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Introduction

We consider the problem of demosaicking within the spike domain.

A retina-like network [5] is simulated using Brian2 [3] and the PyRho

optogenetics library [2] in order to produce an RGB-channelled im-

age.

Spiking Neuronal Models

We make use of a leaky integrate-and-fire (LIF) neurons to describe

the membrane potential dynamics of an individual neuron:

Cm
dV

dt
= −gL(V − EL) + Isyn(t)

where Cm is the membrane capacitance, gL is the leak conductance,

EL is the resting potential, Isyn(t) is the synaptic current, and V is

the membrane potential. The LIF neuron fires an action potential

when its membrane potential reaches a threshold value Vth, which

can be expressed as:

Vth = Vrest + ∆V

where Vrest is the resting membrane potential and ∆V is the thresh-

old potential. When the membrane potential reaches the threshold

value, the neuron ”spikes” and its membrane potential is reset to a

hyperpolarized value Vreset, which is typically more negative than the

resting potential:

V ← Vreset

These equations describe the basic behavior of a single LIF neuron

which may be grouped together as a neural population with each

neuron representing a pixel.

Retina-like Bayer filtering

Figure 1. Bayer filter [1] samples different .RAW pixel values for a colour value to

estimate RGB channel values for the entire image

We take as input a mosaicked H ×W image of continuous values

and output to a population of H × W × 3 spiking neurons repre-

senting a spike-encoded interpolation of the RGB values. In order

to convert continuous values into spiking inputs, we first apply an

input encoding population responsible for using each value as the

rate parameter for a Poisson distribution of spikes. The model thus

consists of two populations: one for encoding the .RAW values to

an appropriate spiking neuron rate, and another for the interpolated

value of all channels.

Optogenetics for biological plausibility

Opsins are proteins present in biological retinal cells (i.e. cones and

rods) that produce an electrical response (i.e. action potential) when

exposed to certain frequencies of light. For the RGB output neural

population, we make use of [2] to model different opsins responsive

to different wavelengths of light corresponding to RGBwavelengths.

In this way, we retain the traditional Bayer filtering pattern but the

spiking activity of each neuron is driven by an opsin model [4].

Spike-timing dependent plasticity learning

In order to learn the weights between input encoding population

and interpolated RGB population, we apply spike-timing dependent

plasticity (STDP) [6].

∆wij =

{
A+e

−∆t
τ+ if ∆t ≤ 0

−A−e
−∆t

τ− if ∆t > 0
Here, ∆wij is the change in the synaptic weight between neurons

i and j, and ∆t is the time difference between the pre-synaptic

spike (tpre) and the post-synaptic spike (tpost). The parameters A+ and

A− control the magnitude of the weight change for pre-before-post

and post-before-pre pairings, respectively, and τ+ and τ− control the
time constants of the weight change. STDP is a biologically-inspired

learning rule that allows neural networks to adapt to changing input

patterns by strengthening or weakening the connections between

neurons based on the temporal order of their spiking activity.

Comparison of spike encoded interpolations

In order to compare the spike encoded Bayer filtering, we compare

the spike trains of our output network to the spiking activities of a

H ×W × 3 neural population where the spike rate of each neuron is

determined by using the traditional Bayer filter interpolation as a rate

parameter to the Poisson distribution. We make use of the Elephant

[7] library in order to compute statistics and metrics between our

retina-network RGB spiking output and the output of the ”ground

truth” interpolated values used as spiking rate. There are manyways

to compare two sets of spike trains and so we explore the different

metrics available:

Spike Train Comparison Method Value

Victor-Purpura distance 2.08

van Rossum distance 1.09

ISI-distance 0.06

Spike time tiling coefficient (STTC) 0.24

Event synchronization (ES) 0.41

Modulation index (MI) 0.45

Kreuz metric 0.25

Table 1. Spike train comparison methods in Elephant. Values were determined by

an average over 10 runs for a sample .RAW image
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