
000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

Under review as a conference paper at ICLR 2026

KEYSYNC: A ROBUST APPROACH FOR LEAKAGE-

FREE LIP SYNCHRONIZATION IN HIGH RESOLUTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Lip synchronization, known as the task of aligning lip movements in an existing
video with new input audio, is typically framed as a simpler variant of audio-
driven facial animation. However, as well as suffering from the usual issues in
talking head generation (e.g., temporal consistency), lip synchronization presents
significant new challenges such as expression leakage from the input video and fa-
cial occlusions, which can severely impact real-world applications like automated
dubbing, but are largely neglected by existing works. To address these shortcom-
ings, we present KeySync, a two-stage framework that succeeds in solving the
issue of temporal consistency, while also incorporating solutions for leakage and
occlusions using a carefully designed masking strategy. We show that KeySync
achieves state-of-the-art results in lip reconstruction and cross-synchronization,
improving visual quality and reducing expression leakage according to LipLeak,
our novel leakage metric. Furthermore, we demonstrate the effectiveness of
our new masking approach in handling occlusions and validate our architectural
choices through several ablation studies. Our code and models will be made pub-
licly available.

1 INTRODUCTION

Audio-driven facial animation has recently seen substantial progress with the introduction of new
generative models such as Generative Adversarial Networks (GANs) Goodfellow et al. (2020); Vou-
gioukas et al. (2019); Zhou et al. (2019) and diffusion models Ho et al. (2020); Stypulkowski et al.
(2024); Chen et al. (2024b). In contrast, the adjacent field of lip synchronization (also known as lip-
sync) has experienced comparatively slower advancements Guan et al. (2023); Zhang et al. (2023d);
Prajwal et al. (2020). This disparity is surprising given that lip-sync has similar applications, rang-
ing from facilitating multilingual content production to enhancing virtual avatars Zhen et al. (2023);
Zhan et al. (2023). A potential reason for this slower progress is that while lip synchronization may
seem like a simpler task than animating the full face from audio, it presents unique challenges that
remain largely unaddressed.

Current methods are limited in both visual quality and temporal consistency. Most models are
constrained to a low-resolution (256×256) output, hindering real-world applicability. Furthermore,
they struggle with temporal stability; frame-based approaches Yu et al. (2024); Liu et al. (2024) often
produce visible discontinuities, while attempts to enforce coherence indirectly through perceptual
models Li et al. (2024), sequence discriminators Mukhopadhyay et al. (2024), or autoregressive
conditioning Bigioi et al. (2024) can introduce subtle artifacts or suffer from error accumulation
over long sequences.

Beyond temporal consistency, a key, but often overlooked issue is expression leakage, where models
infer mouth shapes from facial expressions in the source video rather than from the driving audio.
Regrettably, most existing works focus excessively on lip synchronization as a reconstruction task
on paired audio-visual data, and neglect the cross-synchronization scenario, where a non-matching
audio clip is used to re-animate the original video. As a consequence, they typically exhibit ma-
jor expression leakage from the original video, severely degrading the synchronization between the
generated video and the input audio in the latter scenario. Notably, this behaviour jeopardizes the vi-
ability of these models for applications like automated dubbing, where audio and video are naturally
mismatched.
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Figure 1: Unlike existing methods, KeySync generates high-resolution lip-synced videos that are
closely aligned with the driving audio while minimizing leakage from the input video and seamlessly
handling facial occlusions.

To alleviate expression leakage, some methods Cheng et al. (2022); Yaman et al. (2024) introduce an
additional network to generate a neutral version of the input frame, neglecting the underlying issue of
the masking strategy. Some methods mask only the mouth region while preserving facial areas such
as the jaw and cheeks from the original videos, potentially leading to leakage since these regions
also convey information about mouth movements Ki & Min (2023); Zhang et al. (2023d), while oth-
ers adopt broader masks that risk discarding important contextual cues Zhang et al. (2024); Cheng
et al. (2022). Remarkably, the impact of these masking strategies on generalization and robustness
remains largely unexplored, and no consensus exists on the optimal approach. Lastly, another po-
tential complication lies in occlusion handling. Most existing models assume an unobstructed view
of the mouth, whereas, in the real world, occlusions caused by hands, objects, or motion blur are fre-
quent. In practice, this means that the lack of explicit occlusion-handling mechanisms significantly
limits the applicability of current models.

To address these challenges, we propose KeySync, a two-stage lip synchronization framework that
leverages recent advances in facial animation to generate high-fidelity videos with lip movements
that are temporally consistent and aligned with the input audio. To minimize leakage from the
input video, we devise a masking strategy that adequately covers the lower face while retaining the
necessary contextual regions. Furthermore, we augment this mask by excluding facial occlusions
using a video segmentation model, resulting in a method that consistently handle occlusions without
uncanny visual hallucinations. Our primary contributions, illustrated in Figure 1, are:

• State-of-the-art lip synchronization: KeySync achieves state-of-the-art lip synchroniza-
tion performance at a resolution of (512× 512), surpassing the common (256× 256) stan-
dard. It outperforms all competing methods in terms of quality and lip movement accuracy
according to several objective metrics and a holistic user study. We observe particularly
noticeable improvements in the cross-synchronization setting (where there is a mismatch
between the input video and audio), enabling promising real-world applications such as
automated dubbing.

• A new strategy for occlusion handling: We propose an inference-time strategy for oc-
clusion handling by excluding occluding objects from our mask automatically using a pre-
trained video segmentation model. Through qualitative and quantitative analysis, we show
this method is consistently effective in handling occlusions.

• A novel leakage metric: We propose LipLeak, the first metric to quantify lip synchroniza-
tion leakage. It measures how much motion from the source video leaks into the output
by computing the ratio in lip activity between videos generated using speech versus silent
audio.

2
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2 RELATED WORKS

Audio-Driven Facial Animation Audio-driven facial animation methods aim to generate realistic
talking head videos with accurate lip-sync and preserved identity. Early GAN-based works Vou-
gioukas et al. (2019); Zhou et al. (2019); Chung et al. (2017) focused on lip-sync, while later ap-
proaches incorporated head pose modelling but often introduced artifacts and unnatural motion Chen
et al. (2020); Zhang et al. (2023c); Zhou et al. (2021).

Diffusion models Ho et al. (2020); Rombach et al. (2022) have since emerged as a superior alter-
native, demonstrating improved temporal consistency and video quality Xu et al. (2024b). Several
modern methods leverage video diffusion models for temporally consistent motion Stypulkowski
et al. (2024); Xu et al. (2024a). Others condition the generation process on facial landmarks Wei
et al. (2024) or 3D meshes Zhang et al. (2023a); however, these approaches often produce unreal-
istic facial motion. To improve identity reconstruction, recent works Chen et al. (2024b); Xu et al.
(2024a) leverages ReferenceNet Hu (2024), though at the cost of increased computational complex-
ity. However, these state-of-the-art methods, including recent keyframe-based techniques Bigata
et al. (2025), are designed for full-face generation. Our work addresses the distinct challenge of
lip-sync editing, which involves unique problems such as expression leakage from the source video.

Audio-Driven Lip Synchronization Lip synchronization methods focus on adjusting mouth
movements to match an audio input while preserving other facial attributes, such as head pose and
upper face expressions. A foundational work, Wav2Lip Prajwal et al. (2020), uses a Generative
Adversarial Network (GAN) to generate lip-synced frames, leveraging a pre-trained expert model
to ensure accuracy. To enhance realism and identity generalization, subsequent methods have in-
troduced StyleGAN2-based architectures Guan et al. (2023); Ki & Min (2023), spatial deformation
of feature maps Zhang et al. (2023d), and coarse-to-fine pyramid models Muaz et al. (2023). Other
approaches include LipFormer Wang et al. (2023b), which uses a codebook of face parts aligned
with the audio, and TalkLip Zhong et al. (2023), which employs contrastive learning to improve the
quality of the generated lip region. More recently, diffusion-based methods have been introduced
for lip synchronization Mukhopadhyay et al. (2024); Liu et al. (2024); Bigioi et al. (2024), marking
a shift in the state-of-the-art.

Despite these advances, several key challenges remain. The first is expression leakage, which is
particularly problematic in cross-driving scenarios where one person’s expression is transferred to
another. This leakage often stems from suboptimal masking strategies that fail to cover all visual
cues of speech. While some methods Cheng et al. (2022); Yaman et al. (2024) address this by
neutralizing the source face, this approach adds computational overhead and potential errors from
the synthetic input. To date, no consensus exists on an optimal masking strategy.

A second challenge is temporal consistency. Many methods Yu et al. (2024); Liu et al. (2024);
Zhong et al. (2024) operate on a frame-by-frame basis, leading to visible discontinuities. Models
that condition on past frames Bigioi et al. (2024) can suffer from cumulative error propagation, while
other techniques like perceptual models Li et al. (2024) or sequence discriminators Mukhopadhyay
et al. (2024) are often insufficient to guarantee coherence.

Finally, occlusion handling remains a largely unsolved problem. Most models assume an unob-
structed view of the mouth, failing in real-world settings with occlusions from hands, objects, or
motion blur. Notably, Peng et al. (2025) propose a mask-free method lip sync method, which suc-
ceeds in handling occlusions, but falls short in terms of lip synchronization.

3 METHOD

In this section, we describe our two-stage lip-sync approach, followed by our masking strategy in
Section 3.2 and a new method for handling occlusions in Section 3.5.

3.1 LATENT DIFFUSION

Diffusion models Ho et al. (2020); Dhariwal & Nichol (2021) progressively transform random noise
into structured data by iteratively removing noise through a learned denoising process. Latent diffu-
sion Rombach et al. (2022) applies this denoising operation in a compressed latent space rather than

3
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Figure 2: Overview of the KeySync framework. This two-stage latent diffusion model conditions
on audio (a) and an input video. (b) The keyframe stage uses an identity frame zid, while the
interpolation stage uses keyframes (zi, zi+1) and intermediate embeddings (zm). (c) Our inference-
time occlusion handling pipeline.

in the high-dimensional pixel space, improving computational efficiency. Furthemore, the EDM
framework Karras et al. (2022) defines the denoising operation of the denoiser Dθ as:

Dθ(x;Ã) = cskip(Ã)x+ cout(Ã)Fθ(cin(Ã)x; cnoise(Ã)), (1)

where Fθ is the trainable neural network and x the input. The terms cnoise(Ã), cout(Ã), cskip(Ã), and
cin(Ã) are scaling factors dependent on the noise level Ã. These scaling factors dynamically adjust
the magnitude and influence of noise at different stages of the denoising process, thereby improving
the network’s efficiency and robustness during diffusion.

3.2 LEAKAGE-PROOF MASKING

We frame the lip-sync task as a video inpainting problem Quan et al. (2024); Saharia et al. (2022) in
the latent space. The critical objective is to ensure the newly generated lip region does not reuse (or
“leak”) cues from the original mouth shape that contradict the new audio. Specifically, we create a
mask M by computing facial landmarks Bulat & Tzimiropoulos (2017) and isolating the lower facial
region, extending slightly above the nose to cover any upper cheek movements that could otherwise
convey information about lip movements, while still preserving overall facial identity. The mask
also extends to the lower edge of the image, preventing any leakage from jaw movements. We
find that this mask strikes an appropriate balance, avoiding the excessive context loss of full lower-
face masks Shen et al. (2023); Mukhopadhyay et al. (2024); Park et al. (2022) while preventing the
expression leakage common with tight mouth-only masks Zhang et al. (2023d); Liu et al. (2024);
Ki & Min (2023). While we group prior work into these two categories, it’s important to note that
each method implements its own masking strategy, and the exact details are not always shared. This
highlights the need for a standardized approach. We provide pseudo-code to reproduce our mask
and a deeper discussion on the topic in Appendix C.

3.3 TWO-STAGE VIDEO GENERATION

Our approach is illustrated in Figure 2. We follow the two-stage procedure of KeyFace Bigata et al.
(2025) and adapt it to generate lip-synced animations from a masked input video and a driving audio
clip. We feed the video frames {xt}

T
t=1 into our VAE encoder Blattmann et al. (2023) V to obtain

latent representations {zt}
T
t=1. We then add noise to obtain their corresponding noisy versions

{znt }
T
t=1. Then, using the predefined mask M, we define the input to the U-Net as:

zmt = M » znt + (1−M)» zt, (2)

where » denotes element-wise multiplication. We aim to generate video frames {x̂t}
T
t=1 where lip

movements are synchronized with a given audio track {at}
T
t=1. Unlike previous approaches that

either generate all frames end-to-end Ki & Min (2023); Wang et al. (2023a); Li et al. (2024) or
explicitly disentangle motion and appearance Liu et al. (2024); Zhong et al. (2024); Yu et al. (2024),
we ensure temporal continuity by separating the prediction of long-range motion (keyframes) from
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short-range motion (interpolation). This approach allows us to model the video’s temporal dynamics
directly without requiring auxiliary losses Mukhopadhyay et al. (2024), perceptual models Li et al.
(2024), or motion-specific frames Bigioi et al. (2024).

Method CMMD ³ TOPIQ ↑ VL ↑ FVD ³ LipScore ↑ Lipleak ³ Elo ↑

R
ec

o
n
st

ru
ct

io
n DiffDub Liu et al. (2024) 0.403 0.44 37.12 429.07 0.34 - 1014

IP LAP Zhong et al. (2023) 0.091 0.49 37.77 282.02 0.36 - 1007
Diff2Lip Mukhopadhyay et al. (2024) 0.225 0.48 35.84 555.08 0.49 - 886
TalkLip Wang et al. (2023a) 0.230 0.39 29.07 608.92 0.58 - 920
LatentSync Li et al. (2024) 0.319 0.41 45.23 343.90 0.52 - 1052
KeySync 0.064 0.58 70.32 191.21 0.46 - 1120

C
ro

ss
-s

y
n
c

DiffDub Liu et al. (2024) 0.408 0.44 37.05 420.66 0.34 0.56 947
IP LAP Zhong et al. (2023) 0.093 0.49 35.32 294.66 0.17 0.57 1031
Diff2Lip Mukhopadhyay et al. (2024) 0.231 0.48 33.97 601.68 0.16 0.42 878
TalkLip Wang et al. (2023a) 0.201 0.42 24.80 704.93 0.30 0.90 911
LatentSync Li et al. (2024) 0.325 0.41 45.95 361.57 0.14 0.64 1086
KeySync 0.070 0.58 73.04 206.32 0.48 0.22 1145

Table 1: Quantitative comparison with other works on reconstruction and cross-synchronization
performance. The best results are highlighted in bold, while the second-best results are underlined.
All metrics are described in Section 4.2.

Architecture. Both stages share the Stable Video Diffusion (SVD) Blattmann et al. (2023) archi-
tecture. The input to each stage consists of reference frames, the target audio, and the original video
frames. The reference frames serve to either condition the interpolation or preserve identity. We
use HuBERT Hsu et al. (2021) to extract audio embeddings. These condition the model’s U-Net via
cross-attention layers and timestep embeddings, enhancing video-audio alignment. Furthermore,
we employ a modified classifier-free guidance strategy that decouples audio and identity conditions,
which we found significantly boosts lip-synchronization accuracy (see Appendix H).

Keyframes. This stage generates a sparse set of keyframes, {x̂tk}
T
k=1

, where each keyframe is
spaced S frames apart (tk = k · S). These keyframes serve as anchor points, ensuring that each one
accurately reflects the phonetic content of the audio while preserving the subject’s identity. In this
stage, the reference input consists of an identity frame, randomly sampled from the source video
and repeated T times. To improve generalization, we augment these reference frames with noise Ho
et al. (2022) and standard image augmentations.

Interpolation. This stage interpolates between successive keyframes to achieve smooth, coherent
motion. The reference frames takes two consecutive keyframes in the latent space, ẑti and ẑti+1

,
and constructs the following input sequence to generate the intermediate frames:

s = {zti , zm, . . . , zm
︸ ︷︷ ︸

repeat S times

, zti+1
}, (3)

where zm is a learnable embedding.

3.4 LOSSES

We adopt the loss formulation from Karras et al. 2022:

Llatent = Ex,c,t,σ

[

wt ∥Fθ(z
m
t ; c, Ãt)− zt∥

2

2

]

, (4)

where wt is a weighting function, Fθ is the model, Ãt is the noise level, and c the conditioning
inputs (audio and reference frames). We find that this loss alone is sufficient to achieve good lip
synchronization and high-quality video generation. However, working solely in the compressed
latent space can make it difficult for the model to retain fine semantic details Zhang et al. (2023b),
which are critical for real-world lip synchronization tasks where preserving the nuances of the mouth
region is essential. To address this, we introduce an additional L2 loss in the RGB space. This
requires decoding the latent output using the VAE decoder V , resulting in:

Lrgb = Ex,c,t,σ

[

wt ∥V(Fθ(z
m
t ; c, Ãt))− xt∥

2

2

]

. (5)
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The final combined loss is then:

Ltotal = M · ¼(t)(Llatent(ẑ, z) + ¼2Lrgb(x̂, x)), (6)

where ¼(t) is a weighting factor dependent on the diffusion timestep t, as defined in EDM Karras
et al. (2022). Importantly, we ensure that only the generated region contributes to the loss computa-
tion by masking the region of interest.

3.5 HANDLING OCCLUSIONS

Occlusions are a critical yet often overlooked challenge in lip synchronization. Even advanced mod-
els can produce unnatural results if occlusions in the original video, such as a hand or microphone
covering the mouth, are not properly accounted for. A common issue arises when an occlusion
overlaps with the mouth region during masking, often causing the model to incorrectly generate the
mouth over the occluding object, resulting in unnatural boundary artifacts.

To address this, we propose an inference-time solution to handle any occlusion without retraining.
Explicitly training a model for occlusion handling is impractical due to the vast range of possible
occlusions and their inherent misalignment with speech, making them hard for the model to learn.
Instead, we introduce a preprocessing pipeline that first segments the occluding object using a state-
of-the-art zero-shot video segmentation model Ravi et al. (2024), generating a mask Mobj of the
occlusion. We then refine the original mask M by excluding the occlusion:

M ′ = M ∩ ¬Mobj , (7)

where ∩ denotes intersection and ¬ denotes logical negation. Since our model supports free-form
masks, as in RePaint Lugmayr et al. (2022), it can seamlessly reconstruct the mouth region while
preserving the occluding object, ensuring visually coherence.

4 EXPERIMENTS
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Figure 3: Qualitative comparison. “Target lips”
(top row) shows the ground truth lip movements
for the input audio.
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Figure 4: Qualitative leakage comparison. We
condition the models on silent audio and non-
silent video (first row).

6



324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

Under review as a conference paper at ICLR 2026

4.1 DATASETS

We train on a combination of HDTF Zhang et al. (2021), CelebV-HQ Zhu et al. (2022), and CelebV-
Text Yu et al. (2023). To address artifacts in CelebV-HQ and CelebV-Text (e.g., low-quality, poor
framing), we developed a data curation pipeline, which is detailed in Appendix A.

For evaluation, we focus on the cross-sync task, the primary use case for lip-sync models, where
the input audio comes from a different video than the one being generated. We randomly select 100
test videos from CelebV-Text, CelebV-HQ, and HDTF and swap their audio tracks. Additionally, to
ensure consistency with prior works, we also report reconstruction results for the same 100 videos.

4.2 EVALUATION METRICS

We evaluate our method using a set of no-reference metrics. For image quality, we measure the
variance of Laplacian (VL) Pech-Pacheco et al. (2000) to assess blurriness, along with CMMD Jaya-
sumana et al. (2024), an improved version of FID, and a facial-domain TOPIQ Chen et al. (2024a);
Chen & Mo (2022). For video quality, we use FVD Unterthiner et al. (2019). For lip synchroniza-
tion, we rely on LipScore Bigata et al. (2025), which correlates better with human perception than
SyncNet LSE-C and LSE-D Chung & Zisserman (2016). We also introduce LipLeak, detailed be-
low, to quantify expression leakage. For completeness, SyncNet results are included in Appendix G.

LipLeak We introduce LipLeak to quantify expression leakage from a source video. We drive a
model with both speech and silent audio; since silent audio provides a zero-signal ground truth, any
resulting mouth motion is considered a leakage artifact. LipLeak is the ratio of the Mouth Aspect
Ratio (MAR) Kannan et al. (2023) standard deviation (Ã) between the silent and speech-driven
outputs:

LipLeak =
Ã(MARsilence)

Ã(MARspeech) + ϵ
, (8)

where ϵ ensures numerical stability. A low score is desirable, indicating expressive movement during
speech and stability during silence. Conversely, a high score signals a problem, diagnosable by
inspecting the components: a low Ã(MARspeech) suggests the model fails to generate expressive
motion for speech, while a high Ã(MARsilence) points to instability or leakage, which manifests as
unwanted mouth movement during silent periods. See Appendix D for further details.

4.3 USER STUDY

While the metrics above offer an objective evaluation, they do not always align with human per-
ception. To address this, we conduct a user study where participants compare randomly selected
video pairs based on lip synchronization, temporal coherence, and visual quality. We then rank the
performance of each model using the Elo rating system Elo (1978), and apply bootstrapping Chiang
et al. (2024) for robustness. Further details are provided in Appendix F.

5 RESULTS

This section presents a comprehensive evaluation of our model’s performance against baselines,
along with ablations to assess the impact of key components. Additional results are in Appendix G.

5.1 COMPARISON WITH OTHER WORKS

Quantitative Analysis. We evaluate our method alongside five competing approaches in Table 1.
The evaluation is conducted in two settings: reconstruction, where videos are generated using the
same audio as in the original video, and cross-sync, where the audio is taken from a different video.
The latter is particularly relevant as it better reflects real-world applications such as automated dub-
bing, where the driving audio is typically not aligned with the input video.

As shown in Table 1, KeySync achieves superior visual quality and temporal consistency (VL, FVD)
in both tasks. While most methods’ lip-sync quality (LipScore) degrades in the more challenging
cross-sync setting, our performance remains stable. Some baselines achieve a high LipScore in the
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reconstruction task, but this is an artifact of expression leakage, confirmed by their high LipLeak
scores. For instance, LipLeak reveals that DiffDub’s high cross-sync LipScore stems from random,
unsynchronized mouth movements. Crucially, KeySync also obtains the highest Elo rating in our
user study, confirming its state-of-the-art performance in human perception.

Qualitative Analysis. Figure 3 shows a qualitative cross-sync comparison. KeySync more accu-
rately follows the lip movements corresponding to the input audio. While LatentSync and Diff2Lip
also appear to align somewhat with the target lip movements, they fail to generate certain vocal-
izations correctly and exhibit visual artifacts (highlighted on the figure via red squares and arrows,
respectively), limiting their practical usability. Additionally, most methods produce insufficient
mouth movement. This can be attributed to expression leakage, where conflicting signals from the
source video and new audio hinder the generation of a coherent mouth region.

LatentSync DiffDub IP_LAP TalkLip Diff2Lip Ours
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Figure 5: We show the mean standard deviation
of MAR for silent and speech audios.

Ground truth Ours Ours nose-level Full lower-face Mouth only

Figure 6: Examples of different masking tech-
niques.

Leakage. As discussed in Section 4.2, we compute LipLeak by generating a video using a silent
audio input. Since the audio contains no speech, the mouth should exhibit minimal movement.
However, in practice, we observe this is not always the case, as expressions from the input video
can leak into the generated output. Figure 4 shows qualitative examples where all methods, except
ours and Diff2Lip, exhibit several frames where the mouth is open (highlighted by red squares) due
to expression leakage. While Diff2Lip manages to keep the mouth closed, it introduces significant
blending artifacts, highlighting the model’s struggle to suppress the original video’s motion. In
Figure 5, we visualize the standard deviation of the Mouth Aspect Ratio (MAR) for both silent and
speech audios. The results show that baselines either produce unwanted motion during silence (e.g.,
DiffDub, LatentSync), suppressed motion during speech (e.g., IP LAP), or similar motion in both
cases (e.g., TalkLip). In contrast, KeySync exhibits the desired behavior: high motion variability for
speech and minimal motion for silence, confirming its robustness against leakage.
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Figure 7: We present occlusion qualitative results on the left and quantitative results on the right.

Occlusion Handling. Figure 7 demonstrates our method’s effectiveness. Without occlusion han-
dling, significant artifacts appear around the hand (left), a finding confirmed by spikes in the mean
absolute error plot (right). Our proposed method eliminates these artifacts by preserving the occlud-
ing object while maintaining correct lip synchronization, resulting in a much lower reconstruction
error. We assess this technique on baseline models in Appendix E.
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5.2 ABLATION STUDIES

Audio backbone FVD ↓ LipScore ↑ Lipleak ↓

Whisper Radford et al. (2023) 207.41 0.47 0.25
Wav2vec2 Baevski et al. (2020) 201.13 0.45 0.26
WavLM Chen et al. (2022) 218.08 0.48 0.23
HuBERT Hsu et al. (2021) 206.32 0.48 0.22

Table 2: Audio encoder ablation in the cross-sync setting.

Audio Encoder. We also investigate the impact of different audio encoders on the generated
videos, as shown in Table 2. We see that Wav2vec2 Baevski et al. (2020) produces marginally
higher video quality, as indicated by its lower FVD score. However, this comes at the expense of lip
synchronization, as reflected in its lower LipScore. With WavLM Chen et al. (2022), we achieve a
LipScore comparable to HuBERT Hsu et al. (2021), but at the cost of worse video quality. In con-
trast, HuBERT maintains a strong LipScore and achieves the lowest LipLeak, indicating effective
mitigation of expression leakage. Therefore, we select HuBERT as our default audio encoder.

Keyframe generator CMMD ↓ FVD ↓ LipScore ↑

Only (one-stage) 0.085 395.45 0.32
Image-based 0.142 618.27 0.39
Sequence-based 0.070 206.32 0.48

Table 3: Keyframe generator ablation in cross-
sync setting.

Mask CMMD ↓ FVD ↓ LipScore ↑ Lipleak ↓

Mouth-only 0.077 200.71 0.23 0.52
Full lower-face 0.743 219.96 0.35 0.38
Nose-level 0.071 199.39 0.34 0.48
Ours 0.070 206.32 0.48 0.22

Table 4: Mask ablation in cross-sync setting.

Keyframe generator. We evaluate our keyframe/interpolation approach against two alternative
designs. The first is a one-stage model that generates frames sequentially without an interpolation
model; longer videos are formed by concatenating the generated clips with a one-frame overlap.
The second retains the two-stage design but generates keyframes individually with an image-based
model, skipping the temporal modelling of our approach. We find that the one-stage model, while
achieving reasonable visual quality (CMMD), suffers a sharp decline in FVD and LipScore, under-
scoring the value of our interpolation strategy for generating smooth, well-synchronized motion.
Likewise, generating keyframes individually without temporal context degrades long-range coher-
ence, leading to a significant drop across all metrics.

Mask. Finally, we investigate the impact of different masking techniques (illustrated in Figure 6)
in Table 4. A mouth-only mask improves video quality by minimizing obstruction but causes severe
leakage (low LipScore, high LipLeak), as the model tracks the mask’s motion rather than syncing
with the audio. Conversely, masking the entire lower face effectively reduces leakage but severely
harms image and video quality, as the model must reconstruct unrelated background elements. Our
proposed box-style mask offers a balanced trade-off, achieving the best overall performance. We
found that extending the mask to cover the cheeks is crucial for maximizing LipScore, as this re-
gion conveys important cues about mouth movements that can otherwise cause leakage. We further
discuss the implications of the baselines’ masking strategies on leakage in Appendix C.

6 CONCLUSION

In this paper, we propose KeySync, a state-of-the-art lip synchronization approach based on a
two-stage video diffusion model. We show that, unlike other methods, KeySync generates high-
resolution videos which are temporally coherent and closely aligned with the driving audios. Fur-
thermore, by applying a new masking strategy, we show that our model successfully minimizes
expression leakage from the input video, while also being robust to facial occlusions that may occur
in the wild. We hope that these improvements will enable the use of lip synchronization models in
applications such as automated dubbing, which can help eliminate language barriers at scale.
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A DATASETS

A.1 CURATION AND PREPROCESSING

When working with in-the-wild datasets such as CelebV-HQ Zhu et al. (2022) and CelebV-Text Yu
et al. (2023), we observed that a significant portion of the data is of suboptimal quality. Common
issues include visible hands, camera movement, editing artifacts, and occlusions. Additionally, some
samples exhibit lower resolution than advertised. Examples of these issues are illustrated in Figure 8.
During training, we found that such videos negatively impacted model performance because their
visual content correlates poorly with the corresponding audio. To address these challenges, we
developed a data curation pipeline comprising the following steps:

• Extract videos at 25 FPS and single-channel audio at 16 kHz.

• Discard low-quality videos based on HyperIQA Su et al. (2020) scores below 0.4. Each
video’s score is computed as the average of nine evaluations: selecting the first, middle,
and last frames, each evaluated on three random crops.

• Detect and segment scenes using PySceneDetect1.

• Remove clips without active speakers using Light-ASD Liao et al. (2023) indicated by the
score below 0.75.

Figure 8: Examples of problematic videos in CelebV-HQ and CelebV-Text.

A.2 DATA STATISTICS

Table 5 describes the training/evaluation data used in this paper, specifying the number of speakers,
videos, average video duration, and total duration for each dataset. Additionally, to illustrate the
impact of our data curation pipeline, we present Table 6, which details the statistics of the datasets
before curation. Overall, we discard roughly 75 % of the original videos. Please note that CelebV-
HQ and CelebV-Text videos were split into shorter chunks during pre-processing, hence the higher
video count in Table 5.

Dataset # Speakers # Videos Duration

Avg. (sec.) Total (hrs.)

HDTF 264 318 139.08 12
CelebV-HQ 3, 668 12, 000 4.00 13
CelebV-Text 9, 109 75, 307 6.38 130

Table 5: Data statistics after curation and pre-processing.

B IMPLEMENTATION DETAILS

Code The code and model weights will be released upon acceptance.

1https://github.com/Breakthrough/PySceneDetect
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Dataset # Videos Duration

Avg. (sec.) Total (hrs.)

HDTF 318 139.08 12
CelebV-HQ 35, 666 6.86 68
CelebV-Text 70, 000 14.35 279

Table 6: Data statistics before curation.

Hyperparameters & Training Configuration We summarize all the hyperparameters of our
pipeline in Table 7. The weights of the U-Net and VAE are initialized from SVD Blattmann et al.
(2023). The interpolation model undergoes more training steps because its task differs more signif-
icantly from the original task of SVD. The final hyperparameters were selected through extensive
experimentation to find the optimal trade-off between lip-synchronization accuracy (LipScore), vi-
sual quality (FVD), and expression leakage (LipLeak).

To optimize memory efficiency, we apply Lrgb to a randomly selected frame from the sequence,
which we found to be sufficient for maintaining perceptual quality.

Hyperparameter Final Value Range Tested

Keyframe seq. length (T ) 14 Fixed
Keyframe spacing (S) 12 Fixed
Interpolation seq. length (S) 12 Fixed
Keyframe training steps 60,000 N/A

LipLeak ϵ 10
−5 Fixed

Interpolation training steps 120,000 N/A
Training batch size 32 {16, 32}
Optimizer AdamW Fixed

Learning rate 10
−5 {10−4, 10−5}

Warmup steps 1,000 {1,000, 2,000}
Inference steps 10 Fixed
GPU used A100 N/A
Video frame rate 25 Fixed
Audio sample rate 16,000 Fixed
Resolution 512× 512 Fixed
Pixel loss weighting (¼2) 1 {0, 0.5, 1.0}
Audio cond. drop rate 20% {10%, 20%, 30%}
Identity cond. drop rate 10% {5%, 10%, 20%}

Table 7: Final model hyperparameters and the ranges tested during development. ”Fixed” denotes
values set by the model architecture or data standards, while ”N/A” denotes values not typically
tuned.

Evaluation The results presented in Table 1 were generated from a single run due to the compu-
tational cost of executing the full suite of methods.

Practical Deployment A limitation of our model is its inference speed, which is not yet real-time.
Nevertheless, our two-stage approach is faster than other diffusion-based methods (e.g., DiffDub,
Diff2Lip, LatentSync) and competitive with some GANs, as shown in Table 8. This advantage stems
from our framework’s support for batched inference, a feature absent in autoregressive models.

Future work could focus on acceleration by adapting techniques from recent literature. For example,
Consistency Models Song et al. (2023) can enable single-step generation by learning to map any
point on a diffusion trajectory back to the origin. Other promising approaches, such as adversarial
distillation Sauer et al. (2024), can also reduce a trained diffusion model to a single-step generator
while maintaining high output quality.
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Diffusion-based Methods

Model VideoReTalking DiffDub Diff2Lip LatentSync KeySync
FPS 0.17 0.69 1.56 2.50 3.84

GAN-based Methods

Model IP LAP Wav2Lip TalkLip
FPS 4.31 16.66 92.00

Table 8: Inference speed comparison in Frames Per Second (FPS). Higher is better.

C MASKING

C.1 MASK DEFINITION

To create the mask defined in Section 3.2, we first compute 68 facial landmarks in 2D Bulat &
Tzimiropoulos (2017) and then follow the procedure in Algorithm 1.

Algorithm 1 Create mask from landmarks

Require: L ∈ R
T×K×2 ▷ landmarks for T frames

1: (H,W ) ▷ image height and width
2: n (nose index, default 28)

Ensure: M ∈ {0, 1}T×H×W ▷ binary masks

3: M ← 0T×H×W ▷ initialise masks
4: for t← 0 to T − 1 do
5: P ← Lt ▷ landmarks of frame t
6: hc ← Pn,y ▷ y-coord. of the nose
7: l← argmink Pk,x ▷ left-most landmark index
8: r ← argmaxk Pk,x ▷ right-most landmark index
9: p1 ← (Pl,x, hc)

10: p2 ← (Pl,x, H)
11: p3 ← (Pr,x, H)
12: p4 ← (Pr,x, hc)
13: FILLPOLYGON(Mt, [p1, p2, p3, p4], 1)

14: return M

C.2 ALTERNATIVE MASKING

In Figure 9, we illustrate the different masking strategies for the methods analysed in Section 5. We
observe that while the masks of IP LAP and Diff2Lip are closest to our own, their performance
is affected by a tight facial crop applied before masking. This crop, which typically extends to the
jawline, can leak the state of the mouth and excludes other speech-related areas such as the throat,
which is reflected in their leakage scores in Table 1.

TalkLip masks the lower part of the image but fails to cover the cheek region, which contains im-
portant cues about the mouth’s state, resulting in a high LipLeak score. The mask shape used by
DiffDub is similar to ours, but because it does not extend to the bottom of the frame, the model
can infer the mouth shape from the mask’s position relative to the chin. Similarly, LatentSync uses
a fixed mask and preprocesses the video so the mouth is always contained within it; however, this
allows the model to infer mouth movements based on the position of the head rather than the audio
content.

18



972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

Under review as a conference paper at ICLR 2026

IP_LAP TalkLip DiffDub LatentSync Diff2Lip

Figure 9: Illustration of the masking strategy of baseline methods

D LEAKAGE METRIC

D.1 MAR CALCULATION

We introduce LipLeak as part of our evaluation pipeline for measuring expression leakage. The first
step in computing LipLeak is to calculate the Mouth Aspect Ratio (MAR) from facial landmarks, as
illustrated in Figure 10. This ratio quantifies the vertical openness of the mouth relative to its width,
increasing as the mouth opens wider. Because LipLeak is based on a ratio, it is a scale-invariant
measure, allowing for consistent evaluation across different video resolutions and face sizes.

D.2 ALTERNATIVE METRIC

While LipLeak is a reliable metric, it requires running the model twice (once with speech audio and
once with silent audio). To create a simpler metric, we propose LipLeaklite, which only requires a
single run with silent audio. LipLeaklite measures the proportion of time the mouth is open when the
audio is silent. We found that models opening their mouths during silent periods appear unnatural to
users, making this a critical failure mode for real-world scenarios. To determine whether the mouth
is open, we apply a threshold to the MAR; based on visual inspection, we selected a threshold of
0.25, as any MAR below this value consistently represents a closed mouth.

60
616263

64
656667

Open Mouth
MAR = (D + E + F) / (2 × G) = 0.594

D
E
F
G

60 616263 64656667

Closed Mouth
MAR = (D + E + F) / (2 × G) = 0.007

D
E
F
G

Figure 10: Mouth Aspect Ratio measurement example.

To validate LipLeaklite, we first assessed its sensitivity to this threshold. As shown in Figure 11,
LipLeaklite decreases smoothly and predictably as the threshold increases. This stable behaviour is
essential for a reliable metric, as it prevents erratic jumps that could compromise quantitative evalu-
ations. Finally, to ensure LipLeaklite effectively captures the same underlying issue as LipLeak, we
computed the correlation between the two metrics in Figure 12. We observe a significant (p < 0.05)

19



1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Under review as a conference paper at ICLR 2026

0.1 0.2 0.3 0.4 0.5
MAR Threshold

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Lip

Le
ak

Threshold = 0.25

Figure 11: LipLeak as a function of the MAR threshold.

strong correlation between LipLeaklite and LipLeak, confirming that LipLeaklite is an efficient and
reliable proxy for quantifying model leakage.

We note that a model could trivially achieve a low LipLeak score by producing minimal mouth
motion for all inputs; however, such behavior would be heavily penalized by our primary sync
metric, LipScore, which measures the positive correlation between audio and visual speech cues.

E OCCLUSION HANDLING

Handling occlusions via an external, state-of-the-art segmentation model is a deliberate design
choice that provides significant flexibility. This modular approach allows us to benefit from rapid ad-
vancements in video segmentation without architectural changes or retraining. Any improvement in
segmentation technology can be directly integrated, immediately boosting the system’s robustness.
The trade-off is a dependency on this upstream component, as segmentation failures can propagate
into the final result.

Figure 13 illustrates the application of our occlusion handling technique to several existing methods:

• DiffDub Liu et al. (2024) and Diff2Lip Mukhopadhyay et al. (2024): Our approach
works out of the box, seamlessly handling occlusions without requiring modifications.

• LatentSync Li et al. (2024): Since this method employs a fixed mask, the model has never
been exposed to variations in masking. As a result, it struggles to adapt to the new mask
patterns introduced by our occlusion-handling technique, highlighting a key drawback of
using a rigid masking approach.

• IP LAP Zhong et al. (2023): This model generates the mouth region separately through
an audio-to-landmark module. Consequently, the occlusion mask has no direct effect, and
the mouth is generated on top of the occlusion.
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Figure 12: Correlation between Mouth Stability Metrics.

• TalkLip Wang et al. (2023a): At first glance, TalkLip appears to function without occlu-
sion handling. However, it achieves this by concatenating frames from the original video
to generate new frames. This shortcut enables occlusion handling but comes at the cost of
significant expression leakage, as evidenced by its very high LipLeak score in Table 1.
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Figure 13: Effectiveness of Occlusion Handling Across Different Methods.
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F USER STUDY RESULTS

To ensure that the objective metrics presented in Table 1 align with human perception, we conduct
a user study to evaluate model performance in terms of lip synchronization, overall coherence, and
image quality. Participants are presented with pairs of videos and asked to select the one they
preferred based on these criteria. The video pairs are randomly sampled from the pool of models
listed in Table 1 to ensure a fair and unbiased comparison. A total of 1, 000 pairwise comparisons
were collected, providing a robust dataset for evaluating human preferences. Figure 14 shows a
screenshot of the user study interface, illustrating the evaluation setup.

Figure 14: User study interface. Participants were shown side-by-side videos and asked to select the
preferred one based on lip synchronization, coherence, and quality.

Elo Ratings To assess the relative performance of different models in our evaluation framework,
we employ the Elo rating system Elo (1978), a widely used method for ranking competitors based on
pairwise comparisons. The Elo rating system assigns scores to models based on their performance
in direct comparisons, updating their ratings dynamically as more results are collected.

We evaluate Elo ratings in two distinct settings:

• Reconstruction setting (Figure 15): In this scenario, we compare videos are generated
using the same audio as in the original video.

• Cross-Synchronization Setting (Figure 16): In this scenario, we compare videos gener-
ated using a different audio from the original video.

In both cases, our model consistently outperforms competing methods, achieving higher Elo rat-
ings. This demonstrates its superior ability to generate high-quality, accurately synchronised lip
movements, both in the reconstruction and cross-synchronization tasks.

Elo Rating Distributions To better understand the distribution and variance of model rankings,
we analyse the overall Elo ratings across all evaluated models. Figure 17 presents a histogram of
Elo scores, illustrating how models are ranked relative to each other. A well-separated distribu-
tion suggests clear performance differences between models, whereas overlapping scores indicate
models with similar performance levels. Our model achieves the highest Elo ratings, forming a well-
defined peak that highlights its superior performance. In contrast, baseline models display varying
degrees of separation, with some exhibiting significant overlap, suggesting closer competition and
comparable performance in certain cases.

Win Rates Beyond Elo ratings, we compute win rates to assess how often each model outperforms
others in pairwise comparisons. The win rate matrix in Figure 18 provides a detailed overview
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Figure 15: Elo ratings in the reconstruction setting. Higher ratings indicate better performance in
generating videos with original audio as input.
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Figure 16: Elo ratings in the cross-sync setting. Higher ratings indicate better performance in gen-
erating videos with different audio from input.

of direct matchups, where each cell represents the percentage of times one model wins against
another. This analysis helps identify dominant models and potential inconsistencies in ranking.
Our model consistently outperforms competing approaches, achieving a minimum win rate of 69 %
and a maximum of 94 %. These results indicate a strong and reliable performance advantage over
alternative methods.
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Figure 17: Distribution of Elo ratings across all evaluated models. This histogram illustrates the
spread of Elo scores, highlighting performance gaps or clustering amongst different models.
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Figure 18: Win rate matrix for pairwise model comparisons. Each cell represents the proportion of
matchups where one model outperforms another, offering insight into head-to-head performance.
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G ADDITIONAL RESULTS

G.1 ADDITIONAL BASELINES

In Section 5, we compare our method with five strong baselines. We also ran additional experiments
against Wav2Lip Prajwal et al. (2020), due to its position as a foundational lip synchronization
model, and VideoReTalking Cheng et al. (2022), as it also attempts to mitigate expression leakage.
We present the results in Table 9. We observe that while VideoReTalking reduces leakage more
effectively than Wav2Lip, its performance on cross-driving synchronization is still poor.

Method CMMD ↓ TOPIQ ↑ VL ↑ FVD ↓ LipScore ↑ LipLeak ↓

Reconstruction

VideoReTalking Cheng et al. (2022) 0.263 0.45 29.28 536.12 0.45 -
Wav2Lip Prajwal et al. (2020) 0.201 0.44 27.59 506.41 0.48 -
KeySync 0.064 0.58 70.32 191.21 0.46 -

Cross-synchronization

VideoReTalking Cheng et al. (2022) 0.329 0.38 13.03 507.85 0.26 0.42
Wav2Lip Prajwal et al. (2020) 0.205 0.45 27.70 562.63 0.22 0.71
KeySync 0.070 0.58 73.04 206.32 0.48 0.22

Table 9: Additional quantitative comparison.

G.2 ADDITIONAL SYNCHRONISATION METRICS

While not included in our main comparison (Table 1) due to their known flaws, we present additional
results using the Lip-Sync Error Confidence (LSE-C) and Lip-Sync Error Distance (LSE-D) metrics
from SyncNet Chung & Zisserman (2016). Despite their limitations, these metrics remain widely
used. The results for all baselines are shown in Table 10.

Metric DiffDub IP LAP Diff2Lip TalkLip LatentSync VideoReTalking Wav2Lip KeySync

LSE-D ↓ 14.59 9.78 7.44 9.52 7.66 9.47 8.04 7.31
LSE-C ↑ 0.67 4.17 7.10 4.85 7.35 5.79 6.55 7.88

Table 10: Additional quantitative metrics using SyncNet.

H ADDITIONAL ABLATIONS

Guidance Guidance plays a crucial role in the performance of diffusion models Dhariwal &
Nichol (2021); Ho et al. (2020). In our case, we use a modified version of Classifier-Free Guid-
ance (CFG) Ho (2022), which applies separate scaling factors to the audio and identity conditions.
Specifically, our guidance function is defined as follows:

z = z∅ + wid · (zid − z∅) + waud · (zid & aud − zid), (9)

where:

• waud and wid are the guidance scales for audio and identity, respectively.

• z∅ represents the model output when all conditions are set to 0.

• zid is the output when only the identity condition is applied.

• zid & aud is the output when both audio and identity conditions are applied.

By separating the audio and identity guidance conditions, we enable more control over the generated
videos, ultimately leading to improved performance. Experimentally, we found that setting waud = 5
and wid = 2 yields the best results. This configuration achieves a 29.73 % improvement in LipScore,
significantly enhancing lip synchronization accuracy. While this comes at a 14.75 % increase in
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CMMD and a minor 2.80 % increase in FVD, the overall perceptual quality remains strong, making
this trade-off highly beneficial for generating realistic and synchronized videos. We summarize these
results in Table 11, demonstrating the effectiveness of our approach compared to standard CFG.

Guidance CMMD ↓ FVD ↓ LipScore ↑

CFG 0.061 200.71 0.37
Ours (waud = 5, wid = 2) 0.070 206.32 0.48

Table 11: Guidance ablation in the cross-sync setting.

Losses We present an ablation on the impact of applying a pixel loss in addition to the diffusion
loss in Table 12. Our findings indicate that adding a L2 loss in pixel space leads to a slight improve-
ment in image and video quality while maintaining the same level of lip synchronization. However,
contrary to the findings in Bigata et al. (2025), we did not find that adding an additional LPIPS pixel
loss benefits the model. Instead, it causes the mouth region to deviate too much from the rest of the
image, as illustrated in Figure 19. This discrepancy arises because facial animation is a different
task from lip synchronization, with the latter being more closely related to an inpainting task rather
than full facial reconstruction.

Loss CMMD ↓ FVD ↓ LipScore ↑

No pixel loss 0.075 215.71 0.48
L2 0.070 206.32 0.48

Table 12: Pixel loss ablation in the cross-sync setting.

Figure 19: Examples of inconsistent mouth regions obtained by training with an additional LPIPS
pixel loss.

I LIMITATIONS

To assess the limitations of our approach, we construct a small dataset consisting of seven identities,
where each individual recites the same two sentences at five different angles: 0°, 20°, 45°, 70°,
and 90°, as illustrated in Figure 21. This setup allows us to systematically evaluate how the model
performs under varying viewpoint conditions.

We present the results of TOPIQ Chen et al. (2024a) with respect to the angle in Figure 20. We use
TOPIQ because it is a no-reference image quality metric that does not require a large ground-truth
dataset for direct comparison, making it more practical than FID or FVD, which rely on reference
distributions that may be skewed or incomplete across extreme angles. Additionally, unlike variance
of Laplacian (VL), which only captures blurriness, TOPIQ provides a more comprehensive measure
of perceptual quality degradation, including semantic distortions that become more pronounced at
oblique head poses. The results indicate that all approaches exhibit performance degradation as the
angle increases. This is a key limitation of our model, which is also observed across baseline meth-
ods. This decline in performance can be attributed to the inherent biases in our training datasets,
which predominantly contain frontal faces. As a result, the model struggles to infer occluded or
unseen facial regions when presented with extreme head poses. One potential solution is to provide
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identity frames from multiple viewpoints during training, allowing the model to learn a more com-
prehensive facial representation. However, this would require extesnsive new data collection and
further investigation, and is therefore left for future work.
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Figure 20: Impact of head pose on model performance.

Figure 21: Examples of generated videos at different angles.

J ADDITIONAL QUALITATIVE RESULTS

We present additional qualitative results in Figure 22. As reported in the main paper, our model
demonstrates better alignment with the target lips while also achieving higher image quality com-
pared to other methods. Additionally, we evaluate our model’s ability to handle non-human faces in
Figure 23. We find that KeySync produces plausible lip-synced animations, while competing mod-
els fail to accurately reconstruct mouth details, particularly in the first two identities, as they deviate
significantly from typical human facial structures. This highlights our model’s superior adaptability
in handling out-of-distribution (OOD) scenarios.

To better assess the effectiveness of our approach, we provide a series of videos as part of the
supplementary material. These videos are categorized as follows:

• Side-by-side comparisons: Showcasing our method against other approaches in both re-
construction and cross-sync settings.

• Silent videos: Highlighting expression leakage within the same video, demonstrating how
different models handle silent audio.
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Figure 22: Additional qualitative comparison.
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Figure 23: Qualitative comparison on non-human ids.
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• Occlusion cases: Also included in the same video, presenting situations where parts of the
face are obstructed, illustrating the robustness of our approach.

• Multilingual examples: Evaluating the model’s performance across different languages to
assess generalization.

• Out-of-distribution examples: Testing our model on non-human identities, demonstrating
its adaptability to non-human faces.

• Examples at different angles: Analyzing the model’s performance under varying head
poses, highlighting its ability to handle different viewpoints as well as its limitations.

• Additional cross-sync videos: Providing a more extensive evaluation of our model’s cross-
sync capabilities across various conditions.

These supplementary videos offer a comprehensive visual demonstration of our method’s perfor-
mance across a wide range of conditions.

K ETHICAL CONSIDERATIONS AND SOCIAL IMPACT

User study Our study includes a user evaluation where participants compare video outputs for
lip synchronization, image quality, and coherence. All participants provided informed consent, and
their responses were collected anonymously. No personally identifiable information or sensitive data
were gathered, ensuring compliance with ethical research guidelines.

Model Lip-sync generation has numerous beneficial applications, including enhanced video dub-
bing, accessibility tools for hearing-impaired individuals, and improvements in digital content cre-
ation. However, we acknowledge that such technology can also be misused, particularly in the
context of deepfake generation, which poses risks related to misinformation, identity fraud, and
unethical content manipulation. To mitigate potential misuse, we emphasize that our approach is
developed with a focus on fair use cases and is intended strictly for research purposes.

Datasets We rely on publicly available datasets that were originally collected and published by
external researchers. We adhere to the terms and ethical guidelines set by the dataset creators.

L USE OF LARGE LANGUAGE MODELS

During the preparation of this manuscript, we utilized a Large Language Model (LLM), specifically
Gemini, to assist with language editing. The LLM’s role was strictly limited to proofreading for
grammatical errors and improving the clarity and conciseness of sentences. All content, including
the research ideas, methodology, results, and conclusions, was conceived and written by the human
authors. The authors reviewed and edited all LLM-generated suggestions and take full responsibility
for the final content of this paper.
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