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ABSTRACT

Time-series modeling is broadly adopted to capture underlying patterns present
in historical data, allowing prediction of future values. However, one crucial as-
pect of such modeling is often overlooked: in highly dynamic environments, data
distributions can shift drastically within a second or less. Under these circum-
stances, traditional predictive models, and even online learning methods, struggle
to adapt to the ultra-fast and complex distribution shifts present in highly dynamic
scenarios. To address this, we propose InstaTrain, a novel learning approach that
enables ultra-fast model updates for real-world prediction tasks, thereby keeping
pace with rapidly evolving data distributions. In this work, (1) we transform the
slow and expensive training process into an ultra-fast natural annealing process
within a dynamical system. (2) Leveraging a recently proposed electronic dynam-
ical system, we augment the system with parameter update modules, extending
its capabilities to encompass both rapid training and inference. Experimental re-
sults on highly dynamic datasets demonstrate that our method achieves orders-of-
magnitude improvements in training speed and energy efficiency while delivering
superior accuracy compared to baselines running on GPUs.

1 INTRODUCTION

Time-series prediction lies at the heart of artificial intelligence, powering applications ranging from
weather forecasting (Karevan & Suykens, 2020; Bochenek & Ustrnul, 2022) to product and con-
tent recommendation (He et al., 2017; Zhang et al., 2021). Current neural network methods have
achieved remarkable success by learning the joint distribution between inputs and predictions (Lim
& Zohren, 2021). However, these methods often implicitly assume that the learned joint distribution
remains stable over a considerably long period, an assumption that can easily be violated when the
underlying distribution undergoes severe shifts, consequently causing significant failures in trained
models. In response to this challenge, the community has pivoted toward more adaptive learning
strategies, such as online learning and continual learning approaches (Hoi et al., 2021; Chen et al.,
2021; Pham et al., 2022; Wen et al., 2024). These methodologies are designed to incrementally
adjust model parameters, thereby maintaining alignment with current data trends. Despite their
advancements, they struggle to adapt to the circumstances where data distribution evolves rapidly
due to their insufficient adaptation speed. This underscores the pressing need for more agile and
responsive approaches that can swiftly adapt to shifts in distribution and ensure model effectiveness.

In the post-Moore’s Law era, the limitations of speed improvements in digital processors (such as
CPUs and GPUs) have become more pronounced, attracting growing attention in novel computing
substrates, a promising yet largely untapped area of research (Momeni et al., 2024). As a promising
candidate, a recently developed electronic dynamical system (Afoakwa et al., 2021; Sharma et al.,
2022) stands out due to its timely applicability, low power consumption, and exceptionally fast
computational speed. Similar to natural dynamical systems, where particles naturally move toward
lower energy states following the Second Law of Thermodynamics, the behavior of this electronic
dynamical system is governed by its energy function (Hamiltonian), with lower energy states being
rapidly reached through natural annealing – a process where electrons spontaneously move among
capacitors to seek equilibrium at the “speed of electrons” and on the milliwatt scale.
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However, despite this system having been utilized to accelerate graph learning inference (Wu et al.,
2024), the model training process still relies on conventional digital processors, which cannot keep
up with rapidly evolving data distributions in real-world applications. Consequently, a more ad-
vanced learning approach is critically needed to fully exploit the exceptional computational power
of this dynamical system. Since the system specializes in performing natural annealing, it holds the
potential to meet the ultra-fast model learning demand if the sluggish offline training process can
be transformed into the natural annealing process. This idea also aligns with the concept of “mor-
tal computation” proposed by (Hinton, 2022), which advocates for the integration of algorithms
and hardware, thereby offering significantly lower costs compared to conventional neural networks
running on CPUs and GPUs.

Figure 1: Overview of InstaTrain.

In response to this opportunity, we propose
InstaTrain, which extends the extraordinary
computational efficiency of the electronic dy-
namical system from inference to training, ad-
dressing the need for capturing rapidly evolving
data distributions. The overall framework of
this approach is illustrated in Fig. 1, compris-
ing two major components. (1) Training Algo-
rithm: Formulated as a dynamical system, our
model is determined by the trainable param-
eters in the Hamiltonian, or energy function.
The proposed algorithm accomplishes training
through an iterative natural annealing process,
which pushes the lowest energy state of the dy-
namical system to match the ground truth pro-
vided by training data. (2) Hardware Aug-
mentation: We enhance the dynamical system
with parameter update modules to realize the self-training mechanism. This allows both training and
inference to be carried out on the same hardware, resulting in outstanding computational efficiency
and, essentially, achieving real-time model adaptation upon highly dynamic data distributions.

The core contributions of this paper are summarized as follows:

• We propose InstaTrain, a novel learning approach designed to address the demands for ultra-
fast model adaptation in highly dynamic time-series prediction.

• We transform the sluggish offline training into an iterative natural annealing process within a
dynamical system, enabling ultra-fast model training and updating.

• We augment the original dynamical system with parameter update modules, extending its ca-
pabilities to encompass both rapid training and inference.

• Experimental results across highly dynamic datasets show that the proposed method achieves
orders-of-magnitude improvements in training speed and energy efficiency while delivering
superior accuracy compared to baselines running on GPUs.

2 BACKGROUND

This section provides background on the targeted electronic dynamical system, discussing its math-
ematical model, physical embodiment, and offline training method.

Mathematical Model. Mathematically, the dynamical system describes how components (nodes)
interact and influence each other’s states over time, driving the system’s evolution toward equilib-
rium. The system has been utilized to accelerate graph learning inference (Wu et al., 2024), with a
real-valued Hamiltonian function:

H(s) = −
N∑
i ̸=j

Jijσiσj +

N∑
i

hiσ
2
i , (1)

where σi ∈ R. s = {σ1, σ2, ..., σN} denotes the nodes in the dynamical system, Jij represents the
relationship between node σi and node σj , and hi refers to the self-reaction strength, and is forced
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positive. This Hamiltonian function H is derived from the classic binary Ising Hamiltonian (Cipra,
1987) rooted in ferromagnetism physics, but extends it to overcome the binary limitations of nodes
restricted to values of +1 or −1. Specifically, the binary limitation of the Ising model refers to the
failure of naively extending its binary nodes to real values. The Hamiltonian of binary Ising model
is Hb(s) = −

∑N
i̸=j Jijσiσj −

∑N
i hiσi. If nodes are real-valued, they evolve to ±∞ to pursue

the lowest energy state, which is −∞. Even if boundaries are applied to σi, σi is only intercepted
along its way to infinity, resulting in polarized values and essentially a binary model. In contrast, in
the real-valued Hamiltonian function (i.e.,H), the quadratic term acts as an energy regulator, which
prevents the energy from going down to −∞, allowing nodes to be localized at certain values. This
extension gives nodes the ability to take on real values, thus making it feasible to perform more
precise modeling of real-valued systems in real life. In this work, the Hamiltonian that supports
real-valued nodesH is employed.

Physical Embodiment. The dynamical system is physically realized as an electronic cir-
cuit (Afoakwa et al., 2021), where electronic components facilitate the system’s spontaneous en-
ergy decrease toward equilibrium (i.e., dH/dt ≤ 0). Specifically, each node σi is represented
as a voltage on a capacitor C, while coupling parameters J and h are implemented as resistor
conductance. According to Lyapunov stability analysis, the node dynamics can be designed as
dσi/dt ∝ −∂Hrv/∂σi:

dσi

dt
=

1

C

 N∑
j ̸=i

(Jij + Jji)σj − 2hiσi

 , (2)

guaranteeing the system evolves toward lower energy state:

dH
dt

=

N∑
i

∂H
∂σi

dσi

dt
= −

N∑
i

1

C

(
∂H
∂σi

)2

≤ 0. (3)

Here, C denotes the capacitance, a positive constant. The node dynamics indicate that the value
of each node σi is influenced by its input electric currents (Jij + Jji)σj from others nodes as
well as its local current 2hiσi. Therefore, through charging or discharging the capacitors at “speed
of electrons”, the node values adjust rapidly, driving the system toward equilibrium with minimal
power consumption.

Offline Training. To train the parameters J and h in H, prior research (Wu et al., 2024) employs
a conditional likelihood method implemented on conventional digital processors. This approach fo-
cuses on one node σi at a time, treating other nodes as conditions. An estimated value for node σi

is computed as σ̂i = 1
2hi

∑N
j ̸=i (Jij + Jji)σj . The difference between σ̂i and the corresponding

ground truth is then evaluated using loss metrics such as Mean Absolute Error (MAE). By mini-
mizing these losses, the parameters are optimized to align the ground truth with the system’s lowest
energy state. Consequently, during inference, the inherent process of spontaneous energy decrease
drives the system toward the lowest energy state, producing the desired solution.

3 METHODOLOGY: INSTATRAIN

In this section, we present InstaTrain, a novel learning approach that leverages the natural annealing
process within a dynamical system to enable ultra-fast model training, capturing rapidly evolving
data distribution for prediction tasks. We first introduce our Iterative Natural Annealing Training
(INAT) algorithm, including how to formulate the prediction problem using the dynamical system
and the detailed training process. Furthermore, we augment the original electronic hardware, inte-
grating update modules to enable the self-training feature.

3.1 ITERATIVE NATURAL ANNEALING TRAINING (INAT)

3.1.1 FORMULATING PREDICTION VIA NATURAL ANNEALING

Consider a time-series prediction task where we aim to predict a system’s future states st+1 based
on its historical states st, i.e., st+1 = fθ(s

t). The goal is to optimize the parameters θ so that fθ
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accurately captures the system’s evolution over time. We can reformulate this prediction problem
using a dynamical system. Specifically, let st and st+1 represent the node configurations of the
dynamical system at consecutive time steps. Without loss of generality, we clamp the first N/2 node
values to the input state (σ1, ..., σN/2) = st, and allow the remaining N/2 nodes (σN/2+1, ..., σN )
to anneal freely. If the Hamiltonian parameters J and h perfectly capture the dependencies between
inputs and predictions, then the ground truth configuration s∗ = (st, st+1) corresponds to the lowest
energy of the dynamical system. Consequently, by clamping the input nodes to st and letting the
remaining nodes evolve according to the designed dynamics (Eq. 2), the natural annealing process
will drive the system toward the lowest energy state (equilibrium), resulting in the remaining nodes
converging to the desired solution st+1.

We can further interpret this annealing process using the Boltzmann distribution, which defines a
mapping from energy to probability. Specifically, the lowest energy node configuration corresponds
to the maximum probability state through the following:

ps∗ =
1

Z
e−H(s∗), (4)

Figure 2: Prediction via annealing.

where Z is the partition function defined as
∫
e−Hdσ,

functioning as a normalizing constant. Therefore, the
system’s evolution towards the lowest energy state is
equivalent to finding the desired prediction st+1 with the
highest probability under the Hamiltonian H. To elu-
cidate more clearly, we visualize the whole process in
Fig. 2. Clamping the input st confines the entire en-
ergy landscape to a subspace compatible with the given
input data. Within this constrained landscape, the remain-
ing unclamped nodes undergo natural annealing, sponta-
neously evolving toward the lowest energy state. This
process efficiently yields the desired solution st+1, lever-
aging the extraordinary computational power inherent in
the dynamical system.

3.1.2 TRAINING THROUGH ITERATIVE NATURAL ANNEALING

Through the above description, we can perform efficient prediction on the dynamical system given
the optimal Hamiltonian parameters J and h. In terms of training, instead of undergoing costly
training processes on digital processors, it is much more preferable that model training is also avail-
able on the dynamical system. To address this, we describe how to obtain the target parameters from
the training data through an iterative natural annealing process, the same process used for inference.

Specifically, we seek to maximize the likelihood of the training set under the model:

argmax
J,h

∏
s∈T

ps, (5)

where T is the training set. This is equivalent to minimizing the negative log-likelihood loss:

argmin
J,h

L (s; J, h) = 1

M

∑
s∈T

(
ln (Z)− ln

(
e−H))

, (6)

where M is the number of training samples. The gradients of L with respect to Jij are given by

∂L(s)
∂Jij

=
∂ ln(Z)

∂Jij
+

1

M

∑
s∈T

∂H
∂Jij

, (7)

where the two terms are essentially expectations of node multiplications:

∂ ln(Z)

∂Jij
=

1

Z

∂Z

∂Jij
=

∫
e−Hσiσj dσ∫
e−H dσ

= ⟨σiσj⟩model, (8)

1

M

∑
s∈T

∂H
∂Jij

= − 1

M

∑
s∈T

σiσj = −⟨σiσj⟩data. (9)
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Figure 3: Model training through iterative natural annealing.

Particularly, ⟨σiσj⟩data denotes the expectation over the training data, which is tractable, and
⟨σiσj⟩model corresponds to the expectation of σiσj given by the current model. Consequently, the
gradient for the coupling parameter Jij is

∂L (s)
∂Jij

= ⟨σiσj⟩model − ⟨σiσj⟩data . (10)

In the same way, the gradients of hi are given by

∂L(s)
∂hi

=
∂ln(Z)

∂hi
+

1

M

∑
s∈T

∂H
∂hi

=
∂ln(Z)

∂hi
+

1

M

∑
s∈T

σ2
i = −

〈
σ2
i

〉
model +

〈
σ2
i

〉
data . (11)

Therefore, to update the parameters, we need ⟨σiσj⟩model and
〈
σ2
i

〉
model, which correspond to the

expectation under the current model parameters. To estimate ⟨·⟩model, we leverage the computational
power of the electronic dynamical system to achieve remarkable efficiency. As described in §3.1.1,
we can estimate the current model’s prediction ŝt+1 through clamping st to input nodes and allowing
the dynamical system to perform natural annealing. By measuring the node configurations at the
end of the annealing process, we can estimate the required model expectations ⟨σiσj⟩model and
⟨σ2

i ⟩model. In this way, the training process is transformed into an iterative natural annealing process,
as described in Algorithm 1 and illustrated in Fig. 3. This innovative training process eliminates the
need for computationally expensive offline training. Instead, it harnesses the natural energy decrease
feature to perform efficient computations, enabling ultra-fast model training.

To summarize, the outcome of the natural annealing process depends on the accuracy of the current
Hamiltonian parameters in capturing the dependencies between the inputs and predictions. When
the values of some nodes are fixed to st, two scenarios can occur: (1) If the parameters properly

Algorithm 1 Iterative Natural Annealing Training
Input: Training set T = {s1, s2, . . . , sM}, initial J0, h0, learning rate η, and training epochs Niter.
Output: Trained Hamiltonian parameters J, h.

1: Initialize J ← J0, h← h0.
2: for i = 1 to Niter do
3: for each sj = (stj , s

t+1
j ) in T do

4: Clamp the first half nodes to stj
5: Perform natural annealing to obtain ŝt+1

j

6: Get ⟨σiσj⟩model and ⟨σ2
i ⟩model based on stj , ŝ

t+1
j

7: Get ⟨σiσj⟩data and ⟨σ2
i ⟩data based on stj , s

t+1
j

8: Update Jij ← Jij − η · ⟨σiσj⟩model − ⟨σiσj⟩data)
9: Update hi ← hi − η · (−⟨σ2

i ⟩model + ⟨σ2
i ⟩data)

10: end for
11: end for
12: return J, h
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describe the dependencies, the annealing process will converge to the desired solution st+1, repre-
senting the ideal case where the model has successfully learned the correct relationships between
the inputs and predictions. (2) If the parameters do not accurately capture these dependencies, the
annealing process will instead yield results that align with the current model’s expectations, denoted
by ⟨σiσj⟩model and

〈
σ2
i

〉
model. This outcome indicates that the model’s parameters require further

optimization to better represent the underlying dependencies. Regardless of the parameter accuracy,
both scenarios correspond to the equilibrium state of the dynamical system.

3.2 HARDWARE AUGMENTATION
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Figure 4: Redesigned InstaTrain hardware.

The physical realization of this dynamical sys-
tem is achieved by mapping the node values
to the voltages applied on nano-scale capacitors
C, and modeling the Hamiltonian parameters J
and h as the conductance of resistors. More
specifically, referring to Fig. 4, the value of
the node σi corresponds to the voltage Vi, the
effective conductance of the coupling between
node σi and node σj is Jij (yellow blocks).
The effective conductance of the added resis-
tor for node σi is 2hi, which is embedded in
the node (green blocks). This mapping enables
the construction of the dynamical system using
a mesh of programmable resistors, which are in-
terconnected and span across all nodes. By ex-
ploiting the intrinsic dynamics (Eq. 12) of this
resistor-capacitor network, the natural annealing
process can be physically implemented, allow-
ing for rapid convergence toward the equilibrium
state that corresponds to the desired results.

C
dVi

dt
= −∂H

∂Vi
=

∑
j ̸=i

(Jij + Jji)Vj − 2hiVi = Iin − IR. (12)

After implementing the natural annealing process in this electronic system, we need to further make
the system self-trainable. This requires integrating update modules compared to the original design.
In particular, the update modules take the values of nodes σi and σj as input, compute ViVj , and
update the voltage VJ applied to the capacitor CJ . The programmable parameter Jij is then updated
according to the value of VJ . As depicted in Fig. 4, we embed the update modules (purple blocks)
into coupling units (for updating Jij) and nodes (for updating hi). The detailed steps are:

1. Initialize Jij and hi through preset, giving VJ an initial value.
2. Initialize Vi and Vj . Set known ground truth values for input nodes, and arbitrary values for

remaining nodes.
3. Perform natural annealing to get the updated voltages for unclamped nodes.
4. Obtain ⟨ViVj⟩model using the analog multiplier, storing the results as voltages in capacitors.
5. Load the ground truths for unclamped nodes.
6. Obtain ⟨ViVj⟩data using the analog multiplier, storing the results as voltages in capacitors.
7. Based on the voltage difference between ⟨ViVj⟩model and ⟨ViVj⟩data, the positive path is enabled

if the former is larger; otherwise, the negative path is enabled.
8. The difference between the two voltages is used to adjust VJ , thereby updating Jij .
9. Repeat steps (2)-(8) for the next iteration.

Through these steps, the entire training process is transformed into an iterative natural annealing
process within the dynamical system, enabling ultra-fast training for highly dynamic applications.
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4 EVALUATION

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate InstaTrain on five high-frequency datasets, each providing 100 samples per
second. Carbon-Oxide consists of sampled time series data collected from a gas delivery plat-
form facility, capturing readings from chemical sensors exposed to varying concentrations of carbon
oxide and ethylene mixtures (Fonollosa et al., 2015b). Similarly, Methane includes sampled data
from chemical sensors exposed to mixtures of methane and ethylene at varying concentration lev-
els (Fonollosa et al., 2015b). Stock contains sampled stock data of S&P-500 (Nasdaq). Ammonia
includes sampled time series recordings from a chemical detection platform, featuring data from 72
metal-oxide sensors across six different locations, all maintained under consistent wind speed and
operating temperatures (Fonollosa et al., 2015a). Toluene comprises sampled time series recordings
from 72 sensors at one location, collected under ten varying conditions (two wind speeds and five
operating temperatures) from a chemical detection platform (Fonollosa et al., 2015a).

Baselines. We evaluate InstaTrain in three scenarios: static scenarios, low-frequency update scenar-
ios, and high-frequency update scenarios.

• Static Scenarios: Models are trained on the first 25% of each dataset and evaluated on the re-
maining 75%. We compare against Graph Neural Networks (GNNs), Transformer-based time
series prediction models, and NPGL (Wu et al., 2024). The GNNs include: GraphWaveNet (Wu
et al., 2019), MTGNN (Wu et al., 2020), and MegaCRN (Jiang et al., 2023). The Transformer-
based prediction models include: Autoformer (Wu et al., 2021), DLinear (Zeng et al., 2023),
iTransformer (Liu et al., 2023a). All methods are implemented following the experimental se-
tups detailed in their respective original papers.

• Low-Frequency Update Scenarios: Building upon the pre-trained static models above, the
GNNs, Transformer-based prediction models, NPGL, and InstaTrain are updated as new data
become available. In particular, the models are updated once after observing 1,000 snapshots,
equivalent to 10 seconds in the real world. After each update, the model is tested on the subse-
quent 1,000 snapshots.

Table 1: Accuracy comparison using MAE. Lower values indicate better performance. LF / HF: Low
/ High Frequency. Gray-shaded results indicate “Not Achievable” results due to slow processing.

Dataset Carbon-Oxide Methane Stock Ammonia Toluene

Static

GWN 14.40 19.34 3.34 19.35 13.26
MTGNN 24.47 19.31 2.85 13.43 18.74
MegaCRN 25.94 23.65 3.45 18.12 20.15
Informer 14.16 19.37 2.76 13.59 13.07
DLinear 14.08 19.32 2.31 12.74 12.82
iTransformer 14.02 19.29 2.27 12.41 11.95
NPGL 13.90 19.22 2.01 12.15 11.43
InstaTrain 13.88 19.25 2.02 12.08 11.37

LF Update

GWN 10.28 11.84 1.85 4.72 5.82
MTGNN 12.51 11.57 1.70 4.95 5.19
MegaCRN 12.34 13.49 1.87 5.41 5.93
Informer 9.21 10.41 1.64 4.39 5.25
DLinear 8.82 10.25 1.39 4.16 4.96
iTransformer 8.53 9.72 1.22 3.94 4.85
NPGL 8.25 9.26 1.18 3.81 4.68
InstaTrain 8.28 9.22 1.20 3.72 4.67

HF Update

FSNet 7.11 7.14 0.79 1.48 2.07
PatchTST 7.05 7.09 0.80 1.46 2.02
OneNet 6.93 7.11 0.77 1.42 1.93
InstaTrain 6.79 7.05 0.68 1.36 1.86
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• High-Frequency Update Scenarios: Similar to the low-frequency setup, but with models allowed
to update more frequently to further improve accuracy. Specifically, InstaTrain is updated once
every 100 snapshots (equivalent to 1 second in real time), leveraging its rapid adaptation capabil-
ity. After each update, the model is evaluated on the subsequent 100 snapshots. In this case, we
compare against online learning models, including FSNet (Pham et al., 2022), online-adapted
PatchTST (Nie et al., 2022) proposed in (Wen et al., 2024), and OneNet (Wen et al., 2024). These
online learning models are implemented based on the setup detailed in their original papers.

Platforms. We evaluate the accuracy and inference latency of GNNs, Transformer-based mod-
els, and online learning models using an NVIDIA A100-40GB GPU. Training latency for NPGL,
GNNs, Transformer-based models, and online learning models is also measured on the same GPU.
The accuracy and inference latency of NPGL, along with the accuracy, training latency, and infer-
ence latency of InstaTrain, are assessed using a CUDA-accelerated Finite Element Analysis (FEA)
software simulator implemented based on BRIM (Afoakwa et al., 2021). Furthermore, the Cadence
Mixed-Signal Design Environment is employed to evaluate the power consumption of InstaTrain.

4.2 MAIN RESULTS

Accuracy Evaluations. Table 1 presents accuracy results across five datasets using MAE as the
evaluation metric. Results for dynamic scenarios are averaged across test sets. The comparison
across different scenarios indicates that high-frequency updates are crucial for achieving better per-
formance. However, due to computational limitations, GNNs, Transformer-based prediction mod-
els, and NPGL can only accommodate the low-frequency update schedule (as shown in Fig. 5). The
high-frequency update schedule requires completing updates within 1 second, which is infeasible
for these methods. Although selected online learning methods also cannot meet high-frequency up-
date requirements, we still calculate their accuracy under the high-frequency setup for the sake of
comparison. The results show that InstaTrain outperforms GNNs and Transformer-based predic-
tion models in both static scenarios and low-frequency update scenarios across all datasets, with
comparable accuracy versus NPGL. On average, InstaTrain reduces MAE by 14.45% compared to
baselines in static scenarios and by 15.14% in low-frequency update scenarios. In high-frequency
update scenarios, InstaTrain outperforms online learning methods with a 6.29% MAE reduction.

Notably, when comparing across different update scenarios, InstaTrain with high-frequency up-
dates achieves a substantial 74.17% MAE reduction compared to all static models, and a 49.51%
MAE reduction versus all low-frequency update models, underscoring the critical importance of
high-frequency model updating. In summary, the limitation of baselines positions InstaTrain as the
optimal solution in the cases where data distributions change rapidly and require frequent adaptation.

Latency Evaluations. Figure 5 illustrates the update latency of each method across all datasets.
InstaTrain achieves microsecond-level (10−4 seconds) update latency, significantly outperforming
other approaches that operate at the second level. The orange dashed line represents the update
latency requirement for low-frequency model updates (10 seconds). All models perform below this
threshold, enabling them to realize the accuracy improvements associated with transitioning from
static to low-frequency updating. In contrast, the red dashed line indicates the latency require-
ment for high-frequency model updates (1 second). Under this criterion, only InstaTrain satisfies
the requirement, while all other models fail to achieve the necessary speed for further accuracy
enhancements from high-frequency updating.

Carbon-Oxide Methane Stock Ammonia Toluene
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Figure 5: Update latency of methods across datasets.

8



Published as a conference paper at ICLR 2025

Carbon-Oxide Methane Stock Ammonia Toluene
10 8

10 7

10 6

10 5

10 4

10 3

In
fe

re
nc

e 
La

te
nc

y
pe

r S
na

ps
ho

t (
s)

GWN
MTGNN

MegaCRN
Autoformer

DLinear
iTransformer

FSNet
PatchTST

OneNet
NPGL

InstaTrain

Figure 6: Average inference latency per snapshot.

In addition, the inference latency results in Fig. 6 show that InstaTrain also benefits from the ex-
ceptional efficiency brought by the electronic dynamical system, resulting in a similar latency with
respect to NPGL. On average, InstaTrain achieves a ∼4,000× speedup in online learning compared
to all baseline models across all tasks, while achieving a ∼3,000× speedup in inference compared
to all baselines except NPGL. These results underscore the superior computational efficiency of the
proposed InstaTrain.

Table 2: Hardware comparison.
Hardware Power Fast Training Fast Inference

A100 250W No No

NPGL 500mW No Yes

InstaTrain 950mW Yes Yes

Power and Energy Consumption. Table 2
presents a hardware comparison. Compared
with the A100 GPU, InstaTrain operates
with ultra-low power consumption, requir-
ing approximately 950mW. For a reasonable
reference, we assume the average power for
the A100 GPU used in this work is 250W. In
terms of overall energy consumption, taking
into account the exceptional speedups achieved in training and inference across the selected datasets,
InstaTrain achieves more than 105 greater energy efficiency compared to A100 GPUs. Compared to
NPGL, despite higher power utilized, InstaTrain supports ultra-fast online training, still resulting in
orders-of-magnitude training energy reduction.

Ablation Study. Update frequency plays a crucial role in balancing model accuracy and computa-
tional efficiency. To investigate its impact, we vary the update interval of InstaTrain from every 50
snapshots to every 1,000 snapshots across all datasets. The results, presented in Table 3, demon-
strate that generally, higher-frequency updating achieves better accuracy, as reflected by lower MAE
values. This finding further underscores the significance of InstaTrain, which enables extremely
high-frequency online updates.

Table 3: Ablation study on update interval.
Update Interval Carbon-Oxide Methane Stock Ammonia Toluene

1000 8.28 9.22 1.20 3.72 4.67
500 7.26 8.46 0.84 2.41 3.57
100 6.79 7.05 0.68 1.36 1.86
50 6.73 7.02 0.67 1.33 1.85

5 RELATED WORK

Dynamical Systems in Machine Learning. Dynamical systems have gained increasing attention in
the machine learning community due to their unique properties and their potential to enhance com-
putational efficiency. These systems, which model the evolution of states over time, offer an alterna-
tive framework for solving complex optimization problems and machine learning tasks. However,
the majority of studies showcasing their potential have been confined to relatively straightforward
applications, primarily within the binary domain. For instance, the binary Ising model has been em-
ployed to formulate optimization problems (Lucas, 2014), which can be efficiently solved on Ising
machines (Mohseni et al., 2022). Additionally, several real-world problems, such as satisfiability
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(SAT) problems (Sharma et al., 2023a;b), traffic congestion prediction (Pan et al., 2023), uplink
MIMO detection (Singh et al., 2023) and collaborative filtering (Liu et al., 2023b), have also been
formulated and addressed using the binary Ising model. While these works have offered valuable
insights of using dynamical systems for practical problem solving, they remain constrained by the
inherent binary nature of the Ising model, which impedes further progress in real-valued applications
in the real world.

Recent efforts, such as those by (Wu et al., 2024), have sought to extend the traditional binary Ising
model to accommodate real-valued nodes. Despite this advancement, the practical impact of these
extensions has been limited. Firstly, the acceleration achieved by these approaches is confined to
the inference phase, leaving the primary bottleneck of training unaddressed. Secondly, the bene-
fits of accelerated inference are diminished if the model is static and cannot be promptly updated,
especially in highly dynamic applications where patterns evolve rapidly. In summary, while dynam-
ical systems have proven effective for certain machine learning problems, the slow training process
continues to hinder their broader applicability.

Novel Computing Paradigms. The limitations of conventional von Neumann architectures have
been a bottleneck in modern computing. The separation between processing and memory units,
commonly referred to as the “von Neumann bottleneck”, limits the performance of CPUs and GPUs.
With Moore’s Law decelerating and conventional transistor scaling nearing its physical limits, there
is an urgent need to explore alternative computing paradigms capable of overcoming these con-
straints and sustaining performance gains.

In response to these challenges, researchers have investigated several novel computing paradigms.
For instance, quantum computing, such as D-Wave (Bunyk et al., 2014), leverages quantum me-
chanical effects to solve combinatorial optimization problems. Despite their impressive speedups
in certain domains, these systems generally require cryogenic environments and are highly special-
ized, which limits their scalability and broad applicability. Optical computing, such as coherent
Ising machines (Yamamoto et al., 2017), exploits the inherent parallelism of light to perform com-
putations at remarkable speeds. However, integration, stability, and reliability issues have hindered
their widespread adoption. Inspired by the structure and functionality of biological neural networks,
neuromorphic computing has led to the development of systems such as TrueNorth (Akopyan et al.,
2015) and Loihi (Davies et al., 2018). Although these systems offer substantial energy efficiency
benefits for neural network applications, they often lack the programming flexibility and face chal-
lenges in general-purpose computation beyond specific neural algorithms.

Within this diverse landscape, the CMOS compatible Ising machine BRIM (Afoakwa et al., 2021)
has emerged as a particularly compelling alternative. BRIM leverages the natural dynamics of elec-
tronic circuits to perform computation via natural annealing. Its design is based on analog compo-
nents such as capacitors and resistors, which allow the system to achieve ultra-fast computation by
exploiting the inherent parallelism of physical processes. Moreover, BRIM operates at extremely
low power levels—typically on the order of milliwatts—making it an energy-efficient solution. Be-
sides, its compatibility with standard CMOS fabrication techniques facilitates seamless integration
into existing semiconductor workflows, which further enhances its practical applicability.

6 CONCLUSION

This paper presents InstaTrain, a novel ultra-fast model learning approach for prediction tasks. By
transforming the expensive training process into an iterative natural annealing process within a dy-
namical system, our method enables the model to rapidly adapt to the ever-changing correlations be-
tween inputs and predictions, addressing the pressing need for agility and responsiveness in highly
dynamic applications. This pioneering approach transcends the limitations of conventional methods
and paves the way for a new era of ultra-fast and energy-efficient learning, empowering applications
in domains characterized by high data volatility and stringent latency requirements. Further explo-
rations could focus on incorporating advanced online learning strategies that are compatible with
the hardware, which might yield better solutions. To highlight, InstaTrain achieves, on average, a
∼4,000× speedup in training supporting microsecond-level model updates and a ∼ 105× reduction
in training energy cost, along with lower MAE compared to baselines running on GPUs.
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