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Abstract
AI systems deployed in practical settings (e.g.,
conversation systems, recommender systems) nat-
urally collect user feedback. Alignment is an
important goal of these systems, but it is not clear
what objective should be optimized in the first
place so that they are aligned with diverse hu-
man preferences. Being a higher level objective,
alignment is naturally associated with long term
outcomes. Importantly, there is a disconnect in
the timescale of observed feedback (e.g., collect-
ing click data from rankings in a recommender
system) and the downstream effect they strive
to achieve (e.g., long-term satisfaction of users
on the platform). To achieve alignment with de-
sired long-term objectives, this disconnect at dif-
ferent levels, namely, the lower micro level at
which fast-acting feedback is collected, and the
upper macro level, concerned with higher-level
objectives, needs to be reconciled. We introduce
MultiScale Policy Learning (MSPL) with nested
contextual bandits for policy learning at multi-
ple levels to bridge this disconnect. MSPL uses
bi-level optimization to select the shorter-term
objective at the next lower scale to optimize the
longer-term objective at the next higher scale. The
policy for both upper and lower level are learned
to optimize for long term goals. As part of on-
going project, we present preliminary results on
a recommendation system simulator that shows
promising results.

1. Introduction
Designing AI systems that align with human preferences
has been a goal of growing importance. However, a fun-

*Equal contribution 1Department of Computer Science, Cor-
nell University, Ithaca, NY, USA. Correspondence to: Richa Ras-
togi <rr568@cornell.edu>, Yuta Saito <ys552@cornell.edu>,
Thorsten Joachims <tj@cs.cornell.edu>.

Proceedings of the 41 st International Conference on Machine
Learning (ICML) 2024 Workshop on Models of Human Feedback
for AI Alignment, Vienna, Austria. PMLR 235, 2024. Copyright
2024 by the author(s).

damental limitation towards this goal lies in the feedback
that is typically used for optimizing these systems. In par-
ticular, training data is primarily derived from short-term
signals like clicks and views in recommender systems, or
the performance of the next-sentence prediction in conver-
sational systems. Though this naturally occurring feedback
is abundant, it is noisy and biased, and experience with op-
timizing engagement in social media platforms (Mansoury
et al., 2020) has shown that its unmitigated optimization
can adversely affect the desired long-term behavior of these
systems. On the other hand, optimizing long-term user
retention is difficult due to sparse and low frequency of
feedback.

While conventional approaches have predominantly ignored
the long-term feedback in the optimization objective, some
recent work aims to include long-term feedback. Most
prominently, reinforcement learning based approaches to
this problem propose a decomposition of long-term goals
into short-term goals (Maystre et al., 2023; McDonald et al.,
2023). However, these approaches consider the effect of
short term interventions (e.g., rankings) on long term goals
(e.g, user retention) and thus only optimize for short term
interventions. In particular, how to take interventions at dif-
ferent timescales to achieve the optimal long term objective
is still an open research question.

Our approach is to contextually reconcile the disconnect
between different timescales of feedback and interventions
in a tractable manner, allowing the steering and control of
these systems. This involves learning the policy (and inter-
ventions) at multiple scales to steer for desirable outcomes
at different levels. At each scale, we optimize the most ap-
propriate metric – from short-term signals (e.g., click) at the
lowest scale, to long-term signals (e.g., user retention) at the
highest scale. Our approach, which we call MultiScale Pol-
icy Learning (MSPL), uses bi-level optimization to select
the shorter-term objective at the next lower scale so that we
maximize the longer-term objective at the next higher scale.
In this way, both long-term and short-term interventions are
optimized for achieving long term outcomes.

In the following, we discuss three practical examples that
illustrate the impact and need for this approach.

Example 1. Consider a recommender system for media
streaming for children, where the platform is interested in
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the long-term outcomes such as user retention or subscrip-
tion renewal. For simplicity, let’s consider two levels – the
upper level concerned with user retention and the lower
level concerned with short-term engagement. Depending on
the context (user profiles), the platform can take upper-level
interventions such as boosting specific item groups (e.g.,
documentaries) for ranking. The feedback from this inter-
vention – whether a user renews the subscription or not – is
observed after a month. The lower-level interventions are
rankings, and they are affected by the higher-level interven-
tion throughout the month. Clicks are clearly an important
signal about preferences readily available at the lower level
for learning, but unmitigated maximization of clicks is not
necessarily aligned with customer retention. Arguably, an
upper-level intervention (e.g. boosting documentaries) can
optimize customer retention even if it leads to fewer clicks.
The goal of our multi-scale learning approach is to optimize
interventions at both levels to improve long-term outcomes.

Example 2. In the next example, we consider a question
generation platform to assist in education (Elkins et al.,
2023). Optimizing for the next question at the lowest level
as shown in Figure 1 leads to the maximum number of
questions answered (feedback at that level) and keeps the
students’ attention for the short-term. However, this could
adversely affect the ultimate goal of achieving long-term
learning outcomes, e.g., developing a deep understanding
of the subject. In that sense, we wish to optimize the lower
levels as long as the highest level is optimal. Crucially, the
feedback at each level is observed at different resolution
and each of the levels form a hierarchy of objectives af-
fecting the level below it. At the level of topic, depending
on the context, the platform can intervene to control the
difficulty or hardness of questions, affecting the lower level
next question generation. At the highest level of subject, the
intervention relates to when to move to the next topic based
on understanding of the current topic at the lower level.

Feedback 
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Figure 1. MultiScale resolution of feedback and hierarchy of ob-
jectives on an education platform

Example 3. In the last example, we consider a movie
streaming app with the long term goal of subscription re-
newal of the customers. In general, these systems use the
same objective function for every user but different users

can have widely different preferences in terms of accuracy
versus diversity versus novelty of a movie recommendation,
etc. As a result, optimizing for the same objective function
for every user cannot capture the diverse user preferences.
If instead, an upper level policy selected interventions to
weight diversity, novelty etc. differently for different users,
then this control from the upper level to the lower level can
align the lower level policy with the desired user preferences,
leading to long term satisfaction. The accuracy and diversity
of movie recommendations relate to short term feedback
based on the policy of presenting movies while alignment
to the user preferences relates to long term feedback.

Our key insight is to elevate the different timescale feedback
and the corresponding interventions to multiple levels by as-
suming the knowledge of this structure as prior information.

2. A BiLevel Optimization Framework
Our approach to reconciling this disconnect between in-
terventions and feedback from multiple scales is to view
the long-term interventions as meta-parameters to the short-
term interventions, similar to the design of controllers for
physical processes. From this perspective, we want to design
systems that can learn these meta-parameters contextually
at multiple hierarchical levels. With this viewpoint, we
propose a novel formulation of the problem as a bi-level op-
timization (Colson et al., 2007) of the policies at each level.
The lower level (LL) subproblem in Figure 2 represents the
higher frequency task, e.g. retrieval augmented generation
parameterized by meta parameters from the upper level (UL)
subproblem. The upper level involves the optimization of
these meta parameters via long term objective that encodes
the user intent with feedback observed at a lower frequency.

Figure 2. Overview of BiLevel Framework

In a single-level setting, let x ∈ X denote the context vector,
drawn i.i.d. from an unknown distribution p(x). A possibly
stochastic policy π(a|x) chooses action a ∈ A. The reward
r ∈ [0, rmax] is observed from an unknown distribution
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p(r|x, a). The value of policy is denoted as

V (π) = Ep(x)π(a|x)p(r|x,a)[r] = Ep(x)π(a|x)[q(x, a)]

where q(x, a) = Ep(r|x,a)[r] is the expected reward func-
tion.

Figure 2 illustrates an overview of our bi-level framework
for two levels. Extending the above formulation, for the
upper level, we have a stochastic policy πU (aU |xU ) and
the observed reward rU is drawn from an unknown dis-
tribution p(rU |xU , aU , πL). An expected reward function
qU (xU , aU , πL) is similarly defined, where πL is the lower
level policy. The reward rU for action aU is observed after
T timesteps of the lower level, where t = 1, . . . T represents
the timescale for lower level feedback. The UL reward rU

represents the long term outcomes of interest such as sub-
scription renewal or return time for a recommender system.
The value of the UL policy πU , is defined as

V U (πU ) = Ep(xU )πU (aU |xU )[q
U (xU , aU , πL)] (1)

In this way, the LL policy affects the long term objective
at the UL. This is shown by the connection from LL to UL
(green arrow) in Figure 2.

We now define the lower level and associated notation. For
LL, the context xL is drawn from an unknown distribu-
tion p(xL|xU ). A possibly stochastic policy πL(aL|xL, xU )
chooses action aL and reward rL is observed from an un-
known distribution p(rL|xL, xU , aL). An expected reward
function qL(xL, xU , aL) is similarly defined.

To describe the mechanism by which UL can pass meta
parameters to select the right objective function at the LL,
consider the red arrow in the bi-level structure of Figure 2.
We specify this parameterization with action aU from UL
to LL via a predefined function f(qL(.), aU ). This function
f(.) takes two input parameters, the first being the expected
reward function of the LL denoted by qL(xL, xU , aL) and
the second, aU ∼ πU . For example, consider a recom-
mendation platform with short term outcomes consisting
of accuracy and diversity of movies presented to the users.
Each of these short term outcomes depends on lower level
intervention aL (ranking of movies) as well as context
from lower and upper level (movie context and user con-
text respectively), so that informally, qL(xL, xU , aL) =
acc(xL, xU , aL) + div(xL, xU , aL). This means that the
same objective of equally weighted accuracy and diversity
of movies is used for all users. In the simplest case, the
parameterization f(.) that we propose can be of the follow-
ing form f(qL(.), aU ) = aU acc(.)+(1 − aU ) div(.). The
intervention aU ∼ πU (.|xU ) is the weighting for diverse vs
accurate movie recommendations based on the user context
xU , and provides a mechanism to select the right objective
at the lower level. While this is a simple example, more
complex and realistic functional forms of f(.) depending

on the application can be used. The value of LL policy πL

is defined as

V L(πL) = Ep(xL,xU )πL(.)π
U
(a

U |.)︸ ︷︷ ︸
UL

[f(qL(.), aU )] (2)

The overall data generation for the bi-level framework is
shown in process 1. The LL operating within the nested
loop consists of short term feedback rLt ∼ p(rL|xLt , xUt′ , aLt )
observed at the faster timescale t. This feedback not only
depends on the LL context xLt and action aLt at the same
timescale but also on the UL context xUt′ observed at the
timescale t′ of the UL. Finally, the observed UL reward rUt′
depends on the particular πL operating at LL.

Data Generation Process 1
foreach t′ ∈ {T, 2T, . . .mT} do

xUt′ ∼ p(xU )
aUt′ ∼ πU (.|xUt′ )
foreach t = 1, . . . T do

xLt ∼ p(xL|xUt′ )
aLt ∼ πL(.|xLt , xUt′ )
Observe rLt ∼ p(rL|xLt , xUt′ , aLt )

Observe rUt′ ∼ p(rU |xUt′ , aUt′ , πL)

Our overall goal is to optimize for the long term objective
of UL, given by Eq (1), subject to the nested subproblem of
optimizing the short term objective of LL, given by Eq (2).
We now formally describe the bi-level optimization prob-
lem. In general, to learn policy parameters θ (e.g. neural
network), we have π∗ ← argmaxθ V (πθ). To learn policy
parameters ψ, ϕ for policy πU , πL respectively, we have,

(UL Problem)
πU∗ ← argmax

ψ
V U (πUψ ;π

L∗
ϕ ) subject to

(LL Problem)
πL∗ ← argmax

ϕ
V L(πLϕ ;π

U
ψ )

In this way, the shorter term policy πL∗ is selected such that
it optimizes the long term objective V U (πU ). By formulat-
ing the bi-level optimization as above, we frame the overall
problem as a nested contextual bandit problem. We now
discuss how to solve this nested problem based on historical
logged datasets in a tractable manner.

3. MultiScale Policy Learning
To learn the UL and LL policies, we turn to offline pol-
icy learning from logged bandit data collected from a sub-
optimal logging policy at each level. Consider a naive ap-
proach where logged data is collected for each level and
an off-policy estimator is used to learn LL and UL policies.
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This approach fails for the UL policy learning, since the
logged data contains the bias from both the logged UL and
the logged LL policy. Our first approach describes a solution
to this issue by sequentially learning the LL policy, collect-
ing logged bandit data for UL, followed by learning the UL
policy. We then propose a solution with a second approach,
where logged bandit data for UL and LL is pre-collected
and we use predicted rewards for UL policy learning. Both
methods can be extended to learning policies at multiple
scales and are encompassed by our unifying framework of
MultiScale Policy Learning.

3.1. Nested Contextual Bandits with Logging Policies

Consider logging policies πUψ0
, πLϕ0

for upper and lower
level respectively. Algorithm 1 describes offline nested
policy learning, one each for UL and LL. It consists of
a procedure PolicyLearning that requires input as the log-
ging policies πUψ0

, πLϕ0
. The logged bandit data DL con-

sists of context, action, and reward at LL ∼ πLϕ0
and

the additional context xU from the UL. The UL action
aU ∼ πUψ0

(.|xU ) is passed down to the nested optimiza-
tion problem of learning the LL policy in line 4 of the
algorithm. In particular, we use a model-based estimator
(Beygelzimer & Langford, 2009) with a regression model
q̂L estimated using logged data DL as follows, q̂L(.) =
argminqL′

∑
(xL,xU ,aL,rL)∈DL(rL − qL

′
(xL, xU , aL))2.

The learned policy πL∗ϕ is defined by selecting the action
such that aL∗ ← argmaxaL∈AL E[f(q̂L(., aL), aU )].

Algorithm 1 Offline Nested Bandit Learning
1: Procedure PolicyLearning(πUψ0

, πLϕ0
)

2: DL := {(xL, xU , aL, rL)} ∼ πLϕ0

3: aU ∼ πUψ0

4: πL∗ϕ ← argmaxϕ V
L(πLϕ ; a

U , DL)

5: DU := {(xU , aU , rU )} ∼ πUψ0
, πL∗ϕ

6: πU∗
ψ ← argmaxψ V

U (πUψ ;D
U )

7: return πU∗
ψ , πL∗ϕ

8: end Procedure

With the learned policy πL∗ϕ , Algorithm 1 describes col-
lecting logged bandit data DU for UL with xU , aU ∼ πUψ0

,
while the logged reward rU depends on both πUψ0

and πL∗ϕ .
This step of collecting logged dataDU after the LL policy is
optimized corrects for the bias due to the logging LL policy.
Now, a model free approach, such as an Inverse propen-
sity score (IPS) weighting estimator (Horvitz & Thompson,
1952) can correct for the bias in the logging UL policy. The
gradient of policy value ∇ψV U (πψ) would be estimated as

1

n

n∑
i=1

(
πψ(a

U
i |xUi )

πψ0
(aUi |xUi )

)
rUi ∇ψ log πψ(a

U
i |xUi )

and gradient steps with learning rate η as ψ ← ψ +
η∇ψV U (πUψ ) are taken for off policy learning for the upper
level. In this way, Algorithm 1 progressively learns the
policy starting from the lowest level, collecting log data for
the next higher level, and learning the higher level policy.

More generally, Algorithm 1 can be used to learn multi-
ple nested levels by recursively calling the PolicyLearning
procedure at line 4 if a lower level exists. Consider a multi-
scale learning problem with logging policies πUψ0

, πMθ0 , π
L
ϕ0

respectively for each of upper, middle, and lower lev-
els. Starting from level U, PolicyLearning(πUψ0

, πMθ0 ) is
called. Since a level L lower than level M exists,
PolicyLearning(πMθ0 , π

L
ϕ0

) is called which returns πM∗
θ , πL∗ϕ

and the PolicyLearning(πUψ0
, πMθ0 ) procedure resumes. The

logged data DU is now collected for the upper level using
logging policy πUψ0

and πM∗
θ . Finally, the policy learning

step returns the optimal policy πU∗
ψ and the algorithm re-

turns πU∗
ψ , πM∗

θ . This simple recursive procedure between
two levels, solving first for the lower level nested within the
upper level forms our MultiScale Policy Learning frame-
work (MSPL).

Note that this approach requires collecting logged bandit
data after the policy learning step for the level below it. As
the number of levels increase, it would be desirable to be
able to use the pre-collected logged data for all the levels,
rather than accessing the system after every policy learning
step to collect logged data for the next higher level. We now
discuss a second approach for a setting where logged bandit
data for UL and LL is collected before policy learning.

3.2. Nested Contextual Bandits with Pre-collected
Logged Data

Consider logged bandit data DU ∼ πUψ0
, DL ∼ πLϕ0

con-
sisting of independent observations generated by a logging
policy for UL and LL respectively. The key difficulty lies in
using the logged rewards rU for UL policy learning. As dis-
cussed earlier, this is because the logged reward rU consists
of the bias from the logged UL policy and a second bias
– that of the logged LL policy due to lower level affecting
the rewards at upper level. Our solution to this issue is to
use predicted rewards r̂U as a function of the learned LL
policy. To quantify the LL performance, we use surrogates
that have been commonly adopted in prior literature (Athey
et al., 2019) as a proxy of short term policy. The value of
UL policy defined earlier in Eq (1) can be written to utilize
surrogates from LL as follows.

V U (πU ) = Ep(xU )πU (aU |xU )[q
U (xU , aU , sL)]

Figure 3 illustrates the bilevel framework with rU depending
on surrogates sL accumulated over the lower level. The
data generation process 1 at the lower level, consequently
involves an additional step of accumulating surrogates sL ←
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Figure 3. BiLevel Framework with Surrogates

sL∪p(sL|xLt , aLt ) at each time step t of the LL. For the UL,
the observed reward rUt′ ∼ p(rU |xUt′ , aUt′ , sL) for each time
step t′ of the UL.

Further, the reward prediction r̂U can be simplified if it only
depends on the lower level and the effect of aU on rU is
completely mediated by the lower level. This assumption is
formally described as follows.

Assumption 3.2.1. (Mediation by surrogates) The effect of
upper level interventions on upper level reward is completely
mediated by the surrogates from the lower level.

This implies no direct effect of the actions at the UL on
the reward at UL in the presence of surrogates. In other
words, rU ⊥ aU | sL, xU . As a result, the observed reward
distribution at the upper level can be decomposed as follows

p(rU | xU , aU , sL) = p(rU | xU , sL)

where sL ∼ p(sL|πL). This assumption implies that learn-
ing a predictive model q̂U (xU , aU , sL) can instead be re-
placed by learning q̂U (xU , sL) for the mapping of surro-
gates to reward rU (green arrow in Figure 2) . We will
explore relaxing this assumption in future work.

We now describe how Algorithm 1 can be used for of-
fline nested policy learning in this setting and note that
DU := {(xU , aU , rU , (sL ∼ πLϕ0

))} ∼ πUψ0
can be

collected at the same time as DL. This logged data
DU is used to estimate a predictive model, q̂U (.) =
argminqU′

∑
(xU ,sL,rU )∈DU (rU − qU

′
(xU , sL))2. The

model q̂U (.) predicts upper level rewards r̂U given surro-
gates accumulated over LL. The surrogates required as input
to q̂U (.) are in turn obtained according to the logged UL
action aU ∼ DU and using πL∗ϕ from line 4 of the algorithm.
With the predictive model for UL rewards, an argmax policy
provides the optimal action at the upper level. Thus, a purely

model-based approach is used to learn UL policy. In this
way, while the previous approach required the collection
of logged bandit data DU after LL policy is learned, line
5 for collecting DU is not required with this approach. In-
stead, πL∗ϕ from line 4 is passed directly to the UL policy
learning step in line 6 of the algorithm. Concretely, πU∗

ψ

← argmaxψ V
U (πUψ ;D

U , πL∗ϕ ). We leave the treatment
of more advanced estimators that could be easily applied
within the MSPL framework for future work. Similar to the
previous section, this approach can also be used to learn mul-
tiple nested levels by calling the PolicyLearning procedure
recursively.

4. Empirical Evaluation
We conduct experiments on a video recommender system
simulator to compare the performance of our nested bandit
learning against other commonly used baselines. We simu-
late the environment according to data generation process
1. For these preliminary experiments, we assume access to
reward regression model q̂L and learn a policy πψ at upper
level which parameterizes the lower level, according to Al-
gorithm 1. Future experiments will focus on learning the
reward models q̂L as part of policy learning and extending to
realistic settings of large number of user groups and actions.

4.1. Baselines

Below, we describe three commonly used baselines for opti-
mizing long term outcomes.

Optimizing for short term feedback (Oracle LL) This
baseline selects the action aL at LL that maximizes the ex-
pected reward rL at that level. There is no action aU at
UL and hence no effect of UL to LL. This baseline demon-
strates the gap in long term outcomes due to an unmitigated
optimization of short term outcomes.

Random intervention at UL (Random UL) This baseline
assumes that πU is a uniform policy, so action aU at UL
is random. At the lower level πL selects the action that
maximizes the expected LL reward parameterized by aU .

Optimizing for the majority user group (Opt Majority)
This baseline maximizes the expected UL reward for the
majority users. As in the previous baseline, πL is an argmax
policy that maximizes the expected LL reward parameter-
ized by aU .

4.2. Recommender System Simulator Data

We leverage a video recommender system simulator derived
from a real-world KuaiRand dataset (Zhao et al., 2023)
that supports multi-session environment. We modify the
simulator environment to create tradeoff between UL and
LL as follows. At the upper level, a user i arrives with
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context xU , consisting of features such as how active they
are on the platform, whether they are a live streamer etc. A
session is started at UL and consists of up to five requests,
after which the session is over and the user exits. The
expected return day of the user for the next session serves
as the upper level feedback, while clicks per session serve
as the lower level feedback.

Since different user groups can have preferences for differ-
ent video types, we form two user groups, based on a user
feature that represents their amount of activity. The major-
ity group is 80%. To control the performance of LL from
UL, action aU of the UL policy provides a boost in ranking
scores at the LL, depending on the user and item context.
This is the pre-defined parameterization f(.) that affects
the lower level policy of selecting the highest ranking score
video. The surrogates from LL to UL are defined as the
proportion of two video types selected over the five requests.
The probability of return day at UL is a function of these
surrogates based on user preferences for video groups.

We use offline nested bandit learning with logging policies
as described in Section 3.1. In particular, we learn policy
parameters ψ for UL as a softmax policy and select the
argmax action. We use clipped IPS estimator (Swaminathan
& Joachims, 2015) using logged bandit data for UL learning.
For computing performance at each level, we sample n =
1,174 users and report the expected return day averaged
over all the users for upper level. Note that a shorter return
day implies better UL performance. For the lower level,
we report the expected number of clicks over five requests
(horizon T of the LL) per user.

E[rU ] =
1

n

n∑
i=1

ErUi ∼PrU
[rUi ]

E[rL] =
1

n

n∑
i=1

5∑
t=1

ErLt,i∼PrL
i

[rLt,i]

where PrU is the return day probability. The click probabil-
ity PrLi at the lower level is a bernoulli distribution based
on predictive reward model q̂L of ranking scores. We define
Oracle UL policy, which deterministically takes the action
aU in alignment with the unknown user preferences.

Results The results in Figure 4 and 5 demonstrate that our
method can successfully learn the UL policy such that the
long term objective is maximized. It also shows that the
baselines fall short and the gap between our approach and
baselines for the UL performance is significant.

For the LL, we use an epsilon-greedy rule to vary the quality
of πL. This is interesting as it simulates the effect of varying
quality of the LL policy.

aL∗ ← (1− ϵ)I(argmax
aL

(f(q̂L(., aL), aU ))) +
ϵ
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where ϵ ∈ [0, 1]. The results are averaged across 20 ran-
dom seeds. Figure 4 shows that our nested bandit method
matches closely with the Oracle UL and has a much shorter
return day as compared to Oracle LL. This shows that our
method learns the optimal UL intervention for different user
groups. The Opt Majority baseline that selects the optimal
intervention deterministically for the majority user group
performs better than Oracle LL but worse than our approach.
This is because Opt Majority baseline selects the same inter-
vention at UL for all users, resulting in a sub-optimal policy
for 20% of the users. Finally, the Random UL baseline
has the highest expected return day since it plays a random
intervention at UL. Further, across all the varying quality
of πL, from the optimal (ϵ = 0.0) to random (ϵ = 1.0), our
nested bandit approach performs similarly to Oracle UL. As
the quality of LL policy degrades towards uniform random
policy, the return day at UL also increases which shows that
the quality of LL policy contributes to the quality of UL

6



MultiScale Policy Learning for Alignment with Long Term Objectives

policy. Figure 5 compares the expected short term rewards
between Oracle LL and our ϵ-greedy LL policy. While the
short term rewards degrade with ϵ as expected, our method is
competitive with the short term Oracle (Oracle LL) baseline.

In summary, these results show that our nested bandits ap-
proach learns the optimal long term outcome while hardly
compromising the short term reward. Overall, they indicate
that our proposed bilevel formulation for steering toward
long term outcomes is a promising approach, and has the
potential to open new research avenues in this area.

5. Conclusion
In this work, we consider a more realistic model of human
feedback at multiple scales of resolution. Our key insight
is that, to achieve alignment with long term outcomes, we
need to reconcile the disconnect between the long term and
short term feedback. Our solution to this issue is to propose
a hierarchical structure of interventions and feedback for
modeling nuanced contexts with diverse user preferences.
By leveraging this structure, we propose a novel bilevel for-
mulation for policy learning that optimizes both upper and
lower level policies for achieving long term outcomes. This
is an ongoing project and we will explore realistic settings
of policy learning at multiple levels for large number of user
groups with diverse preferences and for large number of
interventions to steer towards desired long term outcomes.
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