution time of I* is maximum.

At a high level, WEDGE takes as inputs a coding problem statement S, a correct solution program
P, a set of default correctness tests Zp, and an Large Language Model (LLM), and produces a set of
performance-stressing test inputs I: I = WEDGE(S, P,Zp,LLM).

3.1 Contrastive Execution Profiling

We first collect high-quality contrastive execution feedback from fast and slow executions to facilitate
reasoning about performance-characterizing constraints. This is achieved in two steps.

Contrastive input pair mining. WEDGE runs P against a set of user-provided tests Zp, e.g., existing
correctness tests provided by the dataset to mine a contrastive (slow, fast) input pair (is;ou, % fast).

'For clarity, we use “execution time” here to represent the execution cost, but in experiments we use the
number of CPU instructions. See our justification in Section 4.1



Note that i4,, does not have to be performance-stressing; the pair needs only to provide con-
trastive diagnostic hints to help localize potentially inefficient implementation, i.e., the performance
bottleneck.

During test execution, WEDGE collects the execution cost of each input, measured by the number
of executed instructions (denoted |I| in our experiments). WEDGE then mines the contrastive input
pairs based on the two metrics: (1) similarity defined as the sum of the match ratio (i.e., the number
of common array elements divided by the length of the shorter array) and the Jaccard similarity [47],
and (2) execution cost ratio, defined as the ratio of the slow input’s cost |I |, to that of the fast input
|I] fas¢- Input pairs are then ranked based on their similarity and execution cost ratio, and WEDGE
selects the top-ranked pair as the contrastive input pair (¢siouw, @ fast)-

Profiling feedback collection. WEDGE executes P with 444, and ifqs:, collecting execution
feedback (coverage and hit count) F§;,,, and Fy,s¢. Considering such a contrastive execution pair
provides the key behavior insight [48], we prompt LLM to pinpoint the differences to reason why
one input leads to significantly slower execution.

3.2 Performance-Characterizing Constraint Synthesis

WEDGE generates the constraints in two steps: it initially generates the constraints C in natural
language, then prompts the LLM to implement the corresponding constraint checkers and insert them
to the fuzz driver P to produce the instrumented fuzz driver P’.

Performance-characterizing constraint reasoning. A constraint is a predicate on the program
state (e.g., variable values) and expressed as a conditional statement, e.g., if (n > 1). Given a
performance-characterizing constraint ¢ and a given set of inputs Zy,, some inputs may satisfy the
constraint while others may not. We denote them as Zs and Zr, respectively, where 7y, = Zs U Zy,
and the corresponding average execution time Tg > Txs.

WEDGE first constructs a comprehensive performance reasoning prompt template that con-
tains the problem statement S, solution program P, contrasting input pair (isiow, % fast), the
profiling feedback information Fj,, and Ftq, and multiple manually-crafted constraints
as few-shot examples. The performance constraint reasoning technique can be denoted as:
ReasonPerf(LLM, S, P, (isiow, i fast)s (Fsiow, Frast)) = C, where C = {¢;}*, is a set of gener-
ated constraints. The template explicitly instructs the LLM to reason about performance constraints in
multiple phases, as shown in Figure 2. In Phase 1, the LLM needs to identify expensive or inefficient
code fragments. This includes: 1) comparing line-level profiling information, e.g., hit counts, between
the fast and slow runs, 2) pinpointing lines or functions that get significantly more hits under the
slow input, and 3) inferring how these lines might interact with data structures, loops, recursion, etc.,
especially as they relate to the input constraints (e.g., n <= 100). In Phase 2, the LLM will derive
performance-characterizing constraints in natural language. By enforcing the LLM to reason about
the constraints with Chain-of-Thought prompting [49], WEDGE collects insights into performance
and generates high-quality constraints C (Figure 2 green part).

Constraint checker implementation. WEDGE prompts the LLM with the constraints C and
instructs it to implement the checker code faithfully and produce the instrumented program. The
instrumented program with inserted checker code P’, will be used as the target program to fuzz:
P’ = Instrument(LLM, P, C).

3.3 Performance-Characterizing Constraint Guided Fuzzing

In this stage, WEDGE launches coverage-guided fuzzing against the instrumented program P’ to
search for constraint-satisfying inputs.

Constraint-aware mutator generation. WEDGE uses AFL++ as its fuzzing engine. How-
ever, the default mutator of AFL++ (denoted as Mp) targets at binary fuzzing (including
operations like bitflip, byteflip, crossover, etc.), having no knowledge of input validity con-
straints, thus could generate mostly invalid inputs. We implement a custom input-grammar- and
constraints-aware mutator M¢ by prompting the LLM with mutator examples, problem state-
ment S (i.e., validity constraint V), solution program P, contrasting input pair (isiow,?fast),



the profiling feedback information (Flsiow, Fast) and the generated performance constraints C:
MC = Mbll‘atorSyn(LLM, 87 P; (islowa ifast)v (Fsloun Ffast)a (C)

Mutator generation is more challenging than EVALPERF [12] and the input generator’s generation [3,
34, 8], as it has to be robust enough to make sure the mutated inputs follow the validity constraints
and meanwhile as diversified as possible. To resolve this challenge, WEDGE follows an iterative
generate-and-fix fashion to ensure the robustness of mutators. We put more details in Appendix A.2
due to the space constraints.

Constraint-guided fuzzing. Once mutators are generated, it launches a fuzzing campaign using
the mutator M¢ on the instrumented program P’, collecting all tests generated by fuzzer, i.e.,
CGF(M¢,P') = I, where I = {ij,i2,...} are the fuzzer generated tests. In the end, the tests
generated by WEDGE form our benchmark PERFFORGE.

4 Experiments
4.1 Setup

Test generation baselines. We evaluate PERFFORGE tests (generated by WEDGE) against the
following three representative baselines (two LLM-based and one fuzzing-based): EVALPERF [12],
which uses LLMs to synthesize a parameterized input generator controlled by the input size parameter
scale. Since EVALPERF requires one canonical program as the reference implementation in the
prompt, while our dataset has multiple ground-truth solutions per problem, we use the slowest and a
randomly sampled solution as the reference implementation, forming two variants EVALPERFg, ow
and EVALPERFgsxp. TG-prompt [8, 34, 33], a direct prompting technique following recent works [8,
34, 33] which instructs an LLM to directly synthesize the performance test generator given the
problem specification. PerfFuzz [25], which is a state-of-the-art performance fuzzing tool that uses a
performance-aware coverage metric that tracks the hit count of each control flow graph edge in the
target program to search for inputs that either reach new edges or hit known edges more.

Utility baselines. To measure the utility of our generated tests, we consider two scenarios that
PERFFORGE can help. The first scenario is to provide execution feedback to help LLMs further
optimize the code. We consider EFFI-LEARNER [3], an iterative code efficiency optimization based
on test-driven execution feedback to guide the LLM in refining its generated code. The second
scenario is to evaluate (ideally more precisely) existing code optimization approaches. We consider
running PERFFORGE against PIE [5], an LLM-based code optimization that finetunes the LLM on
slow and fast code pairs, which relied on correctness tests to evaluate its performance improvements.

Metrics. We primarily rely on CPU instruction count to measure the effectiveness of PERFFORGE
tests, considering it is more stable across runs, platform-agnostic, and strongly correlates with
performance bottlenecks [S0-53], while physical time is more prone to interference and noise [54,
51]. It is also one of the key metrics for evaluating LLM-based code testing and optimization
tools [12, 34, 5] (more details in §A.5). To further reduce the noise, we average the CPU instructions
over five runs for each program throughout all experiments.

Dataset. We evaluate WEDGE on CodeContests [32] with a wide range of competitive programming
problems and human-written solutions. Test cases include the default inputs from the original open-
judge platforms as well as additional inputs generated by the authors [32]. We largely focus on
C++ solutions to ensure comparable measurements, with a small subset of Python programs for the
usefulness investigation (Section 4.3). We rank the problems based on the coefficient of variation [12]
of the CPU instruction counts and select the top 300 problems. This ensures the selected problems
feature diverse solutions and potentially have enough room for optimizations for part of the solutions.
WEDGE generates tests for 207 of them, but after excluding those where baselines cannot produce
valid inputs, we arrive at 154 problems and 33,020 C++ programs.

Fuzzing and input filtering. To collect inputs, We run WEDGE’s fuzzing (based on our modified
AFL++) for one hour for each solution in parallel. Not all generated inputs strictly conform to the
validity constraints V' (Section 3). WEDGE applies a two-stage automatic filter to filter out likely
invalid inputs. WEDGE first prompts an LLM to generate the validator based on the problem statement
and use the official tests in CodeContests to check the validity of the validator. WEDGE then checks



Table 1: WEDGE versus baselines (described in Section 4.1) and its ablation.

Technique # of instructions (x 10%) Win rate Slowdown over CC
Average Median Average Median
Compare to baselines
WEDGE 5.96 0.75 60 % 363 % 1.65x
TG-prompt 3.87 (J1.5%) 0.60 (J1.3%) 12% 275x% 1.52x
PerfFuzz 3.29 ({1.8x) 0.43 (L1.7x) 11% 149 1.61x
EVALPERFs;.ow 3.23 (J1.8x) 0.44 (J1.7x) 8% 146 x 1.63x
EVALPERFganp 321 (L1.9%) 0.45 (L1.7x) 9% 166 x 1.54 %
Ablations
WEDGE 5.96 0.75 65% 363 x 1.65x
WEDGENoInsTR 4.02 (L1.5x) 0.21 (}3.6%) 29% 159 1.13x
WEDGEDgrauLT™MUT 1.54 (13.9%) 0.01 ({>75x%) 4% 12x 0.99x
AFL++ 1.49 (14.0x) 0.01 (>75x%) 2% 30x 0.99x

the output consistency across different solutions (labeled correct in CodeContests) under the same
input, following the existing work [32]. Any input leading to inconsistent outputs will be filtered out
(detailed in Appendix A.3). After these, we rank the tests for each solution in the dataset based on
the slowdown they introduce. We then select the top ten longest-running tests for each program and
aggregate them as part of our benchmark, PERFFORGE.

4.2 Main Results

To evaluate the effectiveness of PERFFORGE tests in stressing performance, we compare the slowdown
PERFFORGE brings to the programs against those by EVALPERF, TG-prompt, and PerfFuzz.

Table 1 shows that tests generated by WEDGE lead programs to execute, on average, 84.5% and 85.7%
(70.5% and 66.7% median) more CPU instructions than the two variants of EVALPERF, respectively.
They also have 54% (25% median) more CPU instructions than TG-prompt. PERFFORGE tests
dominate the number of programs (59%) where they run the slowest among all the other baselines
(win rate). Figure 3 visualizes the win rate by running head-to-head comparison between WEDGE
and the baselines. We also compute the slowdown that the tests achieved over the default tests in
CodeContests. On average, PERFFORGE tests outperform EVALPERF ones by 2.3x and TG-prompt
by 1.3x. Figure 3 illustrates a head-to-head comparison between PERFFORGE and the baselines,
where PERFFORGE’s tests slows significantly more programs compared to the other baselines.
Analyzing physical running times reveals similar trends (see Appendix A.5).

We extensively analyzed the performance-characterizing constraints as well as the test generators
synthesized by WEDGE and the other baselines and benchmarks. We observe that the inputs generated
by WEDGE focus more on the inefficient implementation in the code identified by the performance-
characterizing constraints, while those by EVALPERF are optimized to stress the input length specified
in the problem statement. TG-prompt, while not explicitly implemented to maximize bounds, faced
challenges in reasoning about holistic program behaviors end-to-end. Even with chain-of-thought
prompting, it still reduces to mostly generic length-stressing inputs specific to the problem statement
(e.g., large graphs for graph-based problems). We leave the detailed description of these qualitative
studies in §C due to space constraints.

Similarly, while PerfFuzz is designed to trigger worst-case behavior by favoring inputs that execute
more control-flow graph’s edges, we observe that PerfFuzz still ends up generating length-stressing
inputs. Without explicitly identifying and exercising the performance-characterizing constraints,
PerfFuzz can overlook inefficient implementations when it is guided only by the coverage of existing
branches in the code and the profiler. This is because the existing branches in the code are often
irrelevant to the efficient behavior, while the profiler may not capture the root cause of performance
bottleneck, as the input generated so far may not have exercised the inefficient implementation yet.

Ablations. We ablate the two designs related to performance-characterizing constraints: (1) guiding
the mutator generation with constraints and (2) instrumenting the program with constraint checker
code. For (1), we consider the AFL++ mutator as the baseline. For (2), we consider the original
program in the baseline.
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Figure 3: A head-to-head comparison between PERFFORGE (M) and the baseline tests (l). The bars
represent the number of programs where one incurs a larger number of CPU instructions. x-axis shows
the corresponding ratio between the corresponding CPU instruction counts. Since the two EVALPERF
variants show similar distributions, we only include EVALPERFg, oy here (see Section B.2).

Table 2: Running EFFI-LEARNER for code optimization using execution feedback from different
types of test sets. PERFFORGE improves EFFI-LEARNER the most.

S Total memory Max memory . .
Test set Execution time (s) usage (Mb * 5) usage (Mb) CPU instructions
GPT-40 DS-V3  GPT-4o DS-V3  GPT-40 DS-V3  GPT-40 DS-V3
None 15.66% 6.77%  21.70% 12.49% 2.78% 2.30% 31.39%  20.48%
CCefault 22.57% 1229%  27.78% 20.43%  11.89% 1.93% 39.89% 35.01%

PerfForge  26.47%  18.99%  35.10%  23.75% 11.82% 9.21% 49.31%  40.26%

Table 1 shows that WEDGE’s generated tests are on average 48.3% and 128.3% slower (in terms of
CPU instruction count and relative slowdown) than WEDGENnsTr, Showing that the instrumented
programs with constraint checkers can effectively guide fuzzing. Similarly, WEDGE’s generated tests
incur 287% more CPU instructions than those generated by WEDGEpgraurrmur (With default mutator).
On 63.02% solutions, WEDGE tests are slower than WEDGENonsTr tests (with a significance value
of 0.05, base on Mann-Whitney test [55]).

4.3 Utility of PERFFORGE

As described in Section 4.1, we investigate the utility of PERFFORGE by comparing PERFFORGE
tests to the default CodeContests tests (CCgefaui) that only evaluate the correctness on (1) improving
LLM-based code optimizations (EFFI-LEARNER [3]) based on the execution feedback, and (2) fairly
measuring performance improvement where the baseline’s evaluation relied only on correctness tests
(PIE [5]). To ensure a fair comparison, we adopt the exact same evaluation setup and metrics used by
the two baselines. For example, we include memory usage to evaluate how PERFFORGE improves
EFFI-LEARNER. Since EFFI-LEARNER relies on the original CodeContests tests, yet for about 15%
problems have less than ten tests available, we instead use top-5 slowest tests per solution.

Improving code optimization with execution feedback. We collect a corpus of 280 slow Python
solutions from 56 problems in PERFFORGE following the EFFI-LEARNER’s filtering strategy. For
each solution, we run EFFI-LEARNER with three different prompts to let EFFI-LEARNER optimize
the code. (1) we use the solution code alone with no execution feedback (None). (2) we use code
annotated with profiling information from running the original CodeContests default tests (CCgefauit)-
(3) we use code annotated with profiling information derived from our PERFFORGE tests (PerfForge).
We consider both OpenAl GPT-40 and DeepSeek V3 as the backends for EFFI-LEARNER.

Table 2 illustrates that PERFFORGE tests achieves the best performance improvement. EFFI-LEARNER
can optimize the code to execute 24% less instructions (or approximately 10 percentage points),
run 17% faster, and use 25% less memory on average when providing GPT-40 with PERFFORGE
execution profiles as opposed to their original setup. Similarly, EFFI-LEARNER can optimize the
code to execute 15% less instructions, run 46% faster, and use 16% less memory when providing
DeepSeek with the same PERFFORGE-driven execution profiles.



Table 3: Pie Experiment: average speedup and fraction of optimized programs, i.e., at least 10%
faster (%Opt) evaluated by different test sets following [S5]. The top-performing test set is highlighted.

Speedup (#inst) Speedup (time) %O0pt (#inst) %Opt (time)
PIEy PIE. PIE, PIE; PIE. PIE, PIEy PIE. PIE, PIE; PIE. PIE,
CClefault 1.32 198 121 093 1.13 132 6.0% 162% 4.4% 16.6% 292% 56.5%

CCiiow 130 1.85 121 094 113 132 55% 156% 4.4% 181% 271.9% 56.5%
PerfForge 1.62 1.99 3.01 1.18 129 138 12.1% 188% 304% 26.6% 41.6% 60.9%

Test set

Evaluating code optimization fairly. We show how PERFFORGE can measure performance
improvement claimed by existing code optimization more fairly than the correctness test. To this
end, we consider PIE [5], a state-of-the-art LLM-based code optimization based on finetuning, but
relied on the default correctness tests to measure their performance improvement. We select their
three most effective models (CodeLlama 13b) finetuned with the following different datasets: (1) HQ
(high-quality) data annotated by the authors (PIEy); (2) performance-conditioned data to optimize
C++ programs annotated with a target optimization score reflecting its potential “peak performance”
(PIE(); (3) all data from the entire PIE dataset. We then adapt our program selection to match the
requirements of PIE (details in §A.1)

We follow the same set of metrics as [5] by measuring the average relative speedup between the
original and optimized code in instruction counts and physical time, as well as the percentage of
programs that the LLM models can optimize by at least 10% (%Opt) [5]. Table 3 illustrates how our
tests better characterize the performance bottlenecks. PERFFORGE outperforms the CodeContests
default tests (CCefauir) and its top five slowest tests (CCgjow) by 24% to 149% in terms of instruction
counts and by 5% to 27% in terms of physical time. It also helps discover that between 7% and 48%
more programs have actually been meaningfully optimized and run at least 10% faster.

4.4 Sensitivity Analysis

Discriminative power of performance-characterizing constraints. To investigate whether and how
WEDGE-generated performance-characterizing constraints can indeed capture performance-stressing
inputs, we select 810 programs in CodeContest where both constraint-satisfying and constraint-
violating inputs exist. Results show that constraint-satisfying inputs are, on average, 38.6x slower
than constraint-violating inputs. We conduct a Mann-Whitney test [55], and constraint-satisfying
inputs are significantly slower (with a significance value p < 0.05) than constraint-violating inputs
on 92.84% programs.

Impact of constraints in guiding fuzzing. To better understand the impact of guidance of con-
straints (including mutator and code instrumentation for coverage guidance), we calculate the ratio
of constraint-satisfying inputs (out of valid inputs) per strategy. Result shows that the ratios of
constraint-satisfying inputs among generated inputs of AFL++, WEDGEpgraurtmur, W EDGENoINSTRS
and WEDGE are 40.42%, 41.44%, 77.62%, and 80.48%, respectively. In other words, both involving
performance-characterizing constraints and constraint checker code contribute positively to the ratio
of constraint-satisfying inputs. Furthermore, strategies that yield a higher proportion of constraint-
satisfying inputs tend to achieve better performance (see Section 4.2), indicating that satisfying
performance-characterizing constraints correlates with the generation of more stressing test inputs.

Effect of input size. We investigate how input size affects the effectiveness of PERFFORGE consider-
ing that leveraging fuzzing to generate large inputs is a known challenging problem [25]. We observe
our framework outperforms the baselines by larger margins when we further restrict the input size to
be less than 1KB. In particular, for problems whose inputs are less than 1KB, the slowdown achieved
by WEDGE is 3%, almost double that on the entire problems without such restrictions, 1.5x. These
findings underscore that the performance-stressing characteristics of our tests stem from inputs being
designed to target implementation-specific bottlenecks rather than being simply length-stressing. We
put the detailed results in §B.3 due to space constraints.



5 Related Work

Performance fuzzing. A popular line of related work aims to trigger performance bugs by automati-
cally crafting worst-case inputs [13, 25, 4244, 56]. For example, SlowFuzz [13] and PerfFuzz [25]
are feedback-driven fuzzers that search for inputs causing extremely long execution cost. Fuz-
zFactory [56] generalizes this idea by allowing developers to define custom performance-oriented
feedback metrics and integrate them into a fuzzing framework. These tools have been effective at
uncovering inefficiencies related to algorithmic complexity or poor resource utilization. However,
they rely on runtime instrumentation or heuristics (e.g., counters for loops or allocations) as well
as specific performance hints or signals, often manually crafted, to guide the input search. WEDGE
complements this line of research by automating the synthesis of diverse performance-characterizing
constraints as the test oracle.

Performance bug detection. Numerous tools have been invented to detect performance bugs by
identifying inefficient code patterns, costly loops, repeated computations, and suboptimal usage of
data structures [57-65]. While WEDGE could be extended to detect performance bugs, it focuses
more on translating the performance-stressing symptoms into fuzzer-amenable constraints. There-
fore, WEDGE focuses more on evaluating and improving existing LLM-based code optimization
approaches, as opposed to finding performance bugs in large-scale systems.

LLMe-assisted test generation. A growing body of research focuses on LLM-assisted test gener-
ation [66-70, 38, 71, 22-24, 36, 72]. Most of these works leverage LLMs to directly generate the
stressing inputs or the input generators based on the code under test. This usually requires tracking
and reasoning over long-range control and data dependencies in the program, posing significant
reasoning burdens to LLMs to infer the desired inputs all the way from specific program points
deep in the code. In contrast, WEDGE alleviates LLMs’ role from end-to-end input synthesis to
only generating local performance-characterizing predicates, mitigating the burden introduced by the
potentially long-context reasoning.

6 Discussion and Conclusion

Limitations. The limitations of WEDGE are threefold. First, WEDGE incorporates prompting and
fuzzing for each solution, thus incurring considerable token cost and execution overhead. Second,
performance-characterizing constraint reasoning depends on mining high-quality contrastive input
pairs, thus requiring either an existing test input corpus and/or additional executions. Third, the
underlying fuzzer often suffers from the input length constraints. For example, AFL++ [19] can only
mutate input data smaller than a threshold, e.g., IMB by default (and we modified it to I0MB), thus
cannot handle arbitrarily large inputs.

Future work. Our key insight is to decompose the problem of stress test generation into performance-
characterizing constraint reasoning and constraint-guided search, where the former can benefit from
LLM’s code reasoning capability and the latter can leverage efficient input search tools based on
fuzzing. Future work includes extending WEDGE to real-world projects and generating test oracles
beyond performance evaluation.

Conclusion. We introduced WEDGE, a framework to evaluate and improve code efficiency by gener-
ating performance-characterizing constraints with LLMs and guided fuzzing to explore performance-
stressing inputs. We released our performance-stressing tests, along with the CodeContest programs,
as a new benchmark PERFFORGE at https://github.com/UChiSeclab/perfforge. With PERF-
FORGE tests, we have demonstrated that WEDGE helped better evaluate and substantially improve
existing code optimization techniques.
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A Detailed Design Decisions
A.1 Filtering Policies

Filtering process for evaluating WEDGE. The original CodeContest dataset (“train” split, “Code-
forces” section [45]) contains over 3,000 problems with hundreds C++ solutions each. It is infeasible
to evaluate that many executions due to both computational and monetary costs. To address this, we
focus on a smaller yet meaningful subset by applying the following filtering criteria.

(1) Sufficient computation. We remove problems whose solutions never exceed 100,000 instructions
on any input to reduce the impact of potential noise following [12].

(2) Sufficient solutions. We remove problems with fewer than 10 correct solutions because we need
to run fuzzing on a reasonable amount of correct solutions to obtain meaningful measurements.

(3) Sufficient test inputs. We remove problems with fewer than five default tests because we need
enough inputs for fuzzing to be effective and also to identify contrasting input pairs ( §3.1).

(4) Single output. We filter out problems that accept multiple correct outputs.

(5) Diversified performance. We only include problems with diversified performance across the
solutions. Specifically, we use the Coefficient of Variance (CV) to measure the diversity, follow-
ing [12]. Low diversity means most solutions have similar performance, indicating the solutions are
likely optimal or close to optimal. Intuitively, there are fewer opportunities to identify performance-
characterizing constraints on the optimal solutions.

Additional filtering to accommodate EFFI-LEARNER. Note that the original EFFI-LEARNER
explores using profiling information to improve LLM-generated code, while we adapt it to our
scenario, i.e., improving slow user solutions. To this end, we extract a subset of problems and
solutions from the 300 problems in PERFFORGE. Specifically, in addition to the sufficient computation
criterion above, we applied the following criteria:

(1) Python code. Instead of C++, we focus on Python solutions as EFFI-LEARNER is designed for
Python. EFFI-LEARNER also requires these Python programs to contain function definition, i.e., with
def keyword, as the profiling tools work at the function level.

(2) Room for code optimization. Solutions should be relatively slow, namely suboptimal, so that
there’s space for improvement. Thus, we include only solutions that execute approximately twice the
number of instructions when compared to the fastest (correct) solution for that particular problem.

Similar to our main filtering criteria above, we select problems that have at least five such solutions.
We then select the five slowest ones per problem to form our evaluation dataset. Ultimately, we end
up with 56 problems and 280 Python solutions.

Additional filtering to accommodate PIE. The original PIE framework [5] was evaluated on
solutions to coding problems from the CodeNet dataset, a subset of CodeContests. Following the
authors’ original experimental setup, we focus on C++ solutions and, in addition to the sufficient
computation and room from improvement criteria above, we also require solutions to be relatively
short (<50 LoC) to accommodate the small LLM context window that PIE requires.

A.2 Iterative Mutator Generation

Although AFL++ [19] has shown superior performance in terms of coverage-guided test input
generation, it is not ready to use off the shelf. The default mutators of AFL++ engine are optimized
for compact data formats - say, images, multimedia, compressed data, etc., supporting operations
like flipping bits, inserting bytes, changing bytes, etc., not aware of the validity constraints of inputs.
Therefore, such byte-level mutators will produce many invalid inputs that violate the input constraints
of the coding problems. Instead of using the default mutators, we rely on the custom mutators
interface of AFL++, which allows the user to specify a customized Python or C++ mutator script as
the mutator engine. We prompt the model with problem description S, summarized constraints Cp,
AFL++ provided mutator example, etc.

Different from EVALPERF [12] and TG-prompt [3, 34, 8] style generator synthesis, mutator synthesis
is more challenging since in addition to making sure the mutated input follows the input constraints,
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it also needs to be robust enough to mutate inputs in various shapes. To this end, we propose to use an
iterative mutator generation approach. The intuition comes from recent works [75] showing LLMs are
good at fixing programs conversationally. For each generated mutator, we launch a dry run for three
minutes. If the dry run successfully exited with a number of new test inputs generated, the mutator is
labeled as “pass”. Otherwise, we append the failing message such as “IndexError: list assignment
index out of range” to the conversation and ask the LLM to fix the issue. The prompting-and-dry-run
loop terminates when a good mutator is produced, or the maximum number of rounds (ten in our
experiments) have been tried. The evaluation shows only the ratio of successful mutators of single
round generation is only 80.13%, while it’s improved 82.96% after one round and 83.35 after ten
rounds, demonstrating the effectiveness of iterative refining.

A.3 Input Validation with Consistency Checks

LLM-based input validator. Both fuzzing and prompting-based generator generation can produce a
large amount of test inputs. However, the generated inputs might violate the input format or specifica-
tions in the problem description. To tackle this problem, Liu et al. [29] adopted a programming by
contract philosophy by manually annotating function pre-conditions in the form of code assertions
(e.g., assert n > 0) to ensure the test inputs for the function are well-formed. However, manual
annotation is known to be error-prone and expensive [76]. On the other hand, synthesizing a validator
is generally challenging as there’s no ground truth.

We rely on the rich test cases (which are labeled as correct by the open-judge platform) in the dataset
to reduce wrong validators, following the paradigm of Programming By Example (PBE), i.e., a good
validator should not label any valid inputs as invalid. Specifically, we iteratively prompt the LLM to
generate a validator Python script and execute it on the “public” and “private” test cases. If some tests
fail, we append the failing message to the conversation and ask the model to fix the validator, until all
tests pass or it reaches the retry limits. If no good validator is generated for a problem, it is excluded
from our evaluation set. In the end, we can successfully generate 289 validators within five rounds.
Among them, 280 validators are generated successfully in the first round. Note that this approach
does not ensure the correctness of the validators as the synthesis problem is generally undecidable,
but it gives us higher confidence on the reliability of the validators.

Consistency check. In addition to the generated validator, we introduce a “consensus” consistency
check to further filter out invalid inputs. For each generated input, we execute all correct solutions
under the input and check whether 95% of them are consistent. Inputs leading to over 5% inconsistent
results will be discarded. The intuition is that a well-formed input should be processed correctly by
all correct solutions. We apply the validators and consistency check to all techniques to ensure a fair
comparison.

A.4 Implementation and System Environment

We run experiments on six x86-64 machines equipped with a 24-core Intel Xeon Gold 6126 CPU with
192GB of RAM. Each machine runs Ubuntu 20.04 LTS (kernel version 5.4.0). We use the OpenAl
GPT-40 (gpt-40-2024-08-06) and DeepSeek V3 (deepseek-v3-2024-12-26) with a temperature of
0.8 and max_length of 4,096. We use GPT-40 as the backbone LLM of WEDGE and all baseline
techniques. For EFFI-LEARNER utility experiment 4.3, we use both GPT-40 and DeepSeek V3 for
prompting. For PIE utility experiment 4.3, we use the same settings (temperature of 0.8, max_length
of 4,096) for the three evaluated fine-tuned models.

In the contrasting-input-pair mining stage, WEDGE will select no more than 10 solutions where at
least one contrasting input pair exists. It then reasons about and generates performance-characterizing
constraints per solution. Each constraint is used both for instrumenting the solution program (fuzz
driver) and mutator generation. Each instrumented solution program is fed to AFL++ and runs for
one hour.

We implement a prototype of WEDGE and provide the scripts to run and collect experiment data,
publicly: https://github.com/UChiSeclab/perfforge. We use Python as our main development
language and rely on the perf and gcov Linux utilities to collect instruction count, physical, and
code coverage metrics. Overall, our artifact is implemented in approximately 10,000 LoC.
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Table 4: WEDGE versus baselines (described in Section 4.1) and its ablation.

Execution time (ms)

Technique Average Median Win rate
Comparison with baselines
WEDGE 228.60 82.33 60 %
TG-prompt 182.15 (41.3x) 85.60 (11.1x) 12%
PerfFuzz 140.63 ({1.6x) 60.81 ([1.3%) 11%
EVALPERFs 0w 139.83 (1.6x) 61.69 (J1.3%) 8%
EVALPERFgrann 134.79 (41.7x) 60.90 (}1.4x) 9%
Ablations
WEDGE 228.60 82.33 65 %
WEDGENoInsTR 171.63 ({1.3%) 71.54 (J1.2x) 29%
WEDGEDgravLt™MUT 86.57 (12.6%) 59.13 (}1.4x) 4%
AFL++ 78.27 (12.9%) 45.13 (| 1.8%) 2%

A.5 Discussion on Measurements

To measure performance, we rely on the number of (retired) instructions based on physical execution
time. We use the perf Linux utility [77] for both measurements. While physical running time is
a more intuitive measurement, it can be prone to interference from transient system effects—such
as background processes, scheduling policies, and variable I/O latencies—which may mask true
computational cost [54, 51]. In contrast, measuring instruction counts is a metric that is more
stable across run, platform-agnostic, and is well understood to significantly correlate with executions
exhibiting performance bottlenecks [50-53].

Recently, LLM-based code analysis tools started to rely on instruction count measured through
hardware counters [12, 34] or emulation [5] to evaluate code efficiency as it provides a more reliable,
low-variance measurement than physical time alone. Moreover, experiments in [34] found instruction
count measurements are approximately 1000x magnitude more stable than physical execution time.
This mirrors our own findings: our experiments reveal that physical time is ~400x more variable
than CPU instruction counts (12% versus 0.03%, on average, see §4.2 and §B.1, respectively).

Prior works respectively rely on CPU simulators like Gem5 [78] (PIE [5]), physical execution time
(EffiBench [33], Mercury [8]), and hardware performance counters [79] (EvalPerf [12], COFFE [34]).
GemS is known to be stable, but the overhead is significant, and the CPU simulator does not necessarily
reflect the physical performance. While physical running time offers an intuitive measure, it is
susceptible to interference from transient system effects—such as background processes, scheduling
variability, and I/O fluctuations—which can obscure true computational cost. In contrast, hardware
performance counters provide a more stable, low-noise, and platform-agnostic metric. It records
the number of executed instructions of program execution using the Linux perf tool [54]. It incurs
low overhead and is highly reproducible. Moreover, Peng et al. [34] demonstrates that it’s linearly
correlated with execution time with Pearson correlation coefficient of 0.96 ~1.0.

B Extended Results

B.1 Physical Running Time Measurements

We include physical running time measurements as a reference. Note that the variance among the
five repetitions is more significant than for CPU instructions count, namely 12%, on average. While
multiple factors contribute to this large variance, we argue that the dominant factor of “noise” is
I/O as a sizable fraction of programs need to read thousands of KB, thus making them I/O-bound.
Nevertheless, Table 4 shows that our tool outperforms all other baselines even when measuring
physical execution time, a more noise-prone metric.
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Table 5: Source numbers for generating Figure 3. Due to space constraints, we group numbers in bins
of size 200% (instead of 10%) into 6 larger buckets. A bucket of [x, yJ] represents the number of
programs one technique incurs between x% and y% (inclusive) larger instruction count than the other.

Techniques \ Bins [0, 199] [200, 399] [400, 599] [600, 799] [800, 999] [1000,)
WEDGE vs.
TG-prompt 17,117 (11,704) 1,524 (]63) 158 ([60) 148 ([40) 155 (]27) 311 (1768)
PerfFuzz 14,192 (11, 758) 444 (183) 206 (157) 159 3) 71 0) 34391 17)

EVALPERFson 15,628 ([1,856) 1,365 (169) 425(]43) 587(, 7) 311([11) 1,288 (1454)
EVALPERFeamo 15,879 (11,999) 966 (178) 588 ([13) 664 (122) 367 (114) 1,004 ([450)

Table 6: WEDGE versus length-stressing baselines (Section 4.1) for problems whose inputs are below
a threshold.

Technique # of instructions (x 10%) Win rate Slowdown over CC
Average Median Average Median
Less than 1IMB
WEDGE 4.29 0.17 59 % 113x 1.11x
TG-prompt 2.28 (11.9%) 0.14 (J1.2%) 11% 75x% 1.01x
EVALPERFs; ow 2.57 (11.7x) 0.07 (42.3%) 14% 57x 1.05x
EVALPERFgAnD 2.59 (J1.7x) 0.08 (12.2x) 16% 88x 1.05x
Less than 100KB
WEDGE 3.71 0.08 56 % 88 x 1.06x
TG-prompt 1.85 (12.0%) 0.06 (11.3%x) 10% 60 x 1.00x
EVALPERFsLow 248 (11.5%) 0.03 (42.3%) 16% 49 % 1.02 %
EVALPERFganD 2.52 (11.5%) 0.03 (2.5%) 18% 84 x 1.02x
Less than 10KB
WEDGE 3.10 0.02 55% 20 1.02x
TG-prompt 1.26 (J2.5%) 0.01 (J1.5%) 5% 9x 1.00x
EVALPERFs. 0w 1.79 (L1.7x) 0.01 (J1.4x%) 19% 7% 1.00x
EVALPERFganD 1.53 (J2.0%) 0.01 (J1.4x%) 21% 8x 1.00x
Less than 1KB
WEDGE 2.98 0.01 54 % 5% 1.01 x
TG-prompt 1.00 (13.0%) 0.01 (J1.5%) 6% 1x 1.00x
EVALPERFs 0w 1.63 (J1.8%) 0.01 (J1.3%) 16% 1x 1.00x
EVALPERFganp 1.45 (]2.1%) 0.01 (J1.3%) 24% 1x 1.00x

B.2 Head-to-Head Numbers

Table 5 shows the absolute numbers used to generate the histogram in Figure 3. Specifically, the
values outside of parentheses represent the number of programs that execute more instructions when
running PERFFORGE tests, while those in parentheses indicate the number of programs that execute
more instructions when running tests generated by one of the baselines (each row). Note that with
one exception, TG-prompt tests that determine programs to execute 10X more instructions, our
framework outperforms each technique. Even so, PERFFORGE tests determine more programs for
longer by more than 50% compared to TG-prompt (Table 1).

B.3 Effect of Input Size

On the one hand, we compare our framework with length-stressing baselines that are geared to-
wards maximizing the input sizes [12, 34]. On the other, designing fuzzing tools that generate
performance-stressing tests are fundamentally challenging, and requires specialized metrics and
tailored mutators [25]. Therefore, we investigate if and how input size plays a role in the quality of
our tests (i.e., how “performance-stressful” they are).

Specifically, we partition our original dataset (Section 4.1) into subsets of problems based on the
maximum input size they require, and compare PERFFORGE against tests generated by each baseline.
Table 6 shows that, on average, our WEDGE outperforms the baselines when restricting input size.
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Table 7: Cost analysis of phases of WEDGE.

Phase Tokens Time (s) # Executions
Contrastive input pair mining N/A 15.46 99.65
Profiling feedback collection N/A <1 2

PC constraint reasoning and constraint checker generation 9633.16 <1 N/A
Constraint-aware mutator generation 6905.27 180 N/A
Constraint-guided fuzzing N/A 3600 N/A

The largest shift happens when compared with TG-prompt. For problems whose inputs are less than
1KB, the difference is almost double than comparing the two on the entire dataset, 3.0x vs 1.5x,
respectively.

B.4 Cost Analysis

Table 7 presents the statistics of time or token cost in each phase. The most time-consuming phase is
constraint-guided fuzzing, which runs for one hour. The most token-consuming phase is PC constraint
reasoning and constraint checker generation, which consumes 9.6K tokens. However, since we have
99.65 test inputs generated for each program on average, the time and token consumption per test
input is low, i.e., within 39 seconds and 166 tokens per input on average.

C Case Studies

In this section, we consider several interesting case studies of performance-characterizing constraints
generated by WEDGE. We first rank the synthesized constraints by the combined size of their plain
language description and corresponding generated checker code. We then select five out of the top ten
problems that belong to different algorithmic classes. We provide the full response produced by the
LLM along with additional selected case studies at https://github.com/UChiSeclab/perfforge.

C.1 Qualitative Analysis of Interesting Cases

In this section, we investigate the test generators synthesized by each baseline technique and compare
them with the performance-characterizing constraints generated by WEDGE, for Problem 633A which
serves as our motivating example.

| def perf_input_gen(scale: int):

2 # Assuming scale affects the complexity of the test, but since a and b have a fixed range
3 we will use maximum values for a and b and scale will just determine c's complexity.

4 99

5 100

= 10_00@ # Maximum possible value for c
eturn (a, b, c)

Listing 1: EVALPERFg; ow synthesized generator for Problem 633A

Inspecting the test generator synthesized by EVALPERFg ow (Listing 1) shows that it only generates
inputs close to the problem’s upper bounds (i.e., 99, 100, 10000) without even utilizing the scale
parameter.

def perf_input_gen(scale: int):

1
~

# Set maximum values for a and b to test edge cases
3 a = randint (1, 100)
4 b = randint(1, 100)
5
6 # Scale c¢ to be large, but within the limit
7 # c is chosen to be large to test performance, we still ensure it is within problem

constraints
8 c = min(max (1, scale), 10000)

10 return (a, b, c)

Listing 2: EVALPERFgnp synthesized generator for Problem 633A
The test generator synthesized EVALPERFg4np (Listing 2) random a and b within [1, 100] range and

a large c (determined by scale) as the input. Still, the effect is generating values close to the upper
bounds of the problem.
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def generate_tests(output_directory):

1

2 test_cases = [

3 # Minimum edge case
4 a, 1, 1,

J

6 # Simple cases

7 (2, 3, 5),

8 (3, 3, 6),

10 # Co-prime (a, b) and larger c
11 (17, 19, 100),

12 (101, 103, 5000),

13

14 # Large c with simple a, b
15 (2, 3, 9999),

16

17 # Boundary cases

18 (50, 50, 10_000),

19 (99, 100, 9_900),

20

21 # Maximum values

22 (100, 100, 10_000),

23

24 # Various patterns

25 (5, 10, 995),

26 (7, 10, 9997),

27 (1, 100, 10_000),

28 (100, 1, 10_000),

29

30 # Co-prime trickiness

31 (4, 7, 9999),

32 (15, 20, 10_000),

33

34 # Just above/below multiples
35 (3, 5, 10002),

36 (5, 3, 9998),

37

38 # Another complex co-prime situation
39 (97, 89, 9999),

40

41 # Randomized challenging cases
42 (37, 41, 10000),

3 (6, 9, 9999)

4 1]

45 # write test cases

Listing 3: TG-prompt synthesized generator for Problem 633A

TG-prompt (Listing 3) composes a series of concrete test cases rather than synthesizing a pattern-
based generator. While it attempts to implicitly reason about how to synthesize performance-stressing
inputs by including diverse patterns, some appear as generic corner cases. Thus, there is no guarantee
these can trigger performance bottlenecks.

In contrast, WEDGE relies on fuzzing with constraint-aware mutators to efficiently search for a diverse
set of constraint-satisfying inputs. Listing 4 shows a constraint-aware mutator for Problem 633A.
The mutator will mutate a previous input (seed input) to produce the next input (mutated input). The
while loop will search the input space of (a, b, c) and ensure they conform to the constraints not
abs (a-b) >50orc%a=0orc%b==20,ie,abs (a-b)<=5andc%al=2
and ¢ % b != 0 (already satisfying the first two out of three constraints in Listing 5).

| def mutate_last_input (buf):

; Mutate the last input slightly to explore the surrounding input space.

4

5 parts = buf.decode('utf-8"').strip().split()

6 a = int(parts[0])
7 b = int(parts[1])

8 c int(parts[2])

9

10 # Small mutations to each part

11 a = max(1, min(100, a + random.randint(-5, 5)))
12 b = max(1, min(100, b + random.randint(-5, 5)))
13 c = max(1, ¢ + random.randint(-500, 500))

14

15 # Ensure the mutation leads to potentially challenging inputs
16 while abs(a - b) > 5 or c % a ==0 or c % b == 0:
17 a = max(1, min(100, a + random.randint(-5, 5)))
18 b = max(1, min(100, b + random.randint(-5, 5)))
19 c = max(1, ¢ + random.randint(-500, 500))

21 return f"{a} {b} {c}"

Listing 4: WEDGE synthesized constraint-aware fuzzing mutator for Problem 633A
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1 // Check if a and b are close and neither is a direct divisor of c
void check_close_values_constraint(int a, int b, int c) {

>

3 if (abs(a - b) <=5 & c % a != 0 & c % b != 0) {

4 cerr << "Warning: close_values_constraint triggered - a and b are close, and neither
divides c" << endl;

5 %

6 }

Listing 5: WEDGE generated performance-characterizing constraints checker code

C.2 Other Representative Case Studies

# Case 1: Problem 1209B, solution #328. Given a set of n lights, each initially on/off and described
by two parameters (a;,b;), light 7 toggles its state at times b;, b;+a;, b;+2a;, ... The goal is to find the
maximum number of lights simultaneously on at any moment.

| #include <bits/stdc++.h>

2 using namespace std;

3 const long double pie = 3.14159265358979;
4 const long long mod = 1e9 + 7;
5

5 string vow = "aeiou”;
6 void solve(int test_case) {
7 int n;

8 cin >> n;

9 string s;

10 cin >> s;

11 int N = 1e3;

12 vector<vector<int> > v(n, vector<int>(N, 0));

13 vector<pair<int, int> > p(n);

14 for (int i = 0; i < n; i++) cin >> p[i].first >> p[i].second;
15 for (int i = 0; i < n; i++) {

16 if (s[i]l - '0') v[il[e]l = 1;

17 for (int j = 1; j < p[i].second; j++) v[il[j] = v[il[j - 11;
18 int temp = v[il[0] * 1;

19 for (int j = p[i].second; j < N; j += p[i].first) {

20 for (int k = @; j + k < N; k++) v[il[j + k] = temp;

21 temp *= 1;

2 3}

23}

24 int ans = 0

25 for (int j = 0; j < N; j++) {

26 int temp = 0;

27 for (int i = @; 1 < n; i++) temp += v[il[j];
28 ans = max(ans, temp);

29 3}

30 cout << ans;

31 cout << "\n";

33 int main() {

34 ios_base::sync_with_stdio(false);

35 cin.tie(0);

36 cout.tie(9);

37 int t = 1;

38 for (int i = 0; i < t; i++) solve(i);
39 return 0;

40 }

Listing 6: Example from our dataset: problem 1209B, solution 328

The code in Listing 6 simulates a fixed time window N = 1, 000, instead of reasoning analytically
about the periodic patterns which requires solving a least-common-multiple type of problem. Specifi-
cally, the program builds a two-dimensional array where for each light 7 it first copies its initial state
up to t = b, then for each toggle epoch t = b;,b; + a;,... it fills the remainder of the row in one
shot via a nested “for k” loop at line 20. Finally, it scans each column ¢, sums up v[é][t] for i = 1, n,
and tracks the maximum (line 28). In the worst case, when a; = 1, the program performs O(N?)
iterations per toggling operation, for an overall complexity of O(n - N2 +n - N).

void check_small_a_values(const vector<pair<int, int>>& p) {

1

2 int small_a_count = 0;

3 for (const auto& pair : p) {

4 if (pair.first <= 2) { // Assume 'small' a_i values are <= 2
5 small_a_count++;

6 b
7 3
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8 if (small_a_count > 50) { // Arbitrary threshold, adjust as needed
9 cerr << "Warning: Performance bottleneck condition triggered - many lights have small
'a' values"” << endl;

10 3}

11}

12

13 void check_synchronized_b_values(const vector<pair<int, int>>& p) {

14 map<int, int> b_count;

15 for (const auto& pair : p) {

16 b_count[pair.second]++;

17 }

18 for (const auto& [b_value, count] : b_count) {

19 if (count > 30) { // Arbitrary threshold for synchronization

20 cerr << "Warning: Performance bottleneck condition triggered - synchronized 'b'

values” << endl;

21 3}

2 }

23}

24

25 void check_large_number_of_lights(int n) {

26 if (n > 90) { // Close to the upper constraint

27 cerr << "Warning: Performance bottleneck condition triggered - high number of lights”
<< endl;

28 }

9 }

Listing 7: PC-constraints as C++ checker functions: problem 1209B, solution 328

WEDGE identifies three types of pc-constraints for this program, listed in 7.

1. The first performance-characterizing constraint (i.e., check_small_a_values) finds that if
many lights have very small a; (e.g. 1), translates to more iterations of the outer loop at
line 15. Consequently, each iteration invokes a full inner copy (loop at line 20). Thus, small
periods significantly amplify the work performed by the nested-loop work.

2. The second performance-characterizing constraint (i.e., check_synchronized_b_values)
points to clusters of b; values: if many lights share the same or close b;, their current state
lineup, causing the code to execute the heavy inner loop at line 20 for multiple lights at
the same early offsets. Specifically, low or repeated p[i].second forces expensive fill
operations to execute immediately and for many lights in fast succession.

3. Finally, the third performance-characterizing constraint G.e.,
check_large_number_of_lights) simply indicates that as n approaches its upper
bound near 100, the total nested work scales linearly in n. Each additional light multiplies
the cost of the O(NN?) toggling loops and the O(V) scan across time.

A purely specification or problem-statement based performance analysis might determine that small
toggle periods and a large number of lights trigger multiple loop iterations because any simulation
of a periodic, large number of events would exhibit that. However, the actual performance profile
of the code actual performance relies on two highly implementation-specific choices. First, instead
of toggling cell by cell, the implementation writes an entire suffix of the time-array (for loop at
line 20), thus a light toggle to linear (O(N)) instead of constant operation. Second, the choice of
simulating the maximum number of seconds possible, 1,000 1,000, irrespective of the input. An
optimal solution would take into account that each light’s behavior is periodic, namely once it reaches
its first toggle at t = b;, thereafter it repeats every a; seconds. This, naturally, translates into cycles
of length equal to the lowest common multiplier: £ = lcm(aq, ag, ..., ay). The complexity of the
optimal program is, therefore, approximately two orders of magnitude since, based on the problem
specifications, 1 < a;,b; < 5. Since ¢ < lem(1,2,3,4,5) = 60 this leads to an optimal complexity
of O(£? - n) = O(3,600 - n) instead of the current O(N? - n) = O(10° - n).

# Case 2: Problem 1118D1, solution #30. Given a homework of m pages and n coffee cups with
caffeine doses a1, ..., a,,, the problem asks to compute the minimum number of days a student must
schedule to drink those cups so the pages he writes reach or exceed m. When the student drinks &
cups on a single day labeled a;, , ..., a;, , the first cup lets him write a;, pages, the second max(0, a;,
— 1), the third max(0, a;, — 1), and so on. Thus, the task is to find the smallest such sequence given 7,
m, and the list of caffeine values.

| #include <bits/stdc++.h>
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2 using namespace std;

3 const long long int N = 1e6;

4 long long int n, m;

5 vector<long long int> v(N);

6 bool check(long long int days) {

7 long long int pages = 0, k = 0;

8 for (long long int i = @, j = 0; j < n; i++, j++) {

9 pages += max(01ll, v[jl - k);

10 if (i + 1 == days) i = -1, k++;
11 3}

12 return pages >= m;

13 3}

14 int32_t main() {

15 scanf ("%11d", &n);

16 scanf ("%11d", &m);

17 long long int sum = 0;

18 for (long long int i = 0; i < n; ++i) {

19 scanf ("%11d", &v[il);
20 sum += v[il;

)

22 if (sum < m) {

23 printf("-1");

24 return 0;

5 %}

26 sort(v.begin(), v.end(), greater<long long int>());
27 long long int ans = 1el6;
28 long long int low = 1;

29 long long int high = n;

30 while (low <= high) {

31 long long int mid = (low + high) / 2;
32 if (check(mid)) {

33 ans = min(ans, mid);
34 high = mid - 1;

35 } else {

36 low = mid + 1;

37 3}

38 }

39 printf("%11d", ans);

40 return 0;

41 }

Listing 8: Example from our dataset: problem 1118D1, solution 30

The program in Listing 8 implements a binary search on the expected output, m. For each value of
m, the binary search simulates writing pages over days days (function check) by iterating each cup
exactly once, decrementing future cups by an increasing offset & whenever a day’s quota is reached
at line (lines 9-10).

When the binary search checks a candidate value, it always scans all n cups in the for loop at line 8,
performing O(n) work per invocation. The binary search interval shrinks slowly, forcing multiple
calls to check, which runs in O(n) time. Thus, when n approaches its upper limit and m nearly
equals the sum of all a;, the combination of an O(log n) binary search multiplied by an linear check
becomes the dominant bottleneck.

| void check_binary_search_invariant(long long sum, long long m, int search_iterations) {

2 if (search_iterations > 100 && sum >= m && (m > 0.9 * sum)) {

3 cerr << "Warning: binary_search_invariant triggered - extended binary search due to
close capacity and requirement” << endl;

4 abort();

5 3

63}

8 void check_cup_order_invariant(const vector<long long>& v, long long m) {
9 long long potential_pages = 0;

10 int decrement_operations = 0;

11 for (size_t i = 0; i < v.size(); ++i) {

12 potential_pages += max(0ll, v[i] - (long long)i);

13 if (v[il > (long long)i) {

14 ++decrement_operations;

15 }

16

17 if (decrement_operations > 50 && potential_pages < m) {

18 cerr << "Warning: cup_order_invariant triggered - extensive decrement operations” <<
endl;

19 3

20 3}
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Listing 9: Performance-characterizing constraints as C++ checker functions: problem 1118D1,
solution 30

WEDGE identifies two types of performance-characterizing constraints for this program, listed in
Listing 9.

1. The first performance-characterizing constraint (check_binary_search_invariant) finds
that the binary search becomes expensive by performing a large number of iterations when
the necessary pages m are close to the cumulative caffeine sum of all cups n and n is
particularly large.

2. The second performance-characterizing constraint (check_cup_order_invariant) finds
that the loop in check (lines 8-10) performs on the order of n x days operations. This
happens because check iterates over the entire list of n cups adding max(0, v[j] — k) per
page and resetting the loop counter ¢ every days iterations.

The first performance-characterizing constraint relates to binary search complexity and is generic
since searching over a large range is typically worst-case in terms of time complexity, the target value
lies in the middle, forcing the search to “zig-zag” and perform a large number of iterations.

In contrast, the second performance-characterizing constraint is implementation-specific. The LLM
reasons about how the check loop resets ¢ and increments k to model diminishing returns and then
calculates again max (0, v[j] — k) for every cup. Note that the LLM borrows the same loop structure
as in the original check function (e.g. reset of 7 and increment of k) so the checker code faithfully
reproduces the slowdown pattern.

# Case 3: Problem 546C, solution #567. Given a deck of n distinct cards split arbitrarily into two
decks, one per player), the problem asks to simulate a game in which, in each round, both players
draw their top card, and the player with the higher value takes the opponent’s card first and then their
own, placing both at the bottom of their stack. When one player’s stack becomes empty, the other
wins.

| #include <bits/stdc++.h>
2 using namespace std;

3 queue<int> rl1, r2;

4 int n, x, TLE, asd;

5 bool flag;

6 int main() {

7 cin >> n >> x;

8 for (int i = 1; 1 <= x; i++) cin >> asd, r1.push(asd);
9 cin >> x;

10 for (int i = 1; i1 <= x; i++) cin >> asd, r2.push(asd);
11 while (TLE < 10000000) {

12 if (r1.size() == 0 || r2.size() == 0) {
13 flag = 1;

14 break;

15 3

16 TLE++;

17 int u = r1.front(), v = r2.front();

18 ri.pop(), r2.pop();

19 if (u > v)

20 r1.push(v), ri1.push(u);

21 else

22 r2.push(u), r2.push(v);

23 }

24 if (flag)

25 if (r1.size() == 0)

26 cout << TLE << ” " << 2 << endl;

27 else

28 cout << TLE << " " << 1 << endl;

29 else

30 puts(”"-1");

31 return 0;

2}

Listing 10: Example from our dataset: problem 546C, solution 567

The program in Listing 10 simulates the game by representing the player as two queues. In each
round, the implementation pops the head of each queue, compares the two values and adds both
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elements to the queue with the highest value of the two. If either queue is empty, the program
terminates. While straightforward, the implementation has two significant flaws. First, the code
does not store past game states after each round. This leads the simulation to repeat the same deck
configurations repeatedly until the TLE = 10° threshold is met instead of breaking early if a cycle
is detected, thus wasting many CPU cycles. Second, if the largest cards in either deck differ by a
small amount (e.g., < 1) the main loop will iterate for significantly more trials. When neither player’s
top card is consistently stronger, the pop/push operations keep both queues nearly the same size.
This balanced exchange prevents either queue from becoming empty quick, forcing multiple extra
iterations of the same pop/push logic.

1 // Check if the queue configurations have repeated, indicating a cycle

2 void check_cycle_invariant(const queue<int>& r1, const queue<int>& r2, unordered_set<string>&

seenConfigurations) {
3 string config;
|

auto copyl = rl1, copy2 = r2;
5 while (copyl.empty()) config += tostring(copyl.front()) + ",";copyl.pop();config += "|";while
(copy2.empty()) {
6 config += to_string(copy2.front()) + ",";
7 copy2.pop();
8 3

10 if (seenConfigurations.find(config) <> seenConfigurations.end()) {

11 cerr << "Warning: Cycle detected - potential infinite loop" << endl;
12 3

13 seenConfigurations.insert(config);

14 3}

15

16 // Check if neither player can win quickly due to balanced card strength

17 void check_balance_invariant(const queue<int>& r1, const queue<int>& r2) {

18 int max1 = *max_element(r1.front(), ri.back());

19 int max2 = *max_element(r2.front(), r2.back());

20 if (abs(max1 - max2) <= 1) { // Arbitrarily chosen threshold for similar max strength
21 cerr << "Warning: Balanced card strength - prolonged game possible” << endl;

22 3

23 %

25 // Check for excessive number of rounds
26 void check_excessive_rounds(int TLE) {

27 if (TLE > 1000) { // Example threshold, can be adjusted for practical purposes
28 cerr << "Warning: Excessive number of game rounds” << endl;

29 3}

30 }

Listing 11: PC-constraints as C++ checker functions: problem 546C, solution 567

WEDGE identifies three types of performance-characterizing constraints for this program, listed in
Listing 11.

1. The first performance-characterizing constraint (check_cycle_invariant) checks whether
the distribution of the two decks is prone to repeated states. The LLM detects that the
original implementation does not take into account repetitions to terminate the main loop
thus inputs with pathology is likely to force the loop at line 11 to iterate until reaching the
TLE = 10° threshold wasting unnecessary cycles.

2. The second performance-characterizing constraint (check_balance_invariant) checks
for “back-and-forth” push operation which cause minimal net change in queue size and
prolong the game. The inefficiency comes from the two push calls per round (lines 20 and
22) and the fact that the losing card is enqueued first. This particular ordering choice leads to
“reversing” of the first player’s win since eventually, the smaller card, which was enqueued
first will move back to the second player, canceling the gains of the first one.

3. The third performance-characterizing constraint (check_excessive_rounds) simply reflect
a generic and straightforward intuition: more loop iterations means more CPU cycles and
more running time.

While the third performance-characterizing constraint is generic and could have been synthesized by
an LLM without reasoning about the code, the first two are implementation-specific. Any queue-based
simulation with a bounded state that can revisit prior configurations is prone to cycles. However,
this is problematic only when such a program does not track repeated states, which is precisely what
happens in this case. Moreover, the “back-and-forth” card exchange property is highly specific to the
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program the LLM is reasoning about. It happens precisely because of the choice of enqueuing order.
Should the implementation enqueue the two values in the opposite order, it would be unlikely that
there is any observable “back-and-forth” where cards move from one queue to another and then back
again.

# Case 4: Problem 16B, solution #34. Given a set of m containers, where the i-th container holds a;
match boxes, each containing b; matches, the goal is to select up to n boxes (without splitting boxes)
to carry in a backpack so as to maximize the total number of matches carried away.

| #include <bits/stdc++.h>

2 using namespace std;

3 long long sumofdigits(string s) {
A long long sum = 0;

5 for (long long i = 0; i < s.size(); i++) {
6 int digit = s[i]l - '@0';

7 sum += digit;

8 )

9 return sum;

10 }

11 int main() {

12 int n;

13 vector<pair<int, int>> v;

14 cin >> n;

15 int m;

16 cin >> m;

17 for (int i = 0; i < m; i++) {

18 int x, vy;

19 cin >> x >> y;

20 pair<int, int> p(x, y);

21 v.push_back(p);

2}

23 int sum = 0;

24 for (int i = 0; i < v.size() - 1; i++) {
25 for (int j =1 + 1; j < v.size(); j++) {
26 if (v[jl.second > v[il.second) {

27 pair<int, int> p = v[i];

28 v[il = v[jl;

29 vljl = p;

30 }

31 }

32 }

33 int ans = 0;
34 for (int i = 0; i < v.size(); i++) {

35 int counter = 0;

36 if (sum == n) {

37 break;

38 3

39 int t = n - sum;

40 while (counter < v[i].first && t--) {
41 counter++;

42 sum++;

43 ans += v[i].second;
44 }

45 }

46 cout << ans << endl;

17 return 0;

48 }

Listing 12: Example from our dataset: problem 16B, solution 34

The code in Listing 12 performs two stages to solve the problem. First, it performs a simple O(m?)
sort (lines 24-32) that orders the containers by their matches per box b; descendingly. Second, it tries
to fill the backpack in a greedy fashion (lines 34-45), as follows: For each container in sorted order,
it enters a while loop (line 40) picks boxes one by one, decrementing the remaining capacity per
box until either the container’s supply is exhausted, or the capacity aggregator variable sum reaches
n. Note that before entering the inner loop decrements ¢ exactly once per box being packed (line
39). Thus a large n causes the code to run one iteration for each available box across all containers.
Moreover, if n is much larger than the sum of all box capacities, the code still visits every box
which yields a computational cost linear in the total capacity. Also, the code does not appear to
terminate early if the box supply is exhausted. The code breaks out of the outer loop only if the
current aggregated box capacity is equals to n (lines 36-37). If the supply is smaller, however, the
outer loop iterates unnecessarily through all containers.
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I void check_large_n_invariant(int n, int m, const vector<pair<int, int>>& v) {

2 long long totalBoxes = 0;

3 for (const auto& container : v) {

4 totalBoxes += container.first;

E 3

6 if (n > 10 * totalBoxes) {

7 cerr << "Warning: Performance bottleneck condition triggered - n is much larger than
available matchboxes” << endl;

8 3

9}

I void check_small_total_boxes_invariant(int n, int m, const vector<pair<int, int>>& v) {
2 long long totalBoxes = 0;

3 for (const auto& container : v) {

14 totalBoxes += container.first;

16 if (totalBoxes < n / 10) {
17 cerr << "Warning: Performance bottleneck condition triggered - insufficient
matchboxes compared to n"” << endl;

Listing 13: PC-constraints as C++ checker functions: problem 16B, solution 34

WEDGE identifies two types of pc-constraints for this program, listed in 7.

The first performance-characterizing constraint (check_large_n_invariant) detects when the target
capacity n vastly exceeds the total number of available boxes. The inner loop (lines 40-44) executes
exactly one iteration per box taken. So, the mode infers that when n is significantly larger than the
available boxes, the code performs O(}, a,) iterations since each time it decrements ¢ by 1.

The second performance-characterizing constraint (check_small_total_boxes_invariant) detects
when the aggregate supply of boxes is substantially less than n, since the loop break condition (line
37) applies only when the bag is exactly full. Otherwise, the outer loop (line 34) iterates over all
containers, wasting cycles when capacity is no longer available.

A purely specification or problem-statement based performance analysis could infer that larger n
could cause longer execution, and that a typical implementation would iterate until the capacity is full
or exceeded. However, the first constraint hinges on the implementation choice of simulating each
box by decrementing ¢. This is suboptimal because to solve the problem, the algorithm only needs
to know how many boxes to take, not to process them individually. Similarly, the second constraint
speculates that the code does not exit immediately once it is determined that the matchbox supply is
depleted before reaching n.

D Broader Impact

The positive impact of our research includes the following.

First, we release a performance test benchmark that can evaluate the efficiency of LLM-generated
code and performance-improving code edits, which can facilitate future research.

Second, we develop a methodology to generate stress tests by combining the advantage of the
reasoning ability of LLMs and the searching ability of fuzzing, which can inspire future research in
performance test generation on real-world software.

Third, instead of introducing more ambitious task formulations and calling for new LLM agentic
workflows, we advocate constraining the role of LLMs in system reliability and security applications.
We hope the general paradigm described in this paper, i.e., generating code specifications to interact
with existing expert-developed program reasoning tools, can help the community rethink how LLMs
should participate in critical applications.

The concrete negative impact is our approach could be potentially used by malicious attackers to
curate stressing inputs to perform Denial-of-Service (DoS) attacks [80]. We aim to study the positive
usage of our approach, e.g., finding performance issues in large-scale systems, to find and mitigate
these potential vulnerabilities.
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E Prompts

E.1 Performance-Characterizing Constraint Reasoning Prompt

(A) Context

You are an experienced C software engineer focusing on performance bottlenecks. You have:

1. A problem statement describing a task or algorithm (with constraints such as n < 100).

2. A C program that implements a solution to that problem.

3. Two inputs: a “fast” input that completes quickly, and a “slow” input that takes much longer—both inputs
have similar size/structure.

4. Line-level hit counts for both runs, showing which lines get hit significantly more often on the slow input.
Your goal is to diagnose why the program runs slowly for the slow input and derive conditions or invariants that
capture what triggers this slowdown.

(B) Tasks: Analyze the given code and generate performance-characterizing invariants in natural language
Phase 1: Identify expensive or inefficient code fragments.

1. Compare line-level hit counts between the fast and slow runs.

2. Pinpoint lines or functions that get significantly more hits under the slow input.

3. Infer how these lines might be interacting with data structures, loops, recursion, etc., especially as they relate
to the input constraints (e.g., n < 100).

Phase 2: Derive performance-characterizing invariants (natural language).

1. Generate natural language statements that describe conditions under which the program likely enters a slow
path.

2. Avoid using specific numeric values from the slow input; abstract them into categories or thresholds. However,
make sure those thresholds adhere to the input constraints of the problem.

3. Correlate these conditions strongly to input patterns (e.g., “when n is close to 100 and there is a nested loop,”
or “when a data structure is repeatedly sorted”).

4. Ensure your statements are broad enough to catch possible future slow scenarios, but still reflect realistic
triggers given the constraints (like n < 100).

Note that not all performance-characterizing invariants are about maximising input size. You may refer to the
following examples for inspiration — some maximising the input size, some not — but do not simply replicate
them exactly. Rather, use them as inspiration to infer and tailor performance-characterizing invariants tailored
for the C code and problem statement you were asked to analize:

(Include the same examples you have, with indentation or

to split lines appropriately.)

(C) Output Requirements

1. Provide a list of natural language performance invariants explaining under what conditions the code slows
down.

2. Do not mention or rely on exact values from the provided slow input.

3. Use or suggest threshold values that align with problem constraints (e.g., n < 100).

4. The output should be a concise, descriptive set of statements about performance triggers.

(D) Important Considerations

1. Avoid hardcoding. Don’t rely solely on the exact values from the provided slow input; think in terms of
categories or thresholds that lead to slow execution.

2. Avoid checks inside tight loops. Place checks in a way that does not significantly degrade performance.

3. Focus on fuzzer utility. The checks should help a fuzzer detect slow performance triggers by hitting these
conditions.

(E) Problem Statement
problem_statement

(F) Program Solving the Problem Statement
one_solution

(G) The Slow & Fast Inputs

(G.1) Slow Input
slow_input

(G.2) Fast Input
fast_input

(H) Hit Count Information of Slow Input and Fast Input (Aggregated):
product_cov
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E.2 Constraint Checker Generation Prompt

(A) Context

You have already:

1. Identified expensive code fragments (Phase 1).

2. Derived performance-characterizing invariants in natural language (Phase 2).

Now, you MUST transform these invariants into runtime checks and integrate them into the given C++ program.

(B) Tasks: Revisit the performance-characteristic invariants you inferred in natural langauge and write faithful,
error-free C++ code snippets to implement them.

You MUST perform this task in two phases and provide separate answers for both: First, translating the invariants
into checker code in C++ (phase 3, below). Second, integrating those checker C++ code snippets with the
original program for which you inferred those invariants (phase 4, below).

Phase 3: Implement the natural language invariants inferred previously, in C++. In this phase you are asked to,
1. For each natural language invariant from Phase 2, you MUST produce C++ code that checks the condition at
runtime.
2. You MUST NOT relax or trivialize the checker code implementing these performance-characterizing
invariants. You MUST faithfully implement them as described.
3. Use the following template for writing checker code in C++ which could also be implemented as a helper
function:
if (/* condition based on the NL invariant /) {

cerr « "Warning: Performance bottleneck condition triggered!"” « endl;

abort();
}

Note that not all performance-characterizing invariants are about maximising input size. You may refer to the
following examples for inspiration — some maximising the input size, some not — but do not simply replicate
them exactly. Rather, use them as inspiration to infer and tailor performance-characterizing invariants tailored
for the C++ code and problem statement you were asked to analize:

// in-context examples......

Phase 4: Propagate and insert conditional checks. In this phase you are asked to,

1. Place each check at an effective point in the control/data flow (e.g., after reading inputs, before heavy loops)
so you do not add overhead in tight loops. Note that the checker code could also be implemented as a helper
function.

2. If multiple checks overlap, merge or adjust them carefully to avoid redundant warnings.

3. Provide the final, instrumented C++ code in code fences. Ensure it compiles cleanly and runs without errors.
4. For each inserted check, add a short comment explaining which bottleneck it detects.

Note the following important considerations when translating the inferred performance-characterizing invariants
into code and propagating the checkers to the most effective program point by instrumenting the original code:
1. Avoid hardcoding. Don’t rely solely on the exact values from the provided slow input; think in terms of
categories or thresholds that lead to slow execution.

2. In addition to the warning message, remember to insert an abort () statement at the end of the checker.

3. Focus on fuzzer utility. The checks should help a fuzzer detect slow performance triggers by hitting these
conditions.

As a refresher: below you are provided with the same program statement and C++ code for which you already
inferred performance-characterizing invariants:

Problem statement: problem_statement

Solution (C++ code): solution
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E.3 Performance-Constraint-Aware Mutator Generation Prompt

Here is an example custom mutator provided in AFL++ repo:
mutator_example

Could you learn from it and generate a new one?

The constraints of input are described here:
Problem begins

problem_statement
Problem ends

Here are some example inputs that you can use as a reference:
reference_inputs

Here are the performance related conditions summarized by another LLM, e.g,
check_perf_condition_»(condition). These conditions are believed to be related to performance
of the solution, i.e., when the conditions are satisfied, the solution will likely run slower than when they are not
satisifed. Please learn from them so that the generated mutator can produce more inputs to satisty the conditions
so that the generated inputs can make the solution run slower.

Constraints summary begins

constraints_content
Constraints summary ends

As the context, here is the solution program (along with coverage and hit count information under slow/fast
inputs) where the constraints are generated on:

product_cov_content

Please note that: 1. You should ensure the mutated inputs follow the input constraints as much as possible. Note
that 100000(1075) is usually written as 105, 1000000(1076) is usually written as 106, etc.

2. You should implement an input generator and incorporate it in the mutator, so that each iteration it can
randomly choose to mutate the last input or use the generator to generate inputs from scratch. Note that you
should avoid using random generator with a large range of values when generating the size input (e.g., length of
array, etc.), e.g., random.randint(1, 10000) (say 10000 is the upper bound), as it may not stress the program
enough. Instead, use values that are more likely to cause inefficiencies, for example, values that are same or
closer to the upper bound, like 10000, 9999, 9990 or random. randint (9900, 10000), etc. Feel free to directly
use the upper bound as the size of the input. But for numbers that are not the size of the input, you may want to
generate random values to improve the input diversity and cover different patterns.

3. You should try to implement multiple mutation operations that can be randomly selected. You can implement
mutation operations that could potentially explore corner cases of the program (e.g., upper/lower bound).

4. You can add a try catch block to the mutation module so that if the mutation failed you can fall back to the
generator since the generator is believed to be more robust.

5. Please make sure to use bytearray(str, ’utf-8’) to transform string to bytearray, instead of str.encode ()
as we need mutable objects; the latter will produce immutable objects.
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E.4 Baseline TG-prompt Prompt

You are an experienced Python software engineer. Your task is to produce a test generator in the form of a
Python program that, based on the input specifications in the problem statement, generates tests that exhaust the
solutions of the problem more.

Problem Statement (surrounded by leading and trailing “—”):
Problem begins

problem_statement
Problem ends

Based on the above information, you will work in phases:

Phase 1: Define Stress Test Specifications.

— Based on the problem statement, describe the size, shape, and range of potential inputs.

— Identify input patterns that can maximize the inefficiencies of the “slow” programs.

— Don’t just limit the generator into generating tests that maximize input size, but suggest specific values or
patterns for inputs that can stress the slow programs (e.g., sorted arrays, repeated elements, specific edge cases).
— Explain how the inputs should be designed to exploit algorithmic inefficiencies or implementation anti-patterns.

Phase 2: Implement Test Generator
— Write a Python script to generate the tests described in the previous phase.
— The script should:

— Follow the input format specified in the problem statement. Note that 10000 (105) is usually written as
105, 100000 (106) is usually written as 106, etc.

— Maximize stress on the programs to make those inefficient programs get TLE or MLE.

— Avoid using random generator with a large range of values when generating the size input (e.g., length of
array, etc.), e.g., random.randint(1, 10000) (say 10000 is the upper bound), as it may not stress the program
enough. Instead, use values that are more likely to cause inefficiencies, for example, values that are same or
closer to the upper bound, like 10000, 9999, 9990 or random. randint (9900, 10000), etc. Feel free to directly
use the upper bound as the size of the input.

— For numbers that are not the size of the input, generate random values to improve input diversity and cover
different patterns.

— The test generator should generate a total of number_of_tests test cases.
— Read an argument that specifies a directory and write all test cases as ’test_01.in’, ’test_02.in’,

etc., into the directory. E.g., executing python gen.py output_directory will produce ’test_01.in’,

’test_02.in’, etc., in the output_directory directory.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract outlines: (1) a novel framework (WEDGE) for synthesizing
performance-characterizing constraints, (2) integration with fuzzing, and (3) empirical
results compared with state-of-the-art baselines. These points are substantiated in Sections
34,

Guidelines:

¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* Itis fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the work in Section 6.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

 If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: The paper contains no theoretical result. The approach is evaluated empirically.
Guidelines:

¢ The answer NA means that the paper does not include theoretical results.

¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

 All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We described the environment setup and reproduction settings in Section 4.1.
Source code and data are public at https://github.com/UChiSeclab/perfforge.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of

whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken

to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We released the source code, data, and corresponding instructions to reproduce
our experimental results at https://github.com/UChiSeclab/perfforge.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We didn’t train any models. We mainly rely on LLM APIs. We specified the
subject selection criteria, model ids and parameters e.g., temperature. We also provides our
prompt templates in Section E.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For the main experiment we repeat each test execution (solution + test input)
for five times and record the average execution time/instruction count. We also report the
variance of both metrics in Section B.1.

Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

» The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We included the specs of the machines we used in the detailed experiment
setup in the Appendix A .4.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our research conform in every respect with the code of ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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11.

12.

Justification: We discussed potential impacts like accelerating and improving evaluation
of LLM-generated code, helping avoid deploying inefficient code in production (e.g., ener-
gy/resource savings), contributing a benchmark (PERFFORGE) to the community for more
rigorous performance evaluation. The detailed discussion in Section D.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible

release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper does not introduce particular safety risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite their papers and discuss the related works (which have been granted
by the authors for public use) in Section 2.

Guidelines:

* The answer NA means that the paper does not use existing assets.
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13.

14.

15.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: Our work does not release new assets.

Guidelines: We document the new assests introduced with a comprehensive github readme
file.
* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: We describe the usage of LLMs as an important component of our method in
Section 3
This is clearly described and central to the novelty of WEDGE.
Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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