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Abstract

With the advantages of low latency, low power consumption, and high parallelism,
optical neural networks (ONN) offer a promising solution for time-sensitive and
resource-limited artificial intelligence applications. However, the performance of
the ONN model is often diminished by the gap between the ideal simulated system
and the actual physical system. To bridge the gap, this work conducts extensive
experiments to investigate systematic errors in the optical physical system within
the context of image classification tasks. Through our investigation, two quantifi-
able errors—light source instability and exposure time mismatches—significantly
impact the prediction performance of ONN. To address these systematic errors,
a physics-constrained ONN learning framework is constructed, including a well-
designed loss function to mitigate the effect of light fluctuations, a CCD adjustment
strategy to alleviate the effects of exposure time mismatches and a ’physics-prior-
based’ error compensation network to manage other systematic errors, ensuring
consistent light intensity across experimental results and simulations. In our ex-
periments, the proposed method achieved a test classification accuracy of 96.5%
on the MNIST dataset, a substantial improvement over the 61.6% achieved with
the original ONN. For the more challenging QuickDraw16 and Fashion MNIST
datasets, experimental accuracy improved from 63.0% to 85.7% and from 56.2%
to 77.5%, respectively. Moreover, the comparison results further demonstrate the
effectiveness of the proposed physics-constrained ONN learning framework over
state-of-the-art ONN approaches. This lays the groundwork for more robust and
precise optical computing applications.

1 Introduction

In recent years, optical neural networks (ONNs) have garnered significant research attention for infer-
ence tasks such as object detection and object classification[1, 2, 3, 4], attributed to their advantages
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of low energy consumption, high transmission speed, and large information capacity[5, 6, 7]. To
establish ONNs, they are typically simulated as Deep Neural Networks(DNNs)[8, 9, 10] on electronic
devices and trained using the backpropagation algorithm[11, 12, 13], after which the trained model
parameters are deployed to physical ONN systems (as shown in Fig 1(a)). Theoretically, ONNs can
maintain prediction performance comparable to that of their simulated electronic counterparts. How-
ever, during experimental implementation, errors are inevitably introduced, unexpectedly reducing
their prediction accuracy[14, 15].

Some measurable errors in the optical system, such as light field perturbations caused by the scattering
of impurity particles in the environment and optical distortions due to lens aberrations, can be
mitigated by explicitly modeling them and integrating these error models into electronic training
process[16, 17] (as shown in Fig 1(b)), while other unmeasurable errors, such as ambient light
effects, laser instability, and crosstalk between light fields, are difficult to correct through physical
modeling, posing significant challenges in compensating for discrepancies between simulations and
experiments[18, 19, 20].
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Figure 1: (a) Experimental schematic diagram of the ONN and corresponding simulated DNN on
the electronic device. (b) Error compensation method based on the physical error model (c) Hybrid
training method with pure digital DNN with error compensation functionality (d) Error compensation
method with an ideal physical model and a digital error compensation DNN

The introduction of “hardware-in-the-loop” training techniques[21, 18, 22, 23] has opened up new
possibilities for tackling the aforementioned challenges. Unlike in silico training, this hybrid training
method incorporates the actual ONN physical response in each update loop, to mitigate the impact
of system errors[24], as shown in Fig 1(c). This approach allows the simulated electronic neural
network to capture the physical dynamic changes of the input light field along its propagation path,
including the propagation process of the light field itself, the influences of various error sources
and disturbances encountered. However, the simulated electronic neural network, especially for the
primarily linear ONNs, might be too simplistic to learn the complex input-output light field mapping
relationship, including light propagation, various errors, and the coupling between light fields.

Therefore, error compensation neural networks are proposed to better simulate the physical optical
system [25], as illustrated in Fig 1(d). The addition of the error compensation neural network in
the hybrid training scheme is expected to bridge the gap between simulation and physical systems.
However, due to the large optimization space and the lack of physical constraints in the simulation
system, the training process can be slow and may even diverge.

Inspired by the concept of Physics-Informed Neural Networks (PINNs)[26, 27, 28, 29], which
integrate physical information into the network for optimization, we investigate systematic errors in
the optical physical system first and then propose a physics-constrained ONN learning framework for
image recognition tasks. In our approach, critical physical information is quantitatively integrated
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into a ’physics-prior-based’ error compensation network[30, 31]. This narrows the search space and
reduces the complexity of the required DNNs. In our experiments, the error compensation network
converges rapidly and effectively minimizes the disparity between simulation results and actual
observations, which significantly enhances the image recognition accuracy of experimental ONNs,
leading to state-of-the-art (SOTA) performance on several datasets.

The main contributions of this work are as follows:

(1) To describe the transmission equations of complex optical systems, we combine quantifiable
physical information with machine learning. Given known ideal physical models and key parameters,
we use minimal data and lightweight neural networks, leveraging both physics-driven and data-driven
approaches for rapid and precise modeling of complex optical systems.

(2)We informed the network of two significant quantitative errors—laser source instability and camera
exposure mismatch—as physical prior information, greatly enhancing convergence efficiency.

(3)Under multiple physical constraints, our network can focus more efficiently on learning other
unmeasurable system errors beyond the two aforementioned quantitative errors, such as crosstalk
between beams, device imperfections, and alignment errors. Consequently, it achieves state-of-the-art
results across multiple datasets.

2 Related Work

Training base on the ideal optical 4f system The 4f-ONN is constructed with two Fourier lenses
and a Spatial light modulator (SLM) in the focal plane, modulating the frequency spectrum of the
light field, which allows for the automatic realization of optical convolution operations and makes it
well-suited for optical neural networks[32, 33, 3, 34]. Taking the optical 4f system as an example,
in the absence of errors, its ideal transformation process adheres to the Fresnel diffraction[35, 36]
integral under ideal conditions[15]. The loss between the simulated output optical field image and
the target optical field is backpropagated through gradient descent, affecting the frequency domain
phase distribution of the 4f system. Through multiple training iterations on the electronic device, an
optimized spectral phase distribution is obtained. This phase distribution is then loaded onto the focal
plane of the 4f system via the SLM, enabling image classification tasks.

Fitting errors based on the physical model. [17, 16] aim to model the primary disturbances and
errors in optical systems, integrating the disturbance model appropriately into the ideal simulated
physical transformation model as an accurate description of the optical system. While this approach
enhances the robustness of the model against certain interferences, it only considers one or a few
disturbances existing in the physical system, thus unable to account for all disturbances, unmeasurable
quantities, and their coupling and crosstalk within the model. Therefore, its description of the physical
system model is not yet precise enough.

ONNs auto-learning [24, 18] aims to describe real optical systems through autonomous learning
using ONNs. By feeding input and output signals obtained from experiments into the ONNs, the
ONNs learn the functionality of the optical system in a data-driven manner. Ultimately, this enables
the network to accurately reflect the functionality of the actual optical system. However, learning
the input-output relationships in experiments might be overly complex for optical neural networks,
particularly for simple linear optical neural networks.

Error compensation network [37, 25] integrates ideal physical models with deep neural networks
(DNNs) in optical system modeling to compensate system errors and accelerate convergence speed.
However, the lack of physical parameters and physics-constrained loss functions requires the network
to learn this information from more data during training. Consequently, it necessitates the design
of more complex DNN architectures and the acquisition of additional experimental data to support
the training process.In contrast, through the integration of physical information into the simulated
model, our method is able to achieve high prediction performance using a relatively simple error
compensation network.
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3 Method

3.1 Introducing quantifiable physical information into optical systems

Introducing quantifiable physical information into optical systems is a key strategy for enhancing the
accuracy and efficiency of simulations in image recognition applications. The relationship between
the input and output signals of the optical system in experiments can be represented by a simplified
model, as depicted in Fig 2(a):

g(u) = f(u) + ∆fdev(u) + ∆fjit(u) + ...+ η(u) (1)
where f(u) denotes the ideal transformation process, ∆fdev indicates deviations caused by imperfec-
tions in optical devices, ∆fjit represents deviations due to laser jitter, and η encompasses deviations
caused by unmeasurable quantities in the system.
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Figure 2: Schematic diagram illustrating the integration of physical information to reduce experimen-
tal errors in the precise simulation of physical systems.

Accurate simulation of the actual optical signal transmission process necessitates not only simulating
the ideal transformation of the light path but also compensating for system errors, as illustrated in Fig
2(b). Here, f(u) symbolizes the ideal transformation used in the simulation, and DNN is employed
as the neural network for error compensation, with ∆fdev and ∆fjit representing quantifiable system
errors. Methods such as the Finite Difference Time Domain[38, 39, 40] (FDTD) for solving the
Helmholtz equation or the paraxial Schrödinger equation using the split-step Fourier transform
method[41, 42, 43] are utilized to effectively simulate the ideal transformation f(u) of the input
light field. The primary role of the DNN is to learn from the difference between the output of
f(u) and the experimental output, focusing on experimental errors beyond f(u) and their coupling
effects—a complex task. To reduce the complexity of the DNN and ensure the convergence of our
model, quantifiable physical information, such as the range of laser jitter and the grayscale value
range of images received by cameras, is incorporated into the DNN. Through carefully designed loss
functions[44, 45, 46] and by adjusting the overall data bias,this quantifiable physical information
is integrated into the DNN model, thereby reducing its complexity and significantly increasing
convergence speed.

3.2 Architecture of optical neural networks and measurement of quantifiable experimental
errors

We employ the method described above to precisely simulate the light propagation process within an
image-classification optical neural network, where the experimental errors contribute to a reduction
in classification accuracy. The experimental architecture is illustrated in Fig 3(a), we established an
experimental framework for an optical neural network with error compensation capabilities. Detailed
descriptions of the experimental setup can be found in the supplementary materials. Using the Fresnel
diffraction integral, we can derive the ideal transformation process within this optical system (i.e.,
the function f in Equation.1). This setup allows for precise control and manipulation of the light
field, facilitating detailed investigations into the dynamics of image processing within optical neural
networks.

Eout =
ψsph

iλf1f2
· [t(x, y) ∗ eiϕ(x

′,y′)] (2)
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f = min{|Eout|2, Imax} (3)

where ’*’ denotes the convolution operation, f1, f2 are focal length of L1 and L2, respectively. t(x, y)
is the input image in DMD, loading in the form of a binary transmission function. ϕ(x′, y′) represents
for the phase distribution on SLM and ψsph is a spherical wave phase factor. Due to the inherent
limitations of CCD which can only detect light intensity, and given that the maximum intensity that
the CCD can read is Imax, the output light field must transform as dictated by Equation.3. After
transforming the optical field of the input image using the optical 4f system and SLM, the output
optical field is obtained. Taking the MNIST dataset as an example, the output optical field is divided
into 10 equally sized regions for recognition and classification. The light intensity Ii(i = 1, 2, ..., 10)
in each region is measured to form the intensity sequence [I1, I2, ..., I10]. The region with the highest
light intensity corresponds to the classification result.

In this optical system, beyond the ideal transformation process f , some quantifiable physical quan-
tities can be utilized to simplify the complexity of the error compensation network. Two primary
quantifiable experimental errors include the instability of laser intensity and the consistency of light
intensity between the output image and the simulated image. To quantitatively analyze and mitigate
these errors, we measured the instability of laser intensity and the impact of camera exposure time on
the experimental output image.

3.2.1 Quantitative compensation of laser intensity instability

For the instability of laser intensity ∆fjit, we used a CCD to measure the overall grayscale values
within a fixed area to assess the stability of the laser. Over 700 minutes, the variation of pixel values
changed randomly, as depicted in Fig 3(b). To incorporate errors caused by intensity instability into
our error compensation network, A well-designed loss function is used to increase the gap between
the maximum and second maximum intensity values within the classification area. The designed loss
function is shown below:

Loss = ReLu{WGap − |Imax − I2ndmax|}+
N∑
i=1

yilog(ŷi) (4)

Here, the WGap denotes the light intensity gap, N denotes the total number of classes, y represents a
one-hot encoded vector that indicates the true class labels, with yi being the i-th element of the vector
y. The term ŷ corresponds to the network’s output probabilities, which are typically derived through
the application of a softmax function, with ŷi representing the probability that the model assigns to the
likelihood that the sample pertains to class i. In the experiment, the gap is configured to substantially
exceed the range of instability variations, thereby mitigating the reduction in experimental accuracy
attributable to laser instability. However, the value of WGap cannot be set too high, as this would
reduce the network’s fitting ability, leading to decreased classification accuracy. Here, we have
experimentally measured the impact of different WGap values on experimental accuracy (as shown
in the inset of Fig 3(b)). When WGap is set to 10, the experimental accuracy is optimal. In this
setting, the network still maintains good fitting ability, and the instability of laser intensity is also
compensated. This approach ensures that despite fluctuations in laser output, the performance of the
optical neural network remains robust, providing reliable and precise experimental outcomes.

3.2.2 Quantitative compensation of exposure time mismatches

For the noise caused by optical devices ∆fdev, experimentally, the primary and measurable error
source comes from the intensity of light received by the CCD. The distribution of pixel values read
by the CCD corresponds to the distribution of light intensity it receives. However, inherent biases
in the CCD itself result in discrepancies between simulated and experimental pixel values, leading
to reduced experimental accuracy. The CCD’s pixel values depend on the exposure time and the
intensity of the emitted laser light. To eliminate this error, we fixed the output laser intensity and
adjusted the exposure time of CCD to measure the gap between the simulated and experimental CCD
pixel values. For each exposure time, we loaded 1000 images from the MNIST dataset onto the DMD
and calculated the difference in pixel values across 10 classification regions, as shown in Fig 3(c). In
the ideal case, the error is completely eliminated (δI = 0, as indicated by the red bars). In actual
experiments, we first coarsely adjust the exposure time to bring the average δI close to zero (green
and blue bars in Fig 3(c)), and then finely adjust the exposure time to minimize the variance of δI
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Figure 3: (a) Schematic of an image classification optical neural network with an error-compensating
DNN incorporating quantitative physical information. (b) The random fluctuations of output light
intensity, measured in three classification regions over 700 minutes. Inset: the experimental accuracy
as a function of light intensity gap WGap. (c) The difference between simulated and experimental
CCD reading values under various exposure times.

(orange bars in Fig 3(c)). This method effectively eliminates errors caused by the CCD and improves
classification accuracy.

3.3 Training process of physics-prior-based error compensation network

In addition to the quantifiable system errors[47, 48, 49] previously discussed, several types of errors
within optical systems are unmeasurable and can be categorized into fixed and coupling errors. Fixed
errors arise from experimental deviations or mismatches, including the misalignment of the spatial
light modulator, rotation of the input image, and diffraction effects due to lens apertures. Coupling
errors, on the other hand, originate from the interaction between the light field and environmental
impurities. As the phase map in the SLM is adjusted, while the light field is accordingly altered,
the fixed errors remain unchanged, whereas the coupling errors vary. These experimental errors can
affect the output light field of the 4f system, causing it to deviate from the output image in a perfect
scenario, thereby reducing the recognition accuracy of ONN.

To mitigate the impact of such errors, a DNN network is used to model various environmental noises
and experimental errors, aligning the ideal output image of the 4f system with the actual output image.
The specific error compensation process is as below:

(i)Pre-training: Based on the Fresnel diffraction integral, train the simulational phase distribution m0

of SLM in the ONN without considering any experimental errors and environmental noises.

(ii)Error compensation: Load the phase map mk−1 onto the SLM to obtain the actual output image.
Train the error compensation DNN nk to minimize the difference between the ideal and actual output
image.

(iii)Re-training: Load DNN to compensate for the errors and retrain a new phase map mk of ONN to
minimize the well-designed loss function (eq.4) in simulation. These two networks, ONN and DNN,
are connected by residual connections.

(iv)Iteration: The coupling errors are altered when the phase map changes from mk−1 to mk. To
compensate for that, repeat steps (ii) and (iii), iterating until the experimental classification accuracy
is maximized.

Through such an iteration process, the error compensation network can model effectively the en-
vironmental noises and experimental errors, significantly improving the classification accuracy.
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Incorporating quantifiable physical data, such as laser intensity fluctuations and camera exposure
effects, directly into the network’s architecture enables it to adapt more robustly to the inherent
variability of optical systems.For more detailed information on the training process, please refer to
the supplementary materials.

4 Result

4.1 Dataset

The MNIST (Modified National Institute of Standards and Technology)[50, 51] dataset consists of
70,000 28x28 pixel grayscale images of handwritten digits, widely used as a benchmark for training
and testing image processing systems in machine learning and computer vision. The QuickDraw16
dataset, a subset of Google’s Quick, Draw! project includes 16 categories of hand-drawn images that
mimic natural variations in handwritten and sketched drawings, serving as a valuable resource for
image classification and recognition tasks. The Fashion MNIST dataset[52], provided by Zalando,
contains 70,000 28x28 pixel grayscale images categorized into 10 different fashion items, such as
T-shirts, trousers, shoes, and bags. Designed as a direct replacement for the traditional MNIST
dataset, Fashion MNIST is extensively used for research and evaluation in image classification tasks.
During training, we used the entire training set. To evaluate accuracy, we randomly selected 1,000
images from the test sets of each of the three datasets to assess experimental accuracy.

4.2 Error compensation network without quantifiable physical information

In comparison to our approach of incorporating quantifiable physical information into the error
compensation network, we also conducted an experiment where a DNN was trained to model the
system errors without introducing any quantifiable physical data. As illustrated in Fig 4(a1), the
network trained only on the ideal transformation process f of the light field achieved an experimental
accuracy of only 61.6%. This lower accuracy is due to several factors, including the instability of the
laser ∆fjit, mismatches in exposure time ∆fdev, and various unmeasurable errors η, which resulted in
significant deviations between the output light field images in experiments and simulations, as shown
in Fig 4(a2-a3). The accuracy of image recognition depends on the distribution of light intensity
across ten regions within the output image; thus, the experimental accuracy was significantly reduced.

Figure 4: The simulation and experiment result with and without compensation DNN on MNIST
dataset, maintaining without quantifiable physical information. (a1,b1) The simulational light intensity
in ten classification regions is depicted in the inset. (a2,b2)The experimental light intensity in ten
classification regions is depicted in the inset. (a3,b3) Histogram of light intensity difference δI
between simulation and experiment. (a4,b4)Experimental confusion matrix.

After incorporating an error compensation network without quantifiable physical information, the
discrepancies in light intensity distribution between experiments and simulations were mitigated,
as shown in Fig 4(b4), boosting the experimental accuracy to 93.5%. As indicated in Fig 4(b3),
the role of the error compensation DNN at this point was twofold: to modulate the overall light
intensity and to adjust the local distribution of light intensity, thereby narrowing the gap between
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simulation and experiment. However, as observed in Fig 4(b1-b2), the modulation resulted in a small
difference between the highest and second-highest light intensities, reducing the robustness of the
neural network.

4.3 Error compensation network with quantifiable physical information

By integrating quantifiable physical information, we effectively compensated for system errors caused
by laser instability ∆fjit, and mismatches in exposure time, represented as ∆fdev. Consequently, the
DNN now primarily focuses on compensating for unmeasurable errors η, which are inherently more
challenging to predict and correct. This approach has significantly improved the convergence speed
and accuracy of the error compensation network. For the MNIST dataset, we mitigated the error
∆fdev by adjusting the exposure of the CCD, thus ensuring that the overall light intensity between
the simulation and experiment was consistent. This adjustment allowed the DNN to focus solely on
modulating the local distribution of light intensity, thereby simplifying its complexity. As shown in
Fig 4.3(a4), even without an error compensation network, the classification accuracy increased to
83.7% due to the consistency of the overall light intensity distribution.

Figure 5: The simulation and experiment result with and without compensation DNN on MNIST
dataset, maintaining with quantifiable physical information. (a1,b1) The simulational light intensity
in ten classification regions is depicted in the inset. (a2,b2)The experimental light intensity in ten
classification regions is depicted in the inset. (a3,b3) Histogram of light intensity difference δI
between simulation and experiment. (a4,b4)Experimental confusion matrix.

Additionally, a well-designed loss function was used to address the instability of laser intensity,
∆fjit, ensuring that the difference in light intensity between the maximum and the second maximum
values within the classification regions was significantly greater than the range of fluctuations in
laser intensity. After training, this error compensation network, enhanced with quantifiable physical
information, increased the classification accuracy of the MNIST dataset to 96.5%.

4.4 Further experiment in different datasets

For the more complex Quickdraw16 dataset and FMNIST dataset, applying the same method of
adjusting the CCD exposure to ensure consistency in overall light intensity, and using a well-designed
loss function to address the instability of laser intensity significantly enhanced the recognition
accuracy. The classification accuracy for the Quickdraw16 dataset increased from 63.0% to 85.7%
through these adjustments. Similarly, the classification accuracy for the FMNIST dataset improved
from 56.2% to 77.3% through these adjustments. The analysis of the convergence speed of the error
compensation network can be found in the supplementary materials.Our approach can also handle
more challenging datasets like CIFAR-10. To do this, we simply replace the dataset loaded onto the
DMD with CIFAR-10. The initial classification accuracy with CIFAR-10 is 30%, which improves
to 57% after optimization using our method. However, since current research[25, 37] on spatial
2D light-based ONNs predominantly uses the datasets mentioned in the paper, we do not present
a detailed and specific demonstration of the results of CIFAR-10 in this paper due to the lack of
comparative benchmarks.
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Figure 6: (a1) Experimental confusion matrix in Quickdraw 16 dataset without physical information
and compensation DNN. (b1) Experimental confusion matrix in FMNIST dataset without physical
information and compensation DNN. (c1)Experimental confusion matrix in Quickdraw 16 dataset
with physical information and compensation DNN. (d1)Experimental confusion matrix in FMNIST
dataset with physical information and compensation DNN.(a2,b2,c2,d2) The simulational light
intensity in classification regions. (a3,b3,c3,d3) The experimental light intensity in classification
regions.

4.5 Accuracy comparison with other error compensation network

We have compared our work with other studies and found that our experimental classification
accuracy on the MNIST dataset aligns closely with the results from Tsinghua University[25] and
those published in Nature magazine; on the QuickDraw16 dataset, we achieved an experimental
classification accuracy of 85%. These results indicate that, unlike models that do not incorporate
physical information, our approach of quantitatively introducing physical information has enabled
our optical-DNN to be fed with known measurable experimental perturbations and errors. This
allows the DNN that follows the ideal model to learn more about unknown perturbations, errors,
and imperfections in optical devices, and their interdependencies. Consequently, compared to
neural networks that do not incorporate physical information quantitatively, our optical-DNN(optica-
Deep Neural Network) is able to more accurately represent real experimental systems, enhancing
the consistency between simulation and experimental results, and further improving experimental
accuracy. Additionally, our error compensation network is very lightweight, with approximately
5,000 learnable parameters(For more details, please refer to the supplementary materials). Therefore,
the introduction of quantitative physical information into neural networks is crucial, especially when
dealing with complex datasets that require highly precise simulations of actual physical processes.

Architecture Hybrid
CNN[14]

DAT[25] PAT[37] This work
Qualitative

This work
Quantifiable

Directly
deployed optimize Directly

deployed optimize Directly
deployed optimize Directly

deployed optimize

MNIST 24.9% 92.4% 24.9% 61.4% 61.6% 93.5% 83.7% 96.5%
FMNIST 8.4% 77.3% 56.2% 77.5%

Quickdraw16 72.0% 63.0% 85.7%

Table 1: The accuracy comparison between other error compensation network architecture in various
datasets.

5 Conclusion

In this study, we explore the mapping relationship between input and output of a physical ONN
system, which can be modeled as the sum of ideal transformation process, measurable errors (laser-
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related deviations, CCD-related deviations) and other unmeasurable errors. To reduce the disparity
between the ideal simulated ONN model and the real physical ONN model, a physics-constrained
ONN learning framework is constructed for image classification tasks. Specifically, we introduce a
well-designed loss function to mitigate the laser-related deviations and a CCD adjustment strategy to
reduce the CCD-related deviations. In addition, a ’physics-prior-based’ error compensation network
is proposed to manage other unmeasurable errors. The effectiveness of our approach is demonstrated
through extensive experiments on the MNIST, Fashion MNIST and QuickDraw16 datasets.

Although we aim to reduce the gap between the ideal simulated ONN model and the real physical
ONN model, it is important to note that our research primarily focuses on the image classification
task. Specifically, the intensity gap loss function we propose may not be applicable to other AI
tasks. However, we believe that the quantifiable error analysis and processing methods could serve as
valuable references for other applications, as the two quantifiable errors—light source instability and
exposure time mismatches—are inevitable in current optical systems. For future work, we plan to
develop a more generalizable approach to address systematic errors in ONN systems and investigate
its application in other AI tasks, such as image restoration and image segmentation.
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public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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proposed method and baselines. If only a subset of experiments are reproducible, they
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versions (if applicable).
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6. Experimental Setting/Details
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section4
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: [TODO]
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
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• The assumptions made should be given (e.g., Normally distributed errors).
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Supplemental material
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: [TODO]
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: [TODO]
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Section4
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [No]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [No]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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