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Abstract

Understanding generalization and robustness of machine learning models funda-
mentally relies on assuming an appropriate metric on the data space. Identifying
such a metric is particularly challenging for non-Euclidean data such as graphs.
Here, we propose a pseudometric for attributed graphs, the Tree Mover’s Distance
(TMD), and study its relation to generalization. Via a hierarchical optimal transport
problem, TMD reflects the local distribution of node attributes as well as the distri-
bution of local computation trees, which are known to be decisive for the learning
behavior of graph neural networks (GNNs). First, we show that TMD captures
properties relevant to graph classification: a simple TMD-SVM performs competi-
tively with standard GNNs. Second, we relate TMD to generalization of GNNs
under distribution shifts, and show that it correlates well with performance drop
under such shifts. The code is available at https://github.com/chingyaoc/TMD.

1 Introduction

Understanding generalization under distribution shifts – theoretically and empirically – relies on
an appropriate measure of divergence between data distributions. This, in turn, typically demands
a metric on the data space that indicates what kinds of data points are “close” to the training data.
While such metrics may be readily available for Euclidean spaces, they are more challenging to
determine for non-Euclidean data spaces such as graphs with attributes in Rp, which underlie graph
learning methods. In this work, we study the question of a suitable metric for message passing graph
neural networks (GNNs).

An “ideal” metric for studying input perturbations captures the invariances and inductive biases of
the model we are examining. For instance, since graph isomorphism is a difficult problem [18],
this metric is expected to be a pseudometric, i.e., will fail to distinguish certain graphs. These
“failures” should be aligned with the GNNs’ invariances. Moreover, several recent works highlight
the importance of local structures – computation trees resulting from unrolling the message passing
process – for the approximation power of GNNs and their inability to distinguish certain pairs of
graphs [2, 20, 34, 55]. Works on out-of-distribution generalization of GNNs mostly focus on specific
types of instances where a trained model may fail miserably [58, 54], without specifying the behavior
for gradual shifts in distributions. Yehudai et al. [58] show that a sufficiently large, unrestricted GNN
may predict arbitrarily on previously unseen computation trees. In practice, we may observe a more
gradual change, depending on the magnitude of change of the tree, in terms of both structure and
node attributes, and the capacity of the aggregation function. In summary, we desire a metric that
reflects the structure of computation trees and the distribution of node attributes within trees. Many
distances and kernels between graphs have been proposed [7], several based on local structures [21],
and some using structure and attributes [44]. Closest to our ideal is the Wasserstein Weisfeiler-Leman
pseudometric [46], which computes an optimal transport distance between node embeddings of two
graphs. The embeddings are computed via message passing, which aligns with the computation of
GNNs, but loses structural information within trees.
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Hence, we propose the Tree Mover’s Distance (TMD), a pseudometric on attributed graphs that
considers both the tree structure and local distribution of attributes. It achieves this via a hierarchical
optimal transport problem that defines distances between trees. First, we observe that the TMD
captures properties that capture relationships between graphs and common labels: a simple SVM
based on TMD performs competitively with standard GNNs and graph kernels on graph classification
benchmarks. Second, we relate TMD to the performance of GNNs under input perturbations. We
determine a Lipschitz constant of GNNs with respect to TMD, which enables a bound on their target
risk under domain shifts, i.e., distribution shifts between training and test data. This bound uses the
metric in two ways: to measure the distribution shift, and to measure perturbation robustness via the
Lipschitz constant. Empirically, we observe that the TMD correlates well with the performance of
GNNs under distribution shifts, also when compared to other distances. We hence hope that this work
inspires further empirical and theoretical work on tightening the understanding of the performance of
GNNs under distribution shifts.

In short, this work makes the following contributions:
• We propose a new graph metric via hierarchical optimal transport between computation trees of

graphs, which, in an SVM, leads to a competitive graph learning method;
• We bound the Lipschitz constant of message-passing GNNs with respect to TMD, which allows

to quantify stability and generalization;
• We develop a generalization bound for GNNs under distribution shifts that correlates well with

empirical behavior.

2 Related Works

Graph Metrics and Kernels Measuring distances between graphs has been a long-standing goal
in data analysis. However, proper metrics that distinguish non-isomorphic graphs in polynomial time
are not known. For instance, Vayer et al. [49] propose a graph metric by fusing Wassestein distance
[50] and Gromov-Wasserstein distance [32]. Similar to classic graph metrics [9, 40], the proposed
metric requires approximation. Closely related, graph kernels [52, 7] have gained attention. Most
graph kernels lie in the framework of R-convolutional [21], and measure similarity by comparing
substructures. Many R-convolutional kernels have limited expressive power and sometimes struggle
to handle continuously attributed graphs [46]. In comparison, TMD is as powerful as the WL
graph isomorphism test [53] while accommodating graphs with high dimensional node attributes.
Importantly, TMD captures the stability and generalization of message-passing GNNs [27, 55].

Stability and Generalization of Graph Neural Networks A number of existing works study
stability of GNNs to input perturbations. Spectral GNNs are known to be stable to certain per-
turbations, e.g., size, if the overall structure is preserved [19, 25, 26, 19]. For message passing
GNNs, Yehudai et al. [57] study perturbations of graph size, and demonstrate the importance of local
computation trees. Xu et al. [54] study how the out-of-distribution behavior of aggregation functions
may affect the GNN’s prediction. These studies motivate to include both computation trees and
inputs to aggregation functions in the TMD. Finally, a number of works study within-distribution
generalization [15, 20, 28, 42].

3 Background on Optimal Transport

We begin with a brief introduction to Optimal Transport (OT) and earth mover’s distance. The
earth mover’s distance, also known as Wasserstein distance, is a distance function defined via the
transportation cost between two distributions. Let X = {xi}mi=1 and Y = {yi}mj=1 be two multisets
of m elements each. Let C ∈ Rm×m be the transportation cost for each pair: Cij = d(xi, yj) where
d is the distance between xi and yj . The earth mover’s distance solves the following OT problem:

OT∗
d(X,Y ) := min

γ∈Γ(X,Y )
⟨C, γ⟩/m, Γ(X,Y ) = {γ ∈ Rm×m

+ | γ1m = γ⊤1m = 1m}, (1)

where Γ is the set of transportation plans that satisfies the flow constrain γ1m = γ⊤1m = 1m. In
this work, we adopt the unnormalized version of the earth’s mover distance:

OTd(X,Y ) := min
γ∈Γ(X,Y )

⟨C, γ⟩ = m · OT∗
d(X,Y ). (2)

Comparing to classic OT, unnormalized OT preserves the size information of multisets X and Y .
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Figure 1: Tree Distance via Hierarchical OT. The weight w(·) is set to 1 to simplify visualization.
The distance between two trees can be decomposed into (a) the distance between roots and (b) the OT
cost between subtrees, where the cost function of OT is again the distance between two trees. This
formulates a hierarchical OT problem, where solving the OT between trees requires solving the OT
between subtrees.

4 Tree Mover’s Distance: Optimal Transport on Graphs

Next, we introduce tree mover’s distance, a new distance for graphs. Let G = (V,E) denote a graph
with sets of nodes V and edges E. The graph may have node features xv ∈ Rp for v ∈ V . If not, we
simply set the node feature to a scalar xv = 1 for all v ∈ V .

Local structures of graphs are characterized by computation trees [23]. In particular, computation
trees are constructed by connecting adjacent nodes recursively.
Definition 1 (Computation Trees). Given a graph G = (V,E), let T 1

v = v, and let TL
v be the depth-L

computation tree of node v constructed by connecting the neighbors of the leaf nodes of TL−1
v to the

tree. The multiset of depth-L computation trees defined by G is denoted by T L
G := {TL

v }v∈V .

Figure 2 illustrates an example of constructing computation trees. Computation trees, also referred to
as subtree patterns, have been central in graph analysis [38, 53] and graph kernels [39, 44]. Intuitively,
the computation tree of a node encodes local structure by appending the neighbors to the tree in each
level. If depth-L computation trees are the same for two nodes, they share similar neighborhoods up
to L steps away. Therefore, an intuitive way to compare two graphs is by measuring the difference of
their nodes’ computation trees [44, 53]. In this work, we adopt optimal transport, a natural way to
compute the distance between two sets of objects with, importantly, an underlying geometry. We will
begin by defining the transportation cost between two computation trees. The cost then gives rise to
the tree mover’s distance, an extension of earth mover’s distance to multisets of trees.

4.1 Distance between Trees via Hierarchical OT

Let T = (V,E, r) denote a rooted tree. We further let Tv be the multiset of computation trees of the
node v which consists of trees that root at the descendants of v. Determining whether two trees are
similar requires iteratively examining whether the subtrees in each level are similar. For instance,
two trees Ta and Tb with roots ra and rb are the same if xra = xrb and Tra = Trb . This motivates us
to define the distance between two trees by recursively computing the optimal transportation cost
between their subtrees. Nevertheless, the number of subtrees could be different for ra and rb, i.e.,
|Tra | ≠ |Trb | (see Figure 1 left). To compute the OT between sets with different sizes, unbalanced
OT [11, 41] or partial OT [10] are usually adopted. Inspired by [10], we augment the smaller set with
blank trees.
Definition 2 (Blank Tree). A blank tree T0 is a tree (graph) that contains a single node and no edge,
where the node feature is the zero vector 0p ∈ Rp, and Tn

0 denotes a multiset of n blank trees.
Definition 3 (Blank Tree Augmentation). Given two multisets of trees Tu, Tv , define ρ to be a function
that augments a pair of trees with blank trees as follows:

ρ : (Tv, Tu) 7→
(
Tv
⋃

T
max(|Tu|−|Tv|,0)
0 , Tu

⋃
T

max(|Tv|−|Tu|,0)
0

)
.

If |Tv| < |Tu|, ρ augments Tv by |Tu| − |Tv| blank trees to make the two multisets contain the same
number of trees, and hence allows to define a transportation cost between two multisets of trees with
different sizes. In particular, the transportation costs of additional trees are simply the distance to the
blank trees. The distance between a tree and a blank tree can be interpreted as the norm of the tree. In
our case, the blank tree can be viewed as the origin, as it is a tree with the simplest structure and zero
feature vector. Equipped with ρ, we define the distance between two rooted trees as follows.
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Definition 4 (Tree Distance). The distance between two trees Ta, Tb is defined recursively as

TDw(Ta, Tb) :=

{
∥xra − xrb∥+ w(L) · OTTDw

(ρ(Tra , Trb)) if L > 1

∥xra − xrb∥ otherwise,

where L = max(Depth(Ta),Depth(Tb)) and w : N → R+ is a depth-dependent weighting function.

Here, OTTDw
is the OT distance defined in (2) with TDw as the metric. Figure 1 gives an illustration

of computing tree distances. The tree distance TDw(Ta, Tb) aims to optimally align two trees Ta and
Tb by recursively comparing their roots and subtrees. Calculating TDw(Ta, Tb) requires calculating
the OT between augmented subtrees ρ(Tra , Trb), where the cost function of OT is TDw again. This
formulates a hierarchical optimal transport problem: the distance of two trees is defined via the
distances of subtrees, where the importance of each level is determined by the weight w(·). Increasing
w(·) upweights the effect of nodes in the subtrees. While the weights may be arbitrary, we found
that for many applications, using a single weight for all depths yields good empirical performance,
as section 4.3 shows. The role of weights will be more significant when we use TMD to bound the
stability of GNNs.

4.2 From Tree Distance to Graph Distance

Next, we extend the distance between trees to a distance between graphs. By leveraging the tree
distance TDw(·, ·), we introduce the tree mover’s distance (TMD), a distance for graphs, by calculating
the optimal transportation cost between the graphs’ computation trees.

Definition 5 (Tree Mover’s Distance). Given two graphs Ga, Gb and w,L ≥ 0, the tree mover’s
distance between Ga and Gb is defined as

TMDL
w(Ga, Gb) = OTTDw

(ρ(T L
Ga

, T L
Gb

)),

where T L
Ga

and T L
Gb

are multisets of the depth-L computation trees of graphs Ga and Gb, respectively.

Figure 2 illustrates the computation of TMD. Intuitively, TMD is the minimum cost required to
transport node-wise computation trees from one graph to another. The blank tree augmentation ρ is
again adopted to handle graphs with different numbers of nodes. The next theorem shows that TMD
is a pseudometric on attributed graphs.

Theorem 6 (Pseudometric). The tree mover’s distance TMDL
w is a pseudometric for finite L > 0.

In particular, the tree mover’s distance satisfies (1) TMDL
w(Ga, Ga) = 0, (2) TMDL

w(Ga, Gb) =
TMDL

w(Gb, Ga), and (3) TMDL
w(Ga, Gb) ≤ TMDL

w(Ga, Gc) + TMDL
w(Gc, Gb) for any graphs

Ga, Gb, Gc. However, in some cases, the distance TMDL
w(Ga, Gb) can be zero even if Ga ̸= Gb.

This is reasonable, as computing graph isomorphism is not known to be solvable in polynomial
time. Nevertheless, TMD can provably distinguish graphs that are identifiable by the (1-dimensional)
Weisfeiler-Leman graph isomorphism test [53].

Theorem 7 (Discriminative Power of TMD). If two graphs Ga, Gb are determined to be non-
isomorphic in WL iteration L and w(l) > 0 for all 0 < l ≤ L+ 1, then TMDL+1

w (Ga, Gb) > 0.

The unnormalized OT and blank tree augmentation are essential to prove Theorem 16. The tree
mover’s distance can be exactly computed by solving optimal transport. In addition, TMD remains
highly expressive on graphs with high dimensional continuous attributes, where most R-convolutional
graph kernels struggle [46]. The discriminative power of TMD can be further strengthened by
augmenting node attributes e.g. with positional encodings [16, 29].

The OT cost between node representations in different graphs is reminiscent of the recently proposed
Wasserstein WL (WWL) [46]. WWL uses the distance of node embeddings as a ground metric, where
the node embeddings are computed via L iterations of message passing with average-aggregation;
in contrast, TMD computes a distance that aligns the trees, retaining more structural information.
Even though an aggregation with nonlinearities can retain tree isomorphism information [55], similar
to the hashing applied in the WL test (WWL uses only linear aggregations), the hierarchical OT
is a more direct graded distance measure of trees. Vayer et al. [49] define a metric that uses a
Gromov-Wasserstein distance [32] between nodes, but need to approximate the GW computation.
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Figure 2: Illustration of Computation Trees and Tree Mover’s Distance. The computation trees
of nodes are constructed by iteratively connecting the neighbors to the trees, and each graph will
define a multiset of node-wise computation trees. Tree mover’s distance is then defined as the optimal
transport cost between the computation trees of two graphs.

MUTAG PTC PROTEINS NCI1 NCI109 BZR COX2

TMD L=1 89.4±5.5 65.3±5.8 73.9±2.8 68.3±2.0 69.5±1.6 83.8±7.2 77.8±5.0
TMD L=2 90.0±5.7 67.4±7.7 74.8±2.8 80.8±1.8 78.9±2.3 84.5±6.9 79.1±5.2
TMD L=3 91.1±5.4 68.5±6.1 74.6±2.6 83.3±1.1 82.3±2.5 85.5±6.2 78.5±5.9
TMD L=4 92.2±6.0 66.5±7.1 75.2±2.3 84.8±1.2 82.8±2.1 84.5±6.4 76.1±6.1

WWL [46] 87.3±1.5 66.3±1.2 74.3±0.6 86.1±0.3 - 84.4±2.0 78.3±0.5
FGW [49] 88.4±5.6 65.3±7.9 74.5±2.7 86.4±1.6 - 85.1±4.2 77.2±4.9
WL [44] 90.4±5.7 59.9±4.3 75.0±3.1 86.0±1.8 82.46±0.2 N/A N/A
R&G [39] 85.7±0.4 58.5±0.9 70.7±0.4 61.9±0.3 61.7±0.2 N/A N/A

GIN [55] 89.4±5.6 64.6±7.0 76.2±2.8 82.7±1.7 82.2±1.6 83.5±6.0 79.0±5.3
GCN [27] 85.6±5.8 64.2±4.3 76.0±3.2 80.2±2.0 - 84.6±5.9 77.1±4.7

Table 1: Classification on TU Dataset. TMD outperforms or matches the state-of-the-art graph
kernels or GNNs. Note that WL [44] and R&G [39] are not applicable to continuously attributed
graphs such as BZR and COX2.

Numerical Computation with Dynamic Programming One can numerically compute TMD with
dynamic programming. Starting with pair-wise distances (TMDL=1

w ) between node features across
the two graphs, we then iteratively compute TMDL=k

w between depth-k computation trees from k = 2
to L according to Definition 4. Let D be the maximum degree of a node in the two graphs and τ(m)
be the complexity of computing OT between sets of cardinality m. In each level, we have to perform
OT of sets contain at most D elements for N nodes. Including the last OT between nodes of graph,
the overall time complexity of computing TMDL

w is O(τ(N) + LNτ(D)). The time complexity
for exact OT by solving linear programming is τ(m) = O(m3 log(m)) [17]. One can use faster
approximation of OT, e.g., near linear time complexity [1], but we use exact OT throughout all the
experiments, implemented with the POT library [17].

4.3 Experiments

We verify whether the tree mover’s distance aligns with the labels of graphs in graph classification
tasks: the TUDatasets [35], which contain graphs with discrete node attributes (MUTAG, PTC-MR,
PROTEINS, NCI1, NCI109) and graphs with continuous node attributes (BZR, COX2). Specifically,
we run a support vector classifier (C=1) with indefinite kernel e−γ×TMD(·,·), which can be viewed as
a noisy observation of the true positive semidefinite kernel [31]. The γ is selected via cross-validation
from {0.01, 0.05, 0.1} and the weights w(·) are set to 0.5 for all depths. For comparison, we use
graph kernels based on graph subtrees: Ramon & Gärtner kernel [39], WL subtree kernel [44]; two
widely-adopted GNNs: graph isomorphism network (GIN) [55], graph convolutional networks (GCN)
[27]; and the recently proposed graph metrics FGW [49] and WWL [46]. Table 1 reports the mean
and standard deviation over 10 independent trials with 90%/10% train-test split. The performances of
the baselines are taken from the original papers. TMD outperforms or matches the performances of
state-of-the-art GNNs, graph kernels, and metrics, implying that it captures meaningful structural
properties of graphs. Appendix C shows further graph clustering and t-SNE visualization [48] results.
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WWL TMD TMD Parallel

DD 7.92 32.07 24.44
NCI1 0.11 0.34 0.81

Table 2: Runtime Comparison. The av-
erage runtime (sec/pair) of TMD is much
faster than the (worst case) theoretical
Big-O analysis.

Computation Complexity To examine the computation
complexity, we compare the runtime between Weisfeiler-
Lehman (WWL) kernels, TMD, and a parallel version of
TMD on DD and NCI1 datasets [35], where DD contains
large graphs (avg. #node: 284.32, avg. #edge: 715.66)
and NCI1 contains small graphs (avg. #node: 29.87, avg.
#rdge: 32.30). Here, we additionally consider a parallel
version of TMD, where the tree OTs in each level are
executed simultaneously with 3 processes. The average
runtime over 200 pairs is shown in Table 2. Note that the
time complexity of WWL is τ(m) = O(m3 log(m)). The runtime of parallelized TMD is roughly
three times larger than WWL on DD, which is much faster than the (worst case) theoretical Big-O
analysis. In datasets contain small graphs such as NCI1, TMD without parallelization works well.

5 TMD and Stability of Graph Neural Networks
Next, we relate TMD to the perturbation stability of message passing GNNs. In particular, we use the
Lipschitz constant, which relies on an underlying metric – here, a metric over graphs. We observe
that TMD is a meaningful pseudometric in this case. The resulting Lipschitz allows to analyze the
stability of GNNs under perturbations and generalization bounds under distribution shifts.

5.1 Lipschitz Constant of Message Passing Graph Neural Networks
For simplicity, we consider graph binary classification with the Graph Isomorphim Network (GIN)
[55], one of the most widely applied and powerful GNNs. In particular, we consider the following
message passing rules of a L-layer GIN:

Message
Passing z(l)v = ϕ(l)

z(l−1)
v + ϵ

∑
u∈N (v)

z(l−1)
u

 , Graph
Readout h(G) = ϕ(L+1)

∑
u∈V

z(L)
u


where ϕ(l) : Rd → Rd and ϕ(L+1) : Rd → R are learnable functions with Lipschitz constant K(l)

ϕ and

the initial state is set to the node feature z(0)v = xv . The ϵ > 0 is a weighting term between the center
node and the neighbors. Note that the original formulation of GIN [55] weights the center node with
layer dependent ϵ instead of neighbors. We adopt the form above with the purpose to simplify the
notation of TMD. One can easily derive an equivalent form by changing the weight function w(·)
of TMD to recover the original formulation of GIN. For simplicity, we set ϵ = 1 in all experiments.
This does not affect the empirically performance of GIN as the original paper shows [55]. A graph
level binary classifier is constructed based on the logits h(G).

The next theorem bounds the Lipschitz constant of GIN with respect to TMD. Although TMD is
a pseudometric, it satisfies that TMDL

w(Ga, Gb) > 0 if Ga, Gb are distinguished by L iterations
of the WL test. Since GIN(Ga) = GIN(Gb) for all graphs where WL fails, it holds that, if
GIN(Ga) ̸= GIN(Gb) then TMDL

w(Ga, Gb) > 0. That is, for all triples of graphs that GIN
distinguishes pairwise, TMD is a metric.
Theorem 8 (Lipschitz Constant of GIN). Given an L-layer graph neural network h : X → R and
two graph Ga, Gb ∈ G, we have∥∥h(Ga)− h(Gb)

∥∥ ≤
L+1∏
l=1

K
(l)
ϕ · TMDL+1

w (Ga, Gb),

where w(l)=ϵ · P l−1
L+1/P

l
L+1 for all l ≤ L and P l

L is the l-th number at level L of Pascal’s triangle.

1
1 1
21 1
3 3 11
6 44 11

6
4

4
6

1
4

4
1weights

L = 4

Figure 3: Example of
Pascal’s triangle (ϵ = 1).

The result can be extended to other GNNs (Appendix B). Interestingly,
the weights in each level follow a simple rule determined by Pascal’s
triangle. Figure 3 illustrates the weights when L = 4, where the weights
w(l) gradually decrease from 4ϵ to ϵ/4 as l becomes smaller. Note that
the hyperparameter w of TMD is independent of the parameters of the
GNN. Moreover, Theorem 8 shows that the Lipschitz constant of GNNs
under TMD admits a simple form

∏L+1
l=1 K

(l)
ϕ : the product of Lipschitz

constants across layers, similar to fully connected networks [33, 37].
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Figure 4: Correlation between GNNs and TMD / WWL. The Pearson correlation coefficient r
between ∥h(Ga)− h(Gb)∥ and TMD / WWL are showed on the upper left of the figures. The output
variation is highly correlated with TMD, while WWL barely captures the behavior of GNNs with
different number of message-passing layers.

5.2 Stability of GNNs under Graph Perturbation

The Lipschitz constant is a common criterion to assess the stability of the neural networks to small
perturbations [51]. Theorem 8 implies that the output variation of GNNs under graph perturbation
can be bounded via the TMD between the original graph and the perturbed one. In this section,
we analyze the stability of GNNs in more detail by dissecting TMD under three types of graph
perturbation: (1) node drop; (2) edge drop; and (3) node feature perturbations.
Proposition 9 (Node Drop). Given a graph G = (V,E), let G′ be the graph where node v ∈ V is
dropped. Then the tree mover’s distance between G and G′ can be bounded by

TMDL
w(G,G′) ≤

L∑
l=1

λl · Widthl(T
L
v )︸ ︷︷ ︸

Tree Size

·TDw(T
L−l+1
v , T0)︸ ︷︷ ︸

Tree Norm

,

where Widthl(T ) is the width of l-th level of tree T and λ1 = 1, λl =
∏l−1

j=1 w(L+ 1− j).

The bound is controlled by two factors: (1) tree size and (2) tree norm (distance from the blank tree)
of the computation tree TL

v . A node v with a large computation tree size implies that many nodes can
be reached from v. Deleting v from the graph then significantly changes the computation trees of
those reachable nodes, while the magnitude of the variation is controlled by the tree norm.
Proposition 10 (Edge Drop). Given a graph G = (V,E), let G′ be the graph where edge (u, v) ∈ E
is dropped. The tree mover’s distance between G and G′ can be bounded by

TMDL
w(G,G′) ≤

L−1∑
l=1

λl+1 ·
(

Widthl(T
L
v ) · TDw(T

L−l
u , T0) + Widthl(T

L
u ) · TDw(T

L−l
v , T0)

)
.

The bound takes a similar form as with the node drop, but includes the effects of both node v and u.
In particular, the tree size of v (u) will control how many computation trees of u (v) will be dropped.
By using Proposition 9 and 10, one can derive bounds for dropping multiple nodes and edges, or even
edge rewiring. Note that adding nodes or edges is equivalent to the analysis above.
Proposition 11 (Node Perturbation). Given a graph G = (V,E), let G′ be the graph where node
feature xv is perturbed to x′

v . The tree mover’s distance between G and G′ is equal to

TMDL
w(G,G′) ≤

L∑
l=1

λl · Widthl(TL
v ) ·

∥∥xv − x′
v

∥∥ .
Different from Proposition 9, the magnitude of the perturbation is controlled by the norm of the
perturbation instead of the norm of the computation tree.
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Figure 5: Robustness under Graph Perturbation. The empirical Lipschitz bounds (dash lines)
successfully upper bound the output variation of GNNs under different graph perturbations.

5.3 Experiments

Correlation between TMD and GNN output perturbation We now empirically examine the
theoretical analysis with experiments on the MUTAG dataset [14]. Results for other datasets can be
found in Appendix C. In particular, we measure to what extent candidate graph distances capture input
perturbations that lead to output perturbations in the GNN. We train graph isomorphism networks
[55] with varying numbers of message passing layers and plot the relation between input variation
TMDL+1

w (Ga, Gb) and output variation ∥h(Ga)− h(Gb)∥ for randomly sampled pairs (Ga, Gb) in
Figure 4. For comparison, we also plot the input variations measured by the recently proposed
graph metric WWL [46]. We can see that TMD strongly correlates with the output variation with
large Pearson correlation coefficient, supporting the approach of defining the Lipschitz constant with
respect to TMD, as in Theorem 8. In contrast, WWL barely captures the input graph perturbations
that lead to output variation of GNNs.

Stability under small Perturbations Next, we plot the output variation of 3-layer GNNs and
the TMD under random graph perturbations in Figure 5. For node perturbations, we change the
discrete node attribute for randomly sampled nodes. We additionally plot the Lipschitz bound with
empirical estimated Lipschitz constant maxGa,Gb∈S ∥h(Ga, Gb)∥/TMDL+1

w (Ga, Gb), where S is a
set of samples. We refer reader to [36, 47] for analyses on approximation error of estimating Lipschitz
constants from finite samples. We can see that the bound is reasonably tight and estimates the effect
of perturbations across different degrees.

6 Generalization of GNNs under Distribution Shifts

Finally, we relate the Lipschitz condition of GNNs to the generalization error under distribution shifts
by extending the results from [43]. Consider a binary classification task with input space X and output
space Y . In domain adaptation [13], a pair of source and target distributions µS , µT over X × Y are
given. Let pS and pT denote the respective marginals on the input space X . In unsupervised domain
adaptation, the learning algorithm obtains labelled source samples from µS and unlabelled target
samples from pT . To estimate the adaptability of a hypothesis h, i.e., its generalization to the target
distribution, we aim to bound the target risk RT (h) = Ex,y∼µT

[1h(x) ̸=y] relative to the source risk
RS(h) = Ex,y∼µS

[1h(x) ̸=y] [5, 13, 60]. For instance, Shen et al. [43] bound the target risk via the
source risk and the Wasserstein-1 distance W1 between source and target distributions.
Theorem 12 (Shen et al. [43]). For all hypotheses h ∈ H, the target risk is bounded as

RT (h) ≤ RS(h) + 2KW1(pS , pT ) + λH,

where K is the Lipschitz constant of h and λH is the best joint risk λH := infh′∈H[RS(h
′)+RT (h

′)].

This bound relies on being able to measure Wasserstein distance between the two data distributions,
which demands a ground metric on the data space, and an associated Lipschitz constant of the model
h. The TMD and the resulting Lipschitz constant in Section 5.1 make this bound applicable to
message passing GNNs, too. In particular, for GNNs that satisfy the Lipschitz constant in Theorem 8,
the domain discrepancy W1(pS , pT ) is defined as

W1(pS , pT ) = inf
π∈Π(pS ,pT )

∫
TMDL+1

w (Ga, Gb)dπ(Ga, Gb), (3)
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Figure 6: Accuracy
Drop and Distances.
Wasserstein distance
based on TMD highly
correlates (r = 0.712)
with the accuracy
drops, while WWL
fails to predict the
generalization.

where L is the number of message-passing layers in h. Since W1(pS , pT ) can be estimated without
labels, Theorem 12 applies to unsupervised domain adaptation. Assuming that there is a model that
performs well in both source and target domain, i.e., λH is small, we may empirically estimate the
discrepancy between source and target risk via the GNN Lipschitz constant and W1(pS , pT ).

6.1 Experiments

Domain Shifts We first verify our analysis on the PTC dataset [22], which contains carcinogenicity
labels of chemical structures for four groups of rodents: male mice (MM), male rats (MR), female
mice (FM) and female rats (FR). We train 3-layer GINs [55] on one group and examine the empirical
performance drop on the remaining groups. Figure 6 shows the Wasserstein distance between groups
and the corresponding performance drops. As a baseline, we compute the Wasserstein distance with
WWL transportation cost [46]. The W1 distance based on TMD highly correlates with the accuracy
drop (Pearson correlation r =0.712), while WWL-W1 only achieves r =0.489.

Size Generalization A known challenge for GNNs is generalizing to graphs of different size
[58, 56]. To evaluate TMD on this problem, we sort the PROTEINS dataset [8] based on the number
of nodes and bin it into 8 subsets, each containing 125 graphs. We again train 3-layer GINs on the
smallest and the largest bins and examine the accuracy drops on the remaining ones. Figure 7 plots
the accuracy drops with respect to different subsets and the corresponding Wasserstein distance based
on TMD and WWL. TMD correlates with the accuracy drop surprisingly well when the models are
trained on large graphs and tested on smaller graphs (r = 0.97). The correlation is slightly weaker
when the models are trained on small graphs and tested on large graphs (r = 0.83). Yet, TMD shows
a much more gradual change in distance, in agreement with the gradual change in drop, than WWL,
and hence reflects the overall behavior better.

Test Subset
(a) Train on Small Graphs (b) Train on Large Graphs

Test Subset

Figure 7: Size Generalization.
Index 1 denotes the bin of small-
est graphs and index 8 the largest
graphs. For better visualization,
the Wasserstein distances are nor-
malized to make the maximal dis-
tance equal to the greatest per-
formance drops, as the absolute
scales of distances are less impor-
tant. The models in (a) / (b) are
trained on subset 1 / 8, respec-
tively.

7 Conclusion

In this work, we introduce Tree Mover’s Distance (TMD), a new graph distance based on optimal
transport between computation trees. First, TMD captures the structural and attribute properties
that are important for many graph classification tasks. Second, it reflects the patterns that determine
the generalization behavior of message passing graph neural networks, and, hence, offers a suitable
tool to predict the perturbation stability and out-of-domain generalization capability of such GNNs.
Hence, it bears promise in applications, both for graph learning tasks and predicting reliability of
graph learning models, and, in theory, as a tool for new tighter analyses of generalization in GNNs.
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