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ABSTRACT

The high computational costs of large language models (LLMs) have led to a flurry
of research on LLM compression, via methods such as quantization, sparsification,
or structured pruning. A new frontier in this area is given by dynamic, non-uniform
compression methods, which adjust the compression levels (e.g., sparsity) per-block
or even per-layer in order to minimize accuracy loss, while guaranteeing a global
compression threshold. Yet, current methods rely on estimating the “importance”
of a given layer, implicitly assuming that layers contribute independently to the
overall compression error. We begin from the motivating observation that this
independence assumption does not generally hold for LLM compression: pruning
a model further may even significantly recover performance. To address this, we
propose EvoPress, a novel evolutionary framework for dynamic LLM compression.
By formulating compression as a general optimization problem, EvoPress identifies
optimal compression profiles in a highly efficient manner, and generalizes across
diverse models and compression techniques. Via EvoPress, we achieve state-of-
the-art performance for structured and unstructured compression of Llama, Mistral,
and Phi models.

1 INTRODUCTION

Compression via elimination of the least important parameters has become a standard way of reducing
the deployment costs of large language models (LLMs). Pruning techniques can be categorized into
unstructured, which sparsify the weight matrices, e.g. Frantar & Alistarh (2023); Yin et al. (2024), or
structured pruning / layer dropping, which drop entire model components, e.g. Kim et al. (2024); Men
et al. (2024). While improvements are still being made, existing methods are reaching diminishing
returns in terms of accuracy-vs-compression (Dettmers et al., 2023; Tseng et al., 2024).

Prior approaches for unstructured sparsity (Yin et al., 2024; Frantar & Alistarh, 2022) and layer
dropping (Kim et al., 2024; Men et al., 2024) work by assigning an error/sensitivity score to each
layer, which measures the impact of its compression on the output loss increase. Then, one calculates
a compression assignment which minimizes the sum of error scores, while still satisfying the global
compression constraint. Thus, such approaches inherently assume error monotonicity: i.e., that a
lower sum of error scores taken over layers implies a lower compression error for the entire model.

Our work starts from the observation that error monotonicity does not hold generally for LLM
compression: specifically, there are instances where compressed models with lower sums of per-layer
errors can perform worse than models with higher error. We illustrate this fact in Table 1, which
shows an instance of a layer dropping configuration where pruning more blocks leads to significantly
better perplexity than an instance which prunes strictly less blocks.

Related Work. Recently, there has been a lot of interest in compression by removing entire
transformer blocks, both for efficiency and to gain insights about the language model itself. Most
methods are based on scoring the importance of each block, and then maximizing the importance
of the resulting model by removing the blocks of lowest importance. Therefore, they assume error
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Table 1: Depth pruning is not monotone. In this example (Llama-3-8B), removing strictly more blocks
(depicted in orange) can improve perplexity across sources. The left half of a block corresponds to
the attention layer, the right half to the MLP.

Model Configuration (Each block contains Attention + MLP) Wiki2↓ C4↓ FW↓

Llama-3-8B

5.54 8.80 7.72

188.01 147.25 70.46
24.39 35.53 26.24

linearity, meaning that each block contributes independently to the total compression error. Weight
Subcloning (Samragh et al., 2023) proposed a multi-step process to find good initializations for an
untrained smaller model given an already trained larger one, where the importance of each block
is scored based on the ratio of ℓ2 norms between the output embeddings of the block with and
without the residual connection. Shortened Llama (Kim et al., 2024) proposes scoring each block by
measuring the perplexity after removing the respective block from the full model. ShortGPT (Men
et al., 2024) uses the cosine similarity between the input and output embeddings of each block to
assess its importance. By contrast, Gromov et al. (2024) restrict to removing consecutive blocks and
score each configuration by cosine similarity.
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Figure 1: Removing 12 transformer blocks from
Llama-3-8B under the constraint that only pairs of
consecutive blocks can be removed. EvoPress finds
the optimal configuration from the 8008 possible
removal combinations in generation 6.

Contribution. To address this, we propose a
new evolutionary search approach called Evo-
Press, which identifies effective compression
profiles while being sample and iteration effi-
cient. These two efficiency properties are crit-
ical for practicality in the context of LLMs,
where the cost of evaluating single models (“off-
spring”) is exceedingly high. We validate the
approach for layer dropping and one-shot spar-
sification. We find that EvoPress consistently
improves upon existing techniques, with ma-
jor improvements at higher compression ratios.
Moreover, it can do so efficiently: when applied
to layer dropping for an 8B-parameter model,
EvoPress converges in a matter of minutes on a
single RTX 3090 GPU.

2 METHOD

All applications of EvoPress are grounded in a unified framework, where the objective is to identify
the optimal model that adheres to a specified compression method and constraint. Formally, given a
base model M , we seek to maximize the performance of the compressed model while satisfying the
compression constraint:

M̂∗ = argmax
M̂

f(M̂) subject to g(M̂) ≤ C,

where f(M̂) quantifies the performance of the compressed model M̂ and g(M̂) represents the
compression constraint. For simplicity, we will define g as the model’s total size (in terms of
parameters); however, the method can be adapted to other constraints, such as inference speed.

We approach this optimization problem using evolutionary search, which is a specific form of
randomized search. The feasibility of such an approach heavily depends on two factors: the time
required to evaluate the fitness of a candidate solution and the number of such function evaluations
needed until a satisfying result is achieved. This poses a particular challenge in our case, as assessing
the performance of an LLM involves substantial computational costs.

Fitness Environment. Given the specified database, any compressed model is characterized by its
compression level per unit (e.g. per layer). With n units, each available in m compression levels, our
objective is to find

M̂∗ = argmax
v∈[m]n

f(M̂v) subject to g(M̂v) ≤ C,
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where we are searching over the set of n-tuples over [m]. Assessing the performance of a model in
practice typically involves benchmark tasks, which have limited scope and require lengthy evaluation.
We address these challenges by using the base model as the gold standard and focusing solely on
the relative degradation of our compressed models. To quantify this degradation, we measure the
Kullback-Leibler (KL) divergence between the two models, as it has proven particularly robust
with limited data. Empirically, we observed that already around 64K tokens of calibration data
(corresponding to 8 full sample sequences for Llama-3-8B) are sufficient to reliably determine the
quality of the lightweight model. To avoid confusion, we will refrain from inverting the fitness
function and from now on consider the minimization problem

M̂∗ = argmin
v∈[m]n

DKL(PM ∥ QM̂v
) subject to g(M̂v) ≤ C,

where we speak of higher fitness whenever the KL-Divergence is lower.

Algorithm. EvoPress starts from upon the classic (1 + λ)-evolutionary algorithm, which maintains a
single search point at any given time. In each generation, λ offspring are generated by copying the
parent and then applying a mutation operator to each copy. The offspring are then evaluated on the
fitness function, and the fittest one is selected. As an elitist evolutionary algorithm, the (1 + λ)-EA
replaces its parent only if the best offspring has superior fitness.

We change this standard algorithm in two important ways. The first is by introducing level-switch
mutation, a simple mutation operator that ensures high locality while preserving the compression
constraint. The operator involves first randomly selecting one unit and increasing its compression
level. Next, a second unit is sampled until one with a matching level step size is found, and its
compression level is decreased. This approach ensures that 1) the compression constraint is preserved,
and 2) the offspring model maintains high similarity to the parent model – an important feature for
achieving rapid convergence.

The second modification is that we employ a very aggressive form of multi-step selection. In the first
stage, all λ offspring are evaluated using only a fraction of a full sample. From this, only a small
subset of the fittest offspring are selected to compete in the next stage, where they are evaluated
on a significantly larger sample size. This process is repeated once more, and in the final stage,
the few remaining offspring are evaluated against the parent using a ”full” minibatch, consisting of
approximately 20-50 times the number of tokens used in the first stage. A high level overview of this
procedure is presented in Appendix A.

3 EXPERIMENTS

We now validate the effectiveness of EvoPress for layer dropping, where the goal is to isolate the
“optimal” set of blocks to drop given a target ratio. Results on unstructured sparsity are presented
in Appendix C. We focus on LLM compression, given the major interest in the reduction of their
model size and inference latency, but our method is general and can be applied to any neural network
architecture and application domain.

Experimental Setup.

We consider base models from the Llama-2 and Llama-3 (Touvron et al., 2023) families, Mistral-
v0.3 (Jiang et al., 2023), and the instruction-tuned Phi3-Medium-instruct-128k model (Abdin et al.,
2024). We adopt KL-divergence as our fitness function because it provides a stronger and more robust
signal compared to perplexity, better reflecting the predictive distribution of the original model. As a
source of clean and diverse calibration data, which is required to evaluate fitness, we use Fineweb-Edu
(Penedo et al., 2024).

Evaluation. We follow a standard evaluation protocol (Frantar et al., 2022), measuring perplexity on
the WikiText-2 (Merity et al., 2016) and C4 (Raffel et al., 2019) datasets for language performance
and accuracy on zero-shot evaluations on standard benchmarks: WinoGrande (Sakaguchi et al., 2021),
PiQA (Tata & Patel, 2003), HellaSwag (Zellers et al., 2019), ARC-easy and ARC-challenge (Clark
et al., 2018) via the LM Eval Harness (Gao et al., 2021).

Although removing entire transformer blocks generally results in large accuracy losses, this approach
recently attracted attention in the context of initializing smaller models, as it guarantees speedups
proportional to the sparsity (Samragh et al., 2023; Kim et al., 2024). Additionally, block dropping
provides insights into the capabilities of transformer models, making it relevant for interpretability.
We will compare against the following baselines: (1) Shortened Llama (Kim et al., 2024), which
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scores blocks on the perplexity change after removal; (2) ShortGPT (Men et al., 2024), where blocks
are scored based on the average cosine similarity between input and output embeddings, including the
residual stream; (3) Weight Subcloning (Samragh et al., 2023), where blocks are scored using the
ratio ||f(x)||/||f(x) + x||, where x is the input embedding and f(x) is the block’s output, excluding
the residual stream; (4) Sliding Window Cosine Similarity (Gromov et al., 2024), where sets of
consecutive blocks are scored based on the cosine similarity between embeddings before and after
the blocks, including the residual stream. While Gromov et al. (2024) directly score entire removal
configurations, the other approaches determine block removals based on their isolated scores.
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Figure 2: Depth pruning results, on Mistral-7B-v0.3. (Left) Relative to all prior methods, EvoPress
shows significantly lower PPL gap relative to the uncompressed model, with remarkably large gaps at
medium compression rates. (Right) Convergence of EvoPress when removing 8 transformer blocks.

Search Space. In our approach, attention and MLP modules are treated independently rather than as
a single unit. For each module, there are two options: either retain it or remove it. To achieve a target
sparsity/depth, we initially remove an equal number of attention and MLP modules. During mutation,
we allow compression level adjustments only between modules of the same type. We leave it open
for future research to remove this constraint to allow flexibility in the number of removed attention
and MLP modules.

Results. Figure 2 compares our method with baselines from previous work on Mistral-7B-v0.3. For
a better comparison, we also included results where only entire transformer blocks are removed
(Attn.+MLP). EvoPress consistently outperforms all previous methods, showing significant improve-
ments even at medium sparsity levels. While all baseline methods fail entirely beyond 31.25%
sparsity, EvoPress identifies functional submodels even when removing half of the model. To our
knowledge, this is the first method to achieve such results. We observed similar collapses in Llama-2-
7B, Llama-3-8B and Llama-3.1-8B. Overall, EvoPress consistently outperforms all baselines across
all tested models and sparsities (see Appendix B for full results), and does so within minutes.

All four previous methods rely on human-crafted scoring methods to identify the optimal combination
of transformer blocks to remove. This is not only suboptimal, but also prone to bias, as their results
may reflect the characteristics of the method itself rather than the model’s true behavior. Specifically,
we found that most scoring methods tend to favor deeper blocks, resulting in highly similar removal
configurations across different prior scoring methods (see Table 9 in Appendix). This likely occurs
because methods that bias towards deeper blocks generally perform better than those that focus on
earlier blocks, although neither may be optimal. In contrast, EvoPress employs an unbiased approach,
which offers more accurate and meaningful insights into the model.

4 CONCLUSION

We have presented EvoPress, an optimization framework for dynamic model compression. EvoPress
is based on a new evolutionary search algorithm with low sample and iteration complexity, especially
well-suited to loss landscapes in LLM compression. Specifically, we have shown that EvoPress can
converge extremely fast to accurate configurations for structured and unstructured sparsity, and is also
fast to execute in practice. Interesting directions we did not investigate are 1) combining different
compression approaches into the same search space, and 2) finer-grained structured pruning. We plan
to investigate this in future work.
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A ALGORITHM

Algorithm 1: EvoPress: A (1 + λ)-Evolutionary Algorithm with Level-Switch Mutation and
Multi-Step Selection for Maximizing a Fitness Environment f : [m]n → R.
Initialization: candidates← [] ;
for i← 1 to initialCandidates do

candidate← sampleUniformly();
candidates.append(candidate);

x(1) ← selectTopKFittest(candidates,initialTokens,K = 1);
Optimization: for t← 1 to∞ do

offspring← [];
Mutation: for i← 1 to λ do

yi ← x(t);
yi ← LevelSwitchMutation(yi);
offspring.append(yi);

Selection: for step← 1 to selectSteps do
Elitism: if step = selectSteps then

offspring.append(x(t));

offs.← selectTopKFittest(offs.,tokens[step],K = survivors[step]);

x(t+1) ← offspring[0];

6

https://doi.org/10.1145/3474381
https://doi.org/10.18653/v1/p19-1472
https://doi.org/10.18653/v1/p19-1472


ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

B ADDITIONAL DEPTH PRUNING RESULTS

Here, we present our additional results for depth pruning experiments on Mistral-7B-v0.3 (Table 5),
Llama-2-7B (Table 2), Llama-3-8B (Table 3), and Llama-3.1-8B (Table 4). Across all levels of
sparsities, EvoPress consistently outperforms previous methods. Additionally, Table 5 includes results
where only entire transformer blocks are removed by EvoPress. This showcases that the significant
gains are not primarily due to this relaxation, and that our method performs better than baselines even
when dealing with this coarser search space.

Table 2: Depth pruning of Llama-2-7B.

Sparsity Method Wiki2↓ C4↓ FW↓
0% Dense 5.21 6.93 6.40

12.5%

EvoPress 6.42 8.60 7.54
ShortGPT 8.86 10.78 9.30

Cosine Similarity (Window) 7.53 9.82 8.51
Weight Subcloning 9.09 11.06 9.60

ShortenedLlama 7.68 10.44 8.57

25%

EvoPress 9.15 11.46 9.69
ShortGPT 23.41 30.30 21.16

Cosine Similarity (Window) 16.60 21.04 17.37
Weight Subcloning 23.41 30.30 21.16
Shortened Llama 13.86 14.08 11.81

37.5%

EvoPress 17.98 18.91 15.53
ShortGPT 70.94 63.51 54.07

Cosine Similarity (Window) 192.07 212.60 151.10
Weight Subcloning 70.94 63.51 54.07
Shortened Llama 35.37 26.07 20.37

50%

EvoPress 48.84 42.29 33.57
ShortGPT 226.14 171.04 180.51

Cosine Similarity (Window) 4570.15 2876.83 1861.06
Weight Subcloning 226.14 171.04 180.51
Shortened Llama 145.78 87.40 68.79

Table 3: Depth pruning of Llama-3-8B.

Sparsity Method Wiki2↓ C4↓ FW↓
0% Dense 5.54 8.80 7.62

12.5%

EvoPress 7.72 12.61 10.15
ShortGPT 13.21 19.56 14.25

Cosine Similarity (Window) 9.54 14.87 11.64
Weight Subcloning 13.21 19.56 14.25
Shortened Llama 9.42 15.09 11.57

25%

EvoPress 13.99 22.83 15.84
ShortGPT 5527.54 11589.93 2346.13

Cosine Similarity (Window) 5519.95 11629.61 2342.91
Weight Subcloning 5527.54 11589.93 2346.13
Shortened Llama 16.59 20.81 16.28

37.5%

EvoPress 27.56 35.70 26.77
ShortGPT 64281.36 13836.12 3789.09

Cosine Similarity (Window) 64627.29 13890.14 3784.72
Weight Subcloning 64381.36 13836.13 3789.09
Shortened Llama 50.20 61.56 37.40

50%

EvoPress 84.99 87.86 66.41
ShortGPT 1663.97 1740.04 1588.20

Cosine Similarity (Window) 2053.19 1116.47 694.00
Weight Subcloning 1663.97 1740.04 1588.20
Shortened Llama 724.86 666.41 210.30
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Table 4: Depth pruning of Llama-3.1-8B.

Sparsity Method Wiki2↓ C4↓ FW↓
0% Dense 5.61 8.90 7.67

12.5%

EvoPress 7.58 12.24 10.00
ShortGPT 12.54 19.21 13.76

Cosine Similarity (Window) 12.54 19.21 13.76
Weight Subcloning 12.54 19.21 13.76
Shortened Llama 9.27 14.80 11.21

25%

EvoPress 11.59 17.84 13.96
ShortGPT 4278.39 6754.92 1512.39

Cosine Similarity (Window) 4278.39 6754.92 1512.39
Weight Subcloning 4278.39 6754.92 1512.39
Shortened Llama 20.41 20.33 16.12

37.5%

EvoPress 24.98 35.77 25.93
ShortGPT 123044.19 22071.51 6059.03

Cosine Similarity (Window) 123044.19 22071.51 6059.03
Weight Subcloning 123044.19 22071.51 6059.03
Shortened Llama 41.34 43.53 31.00

50%

EvoPress 105.84 110.69 61.25
ShortGPT 1630.11 1680.21 1698.64

Cosine Similarity (Window) 1881.54 1196.63 683.24
Weight Subcloning 1630.11 1680.21 1698.64
Shortened Llama 454.96 309.42 153.96

Table 5: Depth pruning of Mistral-7B-v0.3.

Sparsity Method Wiki2↓ C4↓ FW↓
0% Dense 4.82 7.72 6.41

12.5%

EvoPress 6.06 9.00 7.42
EvoPress (Attn.+MLP) 6.33 9.44 7.80

ShortGPT 7.19 10.18 8.46
Cosine Similarity (Window) 7.19 10.18 8.46

Weight Subcloning 7.19 10.18 8.46
Shortened Llama 6.64 9.71 7.94

25%

EvoPress 8.66 12.04 9.92
EvoPress (Attn.+MLP) 9.46 13.02 10.59

ShortGPT 43.26 40.16 29.54
Cosine Similarity (Window) 33.75 54.07 36.26

Weight Subcloning 43.26 40.16 29.54
Shortened Llama 14.94 19.30 14.73

37.5%

EvoPress 17.52 21.60 16.90
EvoPress (Attn.+MLP) 21.62 25.17 18.97

ShortGPT 2898.98 2722.66 981.99
Cosine Similarity (Window) 1034.09 2471.86 1050.56

Weight Subcloning 2898.98 2722.66 981.99
Shortened Llama 440.20 442.09 486.15

50%

EvoPress 61.75 54.15 43.23
EvoPress (Attn.+MLP) 108.91 99.74 69.07

ShortGPT 2422.72 2134.92 1083.51
Cosine Similarity (Window) 3411.47 1934.16 1740.91

Weight Subcloning 2422.72 2134.92 1083.51
Shortened Llama 5241.76 3595.71 1953.14

C UNSTRUCTURED SPARSITY

In addition, we examine performance for unstructured sparsity, which offers more fine-grained
compression. The standard approach is to allocate sparsity uniformly across layers. However, some
layers may be more sensitive to sparsity, which can significantly impact the model’s output. To
address this, OWL (Yin et al., 2024) introduces the Layer Outlier Distribution (LOD) metric as a
measure of layer saliency, and computes a sparsity profile that is weighted by LOD. We compare
EvoPress with both uniform sparsity and OWL. For OWL we used the same hyperparameter grid as
the original work and took the configuration yielding the best perplexity for each model.
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Search Space. Sparsity levels are generated as follows: For each layer, we first produce the base level
corresponding to the targeted average sparsity. Then, we generate both higher and lower compression
levels, where the difference between two levels corresponds to a fixed number of weights. In our
experiments, we used a “step size” of 1M weights uniformly. This approach enables the mutation of
compression levels across all layers, independently of their size. We adopt SparseGPT (Frantar &
Alistarh, 2023) for layer pruning.

Experimental Results. We compare different methods for pruning to 50%, 60% and 70% unstruc-
tured sparsity. We report the results for 70% , 60% and 50% sparsity in Tables 8, 7 and 6, respectively.
As illustrated in Table 6, EvoPress successfully finds better profiles than uniform sparsity and notice-
ably outperforms competitive methods on PPL and zero-shot average accuracy by large margins on
all models.

Table 6: Performance of various methods at 70% average sparsity.

Model Method Wiki2↓ C4↓ ArcC↑ ArcE↑ HS↑ PiQA↑ WG↑ Avg↑

Mistral-7B-v0.3

Dense 4.82 7.72 48.9 79.6 60.9 80.3 73.9 68.7

Uniform 5.68 8.93 43.7 76.7 55.7 78.4 71.0 65.1
OWL 5.69 8.94 43.9 76.9 55.4 78.5 70.3 65.0

EvoPress 5.49 8.70 45.7 77.3 56.5 78.9 71.2 65.9

Llama-2-7B

Dense 5.12 6.93 43.4 76.3 57.1 78.1 69.0 64.8

Uniform 6.40 8.87 41.3 73.4 52.8 75.7 68.8 62.4
OWL 6.38 8.77 41.1 73.2 53.2 76.5 70.2 62.9

EvoPress 6.22 8.52 41.5 74.2 54.0 76.7 69.6 63.2

Llama-3-8B

Dense 5.54 7.10 50.4 80.1 60.2 79.7 72.6 68.6

Uniform 8.05 13.07 43.6 75.7 54.2 76.1 71.7 64.3
OWL 8.13 13.12 43.8 75.8 54.0 75.7 72.2 64.3

EvoPress 7.63 12.53 43.9 77.5 54.5 76.8 72.2 65.0

Llama-3.1-8B

Dense 5.61 8.90 51.2 81.4 60.0 80.1 73.9 69.3

Uniform 8.06 13.03 44.5 76.7 54.0 76.7 71.5 64.7
OWL 8.02 12.99 44.2 76.5 53.8 76.8 72.5 64.8

EvoPress 7.51 12.31 46.6 77.7 54.9 77.6 71.7 65.7

Table 7: Performance of various sparsity profiles at 60% sparsity.

Model Method Wiki2↓ C4↓ ArcC↑ ArcE↑ HS↑ PiQA↑ WG↑ Avg↑

Mistral-7B-v0.3

Dense 4.82 7.72 48.9 79.6 60.9 80.3 73.9 68.7

Uniform 7.78 11.86 38.0 72.3 49.4 75.0 69.3 60.9
OWL 7.50 11.34 38.5 71.9 49.6 75.1 70.2 61.1

EvoPress 7.08 10.27 40.5 72.8 51.9 76.9 68.8 62.2

Llama-2-7B

Dense 5.12 6.93 43.4 76.3 57.1 78.1 69.0 64.8

Uniform 9.3 12.37 35.8 69.5 45.9 72.4 65.9 57.9
OWL 8.35 11.00 36.0 69.1 47.5 73.2 66.2 58.4

EvoPress 8.21 10.34 37.1 70.6 49.3 74.4 67.6 59.8

Llama-3-8B

Dense 5.54 7.10 50.4 80.1 60.2 79.7 72.6 68.6

Uniform 13.86 21.43 35.2 69.7 45.6 72.2 68.0 58.2
OWL 12.37 18.53 38.0 70.3 47.7 72.1 68.5 59.3

EvoPress 11.02 16.37 39.0 71.9 48.6 74.0 69.1 60.5

Llama-3.1-8B

Dense 5.61 8.90 51.2 81.4 60.0 80.1 73.9 69.3

Uniform 13.43 21.46 36.4 69.7 46.2 72.3 67.7 58.5
OWL 12.08 18.25 38.9 71.1 47.7 73.1 68.8 59.9

EvoPress 10.58 15.96 40.0 72.5 49.0 74.6 69.5 61.1
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Table 8: Performance of various sparsity profiles at 50% sparsity.

Model Method Wiki2↓ C4↓ ArcC↑ ArcE↑ HS↑ PiQA↑ WG↑ Avg↑

Mistral-7B-v0.3

Dense 4.82 7.72 48.9 79.6 60.9 80.3 73.9 68.7

Uniform 5.68 8.93 43.7 76.7 55.7 78.4 71.0 65.1
OWL 5.69 8.94 43.9 76.9 55.4 78.5 70.3 65.0

EvoPress 5.49 8.70 45.7 77.3 56.5 78.9 71.2 65.9

Llama-2-7B

Dense 5.12 6.93 43.4 76.3 57.1 78.1 69.0 64.8

Uniform 6.40 8.87 41.3 73.4 52.8 75.7 68.8 62.4
OWL 6.38 8.77 41.1 73.2 53.2 76.5 70.2 62.9

EvoPress 6.22 8.52 41.5 74.2 54.0 76.7 69.6 63.2

Llama-3-8B

Dense 5.54 7.10 50.4 80.1 60.2 79.7 72.6 68.6

Uniform 8.05 13.07 43.6 75.7 54.2 76.1 71.7 64.3
OWL 8.13 13.12 43.8 75.8 54.0 75.7 72.2 64.3

EvoPress 7.63 12.53 43.9 77.5 54.5 76.8 72.2 65.0

Llama-3.1-8B

Dense 5.61 8.90 51.2 81.4 60.0 80.1 73.9 69.3

Uniform 8.06 13.03 44.5 76.7 54.0 76.7 71.5 64.7
OWL 8.02 12.99 44.2 76.5 53.8 76.8 72.5 64.8

EvoPress 7.51 12.31 46.6 77.7 54.9 77.6 71.7 65.7

D REMOVAL ORDER FOR DIFFERENT METHODS

Prior research indicates that deeper layers, aside from the final ones, are generally less effective
(Gromov et al., 2024; Men et al., 2024). Figure 3 illustrates the optimal removal configurations
identified by EvoPress. For comparison, Table 9 displays the removal order of prior scoring methods.
While EvoPress indeed removes some deeper layers across all sparsities, we also observe that
certain shallow layers appear to be less important. Notably, a “two hills” pattern emerges in many
cases, where blocks before and after the midpoint are pruned, yet the central blocks remain intact.
Meanwhile, the first two blocks are never pruned. However, in contrast to a heuristic proposed by Ma
et al. (2023), we find that, in some instances, it is effective to prune the final block as well.
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Figure 3: Optimal removal configurations identified by EvoPress for different models.
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Table 9: First 16 blocks in removal order of ShortGPT, Weight Subcloning and Shortened Llama on
different models.

Model Method Removal Order (Left to Right)

Mistral-7B-v0.3
ShortGPT 26, 25, 24, 27, 23, 22, 28, 30, 21, 29, 20, 19, 13, 17, 18, 12

Weight Subcloning 26, 25, 24, 27, 23, 28, 22, 30, 21, 29, 20, 19, 13, 17, 12, 18
Shortened Llama 10, 12, 13, 11, 08, 09, 14, 15, 07, 06, 04, 27, 24, 16, 25, 05

Llama-2-7B
ShortGPT 27, 25, 26, 28, 29, 24, 23, 22, 21, 30, 20, 19, 18, 17, 15, 14

Weight Subcloning 27, 25, 28, 29, 26, 24, 23, 22, 21, 19, 30, 20, 18, 17, 14, 15
Shortened Llama 11, 12, 08, 09, 10, 06, 24, 25, 07, 14, 23, 13, 22, 21, 15, 27

Llama-3-8B
ShortGPT 25, 26, 27, 24, 28, 23, 22, 29, 20, 21, 19, 18, 30, 17, 16, 11

Weight Subcloning 25, 27, 26, 24, 28, 23, 22, 29, 20, 21, 19, 18, 30, 17, 16, 11
Shortened Llama 10, 08, 09, 11, 26, 25, 12, 22, 24, 23, 14, 13, 28, 06, 19, 21

Llama-3.1-8B
ShortGPT 25, 26, 24, 27, 23, 28, 22, 29, 20, 21, 19, 18, 17, 30, 16, 10

Weight Subcloning 25, 27, 26, 24, 28, 23, 22, 29, 20, 21, 19, 18, 30, 17, 16, 10
Shortened Llama 10, 09, 11, 08, 26, 25, 12, 24, 22, 23, 14, 28, 06, 13, 19, 21
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