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Abstract

Unsupervised reinforcement learning (RL) aims at pre-training models that can
solve a wide range of downstream tasks in complex environments. Despite recent
advancements, existing approaches suffer from several limitations: they may re-
quire running an RL process on each task to achieve a satisfactory performance,
they may need access to datasets with good coverage or well-curated task-specific
samples, or they may pre-train policies with unsupervised losses that are poorly cor-
related with the downstream tasks of interest. In this paper, we introduce FB-CPR,
which regularizes unsupervised zero-shot RL based on the forward-backward (FB)
method towards imitating trajectories from unlabeled behaviors. The resulting
models learn useful policies imitating the behaviors in the dataset, while retaining
zero-shot generalization capabilities. We demonstrate the effectiveness of FB-
CPR in a challenging humanoid control problem. Training FB-CPR online with
observation-only motion capture datasets, we obtain the first humanoid behavioral
foundation model that can be prompted to solve a variety of whole-body tasks,
including motion tracking, goal reaching, and reward optimization. The resulting
model is capable of expressing human-like behaviors and it achieves competi-
tive performance with task-specific methods while outperforming state-of-the-art
unsupervised RL and model-based baselines.

1 Introduction

Foundation models pre-trained on vast amounts of unlabeled data have emerged as the state-of-the-art
approach for developing Al systems that can be applied to a wide range of use cases and solve
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complex tasks by responding to specific prompts [e.g., 3, 67, 17]. A natural step forward is to
extend this approach beyond language and visual domains, towards behavioral foundation models
(BFMs) for agents interacting with dynamic environments through actions. In this paper, we aim
to develop BFMs for humanoid agents and we focus on whole-body control from proprioceptive
observations, a long-standing challenge due to the high-dimensionality and intrinsic instability of
the system [74, 105, 49]. Our goal is to learn BFMs that can express a diverse range of behaviors in
response to various prompts, including behaviors to imitate, goals to achieve, or rewards to optimize.
By doing so, we could significantly simplify the creation of general-purpose humanoid agents for
robotics [12], virtual avatars, and non-player characters [43].

While recent advancements in unsupervised reinforcement learning (RL) have demonstrated the
potential of pre-trained models to solve a wide range of downstream tasks, several limitations still
exist. Pre-trained policies or representations [e.g., 19, 84] still require training an RL agent to solve
any given downstream task. Unsupervised zero-shot RL algorithms [e.g., 96, 21] aim to address this
limitation by pre-training policies that are directly promptable (e.g., by rewards or goals) without
requiring additional samples and compute. However, these algorithms rely on 1) access to large
and diverse datasets of transitions collected through some unsupervised exploration strategy, and
2) optimize unsupervised losses that aim at learning as many and diverse policies as possible, but
provide limited inductive bias on which ones to favor. As a result, zero-shot RL performs well in
simple environments (e.g., low-dimensional continuous control problems), while struggle in complex
scenarios with high-dimensional control and unstable dynamics, where unsupervised exploration
is unlikely to yield useful samples and unsupervised learning may lead to policies that are not well
aligned with the tasks of interest.

An alternative approach is to train sequence models (e.g., transformer- or diffusion-based) from
large demonstration datasets to clone or imitate existing behaviors and rely on their generalization
capabilities and prompt conditioning to obtain different behaviors [e.g., 82, 11, 106]. This approach
is particularly effective when high-quality task-oriented data are available, but it tends to generate
models that are limited to reproducing the policies demonstrated in the training datasets and struggle
to generalize to unseen tasks [6]. Recently, several methods [e.g., 73, 23, 50] integrate demonstrations
into an RL routine to learn “regularized” policies that preserve RL generalization capabilities while
avoiding the issues related to complete unsupervised learning. While the resulting policies can serve
as behavior priors, a full hierarchical RL process is often needed to solve any specific downstream
task. See App. A for a full review of other related works.

In this paper, we aim at leveraging an unlabled dataset of trajectories to ground zero-shot RL
algorithms towards BFMs that not only express useful behaviors but also retain the capability of
solving a wide range of tasks in a zero-shot fashion. Our main contributions in this direction are:

* We introduce FB-CPR(Forward-Backward representations with Conditional Policy Regulariza-
tion) a novel online unsupervised RL algorithm that grounds the unsupervised policy learning of
forward-backward (FB) representations [95] towards imitating observation-only unlabeled behav-
iors. The key technical novelty of FB-CPR is to leverage the FB representation to embed the
unlabeled trajectories to the same latent space used to represent policies and use a latent-conditional
discriminator to encourage policies to “cover” the states in the dataset.

* We demonstrate the effectiveness of FB-CPR by training a behavioral foundation model for whole-
body control of a humanoid that can be prompted to solve a wide range of different tasks (i.e., motion
tracking, goal reaching, reward optimization) in zero-shot. In particular, we consider a humanoid
agent based on SMPL [47], a widely used skeleton in the virtual character animation community
for its expressiveness and human-like structure, and we use the AMASS dataset [57], a large
collection of uncurated motion capture data, for regularization. Through an extensive quantitative
and qualitative evaluation, we show that our model expresses behaviors that are “natural”, while
being competitive with ad-hoc methods trained for specific tasks, and it outperforms unsupervised
RL as well as model-based baselines.

2 Preliminaries

We consider a reward-free discounted Markov decision process M = (S, A, P, i1,), where S and
A are the state and action space respectively, P is the transition kernel, where P(ds’|s, a) denotes
the probability measure over next states when executing action a from state s, p is a distribution



over initial states, and v € [0, 1) is a discount factor. A policy = is the probability measure 7(da|s)
that maps each state to a distribution over actions. We denote Pr(+|sg, ag, 7) and E[-|sg, ag, 7] the
probability and expectation operators under state-action sequences (s, a;);>o starting at (so, ag) and
following policy 7 with s; ~ P(ds¢|si—1,a;—1) and a; ~ 7(dag|s;).

Successor measures for zero-shot RL. For any policy 7, its successor measure [14, 5] is the
(discounted) distribution of future states obtained by taking action a in state s and following policy 7
thereafter. Formally, this is defined as

M™(X|s,a) =727 Pr(sit1 € X | s,a,7) VX C S, (1)

and it satisfies a measure-valued Bellman equation [5],
MW(X|S>(L) = P(X ‘ S,(l) +’yEs’NP(~|s,a),a’~7r(~|s’) [MW(X|SI>(L,)]a XcCS. 2

We also define p™ (X) := (1—7)Egp amn(.|s) [M™(X|s, a)] as the stationary discounted distribution
of m. Given M™, the action-value function of 7 for any reward function 7 : 5 — R is

Qr(s,a) := ]E{Z’ytr(stﬂ) | s,aﬂr] :/ SM”(ds'|s,a)r(s’). 3)
t=0 s'e

The previous expression conveniently separates the value function into two terms: 1) the successor
measure that models the evolution of the policy in the environment, and 2) the reward function that
captures task-relevant information. This factorization suggests that learning the successor measure
for 7 allows for the evaluation of Q)7 on any reward without further training, i.e., zero-shot policy
evaluation. Remarkably, using a low-rank decomposition of the successor measure gives rise to the
Forward-Backward (FB) representation [5, 95] enabling not only zero-shot policy evaluation but also
the ability to perform zero-shot policy optimization.

Forward-Backward (FB) representations. The FB representation aims to learn a finite-rank
approximation to the successor measure as M™(X|s,a) ~ [, F"(s, a) " B(s')p(ds’), where p is
the a state distribution, while F™ : S x A — R% and B : S — R? are the forward and backward
embedding, respectively. With this decomposition, for any given reward function r, the action-value
function can be expressed as Q7 (s,a) = F™(s,a) ' z, where z = E,,[B(s)r(s)] is the mapping of
the reward onto the backward embedding B. An extension of this approach to multiple policies is
proposed in [95], where both F' and 7 are parameterized by the same task encoding vector z. This

results in the following unsupervised learning criteria for pre-training:

M™(X|s,a) QJJfS’EX F(s,a,z)" B(s') p(ds’), Vse€S,acAXCS zeZ @
7.(s) = argmax, F(s,a,2)' z, V(s,a) € Sx A, z € Z,
where Z C R? (e.g., the unit hypersphere of radius v/d). Given the policies (m,), F and B are trained

to minimize the temporal difference loss derived as the Bellman residual of Eq. 2

2B (F, B) = Ezwu,(s,a,sl)

+

o [(Fls,0.2) Bs™) —F(s.a.2) BN’ )
~p,a’~mz(s")

- 2]Ez~1/,(s,a,s’)~p [F(Sa a, Z)TB(S/)] )

S

where v is a distribution over Z, and F', B denotes stop-gradient. In continuous action spaces, the
arg max in Eq. 4 is approximated by training an actor network to minimize

gactor(ﬂ—) = _Ezwu,swp,awﬂz (s) |:F(S7 a, Z)TZ] . (6)

In practice, FB models have been trained offline [96, 75], where p is a distribution over an offline
dataset of transitions collected by unsupervised exploration.

Zero-shot inference. Pre-trained FB models can be used to solve different tasks in zero-shot
fashion, i.e., without performing additional task-specific learning, planning, or fine-tuning. Given a
dataset of reward samples {(s;,7;)}7_;, a reward-maximizing policy 7, is inferred by computing
zp = 23" r(si)B(s;). Similarly, we can solve zero-shot goal-reaching problems for any state

3The inferred latent z can also be safely normalized since optimal policies are invariant to reward scaling.
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Figure 1: Illustration of the main components of FB-CPR: the discriminator is trained to estimate the
ratio between the latent-state distribution induced by policies () and the unlabeled behavior dataset
M, where trajectories are embedded through ERpp. The policies are trained with a regularized loss
combining a policy improvement objective based on the FB action value function and a critic trained
on the discriminator. Finally, the learned policies are rolled out to collect samples that are stored into
the replay buffer Donjine-

s € S by executing the policy 7., where z, = B(s). Finally, in [75] it is shown that FB models
can be used to implement different imitation learning criteria. In particular, we recall the empirical
reward via FB approach where, given a demonstration * 7 = (sy, . .., s,,) from an expert policy, the
zero-shot inference returns z, = ERpg(7) = + Y1 | B(s;).

In the limit of d and full coverage of p, FB can learn optimal policies for any reward function and
solve any imitation learning problem [95]. However, when d is finite, FB training has a limited
inductive bias on which policies to favor, except for the low-rank dynamics assumption, and when
the dataset has poor coverage, it cannot reliably optimize policies using offline learning. In this case,
FB models tend to collapse to few policies with poor downstream performance on tasks of interest
(see experiments on walker in App. E).

3 FB with Conditional Policy Regularization

At pre-training, the agent has access to a dataset of unlabeled behaviors M = {7}, which contains
observation-only trajectories 7 = (sq, .. ., 34(7))5 where states are drawn from a generic distribution
p"(X), X C S. Furthermore, the agent can directly interact with the environment from initial states
so ~ p and we denote by Dyyiine the associated replay buffer of (unsupervised) transitions.

FB with conditional policy regularization. We now describe how we steer the unsupervised training
of FB towards capturing the diverse behaviors represented in M. We first outline our formalization
of the problem, followed by a detailed discussion of the design choices that enable the development
of a scalable and effective algorithm.

In FB, we pretrain a continuous set of latent-conditioned policies 7(dals, z), where z is drawn
from a distribution v defined over the latent space Z. The space of behaviors represented by FB
can be compactly represented by the joint space (s, z) where z ~ v and s ~ p™=. We denote by
pr(8,2) = v(2)p™=(s) the joint distribution induced by FB over this space. We summarize the
behaviors represented in the unlabeled dataset in a similar way by assuming that each trajectory can
be produced by some FB policy 7. Since the dataset only contains states with no latent variables,
for each trajectory 7 we must infer a latent z such that the policy 7, would visit the same states
as 7. Several methods for inferring such latent variables from a single trajectory using an FB
model were proposed in [75] proposed . Among these, we choose to encode trajectories using
ERpg, a simple yet empirically effective method, and represent each trajectory 7 in the dataset as
{(s, 2z = ERpB(7)) }s~p~. We assume a uniform distribution over 7 € M and denote by p (s, 2)
the joint distribution of the dataset induced by this process.

“While the original method is defined for multiple trajectories, here we report the single-trajectory case for
notation convenience and to match the way we will use it later.

3In humanoid, we use motion capture datasets where trajectories may contain noise and artifacts and, in
general, are not generated by “purposeful” or stationary policies.



To ensure that FB policies encode similar behaviors to the ones represented in the dataset, we
regularize the unsupervised training of the FB actor with a distribution-matching objective that
minimizes the discrepancy between p.(z,s) and paq(z,s). This results in the following actor
training loss:

gFB-CPR(ﬂ—) = _Ezwu,stonline,awﬂz(<|s) |:F(S, a, Z)TZ} + oKL (p'n'vp./\/l)7 (7)

where « is hyper-parameter that controls the strength of the regularization.

Distribution matching objective. We now explain how to turn Eq. 7 into a tractable RL procedure.
The key idea is that we can interpret the KL-divergence as an expected return under the polices 7,
where the reward is given by the log-ratio p (s, z)/px (s, z) of the two distributions,

KL(pr,pm) =E z~v, [log M} = fIEsz[th log W‘SO ~ umz}, (8)
s~p™F pm(s, 2) ‘=0 Pr(St41,2)

To estimate the reward term, we employ a variational representation of the Jensen-Shannon divergence.
Specifically, we introduce a discriminator network D : .S x Z — [0, 1] conditioned on the latent z
and train it with a GAN-like objective [26],

gdiscriminator(D) - _ETNM,SNPT [log(D(s» ERFB (T)))] - Ezwu,smapﬁz [log(l - D(Sv Z))] . (9)

It is known that the optimal discriminator for the loss in Eq. 9 is D* = " ﬁ_";M [e.g., 26, 65], which

allows us approximating the log-ratio reward function as log SR log =5 . We can then fit a critic

network @ to estimate the action-value of this approximate reward via off-policy TD learning,

D(s',2) — 2
Lvitic(Q) = E(Z:{ii’):fo(nf:}; [(Q(&aa z) —log m —Q(s',d, Z)) . (10)

This leads us to the final actor loss for FB-CPR,
XFB-CPR(F) = _Ezwu,stonune,awﬂ'z(-|s) [F(57 a, Z)Tz + OéQ(S, a, Z)] . (] 1)

Latent space distribution. So far, we have not specified the distribution v over the latent space Z.
According to the FB optimality criteria [95], it is sufficient to choose a distribution that has support
over the entire hypersphere. However, in practice, we can leverage v to allocate more model capacity
to meaningful latent tasks and to enhance the training signal provided by and to the discriminator,
while ensuring generalization over a variety of tasks. In particular, we choose v as a mixture of three
components: 1) z = ERpp(7) where 7 ~ M, which encourages FB to accurately reproduce each
trajectory in the unlabeled dataset, thus generating challenging samples for the discriminator and
boosting its training signal; 2) z = B(s) where s € Dgyline, Which focuses on goal-reaching tasks
for states observed during the training process; and 3) uniform over the hypersphere, which allocates
capacity for broader tasks and covers the latent space exhaustively.

Online training and off-policy implementation. FB-CPR is pre-trained online, interleaving
environment interactions with model updates. During interaction, we sample N policies with z ~ v
and rollout each for a fixed number steps. All the collected (unsupervised) transitions are added to a
finite capacity replay buffer Dyy1ine. We then use an off-policy procedure to update all components
of FB-CPR: F and B using Eq. 5, the discriminator D using Eq. 9, the critic () using Eq. 10, and
the actor 7 using equation 1 1. The full pseudo-code of the algorithm is reported in App. B.

Discussion. While the distribution matching term in Eq. 8 is closely related to existing imitation
learning schemes, it has crucial differences that makes it more suitable for our problem. In [73]
and [99], they focus on the state marginal version of p, and p 4, thus regularizing towards policies
that globally cover the same states as the behaviors in M. In general, this may lead to situations
where no policy can accurately reproduce the trajectories in M. In [93], they address this problem by
employing a conditional objective similar to Eq. 8, where a trajectory encoder is learned end-to-end
together with the policy space (7). In our case, distribution matching is used to regularize the FB
unsupervised learning process and we directly use ERpp to embed trajectories into the latent policy
space. Not only this simplifies the learning process by removing an ad-hoc trajectory encoding, but
it also binds FB and policy training together, thus ensuring a more stable and consistent learning
algorithm.



4 Experiments on Humanoid

We propose a novel suite of whole-body humanoid control tasks based on the SMPL humanoid [47],
which is widely adopted in virtual character animation [e.g., 52, 49]. The SMPL skeleton contains 24
rigid bodies, of which 23 are actuated. The body proportion can vary based on a body shape parameter,
but in this work we use a neutral body shape. The state consists of proprioceptive observations
containing body pose (70D), body rotation (144D), and linear and angular velocities (144D), resulting
in a state space S C R3°%, All the components of the state are normalized w.r.t. the current facing
direction and root position [e.g., 105, 51]. We use a proportional derivative (PD) controller and
the action space A C [—1,1]% thus specifies the “normalized” PD target. Unlike previous work,
which considered an under-constrained skeleton and over-actuated controllers, we define joint ranges
and torque limits to create “physically plausible” movements. The simulation is performed using
MulJoCo [94] at 450 Hz, while the control frequency is 30 Hz. More details in App. C.1.

Motion datasets. For the behavior dataset we use a subset of the popular AMASS motion-capture
dataset [57], which contains a combination of short, task-specific motions (e.g., few seconds of
running or walking), long mixed behaviors (e.g., more than 3 minutes of dancing or daily house
activities) and almost static motions (e.g., greeting, throwing). Following previous approaches [e.g.,
52, 51, 50], we removed motions involving interactions with objects (e.g., stepping on boxes). After a
10% train-test split, we obtained datasets consisting of 8902 motions for training M and 990 motions
for testing Mgy, with a total duration of approximately 29 hours and 3 hours, respectively. Refer to
Tab. 2 in App. C.2 for detailed description of the datasets. Motions are action-free and only contain
body position and orientation data, but we use a finite difference method to add estimated velocities.
Some motions may have a different frequency than what is used in our experiments, may not be
continuous (e.g., joint flickering), or may contain artifacts (e.g., body penetration). This means that in
some cases it may be impossible to reproduce them accurately in simulation, which makes the overall
setting more challenging and realistic.

Downstream tasks and metrics. The evaluation suite consists of three categories (see App. C.3
for full specification of the tasks): 1) reward-based evaluation: we designed 45 rewards with the
objective of creating a variety of behaviors covering static/slow and dynamic/fast movements that
requires the agent to control different body parts (arms, legs) and move at different heights (e.g.,
jump, crouching, sitting on the floor). For some reward functions good policies are similar to motions
in the dataset (e.g., walk), whereas in some other cases they are very different (e.g., leg splits). For
this category, we evaluate performance based on the average return over episodes of 300 steps. 2)
goal-reaching evaluation: we evaluate the ability of the model to reach a goal from an arbitrary initial
condition. To this extent, we manually selected 50 “stable” poses (with joint velocities all equal to 0).
For this category, we consider two metrics: success rate, where success is an indicator that the goal
position has been attained at any point in time, and proximity, computed as the normalized distance
to the goal position averaged in time. 3) tracking evaluation: we evaluate the ability of the model to
reproduce a target motion when starting from its initial pose.® A motion is successfully tracked if
the agent remains within a given distance (in joint position and rotation) to the motion along the full
length of the motion [52]. We also use the earth mover’s distance [81, EMD], a less-restrictive metric
that does not require the agent’s trajectory to be perfectly time-aligned with the target motion.

Protocol and baselines. We compare our approach against a variety of baselines. We first define
single-task baselines for each category. We use TD3 [22] trained from scratch to learn a near-optimal
policy for each reward-maximization and goal-reaching task. We also trained Goal-GAIL [15]
and PHC [51] on each individual motion to have strong baselines for motion tracking. All the
algorithms are trained online.” We then considered unsupervised RL algorithms that are in nature
“multi-task”. Goal-GAIL and Goal-TD3 are state-of-the-art goal-conditioned RL algorithms. PHC is
a goal-conditioned algorithm specialized for motion tracking and CALM [93] is an algorithm for
behavior-conditioned imitation learning. All these baselines are trained online and leverage M in
the process. ASE [73] is the closest BFEM approach to ours as it allows for zero-shot learning and
leverages motions for regularization. We train ASE online with M using an off-policy routine. We

SUnlike previous work [e.g., 75] we do not consider imitation learning tasks due to the difficulty of obtaining
human-like reward-driven policies to imitate.

"For reward and goal-based tasks, due to the high variance of TD3, we select the best performance across
seeds. For single motion tracking, we run only one seed due to the high number of experiments. Hence we do
not report any standard deviation in Tab. 1.



Algorithm Reward (T) | Goal [ Tracking-EMD (]) [ Tracking - Success (T) |
| |

| Proximity (T) | Success (f) [ Train | Test Train | Test
TD3T 249.74 0.98 0.98
GOAL-GAILY 1.08 1.09 0.22 0.23
PHCT 1.14 1.14 0.94 0.94
ORACLE MPPI! 178.50 0.47 0.73
GOAL-TD3 0.67 (0.34) 0.44 (0.47) 1.39 (0.08) | 1.41 (0.09) | 0.90 (0.01) | 0.91 (0.01)
GOAL-GAIL 0.61 (0.35) 0.35 (0.44) 168[ .02) | 1.70 (0.02) 020((; ll) 0.25 (0.02)
PHC 0.07 (0.11) 0.05(0.11) | 1.66 (C m; 1.65 (0.07) | 0.82 (0. m 0.83 (0.02)
CALM 0.18 (0.27) 0.04 (0.17) | 1.67 [[ 1.70 (0.03) | 0.71 (0.0 0.73 (0.02)
ASE 105.73 (3.82) 0.46 (0.37) 0.22 (0. m 2.00 (( m 1.99 (0.02) | 0.37 (0. 0.40 (0.03)
DIFFUSER 85.27 (0.99) 0.20 (0.03) 0.14 (0.
FB-CPR 151.68 (7.53) 0.68 (0.35) 0.48 (0.46) | 1.37(0.00) | 1.39(0.01) | 0.830.01) | 0.83(0.01)
SCOREporm 0.61 0.69 0.48 0.80 0.80 0.88 0.88

Table 1: Summary results comparing FB-CPR to different single-task baselines (i.e., retrained for
each task) and “multi-task” unsupervised baselines across three different evaluation categories. We
report mean and standard deviation across the 5 seeds. For FB-CPR we report the normalized
performance against the best algorithm, i.e., SCOREyorm = Etask[FB-CPR(task)/BEST(task)].
Note that the best algorithm may vary depending on the metric being evaluated (TD3 for reward and
goal, Goal-GAIL for tracking EMD and PHC for tracking success). For each metric, we highlight the
best “multi-task™ baseline and the second best “multi-task” baseline. { are top-liner run on individual
tasks, goals or motions (we use the best performance over seeds).

also tested planning-based approaches such as MPPI [104], DIFFUSER [36] and H-GAP [39]. All
these methods are offline and require action-labeled datasets. For this purpose, we first create an
action-labeled version of the AMASS dataset (by replaying policies from Goal-GAIL trained to track
each individual motion) and then combined it with the replay buffer generated by FB-CPR to define
a diverse dataset with good coverage properties that can be used for offline training (more details
about this in App. C.1).

We use a comparable architecture and hyperparameter search for all models. Online algorithms
are trained for 3M gradient steps corresponding to 30M interaction steps. Evaluation is done by
averaging results over 100 episodes for reward and goal, and with a single episode for tracking, as the
initial state is fixed. Due to the high computational cost, we were able to compute metrics over only
20 episodes for MPPI and DIFFUSER. We provide further implementation details in App. C.5.

4.1 Main Results

Table 1 reports the aggregate performance of each algorithm for each evaluation category. Unfor-
tunately, MPPI with a learned model and H-GAP performed poorly across all tasks and we do not
report their performance in the table (see App. D.1). Instead, we report an oracle version of MPPI
with direct sampling access to the dynamics as a planning-based top-line. Overall, FB-CPR achieves
73,4% of the performance of top-line algorithms on average across all categories. This results is
remarkable since FB-CPR is not explicitly trained to solve any of the downstream tasks and it
performs zero-shot inference without any additional learning or planning. Furthermore, FB-CPR
is more than 1.4 times better than ASE in each task category and it performs on par or better than
unsupervised RL algorithms specialized for specific categories. We now provide an in-depth analysis
of each category, while a finer breakdown of the results is available in App. D.1.

Reward-maximization. In reward-based tasks FB-CPR achieves 61% of the performance of TD3,
which is re-trained from scratch for each reward. Compared to unsupervised baselines, FB-CPR
outperforms all the baselines that requires planning on a learned model. For example, FB-CPR
achieves 177% of the performance of DIFFUSER that relies on a larger and more complex model
to perform reward optimization. ORACLEMPPI performs better than FB-CPR, while still lagging
behind model-free TD3. This improvement (+17.8% w.r.t. FB-CPR) comes at the cost of a significant
increase in computational cost. ORACLEMPPI requires at least 30 minutes to complete a 300 step
episode compared to the 12 seconds needed by FB-CPR to perform inference and execute the policy
(about 7, 3 and 2 seconds for reward relabeling, inference, and policy rollout). DIFFUSER takes even
more, about 5 hours for a single episode. While this comparison is subject to specific implementation
details, it provides an interesting comparison between pre-training zero-shot policies and using
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Figure 2: Human-evaluation. Left figure reports the percentage of times a behavior solved a reward-
based (blue) or a goal-reaching (pink) task (tasks are independently evaluated). Right figure reports
the score for human-likeness by direct comparison of the two algorithms.

test-time compute for planning. Finally, ASE, which has the same zero-shot properties as FB-CPR,
only achieves 70% of its performance across all tasks.

Goal-reaching. Table | shows that FB-CPR performs similarly to specialized goal-based baselines
(i.e., Goal-GAIL and Goal-TD3) and outperforms the zero-shot baseline (48% and 118% performance
increase w.r.t. ASE on proximity and success). When compared with planning-based approaches,
FB-CPR achieves a higher proximity but lower success rate. This means that FB-CPR is able to
spend more time close to the goal, whereas ORACLEMPPI is able to reach the goal but not keeping
a stable pose thereafter. We believe this is due to the fact that ORACLEMPPI aims to minimize
only the distance w.r.t. position at planning without considering velocities.® Finally, similarly to the
reward case, all other algorithms under-perform w.r.t. TD3 trained to reach each individual goal
independently.’ Since Goal-TD3 is trained using the same reward signal, the conjecture is that the
unsupervised algorithm learns behaviors that are biased by the demonstrations. Indeed, by visually
inspecting the motions, we noticed that TD3 tends to reach the goal in a faster way, while sacrificing
the “quality” of the behaviors (further details below).

Tracking. We first notice that the same algorithm may have quite different success and EMD metrics.
This is the case for Goal-GAIL, which achieves low EMD but quite poor success rate. This is due to
the fact that Goal-GAIL is trained to reach the goal in a few steps, rather than in a single step. On
the other hand, Goal-TD3 is trained to reach the goal in the shortest time possible and obtain good
scores in both EMD and success metrics. We thus used two different algorithms trained on single
motions for the top-line performance in EMD (Goal-GAIL) and success (PHC). The performance
of FB-CPR is about 80% and 88% of the top-line scorer for EMD and success, and it achieves an
overall 83% success rate on the test dataset. Similarly to previous categories, FB-CPR outperforms
both zero-shot and planning-based baselines. Among “multi-task” baselines, only Goal-TD3 is able
to do better than FB-CPR on average (about 9% improvement in success and a 1% drop in EMD).
Interestingly, PHC achieves the same performance of FB-CPR despite being an algorithm designed
specifically for tracking.'® Due to the high computation cost, we were not able to test MPPI and
DIFFUSER on tracking.

Qualitative Evaluation. While the quantitative evaluation shows that FB-CPR has a gap w.r.t.
single-task toplines, it does not capture the quality of the learned behaviors. Similar to previous
work [30], we conducted a human evaluation study in which 50 human evaluators were presented
with pairs of clips corresponding to episodes of the same task generated with TD3 and FB-CPR. All
videos used for this evaluation are available in the supplementary material. For reward-based tasks,
they were asked to rate whether the model solves the task (as described in natural language) and
which model is behaving more “naturally”. For goal-reaching, they were asked to rate whether the
goal (provided as image) was eventually achieved by the model and which model was behaving more
“naturally” (see App. D.4 for more details). We evaluated all 45 rewards and 50 goals. In reward-based
tasks, Fig. 2 shows that despite TD3 achieving higher reward, the two algorithms have very similar

8We tried to train with a full distance (i.e., position and velocities) but we did not get any significant result.

°TD3 is trained using the full distance to the goal as reward function.

19Results in the literature [e.g. 50] reports near 100% success rate on AMASS. These results are not comparable
since they use a much smaller test dataset (187 motions versus our 990 motions) and an over-actuated agent,
which is able to move from any pose to any other pose within one or few steps.
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Figure 3: FB-CPR Ablations. (TOP LEFT) Ablating the FB-CPR discriminator’s policy conditioning.
(ToP RIGHT) Ablating the contribution of F'(z) T z in the FB-CPR actor loss (Eq. 11). (BOTTOM
LEFT) The effect of increasing model capacity along with the number of motions in the dataset M.
(BorToM RIGHT) Contrasting Advantage-Weighed FB (FB-AW) trained from a large diverse offline
dataset versus FB-CPR trained fully online with policy regularization. All ablations are averaged
over 5 seeds with ranges representing bootstrapped 95% confidence intervals.

success rate, meaning that they both produce the intended behaviors (e.g., jumping, moving forward,
rotating). Interestingly FB-CPR was considered more “human-like” in 83% of cases, while TD3 is
more natural in only 4% of cases. This study highlights the well-known issue of reward functions
that tend to “underspecify” the intended behavior, and how the motion-regularization used FB-CPR
compensates for it by effectively capturing a human-like bias. In App. D.4.2, we provided further
examples of this “human” bias both in under-specified and composed rewards (e.g., running with
arms up). In goal-reaching tasks, the evaluation of success provided by human evaluators aligns
with what our qualitative analysis reported (TD3 has an 11% drop while FB-CPR shows a 6%
improvement). Also in this case, FB-CPR is considered more ‘human-like’ in 69% of cases despite
TD3 having a higher success rate. Notably, in the remaining cases, the evaluators considered TD3
and FB-CPR to be equally good for 20% of the goals, while TD3 is better in only 6% of the goals.

4.2 Ablations

Various design decisions have gone into FB-CPR that deserves further analysis. In the following, we
seek to answer key questions surrounding the necessity of online interaction and how components
of our algorithm affect different axes of performance. Additionally, Appendix D.2 provides further
ablations on design decisions regarding the FB-CPR discriminator, sampling distribution v/, and other
forms of policy regularization when provided action labels.

Is online policy regularization necessary given a large diverse dataset? Prior works on unsuper-
vised RL have relied on large and diverse datasets that contain sufficient coverage of any downstream
task. If such a dataset exists is there anything to be gained from the guided approach of online
FB-CPR outlined herein? In order to test this hypothesis, we evaluate training offline FB with
an advantage weighted actor update [63] (FB-AW) which compensates for overestimation when
performing policy optimization with an offline dataset [10]. As no dataset with our criterion exists,
we curate a dataset by collating all 30M transition from an online FB-CPR agent. The offline agent
is trained for the same total number of gradients steps as the online agent and all hypereparameters
shared between the two methods remain fixed. In the bottom right quadrant of Figure 3, we can
see that FB-AW perform substantially worse than FB-CPR highlighting the difficulty of offline
policy optimization and the efficacy of guiding online interactions through the conditional policy
regularization of FB-CPR.



How important is maximizing the unsupervised RL term F'(z) T 2? The primary mechanism
by which FB-CPR regularizes its policy is through the discriminator’s critic (Eq. 10). This begs
the question to what extent is maximizing the unsupervised value-function F'(s, a, z) " z contributes
to the overall performance of FB-CPR. To answer this question, we train FB-CPR while omitting
this unsupervised term when updating the actor. This has the effect of reducing FB-CPR to be more
akin to CALM [93], except that our motions are encoded with FB through ERrp. These results are
presented in top right quadrant of Figure 3 for both reward and tracking-based performance measures.
We can see that including the unsupervised value-function from FB results in improved performance
in both reward and tracking evaluation emphasizing that FB is providing much more than just a
motion encoder through ERpp.

How important is policy conditioning for the discriminator? FB-CPR relies on a latent-conditional
discriminator to evaluate the distance between a specific motion and a policy selected through
the trajectory embedding of ERpp. We hypothesize that this policy-conditioned discriminator
should provide a stronger signal to the agent and lead to better overall performance. We test this
hypothesis by comparing FB-CPR with a discriminator that solely depends on state, thus converting
the regularization term into a marginal state distribution matching. The top left quadrant of Figure 3
shows that the latent-conditioned discriminator outperforms the state-only configuration in tracking
tasks while performing similarly in reward tasks. These findings demonstrate the importance of the
ERpp embedding in enabling FB-CPR to more accurately reproduce motions.

How does network capacity and expert dataset size impact FB-CPR performance? Many
recent works in RL have shown vast performance improvements when scaling the capacity of neural
networks [83, 66, 64] along with dataset size [8, 110] or task diversity [42, 1]. Given these findings,
we seek to understand the capabilities of FB-CPR when scaling both the network capacity and the
number of expert demonstrations. To this end, we perform a grid sweep over three configurations of
model sizes that alters the amount of compute by roughly {0.5x,1x,2x} of the base models; as
well as datasets that are {6.25%, 12.5%, 25%, 50%, 100%} the size of our largest motion dataset via
subsampling. For each of these combinations we report the tracking performance on all motions and
present these results in the bottom left quadrant of Figure 3 with additional evaluation metrics in
Appendix D.2. Consistent with prior results we can see that larger capacity models are better able to
leverage larger motion datasets resulting in significantly improved performance for our 2x larger
model over the results of the 1x model reported in Table 1.

5 Conclusions

We introduced FB-CPR, a novel algorithm combining the zero-shot properties of FB models with
a regularization grounding online training and policy learning on a dataset of unlabeled behaviors.
We demonstrated the effectiveness of FB-CPR by training the first BFM for zero-shot control of a
complex humanoid agent with state-of-the-art performance across a variety of tasks.

Limitations. While FB-CPR effectively grounds unsupervised RL with behavior trajectories, a more
formal and theoretical understanding of these components is still missing and alternative formulations
may be possible. In practice, FB-CPR still fails at solving problems that are far from motion-capture
datasets (e.g., tracking motions or solving reward-based tasks involving movements on the ground).
Furthermore, despite producing more convincing human-like behaviors compared to pure reward-
optimization algorithms and achieving good tracking performance, FB-CPR still produces imperfect
and unnatural movements at times, in particular for behaviors involving falling or standing. We report
videos of some of these failure modes in the supplementary material. The BEM trained with FB-CPR
is still limited to proprioceptive observations and is unable to solve tasks that require navigating
through the environment or interacting with objects. An interesting future direction is to integrate
additional state variables (possibly including complex perception such as head-mounted cameras) to
pre-train models that can solve more complex tasks. Arguably, in this case it may be hard to achieve
satisfactory performance in zero-shot and some test-time planning capability or fast online adaptation
may be needed. FB-CPR currently relies on motion capture datasets, which are usually expensive to
obtain. In the future, it would be interesting to extend FB-CPR to directly leverage videos of different
human activities to further refine and expand its capabilities. Finally, while language prompting could
be added to the current by leveraging text-to-motion model and then set a motion tracking task, an
interesting direction for future research is to align language and policies more directly.
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A Related Work

RL for Humanoid Control. Controlling a humanoid agent is considered a major objective for both
in robotic [98, 18] and simulated [74, 105, 49] domains and it has emerged as a major challenge
for reinforcement learning due to its high dimensionality and intrinsic instability. In robotics, a
predominant approach is to perform direct behavior cloning of task-specific demonstrations [e.g.,
85] or combing imitation and reinforcement learning (RL) to regularize task-driven policies by
using human-like priors [e.g., 12]. In virtual domains, RL is often used for physics-based character
animation by leveraging motion-capture datasets to perform motion tracking [51, 60, 100, 79] or to
learn policies solving specific tasks, such as locomotion or manipulation [53, 102, 30]. Despite its
popularity across different research communities, no well-established platform, data, or benchmark
for multi-task whole-body humanoid control is available. Standard simulation platforms such as
dm_control [97] or IsaacGym [58] employ different humanoid skeletons and propose only a handful
of reward-based tasks. In [53] and [86] recently a broader suite of humanoid tasks was introduced,
but they all require task-specific observations to include object interaction and world navigation.
Regarding datasets, MoCapAct [100] relies on CMU motion capture data mapped onto a CMU
humanoid skeleton, in [73] they use a well curated animation dataset related to a few specific
movements mapped onto the I[saacGym humanoid, and in [51] they use the AMASS dataset mapped
to an SMPL skeleton.

Unsupervised RL. Pre-trained unsupervised representations from interaction data [107, 84, 20] or
passive data [4, 54, 7, 25], such as unlabeled videos, significantly reduce the sample complexity and
improve performance in solving downstream tasks such as goal-based, reward-based, or imitation
learning by providing effective state embeddings that simplify observations (e.g., image-based
RL) and capture the dynamical features of the dynamics. Another option is to pre-train a set of
policies through skill diversity metrics [e.g. 27, 19, 88, 44, 41, 70] or exploration-driven metrics [e.g.
71, 56, 59, 78] that can serve as behavior priors. While both pre-trained representations and policies
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can greatly reduce sample complexity and improve performance, a full RL model still needs to be
trained from scratch to solve any downstream task.

Zero-shot RL. Goal-conditioned methods [2, 76, 103, 61, 55, 68] train goal-conditioned policies to
reach any goal state from any other state. While they are the most classical form of zero-shot RL, they
are limited to learn goal-reaching behaviors. Successor features based methods are the most related
to our approach. They achieve zero-shot capabilities by modeling a discounted sum of state features
learned via low-rank decomposition [95, 96, 75, 37] or Hilbert representation [69]. One of the key
advantages of these methods is their low inference complexity, as they can infer a near-optimal
policy for a given task through a simple regression problem. Generalized occupancy models [109]
learn a distribution of successor features but requires planning for solving novel downstream tasks.
Building general world models is another popular technique [108, 16, 39] for zero-shot RL when
combined with search/planning algorithms [e.g. 104, 34]. While this category hold the promise of
being zero-shot, several successful world-modeling algorithms uses a task-aware training to obtain
the best downstream task performance [31, 30, 29, 89]. Finally, recent works [21, 35] have achieved
zero-shot capabilities by learning an encoding of reward function at pre-train time by generating
random unsupervised rewards.

Integrating demonstrations. Our method is related to the vast literature of learning from demon-
strations. Transformer-based approaches have became a popular solution for integrating expert
demonstrations in the learning process. The simplest solution is to pre-train a model through con-
ditioned or masked behavioral cloning [13, 87, 82, 11, 46, 106, 38]. If provided with sufficiently
curated expert datasets at pre-training, these models can be prompted with different information
(e.g., state, reward, etc) to solve various downstream tasks. While these models are used in a purely
generative way, H-GAP [39] combines them with model predictive control to optimize policies that
solve downstream tasks. Similar works leverage diffusion models as an alternative to transformer
architectures for conditioned trajectory generation [e.g., 72, 32] or to solve downstream tasks via
planning [36]. Another popular approach is to rely on discriminator-based techniques to integrate
demonstrations into an RL model either for imitation [e.g., 33, 15, 93], reward-driven (hierarchical)
tasks [74, 24, 23, 99] or zero-shot [73]'!. When the demonstrations are of “good” quality, the
demonstrated behaviors can be distilled into the learned policies by constructing a one-step tracking
problem [e.g., 51, 50, 77]. These skills can be then used as behavior priors to train task-oriented
controllers using hierarchical RL. Finally, recent papers leverage internet-scale data to learn general
controllers for video games or robotic control. These methods leverage curated data with action
labeling [101, 92, 110] or the existence of high-level API for low-level control [110].

B Algorithmic details

In Alg. 1 we provide a detailed pseudo-code of FB-CPR including how all losses are computed.
Following [96], we add two regularization losses to improve FB training: an orthonormality loss
pushing the covariance X5 = E[B(s)B(s) "] of B towards the identity, and a temporal difference
loss pushing F'(s, a, z) " z toward the action-value function of the corresponding reward B(s) T X" 2.
The former is helpful to make sure that B is well-conditioned and does not collapse, while the latter
makes F' spend more capacity on the directions in z space that matter for policy optimization.

C Experimental Details for the Humanoid Environment

C.1 The SMPL MuJoCo Model

Our implementation of the humanoid agent is build on the MuJoCo model for SMPL humanoid
in [48]. Previous work in this domain considers unconstrained joint and over-actuated controllers
with the objective of perfectly matching any behavior in motion datasets and then use the learned
policies as frozen behavioral priors to perform hierarchical RL [e.g., 50]. Unfortunately, this approach
strongly relies on motion tracking as the only modality to extract behaviors and it often leads to
simulation instabilities during training. Instead, we refined the agent specification and designed

""While the original ASE algorithm is designed to create behavior priors that are then used in a hierarchical RL
routine, we show in our experiments that it is possible to leverage the learned discriminator to solve downstream
tasks in a zero-shot manner.
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Algorithm 1 FB-CPR

1: Inputs: unlabeled dataset M , Polyak coefficient ¢, number of parallel networks m, randomly initialized

networks {Fy, }re[m)» Bw»> Tgs {Qny, Yroe[m]> Dy, learning rate &, batch size n, B regularization coefficient
A, Fz-regularization coefficient (3, actor regularization coefficient o, number of rollouts per update Nyoliouts,
rollout length Tyotout, Z sampling distribution v = (Vonline, Yunlabeled )> Sequence length Tieq, z relabeling

probability prelabel

2: Initialize empty train buffer: Donjine < 0

3: fort=1,... do

4: /¥ Rollout

5: fori =1,..., Niollouts do

B(s) where s ~ Donline, with prob Vonline
6: Sample z = %eq ZtT:f B(s;) where {s1,...,57,} ~ M, with prob Tyniabeled
~ N(O, Id) with prob 1 — Tonline — Tunlabeled

7 U ER

8: Rollout 74 (-, 2) for Trolous steps, and store data into Dirain

9: end for

10: /* Sampling

11: Sample a mini-batch of n transitions {(s;, as, 8%, ;) }5=1 from Donline

12: Sample a mini-batch of 7- sequences {(sj,1,85,2- -, sj,Tseq)}f;Tf from M

13: /* Encode Expert sequences

iz e g S Bsie) % ViR

15: /* Compute dlscrlmlnator loss

16:  Luiscriminator (¥) = ZTgeq S log Dy (55,0, 2;) — £ 327 log(1 — Dy(si, 21))

17: /* Sampling and Relabellng latent variables z

Z (no relabel) with prob 1 — prelabel
| Vi e li B(sk) where k ~ U([n]), with prob preiabel * Tonline
8: SetVi € [i], zi = Tw Ztheq B(sj:) wherej ~ u([Tiq]), with prob prelabel * Tunlabeled
~ N(U I4) with prob prelabel * (1 — Tonline — Tunlabeled)
19: /¥ Compute FB loss
20: Sample aj ~ 7y (s}, 2;) forall i € [n]
_ _ 2
21: EFB(QIW w) = m Zi?ﬁj (Fek (Si7 as, Zi)TBw(S;') - ’Y% Zle[m] Fgl (5;’7 a;7 Zi)TBw(Sz'))
22: — L5 Fo (si,ai,2) " Bu(s})Vk € [m]
23: /* Compute orthonormality regularization loss
T 2 T
24 Loro(w) = 5551y 2oiny (Bu(8h) ' Bu(s)))? = 5 30, Bu(si) ' Bu(si)
25: /¥ Compute Fz-regularization loss
— 2
26: Le2(01) = %Zie[n] (ng (8iyai,2:) " 20 — Bu(s5) TS5 2 — v mingepm) Fy, (S“CL“Z%,)TZ'L) ,VE
27: /* Compute critic loss
28: Compute discriminator reward: r; <— log(Dy, (si, zi)) —log(l — Dy(si, 2:)), Vi€ [n]
2

29: Lerivic(me) = %Eie[n] (an (8i, @iy 2i) — Ty — ymingepm, Qm(sl,al,zl)) , Vke[m]
30: /* Compute actor loss
31: Sample a? ~ 7y (si, z;) forall i € [n]
32: Let F + stopgrad (% Yo | mingepm) Fo, (s, af’, zi)Tzi|>
33: factor(¢) = _% :L:l (minle[’m] FGL (S'La (1?, Z’L)Tzi + afminle[nL] JGL (S’La a?a Zz))
34: /* Update all networks
35: w — 1/} - nggdiscriminator( )
36: O < O — §V9k (XFB(%C, ) + ,BZFZ(Q;C)) forall k € [m]
37: w4 w = EVu (X Lrv(01, ) + A Loreno(w))
38: Mk < Nk — gvnk cnmc(nk)Vkl S [m]
39 ¢4 ¢ — Vo Lacror(9)
40: end for

more natural joint ranges and PD controllers by building on the dm_control [97] CMU humanoid
definition and successive iterations based on qualitative evaluation. While this does not prevent the
agent to express non-natural behaviors (see e.g., policies optimized purely by reward maximization),
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Dataset Train dataset M Test dataset Megq
Motion count  Average length  Total Steps  Total Time (s) | Motion count ~ Average length  Total Steps ~ Total Time (s)

ACCAD 223 189.00 42146 1404.87 25 174.48 4362 145.40
BMLhandball 45 291.18 13103 436.77 5 292.40 1462 48.73
BMLmovi 1456 167.36 243683 8122.77 162 165.98 26888 896.27
BioMotionLab 1445 348.88 504134 16804.47 161 266.89 42969 1432.30
CMU 1638 445.85 730307 24343.57 182 485.52 88364 2945.47
DFaust 80 179.39 14351 478.37 9 134.67 1212 40.40
DanceDB 23 1768.91 40685 1356.17 2 855.00 1710 57.00
EKUT 124 157.49 19529 650.97 14 153.00 2142 71.40
Eyes 562 862.41 484677 16155.90 62 872.95 54123 1804.10
HumanEva 25 540.68 13517 450.57 3 582.33 1747 58.23
KIT 2858 235.56 673239 22441.30 318 232.09 73806 2460.20
MPI 264 974.24 257199 8573.30 29 908.59 26349 878.30
SFU 30 569.37 17081 569.37 3 849.67 2549 84.97
TotalCapture 33 2034.06 67124 2237.47 4 1715.50 6862 228.73
Transitions 96 247.86 23795 793.17 11 228.82 2517 83.90
Total I 8,902 3,144,570 29h6m59s | 990 337,062 3h7ml5s

Table 2: AMASS statistics split into M (train) and M.t (test) datasets.

it does provide more stability and defines a more reasonable control space. We will release the full
agent specification and environment code at a later time for full reproducibility.

C.2 Data

The AMASS dataset [57] unifies 15 different motion capture datasets into a single SMPL-based
dataset [47]. For our purposes, we only consider the kinematic aspects of the dataset and ignore
the full meshed body reconstruction. In order to enable the comparison to algorithms that require
action-labeled demonstration datasets, we follow a similar procedure to [100] and train a single
instance of Goal-GAIL to accurately match each motion in the dataset and then roll out the learned
policies to generate a dataset of trajectories with actions. The resulting dataset, named AMASS-Act,
contains as many motions as the original AMASS dataset.

As mentioned in the main paper, we select only a subset of the AMASS (AMASS-Act) dataset.
Following previous approaches [e.g., 52, 51, 50], we removed motions involving interactions with
objects (e.g., stepping on boxes). We also sub-sampled the BMLhandball dataset to just 50 motions
since it contains many redundant behaviors. Finally, we removed two dataset SSM_synced and TCD.
We report several statistics about the datasets in Tab. 2.

C.3 Tasks and Metrics

In this section we provide a complete description of the tasks and metrics.

C.3.1 Reward-based evaluation

Similarly to [97], rewards are defined as a function of next state and optionally action and are
normalized, i.e., the reward range is [0,1]. Here we provide a high level description of the 8
categories of rewards, we refer the reader to the code (that we aim to release after the submission) for
details.
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Locomotion. This category includes all the reward functions
that require the agent to move at a certain speed, in a certain di-
rection and at a certain height. The speed is the xy-linear velocity
of the center of mass of the kinematic subtree rooted at the chest.
We require the velocity to lie in a small band around the target
velocity. The direction defined as angular displacement w.r.t. the
robot facing direction, that is computed w.r.t. the chest body. We
defined high and low tasks. In high locomotion tasks, we constrain
the head z-coordinate to be above a threshold, while in low tasks
the agent is encouraged to keep the pelvis z-coordinate inside a
predefined range. Finally, we also includes a term penalizing high
control actions.'” We use the following name structure for tasks
in this category: smpl_move-ego- [low-]-{angle}-{speed}.

Standing. This category includes tasks that require a vertical
stable position. Similarly to locomotion we defined standing “high”
and “low”. These two tasks are obtained from locomotion tasks
by setting the speed to O (i.e., smpl_move-ego- [low-]-0-0).

b

Handstand. This is a reverse standing position on the hands
(i.e., smpl_handstand). To achieve this, the robot must place
its feet and head above specific thresholds, with the feet being
the highest point and the head being the lowest. Additionally, the
robot’s velocities and rotations should be zero, and control inputs
should be minimal.

£;Mga»

Arm raising. Similar to the previous category, this task requires
the robot to maintain a standing position while reaching specific
vertical positions with its hands, measured at the wrist joints. We
define three hand positions: Low (z-range: 0-0.8), Medium (z-
range: 1.4-1.6), and High (z-range: 1.8 and above). The left
and right hands are controlled independently, resulting in nine
distinct tasks. Additionally, we incorporate a penalty component
for unnecessary movements and high actions. These tasks are
denoted as smpl_raisearms-{left_pos}-{right_pos}.

\
}
2

Rotation. The tasks in this category require the robot to achieve
a specific angular velocity around one of the cardinal axes (X, y, or
z) while maintaining proper body alignment. This alignment com-
ponent is crucial to prevent unwanted movement in other direc-
tions. Similar to locomotion tasks, the robot must keep its angular
velocity within a narrow range of the target velocity, use minimal
control inputs, and maintain a minimum height above the ground,
as measured by the pelvis z-coordinate. The tasks in this category
are denoted as smpl_rotate-{axis}-{speed}-{height}.

"2This is a common penalization used to avoid RL agents to learn rapid unnatural movements. Nonetheless,
notice that FB-CPR leverages only state-based information for reward inference through B(s). This means that
we entirely rely on the regularized pre-training to learn to avoid high-speed movements.
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Jump. The jump task is defined as reaching a target height with
the head while maintaining a sufficiently high vertical velocity.
These tasks are named smpl_jump-{height}.

Ground poses. This category includes tasks that require
the robot to achieve a stable position on the ground, such
as sitting, crouching, lying down, and splitting. The sit-
ting task (smpl_sitonground) requires the robot’s knees
to touch the ground, whereas crouching does not have
this constraint. The lie-down task has two variants: fac-

!‘% ing upward (smpl_lieonground-up) and facing downward
(smpl_lieonground-down). Additionally, we define the
split task, which is similar to sitting on the ground but re-
quires the robot to spread its feet apart by a certain distance
(smpl_split-{distancel}).

Crawl. The crawl task requires the agent to move across the
floor in a crawling position, maintaining a specific target height
at the spine link. Similar to locomotion tasks, the agent must
move in its facing direction at a desired speed. The crawl tasks are

’ :(‘ denoted as smpl_crawl-{height}-{speed}-{facing}. We
&L}b provide two options for the agent’s orientation: crawling while

facing downwards (towards the floor) or upwards (towards the
sky), with the latter being significantly more challenging.

While our suite allows to generate virtually infinite tasks, we extracted 55 representative tasks
for evaluation. See Tab. 18 and Tab. 19 for the complete list. We evaluate the performance
of a policy in solving the task via the cumulative return over episodes of H = 300 steps:

IESONMCS“W[Z]?: 1 7(at, si11)]. The initial distribution used in test is a mixture between a ran-
dom falling position and a subset of the whole AMASS dataset, this is different from the distribution
used in training (see App. C.4).

C.3.2 Motion tracking evaluation

This evaluation aims to assess the ability of the model to accurately replicate a motion, ideally by
exactly matching the sequence of motion states. At the beginning of each episode, we initialize the
agent in the first state of the motion and simulate as many steps as the motion length. Similarly
to [52, 51], we use success to evaluate the ability of the agent to replicate a set of motions. Let
M = {7;}M, the set of motions to track and denote by 7 the trajectory generated by agent 2 when
asked to track 7;. Then, given a threshold £ = 0.5, we define

M
success(M) = % ZH{W <len(r;) : dsmpl(st”, stﬁl) < 5}
i=1

where s] is the state of trajectory 7 at step ¢, dgmpi(s, s") = ||[X, 0] — [X’,¢']||2 and [X, 6] is the
subset of the state containing joint positions and rotations. This metric is very restrictive since it
requires accurate alignment at each step. Unfortunately, exactly matching the motion at each time
step may not be possible due discontinuities (the motion may flicker, i.e., joint position changes
abruptly in a way that is not physical), physical constraints (the motion is not physically realizable by
our robot), object interaction'?, etc. We thus consider the Earth Mover’s Distance [81, EMD] with
dsmp1 as an additional metric. EMD measures the cost of transforming one distribution into another.
In our case, two trajectories that are slightly misaligned in time may still be similar in EMD because

3We curated our datasets but we cannot exclude we missed some non-realizable motion given that this process
was hand made.
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the alignment cost is small, while the success metric may still be zero. While these metrics capture
different dimensions, if motions are accurately tracked on average, we expect low EMD and high
success rate.

C.3.3 Goal-based evaluation

The main challenge in defining goal-based problems for humanoid is to generate target poses that are
attainable and (mostly) stable. For this reason, we have manually extracted 50 poses from the motion
dataset, 38 from motions in the training dataset and 12 from motions in the test dataset, trying to
cover poses involving different heights and different positions for the body parts. In Fig. 4 we report
a sample of 10 poses.

In order to assess how close the agent is to the target pose, we use dsmpi(s, s') as in tracking, where
the distance is only measured between position and rotation variables, while velocity variables are
ignored. Let g be the goal state obtained by setting positions and rotations to the desired pose and
velocities to 0, 5 = 2 be a threshold parameter, and ¢ = 2 be a margin parameter, we then define two
evaluation metrics

success = Egp,ee {]I{Ht <300 : dsmpi(st, g) < BH;
300

proximity = Eg ... {3(1)0 Z <H{dsmpl(8ta g9) < 5}
t=1
+ H{dsmpl(stag) > 5 A dsmpl(stag) S ﬁ + J} (B o= d;mpl(st’g))}>} :

The success metric matches the standard shortest-path metric, where the problem is solved as soon as
the agent reaches a state that is close enough to the goal. The proximity metric is computing a “soft”
average distance across the full episode of 300 steps. The “score” for each step is 1 if the distance is
within the threshold /3, while it decreases linearly down to O when the current state is further than
B + o from the goal. Finally, the metrics are averaged over multiple episodes when starting from
initial states randomly sampled from pigest.

When evaluating FB-CPR, CALM, ASE, and GOAL-GAIL, we need to pass a full goal state g,
which includes the zero-velocity variables. On the other hand, PHC and GOAL-TD3 are directly
trained to match only the position and rotation part of the goal state. Finally, for both MPPI and TD3
directly optimizing for the distance to the pose (i.e., no velocity) led to the better results.

C.4 Training Protocols
In this section we provide a description of the training protocol, you can refer to the next section for

algorithm dependent details. We have two train protocols depending on whether the algorithm is
trained online or offline.

Online training. The agent interacts with the environment via episodes of fix length H = 300
steps. We simulate 50 parallel (and independent) environments at each step. The algorithm has also

&2 =N

£

L3
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s
B

Figure 4: Examples of the poses used for goal-based evaluation.
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access to the dataset M containing observation-only motions. The initial state distribution of an
episode is a mixture between randomly generated falling positions (named “Fall” initialization) and
states in M (named “MoCap” initialization'*). We select the “Fall” modality with probability 0.2.
For “MoCap”, we use prioritization to sample motions from M and, inside a motion, the state is
uniformly sampled. We change the prioritization during training based on the ability of the agent
to track motions. Every 1M interaction steps, we evaluate the tracking performance of the agent on
all the motions in M and update the priorities based on the following scheme. We clip the EMD in
[0.5, 5] and construct bins of length 0.5. This leads to 10 bins. Let b(m) the bin to which motion m
is mapped to and |b(m)| the cardinality of the bin. Then,

Vm € Dirain, priotity(m) = Tom)|

We train all the agents for 3M gradient steps corresponding to 30M environment steps. The only
exception is PHC where we had to change the update/step ratio and run 300M steps to achieve 3M
gradient steps (we also updated the priorities every 10M steps instead of 1M).

Offline training. Offline algorithms (i.e., Diffuser and H-GAP) require a dataset label with actions
and sufficiently diverse. We thus decided to use a combination of the in-house generated AMASS-Act
and the replay buffer of a trained FB-CPR agent. We selected the same motions in M from the
AMASS-Act dataset. The FB-CPR replay buffer corresponds to the buffer of the agent after being
trained for 30M environment steps. The resulting dataset contains about 8.1M transitions.

C.5 Algorithms Implementation and Parameters

In this section, we describe how each considered algorithm was implemented and the hyperparameters
used to obtain the results of Tab. 1.

C.5.1 Shared configurations

We first report some configurations shared across multiple algorithms, unless otherwise stated in each
section below.

General training parameters. We use a replay buffer of capacity 5SM transitions and update agents
by sampling mini-batches of 1024 transitions. Algorithms that need trajectories from the unlabeled
dataset sample segments of these of length 8 steps. During online training, we interleave a rollout
phase, where we collect 500 transitions across 50 parallel environments, with a model update phase,
where we update each network 50 times. During rollouts of latent- or goal-conditioned agents,
we store into the online buffer transitions (s, a, ', z), where z is the latent parameter of the policy
that generated the corresponding trajectory. To make off-policy training of all networks (except for
discriminators) more efficient, we sample mini-batches containing (s, a, s’, z) from the online buffer
but relabel each z with a randomly-generated one from the corresponding distribution v with some
“relabeling probability” (reported in the tables below).

All algorithms keep the running mean and standard deviation of states in batches sampled from the
online buffer and the unlabeled dataset at each update. These are used to normalize states before
feeding them into each network. Unless otherwise stated we use the Adam optimizer [40] with
(B1,B2) = (0.9,0.999) and € = 10~ 5.

Table 3: Summary of general traning parameters.

Hyperparameter Value
Number of environment steps 30M
Number of parallel environments 50
Number of rollout steps between each agent update 500
Number of gradient steps per agent update 50
Number of initial steps with random actions 50000
Replay buffer size M
Batch size 1024
Discount factor 0.98

14We use both velocity and position information for the initialization.
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We report also the parameters used for motion prioritization.

Table 4: Summary of prioritization parameters.

Hyperparameter Value
Update priorities every N environment steps M
EMD clip [0.5, 5]
Bin width 0.5

Network architectures. All networks are MLPs with ReLU activations, except for the first hidden
layer which uses a layernorm followed by tanh. Each z-conditioned network has two initial “em-
bedding layers”, one processing (s, z), and the other processing s alone (or s and a). The second
embedding layer has half the hidden units of the first layer, and their outputs are concatenated and
fed into the main MLP. On the other hand, networks that do not depend on z directly concatenate
all inputs and feed them into a simple MLP. The shared parameters used for these two architectures
are reported in the table below. Each actor network outputs the mean of a Gaussian distribution with
fixed standard deviation of 0.2.

Table 5: Hyperparameters used for the “simple MLP” architectures.

Hyperparameter critics actors state embeddings
Input variables (s,a) s s
Hidden layers 4 4 1
Hidden units 1024 1024 256
Activations ReLU ReLU ReLU
First-layer activation layernorm + tanh  layernorm + tanh  layernorm + tanh
Output activation linear tanh 12-normalization
Number of parallel networks 2 1 1

Table 6: Hyperparameters used for the architectures with embedding layers.

Hyperparameter critics (e.g., F', Q) actors
Input variables (s,a,z) (s, z)
Embeddings one over (s, a) and one over (s, z)  one over (s) and one over (s, z)
Embedding hidden layers 2
Embedding hidden units 1024 1024
Embedding output dim 512 512
Hidden layers 2 2
Hidden units 1024 1024
Activations ReLU ReLU
First-layer activation layernorm + tanh layernorm + tanh
Output activation linear tanh
Number of parallel networks 2 1

Discriminator. The discriminator is an MLP with 3 hidden layers of 1024 hidden units, each with
ReLU activations except for the first hidden layer which uses a layernorm followed by tanh. It takes
as input a state observation s and a latent variable z, and has a sigmoidal unit at the output. It is
trained by minimizing the standard cross-entropy loss with a learning rate of 10~5 regularized by
the gradient penalty used in Wasserstein GANs [28] with coefficient 10. Note that this is a different
gradient penalty than the one used by [73, 93]. We provide an in depth ablation into the choice of
gradient penalty in App. D.2.

Table 7: Hyperparameters used for the discriminator.

Hyperparameter FB-CPR CALM ASE Goal-GAIL
Input variables (s, 2) (s, 2) s (s,9)
Hidden layers 3 3 3 3
Hidden units 1024 1024 1024 1024
Activations ReLU ReLU ReLU ReLU
Output activation sigmoid sigmoid  sigmoid  sigmoid
WGAN gradient penalty coefficient 10 10 10 10
Learning rate 1077 10~° 10~° 10~°
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Cs5.2 TD3

We follow the original implementation of algorithm by [22], except that we replace the minimum
operator over target networks to compute the TD targets and the actor loss by a penalization wrt the
absolute difference between the Q functions in the ensemble, as proposed by [10]. This penalty is
used in the actor and the critic of all TD3-based algorithms, with the coefficients reported in the
tables below. Note that we will report only the values 0, for which the target is the average of the Q
networks in the ensemble, and 0.5, for which the target is the minimum of these networks.

Table 8: Hyperparameters used for TD3 training.

Hyperparameter Value
General training parameters See Tab. 3
General prioritization parameters See Tab. 4

actor network
critic network

third column of Tab. 5, output dim = action dim
second column of Tab. 5, output dim 1

Learning rate for actor 10~
Learning rate for critic 1074
Polyak coefficient for target network update  0.005
Actor penalty coefficient 0
Critic penalty coefficient 0

C53 FB-CPR

The algorithm is implemented following the pseudocode App. B. The values of its hyperparameters
are reported in the table below.

Inference methods. For reward-based inference, we use a weighted regression method 2,
Eg D, [€xXp(107(s")) B(s")r(s")], where we estimate the expectation with 100k samples from
the online buffer. We found this to work better than standard regression, likely due to the high
diversity of behaviors present in the data. For goal-based inference, we use the original method

z4 = B(g), while for motion tracking of a motion 7 we infer one z for each time step t in the motion
as zy Z;if_:‘ll B(s;), where s is the j-th state in the motion and L is the same encoding sequence
length used during pre-training.

Table 9: Hyperparameters used for FB-CPR pretraining.

Hyperparameter Value
General training parameters See Tab. 3
General prioritization parameters See Tab. 4

Sequence length for trajectory sampling from D 8

z update frequency during rollouts once every 150 steps
z dimension d 256

Regularization coefficient o 0.01

F' network

actor network

critic network

B network

Discriminator

Learning rate for F

Learning rate for actor

Learning rate for critic

Learning rate for B

Coefficient for orthonormality loss

z distribution v
-encoding of unlabeled trajectories
-goals from the online buffer
-uniform on unit sphere

Probability of relabeling zs

Polyak coefficient for target network update

FB penalty coefficient

Actor penalty coefficient

Critic penalty coefficient

Coefficient for Fz-regularization loss

second column of Tab. 6, output dim 256

third column of Tab. 6, output dim = action dim
second column of Tab. 6, output dim 1

fourth column of Tab. 5, output dim 256

Tab. 7

1074

C.54 ASE

We implemented an off-policy version of ASE to be consistent with the training protocol of FB-CPR.
In particular, we use a TD3-based scheme to optimize all networks instead of PPO as in the original
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implementation of [73]. As for FB-CPR, we fit a critic to predict the expected discounted sum of
rewards from the discriminator by temporal difference (see Eq. 10), and another critic to predict
E[> 20 v d(st+1) " 2|8, a, 7], where ¢ is the representation learned by the DIAYN-based [19] skill
discovery part of the algorithm. We train such representation by an off-policy version of Eq. 13 in
[73], where we sample couples (s, z) from the online buffer and maximize Ey .)p, ... [¢(s')T 2].
Note that this is consistent with the original off-policy implementation of DIAYN [19]. The output of
¢ is normalized on the hypersphere of radius v/d. We also add an othornormality loss (same as the
one used by FB) as we found this to be essential for preventing collapse of the encoder.

Inference methods. For reward-based and goal-based inference we use the same methods as FB-
CPR, with B replaced with ¢. For tracking we use z; & B(s:41) for each timestep ¢ in the target
motion.

Table 10: Hyperparameters used for ASE pretraining.

Hyperparameter Value
General training parameters See Tab. 3
General prioritization parameters See Tab. 4
z update frequency during rollouts once every 150 steps
z dimension d 64
Regularization coefficient 0.01

actor network
critic networks

¢ encoder network
Discriminator

third column of Tab. 6, output dim = action dim
second column of Tab. 6, output dim 1

fourth column of Tab. 5, output dim 64

Tab. 7

Learning rate for actor 107*
Learning rate for critic 107*
Learning rate for ¢ 1078
Coefficient for orthonormality loss 100
z distribution v
-goals from unlabeled dataset 60%
-goals from the online buffer 20%
-uniform on unit sphere 20%
Probability of relabeling zs 0.8
Polyak coefficient for target network update 0.005
Coefficient for diversity loss (Eq. 15in [73]) 0
Actor penalty coefficient 0.5
Critic penalty coefficient 0.5

Cs5.5 CALM

As for ASE, we implemented an off-policy TD3-based version of CALM to be consistent with the
training protocol of FB-CPR. We fit a critic (s, a, z) to predict the expected discounted sum of
rewards from the discriminator by temporal difference (see Eq. 10). We also train a sequence encoder
¢(7) which embeds a sub-trajectory 7 from the unlabeled dataset into z space through a transformer.
The encoder and the actor are trained end-to-end by maximizing Q(s, 7 (s, z = ¢(7)), 2 = ¢(7), plus
the constrastive regularization loss designed to prevent the encoder from collapsing (Eq. 5,6 in [93]).
The transformer interleaves attention and feed-forward blocks. The former uses a layernorm followed
by multi-head self-attention plus a residual connection, while the latter uses a layernorm followed by
two linear layers interleaved by a GELU activation. Its output is normalized on the hypersphere of

radius v/d.

Inference methods. We use the same methods as FB-CPR  for goal-based and tracking inference.

30



Table 11: Hyperparameters used for CALM pretraining.

Hyperparameter Value
General training parameters See Tab. 3
General prioritization parameters See Tab. 4
Sequence length for trajectory sampling from D 8
z update frequency during rollouts once every 150 steps
z dimension d 256
actor network third column of Tab. 6, output dim = action dim
critic network second column of Tab. 6, output dim 1
¢ encoder network transformer (see text above)
-attention blocks 2
-embedding dim 256
-MLP first linear layer 256x1024
-MLP second linear layer 1024x256
Discriminator Tab. 7
Learning rate for actor 10~
Learning rate for critic 1074
Learning rate for ¢ 1077
Coefficient for constrastive loss 0.1
z distribution v
-encoding of unlabeled trajectories 100%
-goals from the online buffer 0%
-uniform on unit sphere 0%
Probability of relabeling zs 1
Polyak coefficient for target network update 0.005
Actor penalty coefficient 0.5
Critic penalty coefficient 0.5

C5.6 PHC

PHC is similar to a goal-conditioned algorithm except that the goal is “forced” to be the next state
in the motion. This makes PHC an algorithm specifically designed for one-step tracking. We use a
TD3-based variant of the original implementation [51]. Concretely the implementation is exactly the
same of TD3 but we changed the underlying environment. In this tracking environment the state is
defined as the concatenation of the current state s and the state g to track. The resulting state space
is R™6, At the beginning of an episode, we sample a motion m from the motion set (either M or
Diest) and we initialize the agent to a randomly selected state of the motion. Let £ being the randomly
selected initial step of the motion, then at any episode step ¢ € [1,len(m) — ¢ — 1] the target state
g correspond to the motion state mz;+.1. We use the negative distance in position/orientation as
reward function, i.e., 7((s, 9), a, (s',9")) = —dsmpi(g, s').

Inference methods. By being a goal-conditioned algorithm we just need to pass the desired goal as
target reference and can be evaluated for goal and tracking tasks.

Table 12: Hyperparameters used for PHC pretraining.

Hyperparameter Value
General training parameters See Tab. 3
General prioritization parameters See Tab. 4
Update priorities every N environment steps 10M
Number of environment steps 300 M
Number of gradient steps per agent update 5
TD3 configuration See Tab. 8

C.5.7 GOAL-GAIL

We use a TD3-based variant of the original implementation [15]. Concretely, the implementation is
very similar to the one of CALM, except that there is no trajectory encoder and the discriminator
directly receives couples (s, g), where g is a goal state sampled from the online buffer or the unlabeled
dataset. In particular, the negative pairs (s, g) for updating the discriminator are sampled uniformly
from the online buffer (where g is the goal that was targeted when rolling out the policy that generated
s), while the positive pairs are obtained by sampling a sub-trajectory 7 of length 8 from the unlabeled
dataset and taking g as the last state and s as another random state. Similarly to CALM, we train a
goal-conditioned critic Q(s, a, g) to predict the expected discounted sum of discriminator rewards,
and an goal-conditioned actor 7 (s, ¢) to maximize the predictions of such a critic.

Inference methods. We use the same methods as ASE for goal-based and tracking inference.
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Table 13: Hyperparameters used for GOAL-GAIL pretraining.

Hyperparameter Value
General training parameters See Tab. 3
General prioritization parameters See Tab. 4
Sequence length for trajectory sampling from D 8
goal update frequency during rollouts once every 150 steps
actor network third column of Tab. 6, output dim = action dim
critic network second column of Tab. 6, output dim 1
Discriminator Tab. 7
Learning rate for actor 1074
Learning rate for critic 107*
goal sampling distribution
-goals from the unlabeled dataset 50%
-goals from the online buffer 50%
Probability of relabeling zs 0.8
Polyak coefficient for target network update 0.005
Actor penalty coefficient 0.5
Critic penalty coefficient 0.5

C.5.8 GOAL-TD3

We closely follow the implementation of [75]. For reaching each goal g, we use the reward function
r(s’,g) = —||pos(s’) — pos(g)||2, where pos(-) extracts only the position of each joint, ignoring
their velocities. We then train a goal-conditioned TD3 agent to optimize such a reward for all g. We
sample a percentage of training goals from the unlabeled dataset, and a percentage using hindsight
experience replay [HER, 2] on trajectories from the online buffer.

Inference methods. We use the same methods as ASE for goal-based and tracking inference.

Table 14: Hyperparameters used for GOAL-TD3 pretraining.

Hyperparameter Value
General training parameters See Tab. 3
General prioritization parameters See Tab. 4
Sequence length for HER sampling 8
goal update frequency during rollouts once every 150 steps
actor network third column of Tab. 6, output dim = action dim
critic network second column of Tab. 6, output dim 1
Learning rate for actor 1074
Learning rate for critic 1074
goal sampling distribution
-goals from the unlabeled dataset 100%
-goals from the online buffer (HER) 0%
Probability of relabeling zs 0.5
Polyak coefficient for target network update ~ 0.005
Actor penalty coefficient 0.5
Critic penalty coefficient 0.5

C.5.9 MPPI

We use MPPI with the real dynamic and real reward function for each task. For each evaluation
state, action plans are sampled according to a factorized Gaussian distribution. Initially, mean and
standard variation of the Gaussian are set with 0 and 1, respectively. actions plans are evaluated
by deploying them in the real dynamics and computed the cumulative return over some planning
horizon. Subsequently, the Gaussian parameters are updated using the top-k£ most rewarding plans.
For goal-reaching tasks, we use the reward r(s’, g) = —||pos(s’) — pos(g)||2

Table 15: Hyperparameters used for MPPI planning.

Hyperparameter Value
Number of plans 256
Planning horizon 32 for reward-based tasks, 8 for goals
k for the top-k 64

Maximum of standard deviation 2
Minimum of standard deviation 0.2
Temperature 1
Number of optimization steps 10

32



C.5.10 Diffuser

We train Diffuser offline on FB-CPR replay buffer and AMASS-Act dataset as described in C.4. We
follow the original implementation in [36]. We use diffusion probabilistic model to learn a generative
model over sequence of state-action pairs. Diffusion employs a forward diffusion process ¢(7¢|7i~1)
(typically pre-specified) to slowly corrupt the data by adding noise and learn a parametric reverse
denoising process pg (7't |7%), Vi € [0, n] which induces the following data distribution:

n

po(1Y) = /p(T") 1_[109(7'14_1 | r9drt ... dr” (12)

i=1

where 70 denotes the real data and 7" is sampled from a standard Gaussian prior. The parametric
models is trained using a variationnal bound on the log-likelihood objective E o..p[logps(7°)]. We
use Temporal U-net architecture as in [36] for pyg.

At test time, we learn a value function to predict the cumulative sum of reward given a sequence 7:

Ry(1) =~ Zi(;) vt~ 1r(s¢). To do that, we relabel the offline dataset according to the task’s reward
and we train R, by regression on the same noise distribution used in the diffusion training:

1(m%)
ETONDEieu[H]ETiNq(Ti‘TO) Rd,(’rl) — Z ’ytilT‘(St) (13)
t=1

We use then guiding sampling to solve the task by following the gradient of the value function
Vi Ry (7") at each denoising step. For goal-reaching tasks, we condition the diffuser sampling by
replacing the last state of the sampled sequence 7! by the goal state after each diffusion steps. We
sample several sequences and we select the one that maximizes the cumulative sum of the reward

r(s',9) = —[lpos(s’) — pos(g) |-

Table 16: Hyperparameters used for Diffuser pretraining and planning.

Hyperparameter Value
Learning rate 4% 1077
Number of gradient steps 3 % 108
Sequence length 32
U-Net hidden dimension 1024
Number of diffusion steps 50
Weight of the action loss 10
Planning horizon 32
Gradient scale 0.1
Number of plans 128
Number of guided steps 2

Number of guided-free denoising steps 4

C.5.11 H-GAP

We train the H-GAP model on the FB-CPR replay buffer and the AMASS-Act dataset as outlined
in C.4. Following the methodology described in [39], we first train a VQ-VAE on the dataset to
discretize the state-action trajectories. Subsequently, we train a decoder-only Prior Transformer to
model the latent codes autoregressively. In line with the procedures detailed in [39], we integrate
H-GAP within a Model Predictive Control (MPC) framework. This integration involves employing
top-p sampling to generate a set of probable latent trajectories, which were then decoded back into
the original state-action space. At test time, we selected the most optimal trajectory based on the
task-specific reward functions, assuming access to these functions.
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Table 17: Hyperparameters used for H-GAP.

Hyperparameter Value
batch size 128
training steps 108
Modeling horizon 32
VQ-VAE chunk size 4
VQ-VAE code per chunk 32
VQ-VAE number of code 512
VQ-VAE learning rate 3x107%
VQ-VAE number of heads 4
VQ-VAE number of layers 4
Prior Transformer number of heads 10
Prior Transformer number of layers 10
Prior Transformer learning rate 3x107%
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Task TD3 MPPI Diffuser ASE FB-CPR
Norm. Normalized Normalized Normalized

| move-ego-0-0 | 275.08 | 203.33  0.74 | 227.27(3.09) 0.83(0.01) | 266.03 (1.41)  0.97 (0.01) |
Table 18: Humanoid Environment. Average return per task for reward-optimization evaluation.

Group Num. TD3 MPPI Diffuser ASE FB-CPR

Tasks Normalized Normalized Normalized Normalized
Stand 2 274.38 (0.71) | 226.22(22.89) | 0.82(0.09) | 172.89 (54.38) | 0.63 (0.20) 244.09 (21.94) 0.89 (0.08) | 245.14 (29.53) | 0.89 (0.11)
Handstand 1 251.30 (0.00) 3.58 (0.00) 0.01 (0.00) 5.21 (0.00) 0.02 (0.00) |  0.04(0.00) 0.00 (0.00) 41.27 (0.00) 0.16 (0.00)
Locomotion 8 251.10 (5.15) 255.47 (5.39) 1.02 (0.02) ‘ 178.95 (37.70) | 0.71 (0.14) 188.76 (41.77) 0.75(0.16) | 219.19 (21.64) | 0.87 (0.08)
Locom.-Low 4 271.38(7.39) | 270.32(3.20) | 1.00(0.02)  85.67 (13.83) | 0.32(0.06) 48.49 (20.28) 0.18 (0.08) | 179.16 (66.08) | 0.67 (0.25)
Jump 1 90.66 (0.00) 67.45 (0.00) 0.74 (0.00) 15.85 (0.00) 0.17 (0.00) 8.73 (0.00) 0.10 (0.00) 34.88 (0.00) 0.38 (0.00)
Rotation 6 251.87(22.52) | 216.34 (42.26) | 0.85(0.10) 39.78 (44.43) 0.15 (0.16) 45.75 (64.93) 0.17 (0.24) | 107.78 (83.74) | 0.40 (0.31)
RaiseArms 9 267.08 (2.96) | 95.45(72.90) | 0.36 (0.27) | 111.08 (46.67) | 0.42(0.18)  141.38 (102.78) | 0.53 (0.38) | 153.39 (67.09) | 0.57 (0.25)
On-Ground 6 275.36 (3.80) | 243.61 (10.14) | 0.88 (0.03) 62.98 (27.77) 0.23 (0.10) 130.79 (61.96) 0.48 (0.23) | 193.79 (37.32) | 0.71 (0.14)
Crawl 8 210.77 (67.08) | 95.63 (26.87) | 0.54 (0.28) 9.96 (9.66) 0.06 (0.07) 28.18 (29.15) 0.18 (0.21) | 74.91 (62.42) | 0.48 (0.45)

Table 19: Humanoid Environment. Average return per category for reward-optimization evaluation.

D Additional Experimental Results

In this section we report a more detailed analysis of the experiments.

D.1 Detailed Results
In this section we report detailed results split across tasks.

* Table 18 shows the average return for each reward-based task and Table 19 groups the results
per task category.

 Table 20 shows the proximity metric for each goal pose, while Table 21 shows the success
rate.

» Table 22 shows the train and test tracking performance for both EMD and success rate
grouped over the AMASS datasets.

We further mention results for two baselines that performed poorly in our tests. First, similarly to
DIFFUSER, we tested H-GAP [39] trained on the union of the AMASS-ACT dataset and FB-CPR
replay buffer. Despite conducting extensive hyper-parameter search based on the default settings
reported in [39] and scaling the model size, we encountered challenges in training an accurate Prior
Transformer and we were unable to achieve satisfactory performance on the downstream tasks. We
obtained an average normalized performance of 0.05 in reward optimization on a subset of stand and
locomotion tasks. We did not test the other modalities. Second, we also tested planning with a learned
model. Specifically, we trained an MLP network on the same offline dataset to predict the next state
given a state-action pair. We then used this learned model in MPPI and evaluated its performance on
the same subset of tasks as H-GAP. The results showed that MPPI with the learned model achieved
a low normalized return of 0.03. We believe that this is due to MPPI’s action sampling leading to
out-of-distribution action plans, which can cause the model to struggle with distribution shift and
compounding errors when chaining predictions. Some form of pessimistic planning is necessary
when using a learned model to avoid deviating too much from the observed samples. Unlike MPPI,
Diffuser achieves this by sampling action plans that are likely under the offline data distribution. For
more details on the results of H-GAP and MPPI with the learned model, see Table 23.
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Goal [ TD3 | MPPI | Diffuser | Goal-GAIL | Goal-TD3 [ PHC [ CALM [ ASE [ FB-CPR |
Proximity

t_pose 0.99 | 0.21 0.60 (0.07) | 0.98(0.00) | 0.99 (0.00) | 0.24 (0.03) | 0.53 (0.34) | 0.98 (0.01) | 0.99 (0.00)
t_pose_lower_arms 0.99 | 0.28 0.52(0.04) | 0.96 (0.05) | 0.99 (0.00) | 0.44 (0.04) | 0.81(0.17) | 0.95 (0.06) | 0.99 (0.00)
t_pose_bow_head 0.99 | 0.23 0.60 (0.13) | 0.98 (0.00) | 0.99 (0.00) | 0.21 (0.06) | 0.63 (0.27) | 0.82(0.12) | 0.99 (0.00)
u_stretch_y_right 0.99 | 0.19 0.12(0.12) | 0.79 (0.17) | 0.87 (0.07) | 0.02 (0.01) | 0.16 (0.14) | 0.55(0.20) | 0.70 (0.21)
u_stretch_y_left 0.98 | 0.20 0.01 (0.01) | 0.55(0.11) | 0.77 (0.06) | 0.02 (0.01) | 0.10 (0.20) | 0.37 (0.23) | 0.73 (0.18)
u_stretch_z_right 0.99 | 0.28 0.02 (0.01) | 0.66 (0.28) | 0.81(0.14) | 0.04 (0.00) | 0.09 (0.14) | 0.31 (0.23) | 0.83 (0.10)
u_stretch_z_left 0.99 | 0.16 0.25 (0.09) | 0.95(0.04) | 0.95(0.07) | 0.06 (0.01) | 0.09(0.15) | 0.45(0.25) | 0.97 (0.03)
u_stretch_x_back 0.98 | 0.07 0.10 (0.11) | 0.81(0.14) | 0.72(0.17) | 0.02(0.01) | 0.01 (0.01) | 0.76 (0.22) | 0.93 (0.04)
u_stretch_x_front_part 0.99 | 0.63 0.55(0.13) | 0.94 (0.07) 0.99 (0.00) | 0.14 (0.02) | 0.34 (0.20) | 0.74 (0.16) | 0.99 (0.00)
u_stretch_x_front_full 0.98 | 0.98 0.06 (0.03) | 0.84(0.09) | 0.90 (0.07) | 0.01(0.00) | 0.34(0.29) | 0.60 (0.22) | 0.95 (0.02)
crossed_arms 0.98 | 0.20 0.26 (0.10) | 0.80 (0.06) | 0.86 (0.08) | 0.02(0.01) | 0.14 (0.17) | 0.56 (0.07) | 0.89 (0.05)
scratching_head 0.99 | 0.24 0.29 (0.14) | 0.98 (0.00) | 0.99 (0.01) | 0.06 (0.02) | 0.15(0.25) | 0.97 (0.01) | 0.99 (0.00)
right_hand_wave 0.99 | 0.23 0.42(0.17) | 0.92(0.01) | 0.98 (0.00) | 0.12(0.01) | 0.32(0.20) | 0.94 (0.02) | 0.95 (0.00)
x_strech 0.98 | 0.11 0.42(0.13) | 0.90 (0.08) | 0.93 (0.05) | 0.06 (0.02) | 0.12(0.14) | 0.82(0.13) | 0.94 (0.05)
i_strecth 0.86 | 0.07 0.20 (0.15) | 0.71(0.07) | 0.74 (0.09) | 0.01 (0.00) | 0.02 (0.03) | 0.69 (0.08) | 0.88 (0.08)
arms_stretch 0.98 | 0.08 0.22(0.13) | 0.58 (0.08) | 0.72(0.14) | 0.07 (0.01) | 0.05(0.10) | 0.39 (0.13) | 0.68 (0.06)
drinking_from_bottle 0.98 | 0.23 0.17 (0.07) | 0.69(0.09) | 0.88(0.08) | 0.04 (0.02) | 0.07 (0.10) | 0.80 (0.08) | 0.97 (0.04)
arm_on_chest 0.98 | 0.15 0.17(0.07) | 0.92(0.05) | 0.99 (0.00) | 0.04 (0.01) | 0.16 (0.17) | 0.95(0.02) | 0.98 (0.00)
pre_throw 0.56 | 0.03 0.00 (0.00) | 0.08 (0.07) | 0.23(0.13) | 0.04 (0.01) | 0.00 (0.00) | 0.02(0.03) | 0.08 (0.10)
egyptian 0.99 | 0.18 0.18 (0.08) | 0.80(0.10) | 0.94 (0.06) | 0.12(0.03) | 0.28 (0.28) | 0.60 (0.27) | 0.98 (0.00)
zombie 0.98 | 0.14 0.47(0.09) | 0.96 (0.03) | 0.99 (0.00) | 0.15(0.04) | 0.33(0.30) | 0.92(0.05) | 0.98 (0.00)
stand_martial_arts 0.99 | 0.41 0.41(0.17) | 0.94 (0.05) | 0.99 (0.01) | 0.05(0.03) | 0.34 (0.23) | 0.94 (0.02) | 0.98 (0.00)
peekaboo 0.90 | 0.25 0.27(0.12) | 0.91 (0.10) | 0.75(0.20) | 0.06 (0.03) | 0.18 (0.23) | 0.87 (0.15) | 0.95 (0.04)
dance 0.98 | 0.17 0.31(0.06) | 0.97(0.02) | 0.99 (0.00) | 0.07(0.04) | 0.34 (0.24) | 0.86 (0.16) | 0.99 (0.00)
kneel_left 0.99 | 0.97 0.10 (0.07) | 0.79(0.12) | 0.94 (0.05) | 0.04 (0.00) | 0.23 (0.30) | 0.34 (0.19) | 0.95 (0.02)
crouch_high 0.99 | 0.89 0.39 (0.05) | 0.98(0.00) | 0.99 (0.00) | 0.46 (0.08) | 0.76 (0.18) | 0.85(0.12) | 0.99 (0.00)
crouch_medium 0.99 | 0.95 0.47(0.06) | 0.99 (0.00) | 1.00 (0.00) | 0.38 (0.07) | 0.81(0.12) | 0.86 (0.12) | 0.99 (0.00)
crouch_low 0.99 | 0.63 0.08 (0.03) | 0.73(0.20) | 0.85(0.09) | 0.07 (0.03) | 0.16 (0.15) | 0.47 (0.11) | 0.85 (0.06)
squat_pre_jump 0.98 | 0.97 0.03 (0.01) | 0.17(0.13) | 0.22(0.20) | 0.02 (0.01) | 0.03 (0.05) | 0.31 (0.20) | 0.56 (0.04)
squat_hands_on_ground 0.98 | 0.77 0.21 (0.07) | 0.72(0.08) | 0.93 (0.04) | 0.02 (0.01) | 0.21 (0.25) | 0.30 (0.19) | 0.74 (0.10)
side_high_kick 0.98 | 0.38 0.00 (0.00) | 0.02(0.02) | 0.02(0.01) | 0.01(0.01) | 0.00 (0.00) | 0.01 (0.01) | 0.03 (0.03)
pre_front_kick 0.99 | 0.33 0.01 (0.00) | 0.54(0.22) | 0.75(0.09) | 0.06 (0.03) | 0.08 (0.06) | 0.20 (0.16) | 0.69 (0.21)
arabesque_hold_foot 0.85 | 0.17 0.03 (0.03) | 0.11 (0.06) | 0.30(0.13) | 0.01 (0.00) | 0.02(0.04) | 0.02(0.02) | 0.11 (0.05)
hold_right_foot 0.99 | 0.17 0.04 (0.03) | 0.28 (0.11) | 0.56 (0.20) | 0.03 (0.01) | 0.01 (0.03) | 0.10 (0.07) | 0.64 (0.12)
hold_left_foot 0.99 | 0.44 0.04 (0.01) | 0.51(0.09) | 0.76 (0.08) | 0.20 (0.02) | 0.29 (0.10) | 0.17 (0.17) | 0.72 (0.07)
bend_on_left_leg 0.98 | 0.69 0.01 (0.00) | 0.09 (0.10) | 0.40 (0.08) | 0.02 (0.01) | 0.04 (0.08) | 0.09 (0.08) | 0.57 (0.12)
lie_front 0.97 | 0.87 0.16 (0.16) | 0.67 (0.11) | 0.52(0.08) | 0.01 (0.00) | 0.05(0.04) | 0.46 (0.14) | 0.61 (0.10)
crawl_backward 0.98 | 0.92 0.13(0.13) | 0.36 (0.19) | 0.37 (0.15) | 0.00 (0.00) | 0.01(0.02) | 0.03 (0.04) | 0.13(0.13)
lie_back_knee_bent 0.97 | 0.79 0.07 (0.07) | 0.15(0.13) | 0.03(0.03) | 0.02(0.01) | 0.00 (0.00) | 0.09 (0.14) | 0.04 (0.08)
lie_side 0.97 | 0.89 0.20 (0.08) | 0.36 (0.18) | 0.19(0.11) | 0.02 (0.01) | 0.00 (0.00) | 0.08 (0.08) | 0.36 (0.04)
crunch 0.98 | 0.44 0.00 (0.00) | 0.00 (0.00) | 0.04(0.07) | 0.01 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00)
lie_back 0.97 | 0.86 0.24 (0.14) | 0.59 (0.28) | 0.28 (0.18) | 0.05(0.01) | 0.19 (0.19) | 0.54 (0.23) | 0.43 (0.22)
sit_side 0.98 | 0.93 0.03 (0.01) | 0.18 (0.10) | 0.35(0.17) | 0.00 (0.00) | 0.01(0.03) | 0.05(0.10) | 0.28 (0.17)
sit_hand_on_legs 0.98 | 0.97 0.29 (0.14) | 0.42(0.10) | 0.53 (0.06) | 0.00 (0.00) | 0.04 (0.08) | 0.04 (0.03) | 0.59 (0.13)
sit_hand_behind 0.99 | 0.93 0.23(0.16) | 0.66 (0.08) | 0.60 (0.11) | 0.02(0.02) | 0.03 (0.06) | 0.15(0.16) | 0.60 (0.11)
knees_and_hands 0.98 | 0.92 0.38 (0.15) | 0.71(0.08) | 0.83(0.06) | 0.03 (0.01) | 0.18 (0.15) | 0.46 (0.13) | 0.73 (0.11)
bridge_front 0.98 | 0.82 0.12(0.10) | 0.50 (0.41) | 0.74(0.07) | 0.05(0.02) | 0.23 (0.11) | 0.44 (0.02) | 0.67 (0.19)
push_up 0.97 | 0.89 0.04 (0.05) | 0.35(0.24) | 0.46 (0.11) | 0.01 (0.01) | 0.01 (0.01) | 0.02(0.02) | 0.11 (0.05)
handstand 0.84 | 0.00 0.00 (0.00) | 0.01 (0.01) | 0.00 (0.00) | 0.02(0.01) | 0.00 (0.00) | 0.00 (0.00) | 0.05 (0.04)
handstand_right_leg_bent | 0.96 | 0.05 0.00 (0.00) | 0.00 (0.00) 0.00 (0.00) | 0.01 (0.01) | 0.00 (0.00) | 0.00 (0.00) | 0.02 (0.02)
Average 0.96 | 0.47 0.20 0.61 0.67 0.07 0.18 0.46 0.68
Median 0.98 ‘ 0.31 0.17 0.70 0.77 0.04 0.11 0.46 0.74

Table 20: Humanoid Environment. Proximity over goal poses for goal-reaching evaluation.

Task H-GAP MPPI with learned world model
Normalized Normalized
move-ego-0-0 0.123 33.78 0.069 19.05
move-ego-0-2 0.036 9.16 0.040 10.24
move-ego-0-4 0.028 6.82 0.038 9.21
move-ego-90-2 0.041 10.56 0.032 8.26
move-ego-90-4 0.032 7.97 0.026 6.41
move-ego-90-2 0.049 12.46 0.036 9.19
move-ego-90-4 0.039 9.54 0.024 6.00
move-ego-180-2 0.053 13.68 0.024 6.26
move-ego-180-4 0.042 10.41 0.019 4.76
Average 0.05 12.71 0.03 8.82
Median 0.04 10.41 0.03 8.26

Table 23: Humanoid Environment. Average Return of H-GAP and MPPI with learned world model
on a subset of stand and locomotion tasks.
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[ Goal [ TD3 | MPPI | Diffuser | Goal-GAIL | Goal-TD3 | PHC [ CALM [ ASE [ FB-CPR |
Success

t_pose 1.00 | 0.75 0.80 (0.07) | 1.00 (0.00) | 1.00 (0.00) | 0.09 (0.04) | 0.21 (0.40) | 0.98 (0.04) | 1.00 (0.00)
t_pose_lower_arms 1.00 | 0.75 0.78 (0.13) | 1.00 (0.00) 1.00 (0.00) | 0.35(0.13) | 0.49(0.43) | 0.90 (0.19) | 1.00 (0.00)
t_pose_bow_head 1.00 | 0.90 0.77(0.15) | 1.00 (0.00) | 1.00 (0.00) | 0.06 (0.06) | 0.29 (0.39) | 0.37 (0.32) | 1.00 (0.00)
u_stretch_y_right 1.00 | 0.65 0.01 (0.02) | 0.36 (0.28) | 0.80(0.27) | 0.01 (0.02) | 0.00 (0.00) | 0.04 (0.05) | 0.53 (0.32)
u_stretch_y_left 1.00 | 0.65 0.00 (0.00) | 0.10(0.17) | 0.16 (0.31) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.30 (0.20)
u_stretch_z_right 1.00 | 0.80 0.00 (0.00) | 0.23(0.30) | 0.38 (0.44) | 0.04 (0.01) | 0.00 (0.00) | 0.01(0.02) | 0.55 (0.24)
u_stretch_z_left 1.00 | 0.70 0.02 (0.02) | 0.82(0.36) | 0.99 (0.01) | 0.02(0.02) | 0.00 (0.00) | 0.06 (0.09) | 0.96 (0.07)
u_stretch_x_back 1.00 | 0.25 0.00 (0.00) | 0.26 (0.36) | 0.40 (0.42) | 0.04 (0.03) | 0.00 (0.00) | 0.39 (0.45) | 0.87 (0.08)
u_stretch_x_front_part 1.00 | 1.00 0.59 (0.18) | 0.93 (0.11) 1.00 (0.00) | 0.05(0.03) | 0.05(0.09) | 0.36 (0.24) | 1.00 (0.00)
u_stretch_x_front_full 1.00 | 1.00 0.02(0.02) | 0.34(0.32) | 0.64(0.36) | 0.00 (0.00) | 0.00 (0.00) | 0.21 (0.18) | 0.82 (0.30)
crossed_arms 1.00 | 0.60 0.04 (0.05) | 0.40(0.29) | 0.56 (0.32) | 0.01(0.02) | 0.01(0.02) | 0.06 (0.07) | 0.63 (0.22)
scratching_head 1.00 | 0.80 0.30 (0.25) | 1.00 (0.00) | 0.99 (0.02) | 0.04 (0.02) | 0.01(0.02) | 0.96 (0.04) | 1.00 (0.00)
right_hand_wave 1.00 | 0.70 0.37(0.16) | 0.99 (0.02) | 1.00 (0.00) | 0.02(0.02) | 0.06 (0.12) | 0.99 (0.02) | 1.00 (0.00)
x_strech 1.00 | 0.60 0.12(0.09) | 0.54 (0.40) | 0.87(0.15) | 0.03 (0.03) | 0.00 (0.00) | 0.45(0.37) | 0.80 (0.23)
i_strecth 0.67 | 0.00 0.00 (0.00) | 0.00 (0.00) | 0.30 (0.40) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.25 (0.38)
arms_stretch 1.00 | 0.60 0.04 (0.05) | 0.00 (0.00) | 0.21(0.25) | 0.04 (0.03) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00)
drinking_from_bottle 1.00 | 0.70 0.01 (0.02) | 0.00 (0.00) | 0.40 (0.49) | 0.02(0.02) | 0.00 (0.00) | 0.00 (0.00) | 0.86 (0.28)
arm_on_chest 1.00 | 0.80 0.02 (0.04) | 0.88(0.16) | 1.00 (0.00) | 0.00 (0.00) | 0.01 (0.01) | 0.81 (0.21) | 0.99 (0.02)
pre_throw 0.00 | 0.00 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.06 (0.04) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00)
egyptian 1.00 | 0.65 0.03 (0.02) | 0.43(0.36) | 0.80(0.30) | 0.02(0.02) | 0.00 (0.00) | 0.30(0.35) | 1.00 (0.00)
zombie 1.00 | 0.75 0.35(0.16) | 0.97 (0.06) | 1.00 (0.00) | 0.04 (0.03) | 0.00 (0.00) | 0.74 (0.26) | 1.00 (0.00)
stand_martial_arts 1.00 | 0.90 0.41 (0.18) | 1.00 (0.00) | 1.00 (0.00) | 0.04 (0.04) | 0.00 (0.00) | 0.82(0.17) | 1.00 (0.00)
peekaboo 0.66 | 0.60 0.00 (0.00) | 0.76 (0.35) | 0.51(0.39) | 0.04 (0.05) | 0.00 (0.00) | 0.58 (0.35) | 0.89 (0.22)
dance 1.00 | 0.70 0.16 (0.08) | 0.94(0.12) | 1.00 (0.00) | 0.00 (0.00) | 0.02(0.03) | 0.67 (0.39) | 1.00 (0.00)
kneel_left 1.00 | 1.00 0.10 (0.12) | 0.31(0.30) | 1.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.90 (0.10)
crouch_high 1.00 | 1.00 0.75(0.10) | 1.00 (0.00) | 1.00 (0.00) | 0.55(0.11) | 0.37 (0.41) | 0.67 (0.28) | 1.00 (0.00)
crouch_medium 1.00 | 1.00 0.97 (0.04) | 1.00 (0.00) | 1.00 (0.00) | 0.42(0.14) | 0.44 (0.38) | 0.53 (0.33) | 1.00 (0.00)
crouch_low 1.00 | 0.95 0.00 (0.00) | 0.57(0.38) | 0.45(0.45) | 0.02(0.01) | 0.00 (0.00) | 0.01(0.03) | 0.72 (0.27)
squat_pre_jump 1.00 | 1.00 0.02(0.02) | 0.01(0.02) | 0.02(0.03) | 0.01(0.02) | 0.00 (0.00) | 0.09 (0.16) | 0.25 (0.25)
squat_hands_on_ground 1.00 | 0.40 0.00 (0.00) | 0.00 (0.00) | 0.64 (0.45) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.10 (0.20)
side_high_kick 1.00 | 0.65 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00)
pre_front_kick 1.00 | 0.70 0.01 (0.02) | 0.23(0.39) | 0.40(0.49) | 0.04 (0.03) | 0.00 (0.00) | 0.02(0.03) | 0.57 (0.36)
arabesque_hold_foot 0.66 | 0.60 0.01 (0.02) | 0.00 (0.00) | 0.00 (0.00) | 0.01 (0.01) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00)
hold_right_foot 1.00 | 0.70 0.00 (0.00) | 0.00 (0.00) | 0.01(0.01) | 0.01(0.01) | 0.00 (0.00) | 0.11 (0.21) | 0.44 (0.42)
hold_left_foot 1.00 | 0.70 0.00 (0.00) | 0.20 (0.26) | 0.25 (0.36) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.25 (0.38)
bend_on_left_leg 1.00 | 1.00 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.05(0.04) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00)
lie_front 1.00 | 0.90 0.10 (0.20) | 0.01 (0.02) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.01 (0.02) | 0.00 (0.00)
crawl_backward 1.00 | 0.95 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00)
lie_back_knee_bent 1.00 | 0.85 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.02(0.03) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00)
lie_side 1.00 | 0.90 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.02(0.02) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00)
crunch 1.00 | 0.55 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00)
lie_back 1.00 | 0.90 0.02 (0.04) | 0.31(0.39) | 0.00 (0.00) | 0.08 (0.03) | 0.00 (0.00) | 0.13(0.27) | 0.00 (0.00)
sit_side 1.00 | 0.95 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00)
sit_hand_on_legs 1.00 | 1.00 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00)
sit_hand_behind 1.00 | 0.95 0.01 (0.02) | 0.00 (0.00) | 0.00 (0.00) | 0.02 (0.05) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00)
knees_and_hands 1.00 | 0.95 0.06 (0.07) | 0.00 (0.00) | 0.18 (0.27) | 0.04 (0.02) | 0.00 (0.00) | 0.00 (0.00) | 0.01 (0.02)
bridge_front 1.00 | 0.85 0.00 (0.00) | 0.06 (0.08) | 0.00 (0.00) | 0.08 (0.04) | 0.00 (0.00) | 0.00 (0.00) | 0.17 (0.31)
push_up 1.00 | 0.95 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00)
handstand 0.67 | 0.00 0.00 (0.00) | 0.00 (0.00) | 0.00(0.00) | 0.01 (0.02) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00)
handstand_right_leg_bent | 1.00 | 0.10 0.00 (0.00) | 0.00 (0.00) | 0.00(0.00) | 0.01(0.02) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00)
Average 0.95 | 0.73 0.14 0.35 0.44 0.05 0.04 0.22 0.48
Median ‘ 1.00 ‘ 0.75 ‘ 0.01 ‘ 0.22 ‘ 0.39 ‘ 0.02 ‘ 0.00 ‘ 0.01 ‘ 0.48 ‘

Table 21: Humanoid Environment. Success rate over different goal poses in the goal-reaching
evaluation.
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Figure 5: Additional FB-CPR Ablations. (TOP) Ablating the sampling distribution v. (BOTTOM
LEFT) Ablating the discriminator gradient penalty method. (BOTTOM RIGHT) Ablating the policy
regularization method between behavior cloning and moment matching when given action labels. All
ablations are averaged over 5 seeds with ranges denoting bootstrapped 95% confidence intervals.

D.2 Ablations

In this section we detail additional ablations into the components of FB-CPR.

Which gradient penalty better stabilizes the discriminator in FB-CPR? Algorithms requiring
bi-level optimization through a min-max game are known to be unstable and typically require strong
forms of regularization [e.g., 28, 62]. Prior works like CALM [93], ASE [73], and AMP [74] employ
what we will refer to as the simplified gradient penalty on the discriminator to stabilize training:

2
Acr B pionr [HV“D@’Z)}(x,z)=(s,ERFB(T))H2} '

Alternatively, other works in Inverse Reinforcement Learning [e.g., 90, 91, 80] have had success
employing the Wasserstein gradient penalty [28]:
9 2
ol
2

We want to verify which of these two methods better stabilizes training of the discriminator in
FB-CPR. To this end, we perform a sweep over Agp € {0,1, 5,10, 15} for both the aforementioned
gradient penalties and further averaged over 5 independent seeds. We found that without a gradient
penalty, i.e., Agp = 0 training was unstable and lead to subpar performance. For both gradient penalty
methods we found that Agp = 10 performed best and as seen in Figure 5 (Left) the Wasserstein
gradient penalty ultimately performed best.

)\GP ]E

/!
zNy7sz7fz ,TNM,s/NT (HV;v,z’D(‘Ty z ) ‘z:t5+(1—t)s/,z/:tz+(l—t)ERFB (T)
t~Unif(0,1)

What is gained or lost when ablating the mixture components of ©? By modelling v as a
mixture distribution we hypothesize that a tradeoff is introduced depending on the proportion of each
component. One of the most natural questions to ask is whether there is anything to be gained by only
sampling 7 ~ M and encoding with z = ERpg(7). If indeed this component is enabling FB-CPR
to accurately reproduce trajectories in M we may see an improvement in tracking performance
perhaps at the cost of diversity impacting reward-optimization performance. On the other hand,
increased diversity by only sampling uniformly from the hypersphere may improve reward evaluation
performance for reward functions that are not well aligned with any motion in M. We test these
hypotheses by training FB-CPR on 1) only ERpp encoded subtrajectories from M, 2) only uniformly
sampled embeddings from the hypersphere, and 3) the default mixture weights reported in Table 9.

Figure 5 confirms that mixed sampling strikes a nice balance between these trade-offs. Indeed, only
using ERpp encoded subtrajectories from M harms reward evaluation performance but surprisingly
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does not improve on tracking performance. Perhaps unsurprisingly sampling only uniformly from the
hypersphere is a weak prior and does not fully leverage the motion dataset resulting in substantially
degraded performance across the board.

Is CPR regularization better than BC if given action labels? In our work we adopt the moment
matching framework to perform policy regularization [90]. This framework can be naturally extended
to the action-free setting whereas most imitation learning methods require action labels. If we are
provided a dataset with action-labels should we continue to adopt the moment matching framework
with the conditional discriminator presented herein? To answer this question we curate our own
action labelled dataset by relabelling the AMASS dataset with a pre-trained FB-CPR policy. Given
this dataset we directly compare the conditional discriminator (Eq. 11) with a modified form of the
FB-CPR actor loss that instead performs regularization via behavior cloning,

fFB—CPR—BC(TO = _EZNV,SNDon“ne,anz(~\s) [F(Sa a, Z)TZ] — Qpc EZNU,(s,a)NM [lOg Ty (CL | S)] :
(14)

We perform a sweep over the strength of the behavior cloning regularization term agc €
{0.1,0.2,0.4,0.5} and further average these results over 5 seeds. Furthermore, we re-train FB-
CPR on the relabelled dataset and also perform a sweep over the CPR regularization coefficient
acpr € {0.01,0.03,0.05}. Ultimately, age = 0.2 and apr = 0.01 performed best with results
on reward and tracking evaluation presented in the bottom right panel of Figure 5. We can see
that even when given action-labels our action-free discriminator outperforms the BC regularization
in both reward and tracking evaluation. This highlights the positive interaction of the conditional
discriminator with FB to provide a robust method capable of leveraging action-free demonstrations
and notably outperforming a strong action-dependent baseline.
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D.3 Diversity, Dataset Coverage and Transitions

In this section we intend to further investigate the behaviors learned by FB-CPR beyond its perfor-
mance in solving downstream tasks.

Distance of two random motions

3000 1 Algorithm
[ FB-CPR
CALM
2500 4 [ ASE
20007 Algorithm  Diversity
2 1500 ] FB-CPR  4.70 (0.66)
CALM 3.36 (1.15)
10004 ASE 3.91(0.73)
5004 Figure 7: Average diversity.
0 T T T T T T
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EMD

Figure 6: Distribution of EMD distance between trajectories gen-
erated by two randomly sampled policies 7, and 7.

How diverse are the behaviors learned by FB-CPR? We want to evaluate the diversity of behaviors
encoded in (7). Given two randomly drawn z and z’, we run the two associated policies from the
same initial state and we compute the EMD distance between the two resulting trajectories. We repeat
this procedure for n = 100, 000 times and compute

1 n
Diversity = — g EMD(7;, 7}). (15)
n
i=1

The values of diversity are presented in Table 7. FB-CPR has the highest diversity. This result
is confirmed by looking at the distribution of EMD values between 7; and 7/ in Fig. 6. FB-CPR
has consistently the most diverse results. ASE distribution is shifted toward lower EMD values,
which means that its behaviors are less diverse. CALM has mode around 2, which means that its
representation has clusters of similar motions, but it is also the algorithm with the wider distribution
with EMD distance above 7.0.

Are FB-CPR behaviors grounded in the behavior dataset M? While this question is partially
answered in the tracking evaluation, we would like to evaluate how much of the motion dataset
is actually covered. In fact, a common failure mode of imitation regularization algorithms is the
collapse of the learned policies towards accurately matching only a small portion of the demonstrated
behaviors. In order to evaluate the level of coverage of the training motion dataset'>, we use a similar
metric to the one proposed in [73], while accounting for the differences in the dataset: we have a
much larger (8902 vs 187 motions) and less curated dataset, where the length of the motions has
much larger variance.

We first sample a random z and generate a trajectory 7, by executing the corresponding policy 7, for
200 steps starting from a T-pose configuration. Then, we calculate the EMD between 7, and each
motion in M and we select the motion m with the lowest EMD as the one best matching 7:

m? = arg min EMD(7,, m"). (16)
mieM

We use EMD instead of time-aligned distance metrics to account for the fact that 7, is executed from
an initial state that could be fairly far from a motion in M. We repeat this procedure 10,000 times and

'5Notice that here we are not trying to evaluate the generalization capabilities of the model, which is the focus
of Sect. 4.
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Figure 9: The frequency of the 50 most matched motions with multi-matching and
MATCHpyresnorp = 0.1. Note that each algorithm matches to a different set of most frequent
motions.

calculate the frequency of selecting each motion from the dataset. The dataset coverage is defined as
the ratio of the number of the motions selected at least once to the number of motions in the training
dataset.

As the train motion dataset is two orders of magnitude larger than the one used in [73], it is naturally
harder to cover M. To mitigate this issue, we propose a multiple-matching approach: a motion m is
considered as matching, if its EMD to the closest motion from M is no larger than

EMD(7, m:) + MATCHryrgsHoLD- (17)

By definition, greater values of the MATCHyresnoLp results in greater coverage, as further motions
are matched. Additionally, we observed by qualitative assessment, that when EMD is larger than 4.5,
then the two trajectories are distinct enough to be considered as different behaviors. We therefore
discard a matching if the EMD distance of m* is above 4.5. The relation between MATCHygesuoLp
and the coverage is presented on Fig. 8. It can be observed that FB-CPR has consistently the highest
coverage and it smoothly increases with the EMD threshold. CALM has lower coverage, but presents
similar coverage pattern. In comparison, the coverage of ASE remains consistently low.

In order to calculate the matching of the top 50 most matched motions used in the further comparison,
we used this multi-matching variant with MATCHyggsuop = 0.1. In Fig. 9 we report the frequency
of the top 50 most matched motions through this procedure for FB-CPR, CALM, and ASE. ASE
has a very skewed distribution, meaning that many policies 7, tend to produce trajectories similar
to a very small subset of motions, which suggests some form of coverage collapse. On the other
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extreme, FB-CPR has a very flat distribution, suggesting that it has a more even coverage of the
motions dataset.

Is FB-CPR capable of motion stitching? Another possible failure mode is to learn policies that
are accurately tracking individual motions but are unable to stifch together different motions, i.e.,
to smoothly transition from one behavior to another. In this case, we sample two embeddings zg
and zp (respectively source and destination) and we use them to generate a trajectory 7 which
is composed of two disjoint sub-trajectories: the first 200 steps are generated with 7, and form
sub-trajectory Tg; after that, the second sub-trajectory 7p is generated as the continuation of 7g, while
running policy 7, . After their generation, 7g and 7p are separately matched to the motions using
Eq. 15, and a pair of source and destination motion is recorded. To make the process computationally
feasible, we restrict our attention to the 50 most frequently matched motions selected in the previous
evaluation with Eq. 15, and presented in Fig. 9. The procedure of generating transitioning trajectory
is repeated 10,000 times. The pairwise transition probability is defined as the probability of matching
a destination motion, conditioned on the source motion.

We also define pairwise transition coverage on a dataset as the ratio of the number of pairwise
transitions with frequency larger than 0O, to the number of all possible pairwise transitions. The
pairwise transition probability and respective coverage is reported in Fig. 10. All algorithms have
similar overall coverage.

FB-CPR CALM ASE
Coverage: 0.127 Coverage: 0.139 Coverage: 0.101

-0.5
-0.4
3

2

1
0.0

Source Motion Source Motion Source Motion

o

Destination Motion
o

o

Figure 10: The probability of transitioning to destination motion conditioned on the source mo-
tion. For ASE, there was no random trajectory matched to source motion in three cases, and the
corresponding columns of the heatmap are left empty.

Is FB-CPR learning more than imitating the motions in M? While the good coverage highlighted
above and the good tracking performance shown in Sect. 4 illustrate that FB-CPR successfully
ground its behaviors on the training motions, a remaining question is whether it has learned more
than what is strictly in M. In order to investigate this aspect we analyze the distribution of the closest
EMD distance EM D(7,, m}) w.r.t. random policies 7. Fig. 11 highlights the most of the behaviors
in (7,) do not necessarily have a very tight connection with motions in the dataset. This is contrast
with CALM and ASE, which have much smaller EMD distances, thus showing that they tend to
use a larger part of the policy capacity to accurately reproduce motions rather than learning other
behaviors.

D.4 Qualitative Evaluation
D.4.1 Human Evaluation

In most of reward-based tasks, the reward function is under-specified and different policies may
achieve good performance while having different levels of human-likeness. In the worst case, the
agent can learn to hack the reward function and maximize performance while performing very
unnatural behaviors. On the other hand, in some cases, more human-like policies may not be
“optimal”. Similarly, in goal-based tasks, different policies may achieve similar success rate and
proximity, while expressing very different behaviors.
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Figure 11: Histogram of the values of distance of trajectories generated from random z to the best
matching motion from the training dataset.

In this section, we complement the quantitative analysis in Sect. 4 with a qualitative evaluation
assessing whether FB-CPR is able to express more “human-like” behaviors, similar to what is done
in [30]. For this purpose, we enroll human raters to compare TD3 and FB-CPR policies over 45
reward and 50 goal tasks. Similar to the protocol in Sect. 4, for each single reward or goal task, we
train three single-task TD3 agents with different random seeds. We then compare the performance of
the TD3 agent with the best metric against the zero-shot policy of FB-CPR.

We generate videos of the two agents for each task. Each pair of matching videos is presented to 50
human raters, who fill the forms presented on Fig. 12. The position of the videos is randomized and
the type of the agent on a video is not disclosed to the raters.

Figure 12: The online forms presented to the human raters to evaluate human-likeness for goal and
reward tasks.

We gather two subjective metrics: success, and human-likeness. For success, we ask the rater to
evaluate whether the presented behavior is actually achieving the desired objective. For goal-based
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Task ‘ TD3 ORACLE MPPI ‘ DIFFUSER ASE FB-CPR

Normalized Normalized Normalized Normalized

move-ego-0-2-raisearms-1-m | 174.97 | 194.84 1.11 125.14 (2.16)  0.72 (0.01) ‘ 109.36 (30.34)  0.63 (0.17) 143.90 (7.09) 0.82 (0.04)
2-raisearms-1-h | 194.72 | 114.30 0.59 103.11 (1.22)  0.53(0.01) ~ 129.21 (31.41)  0.66 (0.16)  123.14 (15.90)  0.63 (0.08)
move-ego-0-2-raisearms-m-1 | 179.42 | 199.26 1.11 124.31 (4.28)  0.69 (0.02) 125.39 (5.79) 0.70 (0.03) 136.74 (2.40) 0.76 (0.01)
2-raisearms-m-m | 178.42 | 155.28 0.87 121.55 (3.97)  0.68(0.02) | 60.19 (24.89)  0.34 (0.14) 139.19 (18.63)  0.78 (0.10)

2-raisearms-m-h | 179.02
move-ego-0-2-raisearms-h-1 | 191.00

129.99 0.73 | 116.50 (3.88)  0.65 (0.02) 123.84 (6.10)  0.69 (0.03) 128.15 (0.86)  0.72 (0.00)
115.25 0.60 101.58 (2.72)  0.53 (0.01) | 85.89(7.09)  0.45(0.04) ~ 111.92(1.20)  0.59 (0.01)
move-ego-0-2-raisearms-h-m | 175.72 | 130.86 0.74 113.81(3.34)  0.65 (0.02) 121.19 (4.20) 0.69 (0.02) 128.10 (0.78) 0.73 (0.00)
move-ego-0-2-raisearms-h-h | 165.19 | 112.35 0.68 102.09 (3.56)  0.62(0.02)  133.96 (14.35)  0.81 (0.09)  143.83 (14.21)  0.87 (0.09)
Average 181.06 | 146.70 0.81 117.36 0.65 114.98 0.64 133.40 0.74
Median 179.02 | 130.86 0.74 116.50 0.65 123.84 0.69 136.74 0.76

Table 24: Average return for each task in the composite reward evaluation. These tasks combine
between locomotion and arm-raising behaviors

move-ego-0-2-raisearms-1-1 | 191.13 | 168.22 0.88 148.10 (0.47)  0.77 (0.00) 145.78 (7.59) 0.76 (0.04) ‘ 145.59 (4.38) 0.76 (0.02)

task, the objective is directly illustrated as the target pose, while for reward functions it is a text
formulated in natural language which replaces the [description] placeholder in the template shown in
Fig. 12 (e.g., for the task “raisearms-1-h” we generate text “standing with left hand low (at hip height)
and right hand high (above head)”). For human-likeness, the rater has to choose among four options
where they can express preference for either of the two behaviors, or both (a draw), or none of them.
We then compute success rate and average human-likeness by taking the ratio between the positive
answer and the total number of replies. The FB-CPR is considered more human like than TD3 in the
large majority of cases. FB-CPR is sometimes assessed as human-like by raters, even in tasks when
they consider it failed completing the task. Interestingly, while the human-likeness of FB-CPR may
come at the cost of lower reward scores, it does not affect the perceived success in accomplishing the
assigned goal tasks and FB-CPR has better success rate than TD3 for those tasks.

More in detail, per-task success rate scores are presented in Fig. 13 and Fig. 14.

LT LR iuﬂ-H 4““-& Mui H-&“i ML Hh

Task

Figure 13: Human-likeness and success rate scores of algorithms per goal task sorted by FB-CPR
performance.

D.4.2 Reward-based tasks

We provide a further investigation of the performance of our FB-CPR agent on tasks that are i) a
combination of tasks used for the main evaluation; and ii) highly under-specified.
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Figure 14: Human-likeness and success rate scores of algorithms per reward task sorted by FB-CPR
performance.

The objective i) is to evaluate the ability of FB-CPR of composing behaviors. We thus created a
new category of reward-based tasks by combining locomotion and arm-raising tasks. Specifically,
we pair the medium-speed forward locomotion task (with an angle of zero and speed of 2) with all
possible arm-raising tasks. Since these two types of tasks have conflicting objectives — locomotion
requires movement, while arm-raising rewards stillness — we define a composite reward function that
balances the two. This is achieved by taking a weighted average of the individual task rewards, where
the weighting varies depending on the specific task combination. Tab. 24 reports the performance
of the algorithms on these “combined” tasks. We can see that FB-CPR is able to achieve 74% of
the performance of TD3 trained on each individual task. Despite the higher performance, even in
this case, TD3 generates unnatural behaviors. The higher quality of FB-CPR is evident in Fig. 15
where we report a few frames of an episode for the task move-ego-0-2-raisearms-m-m. Similarly,
almost the totality (about 98%) of human evaluators rated FB-CPR as more natural than TD3 on
these tasks.

The objective of ii) is to evaluate the ability of our model to solve task with a human-like bias. To
show this, we designed a few reward functions inspired by the way human person would describe a
task.

Run. The simplest way to describe running is “move with high speed”. Let v, and v,, the horizontal
velocities of the center of mass at the pelvis joint. Then, we define the reward for the task RUN as

r(s') =1(v + v} > 2)

Walking with left hand up. This task has two component: walking requires moving with low
speed; raising the hand means having the hand z-coordinate above a certain threshold. Then, we
define the reward for the task WALK-LAM_q as

r(s') = 11[1 < (W2 402) < 1.5} -H{zleftwﬁst > 1.2

Standing with right foot up. This is the most complex task. We define standing at being in upright
position with the head z-coordinate above a certain threshold and zero velocity. Similar to before,
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Figure 15: Example of combination of locomotion and arm raising tasks
(move-ego-0-2-raisearms-m-m). Our FB-CPR (top) agent produces natural human mo-
tions while TD3 (bottom) learns high-performing but unnatural behaviors. ASE (middle) has a

natural behavior but it is not correctly aligned with the tasks (arms are in the high position not
medium).
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Figure 16: Human-evaluation on locomotion combined with arm raising. Left figure reports the
percentage of times a behavior solved a reward-based task (tasks are independently evaluated). Right
figure reports the score for human-likeness by direct comparison of the two algorithms.

we ask the right ankle to be above a certain threshold. Then, we define the reward for the tasks
STAND-RTM,, (8 = 0.5) and STAND-RTH,, (5 = 1.2) as

r(s') = H{up > 0.9} ~H[zhead > 1.4} - exp ( — /v + vg) ‘H[Zright ankle = ﬂ}

It is evident to any expert in Reinforcement Learning (RL) that the reward functions in question are
not optimal for learning from scratch. These reward functions are too vague, and a traditional RL
algorithm would likely derive a high-performing policy that deviates significantly from the natural
"behavioral" biases. For instance, with TD3, we observe completely unnatural behaviors. In stark
contrast, FB-CPR manages to address the tasks in a manner that closely resembles human behavior
(refer to Fig. 17). Intriguingly, FB-CPR appears to identify the “simplest” policy necessary to solve a
task. It effectively distinguishes between two different policies, STAND-RTM.q and STAND-RTH,g,
even though the policy designed for the higher task would suffice for the medium task, provided that
the foot remains above a certain threshold. It is also evident the data bias. For example, we do not
specify the direction of movement in run, just the high speed. FB-CPR recovers a perfect forward
movement probably because the majority of run motions in M show this behavior. ASE is not able
to solve all the tasks.
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Figure 17: Example of behaviors inferred by FB-CPR from under-specified reward equations.

Method Data Reward Demonstration Goal
Return Return Proximity

FB RND 0.52 +0.02 0.43 +0.02 127.38 £ 20.51
FB RND+Mgamn  0.60 £0.03 0.56 = 0.03 211.46 +17.78
FB+AWAC MTRAIN 0.51 +0.02 0.54 4+ 0.02 279.90 + 44.07
FB+AWAC RND+Mpamny  0.42 +0.03 0.43 +0.05 249.72 4 23.92
FB Online None 0.19 £0.03 0.19 £0.02 120.51 £ 10.83
FB-CPR MrRAIN 0.71 £0.02 0.75+£0.01 297.17+52.14
FB-MPR MrRAIN 0.77 +£0.02 0.78 +£0.01 258.66 1 43.89

Table 25: Mean and standard deviation of performance with different prompts. Averaged over 10
random seeds. Higher is better. Normalized returns are normalized w.r.t expert TD3 policy in the
same, rewarded task. RND data is generated by RND policy [9], while M1ran data was generated
by rolling out TD3 policies trained for each task separately.

E Ablations on Bipedal Walker

We conduct an ablation study in the Walker domain of dm_control [97] to better understand the
value of combining FB with a conditional policy regularization and online training.

Tasks. For this environment only a handful of tasks have been considered in the literature [45]. In
order to have a more significant analysis, we have developed a broader set of tasks. We consider
three categories of tasks: run, spin, crawl. In each category, we parameterize speed (or angular
momentum for spin) and direction. For instance, walker_crawl-{bw}-{1.5} refers to a task where
the agent receives positive reward by remaining below a certain height while moving backward at
speed 1.5. By combining category, speed, and direction, we define 90 tasks. We also create a set of
147 poses by performing a grid sweep over different joint positions and by training TD3 on each pose
to prune unstable poses where TD3 does not reach a satisfactory performance.

Data. We select a subset of 48 reward-based tasks and for each of them we a TD3 policy to obtain
50 expert trajectories that we add to dataset M3, We also run TD3 policies for a subset of 122
goals, while using the same 122 states as initial states, thus leading to a total of 14884 goal-based
trajectories that are added to ME% . We then build Mygan = MES U MEX | which contains
demonstrations for a mix of reward-based and goal-reaching policies. For algorithms trained offline,
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we use either data generated by random network distillation (RND) [9]'® or combining RND with
Mrrain. The Moramn dataset contains 17,284 rollouts and 1,333,717 transitions'’, while the “RND”
dataset contains 5000 episodes of 100 transitions for a total of 5,000,000 transitions.

Evaluation. For reward-based evaluation, we use the 42 tasks that were not used to build the
demonstration dataset. For imitation learning, we consider the same 42 tasks and only 1 demonstration
is provided. For goal-based evaluation, we use the 25 goals not considered for data generation.

Baselines. For ablation, we compare FB-CPR to the original FB algorithm [96] trained offline,
offline FB with advantage-weighted actor critic (AWAC) [63], FB trained online, and FB-CPR with
an unconditional discriminator (i.e discriminator depends solely on the state), that we refer to as
FB-MPR (FB with marginal policy regularization).

Results. Table 25 shows the results for each evaluation category averaged over 10 seeds. For
reward-based and imitation learning evaluation, we compute the ratio between each algorithm and the
TD3/expert’s performance for each task and then average it. For goal-reaching evaluation, we report
the average proximity. We first notice that training FB online without access to any demonstration or
unsupervised dataset leads to the worst performance among all algorithms. This suggests that FB
representations collapse due to the lack of useful samples and, in turn, the lack of a good representation
prevents the algorithm from performing a good exploration. Offline FB with only RND data achieves
a good performance coherently with previous results reported in the literature. This confirms that
once provided with a dataset with good coverage, the unsupervised RL training of FB is capable
of learning a wide range of policies, including some with good performance on downstream tasks.
Adding demonstration samples to RND further improves the performance of FB by 15% for reward-
based tasks, 30% for imitation learning, and by 60% for goal-reaching. This shows that a carefully
curated mix of covering samples and demonstrations can bias FB offline training towards learning
behaviors that are closer to the data and improve the downstream performance. Nonetheless, the gap
to FB-CPR remains significant, suggesting that regularizing the policy learning more explicitly is
beneficial. Interestingly, behavior cloning regularization used in FB-AWAC does not significantly
improve the performance of FB. When trained on Mran, FB-AWAC significantly improves in
goal-based problems, but in reward and imitation learning it is only able to match the performance
of FB with RND. Mixing the two datasets only marginally improves the goal-based performance,
while degrading other metrics. Overall FB with online training with a policy regularization emerges
as the best strategy across all tasks. Interestingly, the version with unconditional discriminator
achieves better performance for reward and demonstration tasks, while it is significantly worse for
goal reaching problems, where FB-CPR is best. We conjecture that this result is due to the fact that
the dataset M is well curated, since trajectories are generated by optimal policies and they cover
close regions of the state space, whereas in the humanoid case, M is made of real data where different
motions can be very distinct from each other and are very heterogeneous in nature and length. While
in the former case just reaching similar states as in M is sufficient to have a good regularization, in
the latter a stronger adherence to the motions is needed.

1%For walker, RND is successful in generating a dataset with good coverage given the low dimensionality of
the state-action space. In humanoid, this would not be possible.
"Notice that goal-based trajectories have different lengths as episodes are truncated upon reaching the goal.
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