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ABSTRACT

Freehand sketching is a representation of human cognition of the real world. Re-
cent sketch synthesis methods have demonstrated the capability of generating
lifelike outcomes. However, these methods directly encode the whole sketch in-
stances and makes it challenging to decouple the strokes from the sketches and
have difficulty in controlling local sketch synthesis, e.g., stroke editing. Besides,
the sketch editing task encounters the issue of accurately positioning the edited
strokes, because users may not be able to draw on the exact position and the
same stroke may appear on various locations in different sketches. We propose
SketchEdit to realize flexible editing of sketches at the stroke-level for the first
time. To tackle the challenge of decoupling strokes, our SketchEdit divides a
drawing sequence of a sketch into a series of strokes based on the pen state, align
the stroke segments to have the same starting position, and learns the embeddings
of every stroke by a proposed stroke encoder. This design allows users to con-
veniently select the strokes for editing at any locations. Moreover, we overcome
the problem of stroke placement via a diffusion process, which progressively gen-
erate the locations for the strokes to be synthesized, using the stroke features as
the guiding condition. Both the stroke embeddings and the generated locations
are fed into a sequence decoder to synthesize the manipulated sketch. The stroke
encoder and the sequence decoder are jointly pre-trained under the autoencoder
paradigm, with an extra image decoder to learn the local structure of sketches.
Experiments demonstrate that the SketchEdit is effective for stroke-level sketch
editing and outperforms state-of-the-art methods in the sketch reconstruction task.

1 INTRODUCTION

People may draw sketches to express their abstract concepts for the real world, and humans pos-
sess an extraordinary ability to create imaginative sketches. The objective of sketch synthesis is to
mimic the human drawing process through machines, and the task is challenging due to the sketch
abstractness, sparsity, and lack of details. Recently, efforts have been made to learn efficient sketch
representations and generate realistic sketches, such as Sketch-RNN (Ha & Eck, 2017), SketchLat-
tice (Qi et al., 2021), SketchHealer (Su et al., 2020) and SP-gra2seq (Zang et al., 2023b).

However, whilst existing methods (Zang et al., 2021; 2023a; Wang et al., 2022) exhibit effective
control on generating sketches with certain global property, they are unable to perform finer control
on strokes. For example, researchers have focused on synthesizing sketches of particular categories,
such as generating a “cat”, but have difficulty in manipulating the shape of certain parts (e.g., the
body) of the “cat”. Moreover, for users who lack expertise, completing sketches in a single attempt
is challenging, and the selected strokes may require multiple modifications. This paper attempts to
present a model to mimic human sketch editing at the stroke-level as in Fig. 1.

To achieve the stroke-level editing, it is a key obstacle to pinpoint the strokes that require editing.
For the conventional method (Ha & Eck, 2017) using a sequence of points to represent sketches,
although the segments determined by the pen states can be directly used as strokes, the lengths of
the obtained strokes are not the same, which is not convenient for editing the strokes and updating the
sketch sequence. Rasterizing a sketch into an image is a common operation in sketch studies (Chen
et al., 2017; Yu et al., 2015; 2016). However, these image-based methods lost details of the drawing
order and the way sketch are drawn, making it more difficult to get the stroke information. Recently,

1



Under review as a conference paper at ICLR 2024

Figure 1: (Arrow left) Original sketches. (Arrow right) Edited sketches generated by our model.

the work (Qu et al., 2023) provided an effective way to break down the sketch sequence into strokes
for down stream tasks, where the stroke segments are padded to be of the same length. Inspired
by this idea, we develop a stroke encoder to encode each stroke separately, without exchanging
information with other stroke. This approach provides the flexibility to select strokes and edit them
in the latent space of the encoder while minimizing the impact on the content of the rest part of the
sketch.

Another challenge for stroke-level editing is how to appropriately place the strokes after the editing
is done. As given in the second row of Fig. 1, if we replace the cat’s body with the sheep’s body, the
cat’s head moves from the right to the left side of the image. If the cat’s head is still in its original po-
sition, the generated sketch will be unrealistic. Here, we develop a diffusion model (Ho et al., 2020)
for accurate stroke placement. The diffusion model generates the stroke locations progressively
through the denoising process, based on the features of all strokes to be synthesized. The diffusion
model extends beyond the generation of single-category sketches, enabling the creation of more
diverse results, e.g., a pig with wing-like ears. Furthermore, we fuse the stroke embeddings with
the generated stroke locations, and devise a sequence decoder to synthesize the final manipulated
sketch. The stroke encoder and the sequence decoder are jointly pre-trained under the autoencoder
paradigm, with an extra image decoder to learn the local structure of sketches.

In summary, we propose a novel sketch editing method called SketchEdit and our contributions are
as follows: (i) We develop the traditional task of sketch synthesis into a more controllable sketch
editing task at the stroke-level for the first time. The proposed SketchEdit achieves this purpose well
and enables the generation of creative sketches. (ii) We present a fresh perspective on the placement
of sketch strokes, where strokes are synthesized akin to assembling building blocks. Given a set of
base strokes, we first generate meaningful placements for them, and then combine the strokes into
a meaningful sketch. (iii) Experiments show that the our method performs significantly better than
the state-of-the-art sketch generation models for the task of sketch reconstruction. This guarantees
that the edited sketch effectively retains the visual properties of the original sketch.

2 RELATED WORK

Sketch generation. Sketching, as a practical communication tool and medium for emotional ex-
pression, is impressive and expressive. Its related generative tasks have attracted the interest of
researchers (Zhou et al., 2018; Das et al., 2021; Ge et al., 2020). An essential work to this is
Sketch-RNN (Ha & Eck, 2017), which is facilitating research into deep learning for the imitation
of human drawing. The Sketch-RNN is comprised of a bidirectional Long Short-Term Memory
(LSTM) (Hochreiter & Schmidhuber, 1997) encoder and a unidirectional LSTM decoder. Although
Sketch-RNN is capable of accurately capturing the connection between drawing points, it falls short
in perceiving the local structural information of images. Therefore, the subsequent methods (Chen
et al., 2017; Song et al., 2018) convert the sequence of sketches into rasterized images and introduce
Convolutional Neural Networks (CNNs) (LeCun et al., 1998) as a replacement or supplement to
the LSTM encoder. To improve the representational capabilities of the models, graph neural net-
works (GNNs) (Scarselli et al., 2008) are introduced on top of the image representation (Su et al.,
2020; Qi et al., 2022; 2021; Zang et al., 2023b). These methods construct graphs by temporal prox-
imity, spatial proximity or synonymous proximity. Another method to improve performance is to
use a Gaussian Mixture Model (GMM) to model the latent space and incorporate Rival Penalized
Competitive Learning (RPCL) (Xu et al., 1993) to automatically select the number of Gaussians
(Zang et al., 2021; 2023a). However, as mentioned before, previous sketch generation models have
struggled to decouple specific strokes, so the proposed SketchEdit takes strokes as input rather than
images or drawing points.
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Figure 2: The overview of the proposed SketchEdit. (a) Denoising process conditional on strokes.
Essentially, the goal is to reorganize strokes with confusing positions into meaningful sketches. (b)
The pipeline for sketch editing by our method. The edited strokes are replaced at the input (or
in the latent space) against the target strokes, and then the inverse denoising process is used to
obtain meaningful stroke positions from the random noise. (c)Pre-training the stroke encoder and
the sequence decoder which are used to generate stroke embeddings and synthesis target sketches
for sketch editing task.

Diffusion models. Diffusion models (Sohl-Dickstein et al., 2015) have led to a boom in research,
particularly in the field of image synthesis (Ho et al., 2020; Dhariwal & Nichol, 2021). Text-to-image
(T2I) generation is a widely recognized application of diffusion models, which enables the rapid gen-
eration of artwork by providing prompts as a cue to large models, such as DALL·E2 (Ramesh et al.,
2021), Imagen (Saharia et al., 2022), GLIDE (Nichol et al., 2021) and stable diffusion (Rombach
et al., 2022). However, certain information remains difficult to convey solely through text, leading
to the emergence of visual cues as conditions for diffusion models. Sketches are an effective tool
for responding to structural information and are therefore regarded as control conditions by PITI
(Voynov et al., 2023), ControlNet (Zhang & Agrawala, 2023), UniControl(Qin et al., 2023), T2I-
Adapter (Mou et al., 2023), and other methods. Recently some diffusion models (Wang et al., 2022;
Das et al., 2023) about sketches have been proposed, which focus on modeling the points of the
sketch rather than the stroke locations . Different from the methods mentioned above, where the for-
ward process and reverse denoising process are conducted on images, they consider the points in the
sketch sequence as targets. The feasibility of this idea was verified experimentally. Inspired by their
research, this paper investigates the potential use of a diffusion model to model stroke locations.

3 METHODOLOGY

SketchEdit is constructed based on diffusion model to edit sketches at the stroke-level. The key
step is to predict the locations of the strokes. This is achieved by the reverse denoising process
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of the diffusion model conditioned on stroke embeddings, as shown in Fig. 2(a). The SketchEdit
decouples sketch into several strokes without position information, allowing the user to conveniently
select strokes for editing. Strokes and generated locations are eventually fed into a sequence decoder
to synthesis the edited sketch. The pipeline of editing sketches are illustrated in Fig. 2(b).

3.1 SKETCH REPRESENTATION

A sketch is represented by a sequence of Lp points, i.e., τ = (p1,p2, ...,pLp
). Each point pi

is a vector containing five elements. The first two are the coordinates of the absolute position,
while the last three uses the one-hot vector format to represent the three pen states of lift, touch,
and the end of sketch. To proceeds in the stroke-level, the sketch sequence is broken down into a
series of strokes, i.e., (s1, s2, ..., sLs

), where Ls denotes the number of strokes. We use (x,y) =
[(x1, y1), (x2, y2), . . . , (xLs

, yLs
)] to record the locations of the strokes, which are the coordinates

of the first point of the stroke. In this paper, we also define the normalized stroke sequence s̃i by
subtracting the location (xi, yi) of the stroke from the coordinates of all the points in the stroke.

3.2 DIFFUSION MODEL FOR FORECASTING LOCATIONS

Forward process. Given a set of stroke locations (x,y)0 ∼ q((x,y)0), we apply the Markov
diffusion process in DDPMs (Ho et al., 2020) here. The noise sampled from Gaussian distribution
is gradually added to x and y:

q((x,y)1:T |(x,y)0) = q((x,y)0)

T∏
t=1

q((x,y)t|(x,y)t−1),

q((x,y)t|(x,y)t−1) = N ((x,y)t;
√
1− βt(x,y)t−1, βtI),

(1)

where βt ∈ (0, 1) represents the noise schedule at time t.

Reverse process. The reverse process aims to recreate the true locations from a Gaussian noise
input (x,y)T . Similar with the DDPMs (Ho et al., 2020), A U-Net (Ronneberger et al., 2015) like
network is utilized to predict the noise ϵθ((x,y)t, t). However, stroke locations have no explicit
semantic information, so it is necessary to introduce strokes as a condition. Thus, the network for
predicting noise is modified to ϵθ((x,y)t, t, s̃). To decrease computational complexity and leverage
high-level semantic information, as illustrated in Fig. 2, we utilize the stroke embeddings z̃ as the
condition rather than the strokes s̃. The reverse denoising process can be formalized as:

pθ((x,y)t−1|(x,y)t, z̃) = N ((x,y)t−1;µθ((x,y)t, t, z̃),σ
2
t I),

µθ((x,y)t, t, z̃) =
1

αt
((x,y)t −

βt√
1− ᾱt

ϵθ((x,y)t, t, z̃)),
(2)

where αt = 1 − βt and ᾱt =
∏t
i=1 αi. In practice, we use the DDIM-based (Song et al., 2020)

generation process for accelerated sampling.

3.3 EDITING FREEHAND SKETCHES AT THE STROKE-LEVEL

In this subsection, we provide the process of editing sketch at the stroke-level. First, pick the to be
edited stroke s̃i from the sketch τ . The edited stroke ŝi can either be drawn by the user or selected
from the stroke gallery to replace s̃i. Taking the angle shown in Fig. 2(b) as an example, we have
obtained the strokes ŝ(s̃1, s̃2, s̃3, ŝ4, s̃5) after editing. Then, the stroke encoder calculates the stroke
embeddings ẑ(z̃1, z̃2, z̃3, ẑ4, z̃5). As the encoding process does not involve the exchange of stroke
information, stroke substitution in the latent space, such as replacing z̃4 with ẑ4, is also possible.

Next, we apply the reverse process of diffusion model to denoise random noise (x̂, ŷ)T conditional
on ẑ, resulting generated stroke locations (x̂, ŷ)0. Finally, the stroke embeddings ẑ and the stroke
locations (x̂, ŷ)0 are fed into the token mixture block and sequence decoder to synthesis the edited
sketch τ̂ .
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3.4 CONSTRUCT THE STROKE ENCODER AND THE SEQUENCE DECODER

After converting the sketch sequence to the normalized stroke representation, the resulting tensor
s̃ ∈ RLs×Ln×5 is obtained, where Ln is the number of points in a stroke. A position-sensitive
block must act as the backbone of the stroke encoder to extract features form s̃. Because significant
changes in the shape of the stroke occur when any two points in the sequence are interchanged.
Token-based MLPs (Tolstikhin et al., 2021) fulfil this requirement, and thus we consider gMLP (Liu
et al., 2021) as the basic component. Since we do not wish for any exchange of information to occur
during the encoding stage between the strokes, we can intuitively treat the first dimension of s̃ as
the batch size.

Several layers are used to extract the stroke embeddings z̃. Firstly, each point in a stroke is treated as
a token, which then interacts through the network with other points. Next, these tokens are summed
for aggregation to get z̃enc ∈ RLs×dmodel1 , where dmodel1 denotes the dimension of the tokens. The
stroke embeddings z̃ ∈ RLs×dmodel2 are calculated as followings:

µ̃, σ̃ = flinear(z̃enc), µ̃, σ̃ ∈ RLs×dmodel2 ,

z̃ = µ̃+ σ̃ × ϵenc, ϵenc ∼ G(0, I),
(3)

where flinear(·) and dmodel2 represents a linear projection and the dimension of stroke embeddings,
respectively. The reparameterization trick (Kingma & Welling, 2013) employed in Equation 3 serves
to effectively constrain the latent space, resulting in improved continuity.

Then, we map the stroke locations (x,y) ∈ RLs×2 to the location embeddings zloc ∈ RLs×dmodel2 .
The summation of z̃ and zloc is fed into a token mixture block to mixture the information of different
strokes. The resulting zmix ∈ RLs×dmodel2 is subsequently sent to both the sequence decoder
and the image decoder. The decoders utilize spatial projection to increase the number of tokens
before reconstructing either the sequence τ̃ (p̃1, p̃2, ..., p̃Lp

) or the image Ĩ . The backbone of the
proposed token mixing block and sequence decoder is gMLP, while the image decoder is built based
on CNNs. Thanks to the powerful global capture capability of gMLP, we can decode all sequence
points simultaneously, rather than using the autoregressive approach (Ha & Eck, 2017; Chen et al.,
2017; Su et al., 2020). This still result in good reconstruction outcomes.

3.5 TWO-STAGE TRAINING

Pre-train the stroke encoder and the sequence decoder. After completing end-to-end training,
the stroke encoder and the sequence decoder can effectively reconstruct sketches. There are three
training objectives. The first is for the output of the sequence decoder, where our goal is to minimize
the negative log-likelihood function of the generated probability distribution:

Lseq = −Euϕ(z̃|S̃) log vξ(τ̃ |z̃, (x,y)). (4)

The training goal in Sketch-RNN (Ha & Eck, 2017) also pursues this aim, with the variance being
the absolute or relative coordinates modeling. For calculating the image reconstruction loss Limg ,
we utilize the traditional mean square error (MSE). To improve the representational power of the
model (Zang et al., 2021; 2023a), GMM modeling is carried out in the encoder’s latent space. We
initialize K Gaussian components and the appropriate number is determined automatically with the
aid of RPCL (Xu et al., 1993). The corresponding loss function is formalized as follows:

LGMM =

Ls∑
i=1

KL(uϕ(z̃i, k|s̃i)||oψ(z̃i, k)), (5)

where z̃i is the stroke embedding correspond to the stroke si and the KL term is calculated as in
(Jiang et al., 2016). The parameters of the GMM are learned by an EM-like algorithm, details of
which can be found in (Zang et al., 2021). In summary, the overall objective is:

LAE = Lseq + Limg + λLGMM , (6)

where λ is a hyperparameter and we set it to 0.0001 in practice.

Train the diffusion model. In this stage, the previously trained parameters of the stroke encoder
and the sequence decoder are fixed, and the following are the training objectives of the diffusion
model:

min
θ

E||ϵ− ϵθ((x,y)t, t, z̃))||22. (7)
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4 EXPERIMENT

4.1 PREPARATION

Dataset. Two dataset are selected from the largest sketch dataset QuickDraw (Ha & Eck, 2017) for
experiments. DS1 is a 17-category dataset (Su et al., 2020; Qi et al., 2022). The specific categories
are: airplane, angel, alarm clock, apple, butterfly, belt, bus, cake, cat, clock, eye, fish, pig, sheep,
spider, umbrella, the Great Wall of China. These categories are common in life and the instances
in the categories are globally similar in appearance. DS2 (Zang et al., 2021) is a widely used,
comparatively small dataset for synthesized sketches, comprising five categories: bee, bus, flower,
giraffe, and pig. Each category contains 70000 sketches for training and 2500 sketches for testing.

Implement Details. The AdamW optimizer (Loshchilov & Hutter, 2017) is applied to train the
proposed model with parameters β1 = 0.9, β2 = 0.999, ϵ = 10−8 and weight decay = 0.01.
We use the CosineAnnealingLR scheduler (Smith & Topin, 2019) with the peak learning rates are
0.002 and 0.0005 for the pre-trained model and the diffusion model, respectively. All the sketch is
padded to the same length, i.e. Lp = 180. Each sketch is break down into Ls = 25 strokes and each
stroke contains 96 points. The method are implemented by pytorch and trained on 5 RTX 2080Ti
GPUs. For the pre-trained network, we train it with 15 epochs and the batch size is 200. There are 8
gMLP blocks in the stroke encoder with dmodel1 = 96 and dffn1 = 384. The token mixture block
and the sequence decoder includes 2 and 12 gMLP blocks, respectively. We set dmodel1 = 128 and
dffn1 = 512 for these blocks. Drop path rate is set to 0.1. We train the U-Net of the diffusion
model with 40 epochs with the batch size is 768. The encoder and the decoder both consist of
12 gMLP blocks with the drop path rate is 0.1. The dmodel and dffn in these blocks are 96 and
384, respectively. For the forward process and the reverse denoising process, we set the time step
T = 1000. We consider the linear noise schedule for the model with β1 = 0.0001 and βT = 0.02.
We take 60 steps for DDIM sampling in default.

Competitors. We consider 3 types of models as the competitors for sketch reconstruction. Sketch-
RNN (Ha & Eck, 2017) employs a VAE (Kingma & Welling, 2013) framework to learn sketch
representations from sequences. Sketch-pix2seq (Chen et al., 2017) takes sketch images as input
to learn local structural information form sketches. RPCL-pix2seq (Zang et al., 2021) develops the
decoder of Sketch-pix2seq into a dual-branch architecture and constrain the code with GMM. Based
on the rasterized sketch images, SketchHealer (Su et al., 2020), SketchLattice (Qi et al., 2021), and
SP-gra2seq (Zang et al., 2023b) introduce the GNNs for better representations. The graphs are
constructed based on time, position, and synonymous proximity, respectively.

Metrics. To evaluate the performance of the SketchEdit, we select Rec (Zang et al., 2021), FID
(Heusel et al., 2017), LPIPS(Zhang et al., 2018), and CLIP Score (Radford et al., 2021; Hessel et al.,
2021) as the metrics. To classify whether the recreated sketches are belongs to the original category,
two sketch-a-nets (Yu et al., 2015) are trained on DS1 and DS2, respectively. Rec is the success rate
of recognition.

4.2 EDITING SKETCHES AT THE STROKE-LEVEL.

Stroke-level sketch editing involves modifying distinct strokes while minimizing the impact on the
overall structure. Sketches typically consist of various basic shapes, and strokes from other sketches
can be conveniently reused to edit the intended sketch, as illustrated in Fig. 3. The recycled shapes
may comprise constituents from the identical class with clearly defined meanings, for example,
an airplane fuselage, an umbrella handle, and so on. Using interpolation techniques to generate
additional components with uniform semantics can efficiently produce a substantial amount of novel
sketches. Apart from that, creative editing enables a sensible synthesis of strokes from different
categories of sketches. Some examples are provided in Fig. 3, for instance, the alarm clock’s bells
have been replaced by apple stems, and the SketchEdit has found a ”logical” place for the apple
stem.

Although our method is flexible when it comes to editing strokes, identifying appropriate metrics for
evaluation remains challenging. Therefore, we employ an intermediate task for evaluation. Initially,
we utilize the diffusion model for position locations based on normalized strokes. Then sketches are
synthesised with the generated locations. Subsequently. Table 1 reports the experimental results for
this intermediate task. Compared to the performance of recreating sketches with the original loca-
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Table 1: The performance for recreating sketches from normalized strokes with unknown locations.
Diffusion models are involved in the prediction of locations. SketchEdit(o l) denotes recreating
sketches with the original locations but not the generated locations.

Model DS1 DS2
Rec(↑) FID(↓) LPIPS(↓) CLIP-S(↑) Rec(↑) FID(↓) LPIPS(↓) CLIP-S(↑)

SketchEdit 78.79% 3.79 0.29 94.59 85.89% 7.77 0.37 91.96
SketchEdit(o l) 84.32% 3.12 0.11 96.73 93.42% 5.88 0.19 94.25

Figure 3: Exemplary sketch editing results. Boxes of the same color in each row denote the respec-
tive modified strokes. Creative sketches can be generated through the interpolation between strokes
in the latent space and the locations of strokes are produced by our diffusion model.

Figure 4: Examples of issues caused by the utilization of generated locations in sketch reconstruc-
tion. (a) Some of the components have moved. (b) The sketch category changes. (c) The results
synthesised are meaningless.

tions, the results with the generated ones experience a significant decrease , especially in the LPIPS
metric. There are three primary factors contributing to the decline in semantic similarity between the
recreated sketches and their corresponding sketches, as shown in Fig. 4. Reasonable movement of
components and generation of different classes of sketches is tolerated because our diffusion model
does not provide more guidance just to get appropriate stroke positions. An important reason for the
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generation of meaningless sketches is that the target sketches are rarer patterns, and our diffusion
model struggles to accurately predict stroke locations against them.

4.3 COMPARISON WITH STATE-OF-THE-ARTS FOR SKETCH RECONSTRUCTION

Sketch reconstitution requires the model to recreate the sketch τ̃ from the input τ . High-quality
sketch reconstruction is essential to maintaining a consistent visual appearance between the edited
sketch and the original sketch. In this subsection, we compare the SketchEdit with other sketch
synthesis methods. For a fair comparison, our model uses the original stroke Locations instead of
the generated ones.

Qualitative analysis. Table 2 reports the sketch reconstruction performance of the proposed method
and its competitors. Our model significantly outperforms other methods across all metrics. The
SketchEdit model captures global dependencies in sketch sequences more efficiently, while the pro-
posed sequence decoder addresses the challenge of stacked layers in LSTM and the deeper network
improves reconstruction results. However, due to the data-driven nature of the gMLP block, it lacks
adequate inductive bias, resulting in a less prominent advantage of SketchEdit on the smaller DS2
compared to DS 1. For Sketch-RNN (Ha & Eck, 2017), the FID metrics and other metrics present a
distinct phenomenon. The inputs for the Sketch-RNN and the SketchEdit consist of sketch sequences
or strokes, without requiring the sketches to be rasterized into images. There exists a considerable
domain gap between the sequences and the images, resulting in a disparity between the distributions
learned by the image-based approach and the sequence sketches.

Figure 5: The exemplary result of reconstructed sketches by the proposed SketchEdit and other
models. The categories from left to right are alarm clock, butterfly, belt, cake, cat, sheep, spider and
the Great Wall of China.

Table 2: The performance for sketch reconstruction with original stroke locations.
Model DS1 DS2

Rec(↑) FID(↓) LPIPS(↓) CLIP-S(↑) Rec(↑) FID(↓) LPIPS(↓) CLIP-S(↑)
Sketch-RNN 64.51% 6.87 0.33 91.82 77.74% 10.45 0.40 90.29

Sketch-pix2seq 66.99% 42.03 0.34 90.04 88.36% 42.78 0.37 90.22
RPCL-pix2seq 69.86% 44.09 0.32 90.37 90.66% 27.32 0.35 90.80
SketchLattice 48.88% 48.70 0.44 87.06 77.54% 50.92 0.45 87.80
SketchHealer 76.76% 21.62 0.32 92.15 90.93% 24.43 0.36 91.28
SP-gra2seq 76.60% 21.92 0.33 92.01 91.12% 21.69 0.37 91.15
SketchEdit 84.3284.3284.32% 3.123.123.12 0.110.110.11 96.7396.7396.73 93.4293.4293.42% 5.885.885.88 0.190.190.19 94.2594.2594.25

Quantitative analysis. Fig. 5 presents the qualitative comparisons. Compared to other approaches,
SketchEdit is capable of reconstructing sketches with high-quality, without introducing additional
noisy strokes, while preserving the structural patterns of the sketches. To prevent generated sketches
from changing category, the model must first learn an accurate representation of the category-level.
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A failure case is that Sketch-pix2seq reconstructs the last column of the Great Wall into a belt.
Capturing structural information at the instance-level is a challenging undertaking. While nearly all
the competitors reproduced ”cakes” as ”cakes”, the generated results displayed significant structural
changes. Furthermore, the existence of multiple styles within the same sketch category poses a
challenge to sketch reconstruction. The proposed SketchEdit shows significant preservation of detail
about sketch instances, which is the basis for our sketch editing task.

4.4 ABLATION STUDY

In this subsection, we discuss the effectiveness of the image decoder and the token mixture block.
We conduct the ablation study on DS1. SketchEdit(wo i) and SketchEdit(wo s) denote that no image
decoder is included and no token mixture block is shared between the two decoders, respectively.

Table 3: The performance for sketch reconstruction with the original locations and the generated
locations.

Model Original Locations Generated Locations
Rec(↑) FID(↓) LPIPS(↓) CLIP-S(↑) Rec(↑) FID(↓) LPIPS(↓) CLIP-S(↑)

SketchEdit(wo i) 83.56% 3.80 0.13 96.34 78.19% 4.45 0.30 94.36
SketchEdit(wo s) 84.20% 3.21 0.12 96.45 78.41% 3.93 0.29 94.42
SketchEdit(full) 84.3284.3284.32% 3.123.123.12 0.110.110.11 96.7396.7396.73 78.7978.7978.79% 3.793.793.79 0.290.290.29 94.5994.5994.59

Table 3 reports the results of the ablation experiments. SketchEdit(full) and SketchEdit(wo s) with
image encoders have performance advantages over Str2Seq(wo c). This is because the use of image
reconstruction allows the network to learn shape information and spatial relationships. Similarly,
SketchEdit(wo s) would make learning image-related information difficult for the token mixture
block at the sequence decoder. As shown in Fig. 6, some strokes overlap in the results produced
by SketchEdit(wo s) and SketchEdit(wo c) which reduces the quality of the recreated sketch. In
addition, SketchEdit(full) has marginally fewer parameters compared to SketchEdit(wo s) as it only
employs a single token mixture block.

Figure 6: Comparison of recreated sketches across various models in ablation studies.

5 CONCLUSION AND FUTURE WORK

In this paper, we develop the traditional sketch synthesis task to the more controllable sketch editing
task at the stroke-level and propose the SketchEdit to realize it. We have focused on decoupling
independent strokes from sketches to enable editing operations at the stroke-level. The core of our
methodology is to employ the diffusion model to acquire reasonable positions and recreate mean-
ingful sketches based on the strokes. Experimental results demonstrate that SketchEdit can edit
sketches without altering categories and facilitate the production of innovative sketches across vari-
ous categories. Meanwhile, SketchEdit which efficiently preserves the spatial structure of sketches
and supports the parallel reconstruction of sketch sequences, surpasses the state-of-the-art methods
significantly in the sketch reconstruction task.

While our work contributes to the research on the controllability of sketch generation, there remain
a number of issues that require further improvement in the future. (i) One aspect is more flexible
control, e.g., given no reference strokes, the model is able to automatically obtain a large number of
reasonable strokes to replace the ones to be edited. (ii) Although our technique is capable of produc-
ing high-quality outcomes, certain strokes are subject to over-smoothing, resulting in dissimilarities
from human drawing styles. Therefore, it is worthwhile further exploring the design of models that
align with human drawing styles and efficiently generate sequences. (iii) The design of metrics also
a tricky issue. Most of the existing metrics for measuring the results of image generation are based
on natural images rather than abstract sketches. Thus, the development of novel sketch evaluation
metrics for recreated or edited sketches also constitute a key aspect of forthcoming research.
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6 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of the proposed methodology, the details of each module are provided
in the Appendix. The full project code and the the detailed usage are provided in the supplementary
material.
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A THE DETAILS OF THE PRE-TRAINED MODEL

In the main text, we have given the details of the encoder and token mixture block setup, next we will
provide the details of the decoders. Fig. 7 shows the architecture of some components in our AE.
The token mixture block gives the embedding z̃mix ∈ RLs×dmodel2 after mixing the independent
strokes by gMLP blocks Liu et al. (2021). To decoder sequence or image from z̃mix, expanding the
number of tokens is necessary and Fig. 7 (a) is the structure of the component. Several convolutional
layers and deconvolutional layer are used in the image decoder to upsampling the feature map, as
shown in Fig. 7 (c). For sequence decoder, the recreated sequences are not predicted directly, instead
the parameters o(o1,o2, ...,oLp) of mixture density model (MDN) are output:

oi = Wohi + bo,oi ∈ R6M+3,

[(Π̂1, µx, µy, σ̂x, σ̂y, δx, δy, ρ̂xy)1, ..., (Π̂1, µx, µy, σ̂x, σ̂y, δx, δy, ρ̂xy)M , (q̂1, q̂2, q̂3)] = oi,

σx = exp(σ̂x), σy = exp(σ̂y), ρxy = tanh(ρ̂xy),

Πk =
Π̂k∑M
j=1 Π̂j

.

(8)

The first M sets of oi are the parameters for a GMM with M normal distributions, which is used to
model the ordination (x, y). Hence (x, y) can be expressed in probabilistic form as follows:

p(x, y) =

M∑
j=1

ΠjN (x, y|µx,j , µy,j , σx,j , σy,j , ρxy,j),
M∑
j=1

Πj = 1, (9)

The last three parameters of oi are used to model the pen state distributions:

qk =
q̂k∑3
j=1 q̂j

. (10)

Figure 7: (a) Expanding the number of tokens. (b) gMLP Liu et al. (2021) blocks. (c) The im-
age decoder of our methods. (d) The proposed sequence decoder. Spatial projection and channel
projection in the figure are both linear projection.

B THE ARCHITECTURE OF U-NET

As shown in Fig. 8 the U-Net (Ronneberger et al., 2015) in the diffusion model is also based on
gMLP block. The time step encoding is first initialized using sine-cosine encoding. The final code
is then obtained by going through a nonlinear mapping layer and a linear mapping layer in turn.

13



Under review as a conference paper at ICLR 2024

Figure 8: The designed U-shape like network for our diffusion model. A linear projection is included
for dimensional changes to the Stroke embeddings output by the encoder.

C RECREATE MULTI-STYLE SKETCHES

Fig. 9 shows some examples of SketchEdit’s effective reconstruction of multi-style sketches. Ben-
efiting from the strong reconstruction capability for multi-style sketches, the model also maintains
the sketch structure features well during the sketch editing task.

Figure 9: Samples of multi-style sketches in the same category. (Left) The original sketches from
dataset and (Right) the recreated sketches by the original locations. The categories from top to down
are clock, bus, flower, giraffe, pig, fish, apple and bee.

D THE DETAILS OF LOSS FUNCTION

In this section, we describe the objectives Lseq and LGMM . Lseq Ha & Eck (2017) is consist of
two terms, e.g., maximize the likelihood of the reconstructed distribution and the classification of
the pen state. Details are as follows:

Ls = − 1

Lp

Ns∑
i=1

log

M∑
j=1

ΠjN (x, y|µx,j , µy,j , σx,j , σy,j , ρxy,j),

Lp = − 1

Lp

Lp∑
i=1

3∑
k=1

pk,i log q̂i,

(11)

where Ns is the number of points in the original sequence.
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For the GMM used to constraint the latent space, we initialize K = 40 Gaussian components and
utilize a EM-like learning algorithm Zang et al. (2021) to update the parameters of GMM in each
training step:

E − step :u
(t)
ϕ (k|z̃i) =

o
(t−1)
ψ (k)o

(t−1)
ψ (z̃i|k)∑

j o
(t−1)
ψ (j)o

(t−1)
ψ (z̃i|j)

,

û
(t)
ik =


1, winer, k = k∗, k∗ = argmaxku

(t)
ϕ (k|z̃i);

−0.0001, rival, k = u, u = argmaxk ̸=k∗u
(t)
ϕ (k|z̃i);

0, otherwise.,

M − step :µ̂
(t)
k =

∑
i z̃i · û

(t)
ik∑

i û
(t)
ik

,

diag(σ̂
2(t)
k ) =

∑
i û

(t)
ik [̇(z̃i − µ

(t)
k )(z̃i − µ

(t)
k )T + diag(σ̃2

i )]∑
i û

(t)
ik

,

α̂
(t)
k =

∑Ls

i=1 û
(t)
ik

Ls

Update :µ
(t)
k = (1− η)µ

(t−1)
k + ηµ̂

(t)
k

σ
2(t)
k = max{(1− η)σ

2(t−1)
k + ησ̂

2(t)
k , 10−5I},

α
(t)
k = max{(1− η)α

(t−1)
k + η

ˆ
α
(t)
k , 0},

(12)

where α̂k,µk and diag(σ2
k) denote the mixing probability, Gaussian centroid and diagonal covari-

ance matrix of the k-th Gaussian. And the details about the calculation of LGMM , please refer to
(Jiang et al., 2016).
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