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Abstract
Subgraph neural networks have recently gained
prominence for various subgraph-level predictive
tasks. However, existing methods either 1) ap-
ply simple standard pooling over graph convolu-
tional networks, failing to capture essential sub-
graph properties, or 2) rely on rigid subgraph
definitions, leading to suboptimal performance.
Moreover, these approaches fail to model long-
range dependencies both between and within
subgraphs—a critical limitation, as many real-
world networks contain subgraphs of varying
sizes and connectivity patterns. In this paper,
we propose a novel implicit subgraph neural net-
work, the first of its kind, designed to capture
dependencies across subgraphs. Our approach
also integrates label-aware subgraph-level infor-
mation. We formulate implicit subgraph learn-
ing as a bilevel optimization problem and de-
velop a provably convergent algorithm that re-
quires fewer gradient estimations than standard
bilevel optimization methods. We evaluate our
approach on real-world networks against state-of-
the-art baselines, demonstrating its effectiveness
and superiority. Our code is avaliable https:
//github.com/MLonGraph/ISNN

1. Introduction
Graphs serve as natural abstractions for complex relational
data across numerous domains, including but not limited to
the web (Kumar et al., 2000; Kleinberg et al., 1999), health-
care (Wang et al., 2020), social networks (Leskovec et al.,
2007; Ugander et al., 2011), language and speech (Nas-
tase et al., 2015), and e-commerce (Huang et al., 2004). A
subgraph of a graph G(V, E) is another graph S(V ′, E ′) in-
duced by a subset V ′ ⊂ V of nodes, where naturally E ′ ⊂ E .
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Subgraphs capture critical internal structures within graphs,
which are essential for a variety of applications. For exam-
ple, echo chambers in social networks are subgraphs vital for
studying misinformation diffusion and polarization (Cinelli
et al., 2021); fraudulent activities within e-commerce net-
works induce subgraphs with properties that distinguish
them from the rest of the graph (Song et al., 2021); and
cascades of hospital-acquired infections in healthcare net-
works create subgraphs that aid in detecting asymptomatic
infections (Jang et al., 2021).

The ubiquity of graphs and relational data has driven ad-
vancements in machine learning algorithms tailored to
graphs, with graph neural networks (Wu et al., 2020) emerg-
ing as the dominant method across many, if not all, of these
domains. While most current graph neural networks focus
on node, edge, and graph-level tasks, there have been some,
albeit limited, advancements in subgraph neural networks
and subgraph representation learning.

(Adhikari et al., 2018) proposed Sub2Vec, a subgraph-
level representation learning framework that captures a sub-
graph’s neighborhood and structural information in a la-
tent space. However, the approach is simplistic and fails to
achieve state-of-the-art performance. (Alsentzer et al., 2020)
introduced Subgraph Neural Networks (SubGNN), one of
the first neural networks explicitly designed for subgraphs,
incorporating positional information (i.e., where a subgraph
is located within the entire graph) alongside neighborhood
and structural properties. However, SubGNN relies on arti-
ficially sampled patches and, as later studies show, offers
only marginal improvements over standard GNNs.

Subsequent works, GLASS (Wang & Zhang, 2021) and
SSNP (Jacob et al., 2023), focus on pooling node-level
representations to learn subgraph embeddings. GLASS em-
ploys a “labeling trick” to indicate node membership in a
subgraph, learning node embeddings that are then aggre-
gated into subgraph representations. SSNP first transforms
node embeddings and applies multi-step stochastic pooling
to generate subgraph embeddings. Notably, both methods
rely solely on node memberships and overlook additional
subgraph-level information.

Moreover, capturing long-range dependencies between sub-
graphs is critical in subgraph representation learning, as
subgraphs that are far apart in the graph may still share
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complementary structural information that enhances clas-
sification performance. None of the prior work explicitly
captures long-range dependency.

To address these issues, we first propose incorporating label-
aware subgraph-level information alongside node embed-
dings to learn more expressive subgraph representations.
Leveraging subgraph-subgraph relations provides an addi-
tional advantage (see Figure 3). As shown in the figure,
explicitly modeling these relationships reveals hidden con-
nections between subgraphs that may not be apparent in
the original graph. While incorporating subgraph-subgraph
relations allows our model to capture certain long-range
dependencies, it remains insufficient for ensuring general
long-range interactions across subgraphs. To fully address
this, we formulate our subgraph neural network using the
Implicit Neural Network framework (Sitzmann et al., 2020).

Implicit graph neural networks (IGNNs) have gained popu-
larity for capturing long-range dependencies while avoiding
performance degradation (Baker et al., 2023; Liu et al.,
2022). At a high level, IGNNs iterate a single graph convo-
lution operator until the learned node representations con-
verge to a fixed point. Since the number of iterations is
unbounded, the representations can incorporate information
from topologically distant nodes. While various IGNNs ex-
ist—including models for dynamic (Zhong et al., 2024) and
heterogeneous graphs (Gu et al., 2020)—there are currently
no implicit models designed for subgraphs. Moreover, con-
ventional IGNNs cannot be trivially adapted to subgraph
learning, as they become unstable when approaching the
fixed point (see Section 4.2).

Present work. In this paper, we propose the IMPLICIT
SUBGRAPH NEURAL NETWORK (ISNN), the first implicit
model for subgraph representation learning (see Figure 2).
Our approach consists of an IGNN applied to both the origi-
nal graph and a newly constructed hybrid graph. This hybrid
graph extends the original structure by incorporating compo-
nents that explicitly model relationships between subgraphs,
as well as interactions between subgraphs and original graph
nodes.

However, training such a model presents significant chal-
lenges (see Section 4). To address this, we reformulate
the problem as a bilevel optimization problem (Sinha et al.,
2017), where the upper-level objective corresponds to the
subgraph classification task, while the lower-level con-
straints enforce the fixed-point conditions of the implicit
representation. Although optimizing non-convex functions
in bilevel settings is generally difficult, our formulation in-
cludes non-expansive constraints, enabling us to develop
an efficient bilevel optimization algorithm. This algorithm
leverages fixed-point iteration instead of gradient descent
in the inner loop, reducing gradient oracle calls. We further
provide a theoretical convergence guarantee, ensuring that

the algorithm reaches a stationary solution when one exists.

Our key contributions are as follows:

• We introduce the first implicit subgraph neural net-
work, leveraging both node-level and label-aware
subgraph-level information.

• We propose an efficient bilevel optimization algo-
rithm for training ISNN, replacing gradient descent
in the inner loop with fixed-point iteration, reducing
gradient complexity while ensuring convergence.

• We conduct extensive experiments on four bench-
mark datasets, demonstrating that our approach con-
sistently outperforms state-of-the-art baselines in F1-
score across all datasets and in AUROC across all but
one dataset.

2. Related Work
Subgraph Neural Networks: Initial works like Sub2Vec
(Adhikari et al., 2018) introduced subgraph-level representa-
tion learning by focusing on capturing two important prop-
erties of subgraphs - structural and neighborhood. However,
its simple architecture limited its expressiveness, leading
to suboptimal performance compared to more sophisticated
graph neural networks. Subgraph Neural Networks (Sub-
GNN) (Alsentzer et al., 2020), was one of the first attempts
to explicitly account for positional information of subgraphs
within the entire graph, as well as their local structural fea-
tures. To capture the full topologies of subgraphs, SubGNN
samples anchor patches from the base graph and propagates
messages between the anchors and the subgraph across mul-
tiple channels. However, this process of sampling channel-
specific anchor patches and then propagating them is com-
putationally intensive.

Recent approaches, such as GLASS (Wang & Zhang, 2021)
and Stochastic Subgraph Neighborhood Pooling (SSNP)
(Jacob et al., 2023), have focused on improving subgraph
representation learning by using node-level representations.
These methods first employ node embeddings then pool
them to form subgraph embeddings. GLASS utilizes a
novel labeling trick to distinguish whether a node belongs
to a subgraph, and SSNP offers a multi-step stochastic pool-
ing method to process node embeddings. However, even
with these advances, both models focus mainly on node
memberships and do not fully utilize other subgraph-level
properties, such as structural or relational information be-
tween subgraphs.

Graph Implicit Models: Implicit models define their out-
put through fixed-point equations. (Bai et al., 2019) provides
an equilibrium model for sequence data based on an equilib-
rium equation’s fixed-point solution. Implicit Graph Neural
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(a) A graph with three subgraphs (b) Corresponding subgraph-level graph

Figure 1: The distance between the two subgraphs - S1 and S3 - in the original graph (a) is approximately n
2 (where n is the

number of nodes in the blue circle). However, in the subgraph-level graph (b) the distance for the same two subgraphs is
only 2.

Network (IGNN) (Gu et al., 2020) showcases an implicit
model, leveraging several layers of graph convolution net-
work (GCN) to discover long-range dependencies. (Park
et al., 2021) introduce the equilibrium GNN-based model
with a linear transition map while ensuring the transition
map is contracting such that the fixed point exists and is
unique. (Liu et al., 2021a) present an infinite-depth GNN
which captures long range dependencies in the graph while
avoiding iterative solvers through deriving a closed-form
solution. (El Ghaoui et al., 2021) present a general implicit
deep learning framework and discusses the well-posedness
of implicit models. (Chen et al., 2022) employ the diffusion
equation as the equilibrium equation and solve a convex
optimization problem to find the fixed point in their model.

Bilevel Optimization: Bilevel optimization has gained
significant popularity in recent years due to its applicability
in various domains. A bilevel problem involves two nested
optimization tasks: an upper-level problem and a lower-
level problem, where the upper-level decision depends on
the solution of the lower-level problem. These problems
are generally difficult to solve. For bilevel problems with a
strongly-convex lower-level problem, algorithms based on
the Implicit Gradient (IG) method have been proposed, as
seen in the works of (Pedregosa, 2016; Ghadimi & Wang,
2018). Another branch of bilevel optimization is Itera-
tive Differentiation (ITD) methods, which approximate the
lower-level solution using iterative optimization techniques,
as discussed by (Liu et al., 2021c; Hu et al., 2022). Addition-
ally, penalty-based methods, such as log-barrier and gradient
norm penalty, have been introduced to solve bilevel prob-
lems, as explored by (Liu et al., 2021b; Shen & Chen, 2023).
Bilevel optimization has also been successfully applied in
various fields, including federated learning (Tarzanagh et al.,
2022) and ranking (Qiu et al., 2022).

3. Methodology
3.1. Preliminaries

Notation: Consider a graph G = {V, E ,X}, where V rep-
resents the set of nodes, E represents the set of edges, and
X ∈ Rn×d is the feature matrix. Additionally, let n be the

number of nodes and d be the feature dimension. We are
given a set D of subgraphs drawn from G and their cor-
responding labels, i.e., D = {(Si(Vi, Ei), yi)}mi=1, where
Vi ⊆ V is a subset of nodes and Ei is the edges induced
by V (naturally, Ei ⊂ E), and m is the total number of
subgraphs. This work focuses on the task of subgraph clas-
sification, where the goal is to predict the correct label yi
for each subgraph Si.

Graph Implicit Models: Implicit models (Gu et al., 2020;
Liu et al., 2021a; Zhong et al., 2024) typically follow
the structure Zk = f(Zk−1, X), where f is a function,
often parameterized by a neural network, X represents
the input data, and Z denotes the learned representation.
The fixed-point solution can be obtained iteratively as
Z∗ = limk→∞ Zk+1 = limk→∞ f(Zk, X) = f(Z∗, X).
Finally, the implicit models output the fixed-point represen-
tation for the downstream tasks.

Labeling Trick: The labeling trick (Zhang et al., 2021) in
subgraph learning is a technique aimed at enhancing the
expressive power of Graph Neural Networks (GNNs) for
multi-node representation learning. It involves assigning
labels to nodes based on their membership in a subgraph.
A common example is the zero-one labeling trick, where
nodes belonging to the target subgraph are labeled as 1,
and all others are labeled as 0. The zero-one labeling trick
requires relabeling for each different target subgraph, which
can be computationally expensive. To address this, a more
efficient variant, the max-zero-one (Wang & Zhang, 2021)
labeling trick, enables batch processing by assigning labels
based on the presence of any subgraph in the batch. For
instance, a node is labeled as 1 if it belongs to a subgraph
in the batch, allowing for the handling of multiple target
subgraphs in a single forward pass.

3.2. Enhanced Subgraph Representation

The state-of-the-art subgraph learning algorithms can be
broadly categorized into two approaches: 1) learning from
subgraphs, such as SubGNN (Alsentzer et al., 2020); and
2) learning from nodes, such as GLASS (Wang & Zhang,
2021) and SSNP (Jacob et al., 2023). As discussed earlier,
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Figure 2: Overview of our method. We first construct a hybrid graph that consists of both regular nodes and supernodes,
representing subgraphs. The edges between supernodes are inferred via pertaining (See Section 3.5). Finally, we learn node
and subgraph embeddings jointly. The entire framework is trained using a novel bi-level optimization algorithm.

SubGNN does not fully leverage node-level information,
and its subgraph-level information is not powerful enough
to lead to state-of-the-art performance. On the other hand,
methods like GLASS and SSNP completely ignore the sub-
graph information. However, it is intuitive that subgraph
information, if leveraged properly, is essential in subgraph
representation learning. Consider the example in Figure 1.
The dependency between subgraphs S1 and S3 is difficult
to capture in the node-level graph but is easy to establish in
the subgraph-level graph.

To address these limitations, we propose a label-aware sub-
graph enhancing framework that integrates both subgraph-
level and node-level information, offering flexibility and
expressivity. The high-level concept is illustrated in Figure
2. The subgraph enhancing framework starts by construct-
ing a hybrid graph Ĝ = {{V ∪ Vs}, {E ∪ Es ∪ Ens}, X̂},
where each supernode in Vs represents a subgraph. Es
is the set of edges among super-nodes in Vs (capturing
subgraph-subgraph relationship), and Ens is the set of edges
between V and Vs (capturing membership relationship).
X̂ ∈ R(n+m)×d is the corresponding feature matrix. Then,
we obtain {Ẑn, Ẑs} the embeddings of Ĝ using the pro-
posed approach. Finally, the subgraph embeddings are ob-
tained by using attention

Z = Attention(Ẑn, Ẑs)

We will discuss the exact Ĝ construction in a later section.
However, as demonstrated by the following proposition,
the subgraph enhancing framework is more flexible than
the labeling trick proposed in (Wang & Zhang, 2021) (also
described in the Preliminaries section).
Proposition 3.1. Max-zero-one labeling trick is a special
case of subgraph enhancing.

Proof. Subgraph enhancement can simulate the labeling
trick with an additional aggregation step and an auxiliary
dimension. Subgraph nodes send messages to other nodes,
and if a node in the node-level graph receives any message,
its auxiliary feature is marked as 1; otherwise, it is marked as
0. Afterward, the subgraph-level graph can be disregarded.

By incorporating appropriate subgraph-level information,
our framework enhances the expressivity of GNNs, enabling
them to distinguish between subgraphs that the max-zero-
one labeling trick fails to differentiate, as shown in Figure
3. Consider a graph with no node features. In this case, S1
and S2 are indistinguishable, even with the max-zero-one
labeling trick, since all nodes belong to at least one subgraph
and are labeled 1. However, Figure 3 also demonstrates
that by adding nodes to represent subgraphs and directed
subgraph-level edges, the two trees become distinguishable.

Another key challenge in subgraph learning is that sub-
graphs of the same class may be widely separated within the
base graph. Effectively learning meaningful embeddings for
these subgraphs requires capturing long-range dependencies
between them. Graph Implicit Models (GIMs) are particu-
larly well-suited for this task, as they naturally propagate
information across distant nodes. To address this issue, we
propose the Implicit Subgraph Neural Network (ISNN). In
the following sections, we formally introduce our model,
provide theoretical guarantees, and detail the construction
of the hybrid graph Ĝ.

3.3. Formulation and Optimization

A straightforward way ahead is to train an implicit model di-
rectly on the hybrid graph Ĝ. However, as demonstrated by
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(a) Original graph (b) Assymetric rooted trees

Figure 3: An example where max-zero-one labeling trick fails. Consider the graph on the left with empty features. GNN
cannot distinguish S1 and S2 since every node in these subgraphs has the same topology, and the max-zero-one label trick
assigns 1 to all nodes. The figure on the right demonstrates these two subgraphs can be distinguishable if the introduced
subgraph-level edge has asymmetric weights.

our experiments, this approach does not lead to a desirable
performance. This is primarily because directly computing
fixed-point embeddings on the hybrid graph which involves
a relatively complicated aggregation step is unstable (this
is the main reason why standard IGNN baselines do not
perform well for subgraph-level tasks). To overcome this
issue, we formulate our problem as a bilevel optimization
problem and solve it approximately. Our bi-level objective
can be written as follows:

min
x∈X

F (x;Z∗) ≜
m∑
i=1

ℓ(yi, ϕθ([Z
∗]i)) (1)

s.t. Z∗ ≜ argmin
Z

1

2
∥Z− f(Z, Ĝ; ξ,W)∥2F

where Z∗ ∈ Rm×d is the subgraph embeddings. [Z∗]i de-
notes the i-th row of Z∗. ℓ represents the classification loss,
e.g., cross-entropy, and ϕθ is a classifier parameterized by
θ. Let x denote the set of all parameters, and X denotes the
feasible set. This paper adopts a linear fixed pooling func-
tion and simple mean aggregation. However, our approach
is flexible and supports learnable pooling and aggregation
functions. f is an implicit model parameterized by ξ and
W. In particular, we use the EIGNN (Liu et al., 2021a)
formulation for f .

f(Z, Ĝ; ξ,W) = αAZh(W) + ψξ(X̂) (2)

h(W) =
WTW

∥W∥∥W∥+ eh
(3)

In the equations presented above, A denotes the normalized
adjacency matrix, while α ∈ (0, 1) is a controlling, and eh
is a small float for numerical stability. The α is selected
small enough so that f is a non-expansive operator w.r.t. Z.

We propose Algorithm 1 to find stationary solution of prob-
lem 1. The algorithm consists of two for-loops. The inner
loop runs the fixed-point iteration K times, and the outer
loop runs gradient descent with proxy embeddings, where
∇f := (∂xf, ∂Zf) and ∇̂f := (∂xf, 0). This training al-
gorithm follows the framework of V-PBGD from (Shen &

Chen, 2023), which is a first-order Hessian-free penalty-
based nonconvex bilevel optimization algorithm. Such a
penalty-based algorithm solves an alternative problem

min
x∈X ,Z

F (x,Z) + γ (g(x,Z)− g(x,Z∗)) (4)

where g(x,Z) = 1
2∥Z − f(Z, Ĝ; ξ,W)∥2F denotes the

lower-level problem. If g is a Polyak-Łojasiewicz (PL) func-
tion, solving this problem with large enough γ can deliver
a stationary solution (Proposition 1 & 2 in (Shen & Chen,
2023)). Since solving Z∗ for each gradient descent step is
intractable, prior works use proxy variables to approximate
it (Hu et al., 2022).

The main difference between our algorithm and V-PBGD
is that we used the fixed-point iteration to update the proxy
embeddings Ẑ. We will show that our objective is a spe-
cial case of nonconvex bilevel problem with lower-level PL
function. Thus, this allows us to adopt existing techniques,
and the additional non-expansiveness allows us to get a bet-
ter gradient oracle complexity (see Remark 3.9). (Zhong
et al., 2024) also proposed a bilevel algorithm using fixed-
point iteration in the inner loop. However, their algorithm is
heuristic and does not provide convergence guarantees.

3.4. Convergence Analysis

Let us start with some definitions.

Definition 3.2. A function f is said to be µ-contractive if it
satisfies ∥f(x)− f(y)∥2 ≤ µ∥x− y∥2, for any x, y in the
domain of f .

Definition 3.3. A function f is said to be a µ-Polyak-
Łojasiewicz function if it satisfies ∥∇f(x)∥2 ≥ µ(f(x)−
f∗), for any x in the domain of f and f∗ = inf f(x).

To state the convergence result, we first make the following
assumptions.

Assumption 3.4. The upper-level function F and lower-
level function g are LF ,Lg-smooth for all variables, the
upper-level function F is lF -Lipschitz for all variables.
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Algorithm 1 ISNN Training Algorithm

1: Input: Graph Ĝ = (V ∪Vs, E ∪Es∪Ens, X̂), Learning
rate η, hyperparameter γ;

2: Z1 ← 0;
3: for i=1,...,T do
4: Ẑi

0 ← Zi

5: for j=1,...,K do
6: Ẑi

j ← f(Ẑi
j−1, Ĝ; );

7: end for
8: ∇g := ∇g(xi,Zi)− ∇̄gk(xi, Ẑi

K)
9: ∇Fγ := ∇F (xi;Zi) + γ∇g

10: (xi+1,Zi+1)← Proj
(
(xi,Zi)− η∇Fγ)

)
11: end for
12: Return: (xT ,ZT ).

Assumption 3.5. Assume that f(x, ·) is µ-contractive for
all x ∈ X and X is nonempty.

Note that the Assumption 3.4 is standard in bilevel optimiza-
tion literature (Hu et al., 2022; Shen & Chen, 2023). The
additional Assumption 3.5 is a natrual requirement for im-
plicit models to ensure the well-posedness (Gu et al., 2020),
which we can maintain by choosing small enough α. We
defer most of the proofs in this section to the Appendix.
Remark 3.6. The lower-level problems g is a 2(1− µ) PL
function.

Proof. For simplicity, we denote g(x,Z), f(Z, Ĝ; ξ,W)

by gx(Z), fx(Z), and Z⃗ denotes the vectorized Z. By the
definition of function g, we have

∇gx(Z⃗) = (I − ∂fx(Z⃗)

Z⃗
)(Z⃗− fx(Z⃗))

⇒∥∇gx(Z⃗)∥2 = ∥(I − ∂fx(Z⃗)

Z⃗
)(Z⃗− fx(Z⃗))∥2 (5)

Since fx is a µ-contractive function, the operator norm of
its Jacobian is bounded by µ. Therefore, the operator norm
of I − ∂fx(Z⃗)

Z⃗
is lower bounded by 1− µ. Thus,

∥∇gx(Z)∥2 ≥ 2(1− µ)gx(Z) (6)

Moreover,

∥∇gx(Z⃗)∥2 = ∥(I − ∂fx(Z⃗)

Z⃗
)(Z⃗− fx(Z⃗))∥2 ≤ 2gx(Z)

(7)

Remark 3.7. Based on the Assumption 3.5, the model is
well-posed i.e., the lower-level problem admits a unique
fixed point.

Now, we are ready to state our convergence result.

Theorem 3.8. Consider Algorithm 1, suppose Assump-
tion 3.5 and 3.4 hold. Choosing η ∈ (0, LF + γ(2Lg +

L2
g

2(1−µ) )],K = Ω(log
√
mηt

1−µ ), and γ = Ω(ϵ−0.5), where ϵ
is the desired error. Let z denote the list of all parameters
{x,Z}, andAγ(z) := F (x,Z)+γ(g(x,Z)−g(x,Z∗)) be
the loss of penlty problem. Let z̄t+1 := Proj(zt−∇Aγ(z

t))
be the solution updated by the exact gradient. We have the
following

T∑
t=1

∥z̄t+1 − zt∥ ≤ 18Aγ(z
1)

η
+ 10l2FL

2
g (8)

Remark 3.9. Theorem 3.8 indicates the Algorithm 1 can
produce a stationary solution to the bilevel optimization
problem if it converges. The sample complexity is Õ(ϵ−1.5),
which matches the result in (Shen & Chen, 2023). To note
that, our method only computes gradient once per iteration.
However, the method in (Shen & Chen, 2023) needs to
compute K + 1 gradients per iteration. Thus, our method is
more efficient in training implicit models.

3.5. Hybrid Graph Construction

There are several elements in the hybrid graph Ĝ that need to
be described: Es, Ens, and X̂ . The feature matrix X̂ can be
constructed by concatenating node features with subgraph
features. The subgraph feature, in turn, can be defined as the
average node feature within each subgraph. Similarly, an
edge (i, j) ∈ Ens exists if node i is a member of subgraph
j. The key challenge is defining Es. This paper presents
three possible ways to define it. However, before diving into
these details, let us first explore alternative methods.

Many subgraph-level methods (e.g., Sub2Vec and
SubGNN) adopt a similar framework, but they learn em-
beddings solely from the subgraph-level graph, i.e., Ĝ =
{Vs, Es, X̂}. These methods construct Es using three ap-
proaches – 1) Position: defines edge weights based on the
distance between subgraphs, 2) Neighborhood: Computes
edge weights using the number of overlapping neighbors be-
tween subgraphs, and 3) Structure: Measures edge weights
based on the topological similarity of subgraphs. However,
these approaches do not achieve good performance in prac-
tice. We empirically show that they perform no better than
assigning random edge weights (see Section 4.2). This is be-
cause these strategies ignore the downstream tasks, and the
three types of information may not necessarily be beneficial
for later training.

Therefore, instead of focusing on the structural properties of
the graph, we propose an approach that directly addresses
the task. For a classification task, two intuitive assumptions
can be made: 1) Embeddings of supernodes belonging to the
same class should be similar. 2) A test supernode is more
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Table 1: Statistic of datasets.

Dataset #Nodes #Edges #Subgraphs #Labels/Classes

PPI-BP 17,080 316,591 1,591 6
HPO-METAB 14,587 3,238,174 2,400 6
HPO-NEURO 14,587 3,238,174 4,000 10

EM-USER 57,333 4,573,417 324 2

likely to share the same label as its most similar supernode
in the training set.

To this end, our framework begins by pretraining the model
with an empty Es. Based on the pretrained embeddings
and these two assumptions, we introduce two label-aware
strategies tailored for different scenarios:

• Binary & Multi-class: For each class, we connect k
pairs of the most distant training supernodes.

• Multi-label: We select certain labels and convert them
from binary to integer values, thereby treating the data
as multi-class.

In all these strategies, each test node is connected to its
closest training node in the latent space during inference.

4. Experiments
Dataset: We assess our model’s performance and scalability
by benchmarking it against various subgraph classification
baselines on four real-world datasets. Following the experi-
mental setup of SubGNN (Alsentzer et al., 2020), we evalu-
ate our approach on PPI-BP, HPO-METAB, HPO-NEURO,
and EM-USER. The statistics of the datasets are summarized
in Table 1.

Models: We take the following models as our baselines.

• Plain/Soft models: use the backbone model to gener-
ate node embeddings then aggregate them to subgraph
embeddings. The soft models are the plain models
trained by our optimization algorithm.

• Sub2Vec: generates subgraph embeddings by first cap-
turing two main properties, neighborhood and struc-
tural, of each subgraph and projecting these features
into a low-dimensional continuous vector space.

• GLASS: employs a max-zero-one labeling trick, distin-
guishing nodes within the target subgraph from those
outside it. GLASS effectively captures the internal and
external topology that influence subgraph properties
using a standard message passing framework.

• SubGNN: propagates neural messages between sub-
graph components and anchor patches from the under-
lying graph by utilizing three distinct channels: neigh-
borhood, structure, and position to capture various as-

Table 2: Micro-F1 on real-world datasets averaged over 10
runs, for all models. Bold indicates the best result, and
underline indicates the second best result.

Method PPI-BP HPO-METAB HPO-NEURO EM-USER

MLP 0.297±0.027 0.443±0.063 0.490±0.059 0.808±0.138

GCN-plain 0.398±0.058 0.452±0.025 0.535±0.032 0.561±0.021

Sub2Vec 0.309±0.023 0.114±0.021 0.206±0.073 0.522±0.043

GLASS 0.618±0.006 0.598±0.014 0.675±0.007 0.884±0.008

SubGNN 0.598±0.032 0.531±0.015 0.644±0.009 0.815±0.054

SSNP 0.636±0.007 0.587±0.010 0.682±0.004 0.888±0.005

IGNN-plain 0.389±0.025 0.284±0.021 0.215±0.002 0.579±0.008

EIGNN-plain 0.425±0.050 0.252±0.009 0.312±0.017 0.591±0.006

SoftIGNN 0.594±0.006 0.520±0.002 0.653±0.005 0.820±0.008

SoftEIGNN 0.592±0.006 0.522±0.002 0.658±0.004 0.829±0.010

ISNN 0.731±0.026 0.646±0.014 0.688±0.004 0.914±0.009

Table 3: AUROC scores on real-world datasets averaged
over 10 runs, for all models. Bold indicates the best result,
and underline indicates the second best result.

Method PPI-BP HPO-METAB HPO-NEURO EM-USER

MLP 0.498±0.009 0.814±0.032 0.764±0.104 0.896±0.143

GCN-plain 0.663±0.044 0.772±0.018 0.773±0.027 0.525±0.065

Sub2Vec 0.544±0.011 0.496±0.010 0.504±0.015 0.518±0.048

GLASS 0.835±0.002 0.891±0.002 0.852±0.001 0.960±0.004

SubGNN 0.816±0.012 0.862±0.005 0.843±0.014 0.911±0.042

SSNP 0.831±0.008 0.883±0.007 0.867±0.004 0.952±0.011

IGNN-plain 0.514±0.046 0.496±0.063 0.709±0.065 0.541±0.089

EIGNN-plain 0.630±0.189 0.579±0.092 0.601±0.121 0.553±0.072

SoftIGNN 0.797±0.005 0.818±0.001 0.868±0.004 0.932±0.005

SoftEIGNN 0.798±0.008 0.821±0.001 0.868±0.002 0.927±0.006

ISNN 0.924±0.012 0.919±0.002 0.896±0.002 0.959±0.005

pects of subgraph topology. This enables SubGNN to
have expressive subgraph representations.

• SSNP: aggregates both subgraph and neighborhood
information without any labeling tricks to classify sub-
graphs. SSNP generates subgraph embeddings by first
processing node features using transformation layers
(GCN, MLP, etc.) and then, for every subgraph, ag-
gregating the node features of the subgraph and its
neighborhood through SSNP.

Hyperparameter: For all datasets, we employ a 2-layer
GNN and a 2-layer MLP for classification, with a fixed
hidden dimension of 64, consistent with the SubGNN
settings. For our method, we vary the value of γ in
{0.0001, 0.001, 0.01} and the number of inner-loop iter-
ations K in {1, 2, 3, 4, 5}.

Configuration: We rerun each experiment 10 times (max
of 1500 epochs) and report the average performance. We
conducted experiments on AMD EPYC 7763 64-Core Pro-
cessor with 2 TB memory and on 8 NVIDIA A30 GPUs.

4.1. Subgraph Classification

The results are presented in Tables 2 and 3, demonstrat-
ing that our model outperforms baselines across almost all
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Table 4: Performance of four variants of our model, which
uses different ways of constructing subgraph-level graph.

HPO-METAB ISNN-P ISNN-S IGNN-N ISNN-rand

F1 0.586±0.021 0.598±0.021 0.595±0.021 0.589±0.028

AUROC 0.874±0.007 0.874±0.010 0.876±0.007 0.876±0.008

datasets and metrics. Notably, our model excels on the
two multi-class datasets, PPI-BP and HPO-METAB, where
label-aware subgraph information plays a crucial role. By
leveraging this information, the model learns more con-
centrated embeddings for each class, resulting in a clearer
classification boundary. Even in the simpler binary classi-
fication setting (EM-USER), our approach achieves an ap-
proximately 3% improvement in F1 score compared to the
state-of-the-art method. However, for the multi-label dataset
HPO-NEURO, the conversion process for class labels does
not fully capture the relationships between subgraphs, limit-
ing our advantage.

We also observe that training GNNs or implicit models
naively for subgraph representation learning is challenging
and unstable. However, our bilevel optimization algorithm
enables stable training of implicit models while achieving
performance comparable to SubGNN. Notably, SubGNN
leverages subgraph-level graphs to learn embeddings, effec-
tively providing shortcuts in the original graph. The fact
that soft implicit models achieve similar performance sug-
gests that it successfully captures long-range dependencies
without relying on subgraph-level information, as intended.

4.2. Ablation Study

Subgraph-level Information: In this section, we investi-
gate whether subgraph-level information can aid classifica-
tion and, if so, which types are most effective. We conduct
experiments on HPO-METAB, considering four methods
for constructing subgraph-level graphs: position, neighbor-
hood, structure, and random. The first three methods have
been introduced in Section 3.5, while the random method
assigns edge weights following a normal distribution.

Based on these constructions, we define four model variants:
ISNN-P, ISNN-N, ISNN-S, and ISNN-rand, correspond-
ing to the position, neighborhood, structure, and random
subgraph-level information, respectively. The results are
summarized in Table 4. While all models achieve perfor-
mance comparable to state-of-the-art methods, the choice of
subgraph construction does not appear to significantly im-
pact the results. Surprisingly, all variants perform similarly,
including the random approach.

Sensitivity: In our optimization algorithm, the trade-off pa-
rameter γ in Equation (4) plays a crucial role in controlling
the strength of the fixed-point constraint. In this section, we

(a) (b)

Figure 4: Sensitivity analysis on γ. Running SoftIGNN and
SoftEIGNN on HPO-METAB and PPI-BP datasets.

Table 5: Average runtime per run of 1500 epochs in seconds
over 10 runs

Method PPI-BP HPO-NEURO HPO-METAB EM-USER

SSNP 130.47±4.120 204.15±25.78 162.34±19.45 158.29±28.33

IGNN-plain 439.29±58.74 1629.86±89.14 1142.88±97.42 1386.28±85.90

EIGNN-plain 114.35±0.237 275.48±1.489 185.82±0.775 176.99±5.405

ISNN 104.66±28.14 128.26±4.571 160.83±19.37 135.29±35.70

perform a sensitivity analysis on γ to evaluate its impact on
our algorithm. We conduct experiments by running Soft-
IGNN and SoftEIGNN on HPO-METAB and PPI-BP with
varying γ. The results are presented in Figure 4.

As observed, both methods exhibit poorer performance and
higher variance as γ increases. A larger γ implies that the
soft models become more similar to conventional models.
This experiment suggests that strictly enforcing the fixed-
point constraint may negatively impact the training process.

4.3. Efficiency

We also measure the runtime of our method compared to
baseline approaches. The results, presented in Table 5, con-
firm that our algorithm introduces minimal overhead. This
is expected, as the inner loop consists solely of fixed-point
iterations, which do not require gradient computation.

5. Conclusion
We introduced ISNN, the first implicit model for subgraph
representation learning, along with a provably convergent
bilevel optimization algorithm for training. Additionally, we
proposed a graph-enhancing framework to learn more ex-
pressive subgraph representations. This framework consists
of three steps: 1) Pretrain the model to obtain subgraph em-
beddings. 2) Construct a hybrid graph using the pretrained
embeddings and label information. 3) Use the hybrid graph
for subsequent training. As demonstrated in our experi-
ments, this framework leads to significant improvements.
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A. Ablation Study on SubGNN
Additionally, we conduct an experiment where we replace all subgraph information of position, neighborhood, and structure
used by SubGNN with random. The results, presented in Table 6, follow a similar trend.

Table 6: Average F1 score of SubGNN with random subgraph-level graph.

Method PPI-BP HPO-METAB HPO-NEURO EM-USER

SubGNN 0.598 0.531 0.644 0.815
SubGNN-rand 0.597 0.538 0.629 0.810

B. Sensitivity to Subgraph-Level Graph Construction Methods
In our experiments, we previously compared four subgraph-level graph construction methods—random, neighborhood,
position, and structure. The goal was to show that these classical methods do not significantly improve classification
performance, as they achieve similar results to using random subgraph information. This observation echoes conclusions
from prior work such as GRASS and SSNP.

To further the comparison, we introduce additional label-aware methods:

• class-rand: For each class, we randomly connect k pairs of training supernodes.

• Star: For each class, we select a centroid supernode and connect it with all other supernodes within that class.

Experimental Results on HPO-METAB

Metric ISNN-rand ISNN-class-rand ISNN-Star ISNN

F1 0.589 0.672 0.707 0.731
AUROC 0.876 0.901 0.916 0.924

Table 7: Performance comparison of different subgraph-level graph construction methods on HPO-METAB.

The ISNN-class-rand method improves performance over ISNN-rand by using label information to ensure that
subgraphs within the same class have similar embeddings, making classification easier. The ISNN-Star method further
boosts performance by selecting a centroid supernode for each class and connecting it to all other supernodes, reinforcing
intra-class similarity, though it introduces more edges. Our ISNN method connects only the top-k most distant pairs of
supernodes, balancing label-aware benefits with a sparse graph structure.

C. Additional Hyperparameter Sensitivity Analysis
We further investigate the sensitivity of the hyperparameter γ on ISNN. The results are presented as follows

Gamma F1 (10 Runs)

0.001 0.713± 0.014
0.01 0.726± 0.022
0.05 0.670± 0.008
0.1 0.655± 0.007
0.5 0.654± 0.022
1 0.634± 0.025

Table 8: F1 scores for different values of γ on PPI BP dataset.
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Gamma F1 (10 Runs)

0.001 0.869± 0.012
0.01 0.808± 0.027
0.05 0.853± 0.027
0.1 0.913± 0.031
0.5 0.857± 0.018
1 0.771± 0.035

Table 9: F1 scores for different values of γ on EM USER dataset.

These results show that the best performance occurs when γ is between 0.01 and 0.1. For example, PPI BP achieves its best
performance at γ = 0.01, while EM USER peaks at γ = 0.1. Gamma values outside this range lead to worse performance,
highlighting the importance of using a moderate γ.

D. Scalability of Our Method
The complexity of a standard GCN is given by:

O(n · d2 + E · d) (9)

where:

• n is the number of nodes,

• E is the number of edges, and

• d is the hidden dimension.

For our method, the complexity becomes:

O((n+ s) · d2 + (E + k) · d) (10)

where:

• s is the number of subgraphs, and

• k is the number of additional edges introduced.

Thus, the additional overhead introduced by ISNN is an additive term of:

O(s · d2 + k · d) (11)

Empirically, k can be controlled to remain small, and s, which is part of the input, is typically small in most practical
subgraph learning tasks. Therefore, ISNN exhibits scalability similar to that of a standard GCN in most practical scenarios.

E. Proof of Theorem 3.8
Based on the analysis framework from (Shen & Chen, 2023), we present the proof of Theorem 3.8. Fisrt, we provide the
convergence result on the inner loop.

Lemma E.1. (Convergence of fixed point) Suppose Assumption 3.5 and 3.4 hold. Given any xt ∈ X and Ẑt
1, after running

K steps of the inner updates, the Ẑt
K satisfies

∥Ẑt
K − Z∗(xt)∥2 ≤ 2µK

1− µ
g(xt, Ẑt

0)
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Proof. The inner loop updates: Ẑt
k = h(xt, Ẑt

1). By assumption, we know h(·) is a µ-contractive mapping

∥Ẑt
K − h(xt, Ẑt

K)∥2 ≤ µ∥Ẑt
K−1 − h(xt, Ẑt

K−1)∥2 ≤ µK∥Ẑt
0 − h(xt, Ẑt

0)∥2

Moreover, we know ∥Z− Z∗(xt)∥ ≤ 1
1−µ∥Z− h(x

t,Z)∥ for any Z. Then, taking Z to be Ẑt
K

∥Ẑt
K − Z∗(xt)∥2 ≤ 1

1− µ
∥Ẑt

K − h(xt, Ẑt
K)∥2 ≤ µK

1− µ
∥Ẑt

0 − h(xt, Ẑt
0)∥2 =

2µK

1− µ
g(xt, Ẑt

0) (12)

Next, we will give a proof to Theorem 3.8.

Proof. (of Theorem 3.8) In this proof, we denote z = (x,Z). Then the update can be written as

zt+1 = Proj(zt − η∇Aγ(x
t, Ẑt

K))

where ∇̂Aγ(z
t, Ẑt

K) := ∇F (zt) + γ(∇g(zt)− ∇̄g(xt, Ẑt
K)). Based on the assumptions we made and Lemma A.5 from

(Nouiehed et al., 2019), function Aγ is Lγ-Lipschitz-smooth with Lγ = LF + γ(2 + µ). Then the smoothness implies

Aγ(z
t+1) ≤Aγ(z

t) + ⟨∇Aγ(z
t), zt+1 − zt⟩+ Lγ

2
∥zt+1 − zt∥2

≤Aγ(z
t) + ⟨∇̂Aγ(z

t, Ẑt
K), zt+1 − zt⟩︸ ︷︷ ︸
♠

+
1

2η
∥zt+1 − zt∥2

+ ⟨∇Aγ(z
t)− ∇̂Aγ(z

t, Ẑt
K), zt+1 − zt⟩︸ ︷︷ ︸

♣

(13)

The second inequality is because we ensure η ≤ 1
Lγ

. Now the problem is bounding terms ♣,♠.

For ♠: the zt+1 can be represented as the minimizer of the following problem

min
z∈Z
⟨∇̂Aγ(z

t, Ẑt
K), z⟩+ 1

2η
∥z − zt∥2

Then, according to the first order optimality,

⟨∇̂Aγ(z
t, Ẑt

K) +
1

η
(zt+1 − zt), z − zt⟩ ≤ 0,∀z ∈ Z

⇒⟨∇̂Aγ(z
t, Ẑt

K), zt+1 − zt⟩ ≤ −1

η
∥(zt+1 − zt)∥2 (14)

Consider ♣, by Young’s inequality, we have

⟨∇Aγ(z
t)−∇Aγ(z

t, Ẑt
K), zt+1 − zt⟩ ≤ η ∥∇Aγ(z

t)−∇Aγ(z
t, Ẑt

K)∥2︸ ︷︷ ︸
⋆

+
1

4η
∥zt+1 − zt∥2 (15)

13



Implicit Subgraph Neural Network

then

⋆ = γ2∥∇g(xt,Z∗)−∇g(xt, Ẑt
K)∥2

≤ γ2L2
g∥Z∗ − Ẑt

K∥2 (By Assumption 3.4)

≤
2γ2L2

gµ
K

1− µ
g0(x

t, Ẑt
0) (By Lemma E.1)

≤
γ2L2

gµ
K

(1− µ)2
∥∇2g(x

t, Ẑt
0)∥2 (By Remark 3.6)

≤
γ2L2

gµ
K

(1− µ)2

(
2

η2γ2
∥Zt+1 − Zt∥2 + 2l2F

γ2

)
≤

L2
gµ

K

(1− µ)2

(
2

η2
∥zt+1 − zt∥2 + 2l2F

)
≤ 1

8η2
∥zt+1 − zt∥2 +

l2FL
2
g

2η2t2
(16)

The last inequality is because we choose K = max{−2 logµ
√
2Lg

1−µ ,−2 logµ
√
2ηt

1−µ }. Follow the steps after (B.9) in (Shen &
Chen, 2023), we can obtain the bound.

T∑
t=1

∥z̄t+1 − zt∥ ≤ 18Aγ(z
1)

η
+ 10l2FL

2
g (17)
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