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ABSTRACT

Recent research on tool integration for math Large Language Models (LLMs)
aims to combine complementary strengths of chain-of-thought (CoT) reasoning
and code execution. However, we discover a critical limitation: current tool-
integrated math LLMs rely on externally dictated instructions to decide whether
to use CoT or code, lacking the autonomy to choose the most appropriate method
independently. This prompts us to study Autonomous Code integration for math
LLMs, which enables models to independently develop their own methodology-
selection strategy in the absence of reliable supervision. To address this challenge,
we propose an innovative Expectation-Maximization (EM) formulation that re-
fines the model’s decision-making through the exploration of its capabilities. This
framework alternates between (a) computing a reference strategy that improves
the model’s belief over its capabilities through self-exploration, and (b) updat-
ing the model based on the refined belief. We further enhance this framework
with an efficient implementation, incorporating a novel data synthesis strategy
and off-policy reinforcement learning. Extensive experiments demonstrate that
our approach, using only a public query set, significantly boosts the performance
of existing math LLMs, raising accuracy by nearly 20% to 65.28% on the chal-
lenging MATH benchmark, while reducing code executions by up to 65%. Code
and data is released in the anonymous repository.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable performance across various do-
mains (Kaddour et al., 2023; Achiam et al., 2023; Dubey et al., 2024; Team et al., 2023; Yang et al.,
2024), yet they face significant challenges when addressing complex mathematical problems, such
as abstract reasoning and intricate calculations (Gao et al., 2023; Yue et al., 2023; Gou et al., 2023;
Li, 2024). To tackle these challenges, two primary paradigms have emerged: chain-of-thought (CoT)
reasoning (Wei et al., 2022; Yu et al., 2023; Luo et al., 2023) and the use of external tools, such as
Python programs (Toshniwal et al., 2024; Yue et al., 2023). Both strategies offer distinct yet com-
plementary benefits. CoT is highly effective for semantic analysis, planning, and abstract reasoning,
but it often struggles with precise computations. In contrast, leveraging python programs offloads
mathematical operations to specialized tools like symbolic solvers or numerical libraries. Nonethe-
less, this approach has shown vulnerability in effectively translating natural language queries into
correct code (Li, 2024).

Recent advancements focus on synergizing these paradigms by developing tool-integrated reasoning
frameworks, such as TORA (Gou et al., 2023; Shao et al., 2024), HTL (Li, 2024) and DotaMath (Li
et al., 2024a), which merge CoT reasoning with code generation to provide more fluid interactions
between abstract reasoning and precise computation. However, despite the potential benefits of
incorporating external tools, their successful integration presupposes that the model is both adept at
using the tool and capable of reasoning effectively about the problem with the code.

This assumption raises concerns about LLMs’ capability boundaries of using tools, underscoring
the need for more intelligent code integration strategies. Rather than a reactive decision, code inte-
gration should be a deliberate decision informed by the model’s capabilities, mirroring human-like
methodology-selection for problem-solving.
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We distill this objective into a central goal: developing autonomous code integration (AutoCode)
for math LLMs, as illustrated in Fig. 1. Existing tool-integrated math LLMs generally lack the
AutoCode capability, because these models are trained to follow an externally imposed methodology
that do not adapt to their unique strengths. Therefore, we ask:

How to enable LLMs to learn their own strategies to select the methodology for math queries, such
that it complements the model’s inherent capabilities?

To address this challenge, we introduce a novel Expectation-Maximization (EM) formulation that
enables a self-teaching mechanism without relying on external dictations. Specifically, the Expec-
tation step (E-step) computes a reference strategy through self-exploration, representing the belief
over its capabilities. The maximization step (M-step) updates the LLM based on the data induced
by the new belief. Furthermore, we propose an efficient joint training scheme for this framework,
which features a novel data synthesis strategy for offline data curation and efficient off-policy rein-
forcement learning (RL).

Extensive experiments show that, using merely public query set, our method significantly improves
existing math LLMs. For instance, our 7B model enhances accuracy on the challenging MATH
benchmark (Hendrycks et al., 2021) by nearly 20% and reaches 65.28% accuracy, while reducing
up to 65% code executions.

Our contribution is summarized as follows: (1) We identify a critical gap in the existing research
on math LLMs, that they struggle with autonomous code integration (AutoCode). (2) We propose
a novel EM learning framework that empowers LLMs to develop their own AutoCode strategies,
tailored to their inherent capabilities. (3) We showcase a neat and efficient implementation of this
EM framework, featuring a novel data synthesis strategy and an efficient off-policy RL training.
Extensive results show substantial improvements in both accuracy and computational efficiency.

Query: If $x + \frac{1}{x} = \sqrt{3}$, then find $x^{18}$. 

Response: 
Let's reason step by step.
We square the equation $x + \frac{1}{x} = \sqrt{3}$.
Subtracting 2 from both sides, we have $x^2 + \frac{1}{x^2} = 1$.
(...text omitted…)
The answer is $\boxed{-x}$.
Sorry, the above solution may be incorrect. It's better to write a program.
```python
from sympy import symbols, solve, simplify, sqrt, Rational
def find_x_18():

x = symbols('x')
(…text omitted…)
return x_18

result = find_x_18()
print(result)
```
```output
Invalid comparison of non-real sqrt(3)/2 + I/2
```
The solution provided is incorrect because it tries to find the maximum 
value of the solutions, which is not possible for complex numbers. 
Instead, we can solve the equation $x^{18}$ directly.

Let's solve the equation $x^{18}$ by writing a program.
```python
(…text omitted…)

```
```output
[-1, -1]
```
The value of $x^{18}$ is $\boxed{-1}$.

Query: Simplify $\sqrt{25000}$.   

```python
from sympy import sqrt, simplify

def simplify_sqrt():
number = sqrt(25000)
simplified_number = simplify(number)
return simplified_number

result = simplify_sqrt()
print(result)
```
```output
50*sqrt(10)
```
The simplified form of $\sqrt{25000}$ is $\boxed{50\sqrt{10}}$.

Query: Find the product of the solutions of: $|y|=2(|y|-1)$.

Response: 
Let's reason step by step.
The equation $|y|=2(|y|-1)$ can be rewritten as $|y|=2|y|-2$.
To solve this equation, we need to consider two cases:
Case 1: $y\geq 0$. In this case, $|y|=y$, so the equation becomes $y=2y-
2$. Solving this equation gives $y=2$.
Case 2: $y<0$. In this case, $|y|=-y$, so the equation becomes $-y=2(-y)-
2$. Solving this equation gives $y=-2$.
So the solutions of the equation are $y=2$ and $y=-2$. The product of 
the solutions is $2\times(-2)=\boxed{-4}$.
The answer is $\boxed{-4}$.

(Human Dictation)
Let’s write a program.

(Autonomous Decision)
Let’s write a program.

AutoCode Training

Figure 1: Examples of Autonomous Code Integration. Prior models are usually trained on queries with
explicit instructions (Top Left). In contrast, our model autonomously learns to choose the appropriate method-
ology, either CoT or code execution (Left). Additionally, it is capable of performing multiple rounds of au-
tonomous code integration (Right).
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2 METHODOLOGY

2.1 PROBLEM STATEMENT

Recent research have studied tool integration for math LLMs. Specifically, given a math query
xq ∈ X

Q
, expressed in natural language, the goal is to generate a solution using a language model

(LM), denoted as M
θ
, parameterized by θ. Importantly, the LM is augmented with access to a

Python interpreter, allowing it to execute Python code as needed during inference. We are interested
in allowing the model to choose the appropriate methodology (denoted as c) – either CoT reasoning
or code snippets – and generate the corresponding solutions yt ∈ Y based on the preceding context
(xq, y<t). When code integration is necessary, the model generates special tokens ‘‘‘python

and ‘‘‘ to trigger the Python interpreter, after which the execution results are appended to the on-
going context. Both the math query xq and the response yt consist of sequences of natural language
tokens, with interleaved code integration as necessary (see Fig. 1 for an example).

Our goal is to develop a language model that autonomously integrates code execution for math
problem-solving, switching seamlessly between CoT reasoning and code execution when appropri-
ate. Conceptually, such code-integrated reasoning process involves two repeated steps: (a) Method-
ology selection. The model first decides whether to use code execution or CoT reasoning based on
the context; (b) Solution generation. Based on the chosen methodology, the model generates either
executable Python code or CoT rationales.

We note that the methodology selection step can occur either implicitly (via the model’s inter-
nal states) or explicitly (through verbal cues generated by the model). For example, in our im-
plementation, the model is trained to signal the chosen method at the beginning of its response
(see Fig. 1), through verbal cues such as Let’s write a program for code integration, and
Let’s reason step by step for CoT reasoning. However, it is not required to signal ev-

ery methodology-selection decisions. For instance, as shown in Fig. 1 (Right), the model can correct
code using CoT reasoning without explicit cues.

We formally define our problem as follows. Let c ∈ C = {0, 1} denote the methodology of CoT
and code integration, respectively. Given the math query xq , the model selects a methodology
c, and generates a corresponding solution ya ∼ p(ya|xq, c;M). This decision-making process
iterates until the LM predict an end token. Upon termination, the model receives a binary feedback
r = I(ya) ∈ {0, 1}, where the indicator function I(ya) evaluates the correctness of the predicted
solution ya by comparing it to the gold answer. For clarity and simplicity, we focus our discussion
on a single iteration of the methodology-selection and solution-generation process, which adheres to
the following factorization of the language policy: pθ(ya|xq) =

∑
c pθ(c, ya|xq) =

∑
c pθ(c|xq) ·

pθ(ya|xq, c). And we illustrate in Sec. 2.2 how we handle multiple iterations.

2.2 THE EM FORMULATION

Challenge and Motivation. The key challenge in achieving autonomous code integration (Au-
toCode) lies in the absence of reliable supervision for making methodology-selection decisions. Ex-
isting math LLMs typically employ supervised fine-tuning (SFT) to empower tool integration (Yue
et al., 2023; Wang et al., 2023b; Li et al., 2024a; Gou et al., 2023; Shao et al., 2024; Li, 2024),
which relies on externally dictated expert decisions. Training on such data fall short because it fails
to dynamically adapt to the model’s unique capabilities.

To address this challenge, we draw inspiration from human decision-making. Humans evaluates
whether to seek external assistance based on the complexity of the task and their belief in their ability
to handle it. This belief is refined through exploration, observation and reflection. For instance,
consider solving a complex math problem, such as finding the roots of an equation. A person
might attempt manual calculations using roots formula, or resort to a calculator. To form a belief
about whether external tools are necessary, humans explore both options and observe the outcomes.
Through reflection on such experiences, they recognize their limitations in manual computation
results, and develop a belief that relying on a calculator improves accuracy for such problems.

The EM Framework. Inspired by this analogy, we propose an Expectation-Maximization (EM)-
based approach that emulates the cognitive process of belief refinement and intelligent decision-
making, alternating between two key steps (Fig. 2):
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Identify Reference Strategy 𝑠∗

code CoT

Self-Exploration Data Curation

Improve LLM Policy 𝜃

EM Learning for AutoCode

M-stepmax
"
	𝐽#$%&(𝑠, 𝜃)

E-stepmax
'
	𝐽#$%&(𝑠, 𝜃)

Data Synthesis Strategies

Response: 
Let's write a program.
```python
from sympy import sqrt, simplify

def simplify_sqrt():
number = sqrt(25000)
simplified_number = simplify(number)
return simplified_number

result = simplify_sqrt()
print(result)
```
```output
50*sqrt(10)
```
The simplified form of $\sqrt{25000}$ is 
$\boxed{50\sqrt{10}}$.

Query: Simplify $\sqrt{25000}$. 

Response: 
Let's reason step by step.
To simplify $\sqrt{25000}$, we can first 
factorize the number under the square root.
(...text omitted…)
Therefore, the simplified form of 
$\sqrt{25000}$ is $\boxed{50\sqrt{2}}$.
Sorry, the above reasoning may be incorrect. 
It’s better to write a program.
```python
from sympy import sqrt, simplify

(...text omitted…)

50*sqrt(10)
```
The simplified form of $\sqrt{25000}$ is 
$\boxed{50\sqrt{10}}$.

Self-Exploratory Synthesis Self-Reflective Synthesis

Self-Refinement Efficient Joint Training

Figure 2: Method Overview. (Left) shows an overview for the EM framework, which alternates between
finding a reference methodology-selection strategy through self-exploration and updating the LLM via self-
taught fine-tuning and off-policy reinforcement learning based on synthesized data. (Right) shows an example
of the proposed data synthesis strategy.

1. Self-Exploration (E-step): Explore the model’s inherent capabilities to identify a reference strat-
egy for methodology selection that maximizes utility.

2. Self-Refinement (M-step): Refine the model’s belief about its capabilities under the supervision
of the reference strategy, and evolve the model’s capabilities through reinforcement.

To address the lack of direct supervision for methodology selection, we treat c as a latent variable.
Our goal is to identify the methodology c and corresponding solution ya that maximizes the likeli-
hood of generating a correct response for a given query. This motivates transforming the maximum
value problem into a maximum likelihood problem, which we define as:

JMLE(θ)
.
= logP (r = 1|xq; θ) (1)

= log
∑
c

pθ(c|xq)
∑
ya

pθ(ya|xq, c) · P (r = 1|ya, c, xq). (2)

The factorization reflects the distinct roles of methodology-selection pθ(c|xq) and the solution-
generation pθ(ya|xq, c) in the LLM’s decision-making process.

The EM framework provides an effective solution for maximizing this MLE objective in the presence
of latent variables Bishop & Nasrabadi (2006). Intuitively, EM handles the methodology-selection
decision c by introducing a reference distribution (strategy) s(c|xq), analogous to a belief system in
human decision-making.

From the MLE objective, we derive the evidence lower bound (derivations detailed in Sec. A.1):

JMLE(θ) ≥ Es(c|xq)

[
log

pθ(c|xq) · P (r = 1|c, xq; θ)

s(c|xq)

]
(3)

.
= JELBO(s, θ). (4)

The EM framework alternates between two-steps.

E-step. This step seeks the reference strategy s(c|xq) by optimizing the following objective:

max
s
JELBO(s, θ) = min

s
DKL (s (c|xq) ∥P (r = 1, c|xq; θ)) . (5)

This effectively computes the reference strategy s(c|xq) as the posterior of methodology c generating
correct response for a given query xq , i.e., P (r = 1, c|xq; θ). If decision c are more likely to succeed,
the reference strategy accordingly assigns higher probability mass to the decision. By computing the
reference strategy, E-step provides effective guidance for methodology-selection in the absence of
reliable supervision.

4
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M-step. Using the reference strategy s(c|xq) from the E-step, the M-step updates the model param-
eters θ to maximize the ELBO:

max
θ
JELBO(s, θ) = max

θ
Es(c|xq)

[
E

pθ(ya|xq,c)
[R(xq, ya)] + log pθ(c|xq)

]
. (6)

The objective comprises two terms focusing on different sub-policies. The first term optimizes
the solution-generation policy pθ(ya|xq, c) for reward maximization, akin to reinforcement learn-
ing through exploration. The second term computes a log-loss, essentially supervising the current
methodology-selection strategy pθ(c|xq) using the reference strategy.

Discussion. Our EM framework mirrors the human cognitive process of belief refinement and in-
telligent decision-making. During the E-step, the framework engages in a form of self-exploration
by probing its internal model capabilities to identify a reference strategy. This approach stands in
contrast to SFT, which relies on external demonstrations.

In the subsequent M-step, the focus shifts to self-refinement: the model adjusts its methodology
selection based on the reference strategy while reinforcing solution generation. This iterative process
enables the model to dynamically adapt to its own strengths and weaknesses, meanwhile fostering
continuous improvement. Unlike standard Reinforcement Learning (RL) methods, which enhance
decision-making through localized exploration around the current policy, our proposed approach
uniquely narrows the policy search space by leveraging the guidance from the reference strategy.

Beyond addressing the challenge of autonomous code integration, our EM framework is supported
by a robust theoretical foundation. It exhibits favorable properties, such as monotonic improvement
of the objective function. Specifically, the evidence lower bound (ELBO) objective satisfies the in-
equality: JELBO(s1, θ0) ≤ JELBO(s1, θ1) ≤ JELBO(s2, θ1), indicating a guaranteed progression
toward better performance as the model iterates through the EM steps.

2.3 PRACTICAL IMPLEMENTATION

While the EM framework provides a promising solution for AutoCode, its practical application
faces two primary challenges. First, the E-step (Eq.5) involves computing the posterior, which is
inherently complex. Second, the M-step (Eq.6) introduces fragmented training processes: SFT for
methodology selection using offline data and RL for solution generation via on-policy interactions.
This separation not only complicates implementation but is also nonsensical, as both policies share
the same parameter space in a unified LLM policy and should not be trained separately.

To address these challenges, we present a practical implementation that unifies the training of
methodology-selection and solution-generation policies, enabling efficient joint optimization. This
streamlined approach consists of a data curation stage and an offline RL training stage. Specifically,
the data curation stage produces data for methodology selection and solution generation, combining
them into complete responses using two distinct synthesis strategies. These complete responses en-
able a modified M-step objective (Eq. 6) that supports efficient offline training without the need for
on-policy interactions. We provide an algorithm diagram in Appendix Sec. B.

2.3.1 DATA CURATION

We first elucidate the relationship between solving the E-step for the reference strategy and gener-
ating data for this strategy. Then we elaborate on the data synthesis strategies used to combine the
training data for methodology-selection and solution-generation.

E-step and Data Generation. In the E-step (Eq. 5), computing the exact posterior for the refer-
ence strategy is typically complex, often requiring the training of a variational distribution sϕ(c|xq)
parameterized by separate neural networks ϕ (Zintgraf et al., 2019; Wang et al., 2020; 2023a). How-
ever, in our implementation, this complexity is mitigated. The reference strategy is only needed
to supervise methodology selection pθ(c|xq), not during inference. Given the binary action space
c ∈ {0, 1}, the posterior P (r = 1, c|xq; θ) can be estimated via Monte Carlo simulations, simi-
lar to how humans refine beliefs through exploration and observation: to decide whether external
assistance is necessary, humans explore the options and adjust their belief based on the outcomes.

5
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Specifically, the posterior is factorized as P (r = 1, c|xq; θ) = pθ(c|xq; θ) · P (r = 1|c, xq). We
estimate the prior through Monte Carlo rollouts:

pθ(c|xq; θ) ≈
1

K

K∑
i=1

I{yi uses methodology c} (7)

where yi ∼ πθ is one of K random rollouts from the LLM generation policy πθ.

The likelihood P (r = 1|c, xq; θ) is defined via the Q-function, Q(xq, c), which evaluates the ex-
pected return of methodology choice c given the context of xq:

Q(xq, c) = Epθ(ya|xq,c)[R(xq, ya)] ≈
1

K

K∑
i=1

ri. (8)

where R(xq, ya) represents the reward function. The Q-values can be estimated using K Monte
Carlo rollouts per query-methodology pair. We note that the Q-function aligns directly with the like-
lihood function P (r = 1|c, xq; θ), as both both quantify the effectiveness of the query-methodology
pair (xq, c). This enables us to define: P (r = 1|c, xq; θ) ∝ Q(xq, c).

Combining these estimates, the reference strategy satisfies s∗(c|xq) ∝ pθ(c|xq)Q(xq, c; θ), forming
an energy-based distribution,

s∗(c|xq) =
exp (α · pθ(c|xq)Q(xq, c; θ))

Z(xq)
.

where the temperature α > 0 controls the sharpness of the distribution, and Z(xq) is the parti-
tion function that normalizes the distribution. Indeed, the reference strategy represents a softmax-
ed distribution over methodology choices, from which we sample to generate data for supervised
methodology-selection training.

Dataset Synthesis. Our goal for data curation is to collect a dataset where each dataset sample
(xq, y, r) includes a query xq , a response y, and a reward r. The complete response y is obtained
by concatenating sequences of methodology-selection and solution-generation (see Fig. 2 for an
example): y = Concat({(c, ya)t}Tt=1). The methodology choices c are sampled from s∗(c|xq), and
the solutions are generated using two inference modes:

• Dictated: Explicitly specifying the methodology c in the instruction.
• Native: Natively generating complete responses without guiding methodology.

The data for learning methodology-selection and solution-generation is merged into complete re-
sponses using two synthesis strategies:

• Self-Exploratory Synthesis. We select dictated and native solutions that aligns with the (sampled)
reference decision c∗, forming single-round or self-correction responses.

• Self-Reflective Synthesis. We create multi-round responses by transitioning between methodolo-
gies. For example, initial attempts using one methodology (e.g., CoT) may fail, and we hint by
a reflective hint to transition to the another methodology (e.g., code) for a successful solution.
Formally, the responses are synthesized as y = Concat({c−, y−a , c∗, ya}). Here c− denotes an
alternative methodology to the reference decision c∗, and y−a and c = c∗ are the corresponding
solutions. Detailed examples are illustrated in Fig. 2.

2.3.2 EFFICIENT JOINT TRAINING

Using the curated dataset of complete responses, we unify the learning of methodology-selection
and solution-generation into a single offline training process. To achieve this, we modify the M-step
objective (Eq. 6) by introducing the off-policy policy gradients:

max
θ

Es(c|xq),ξ(ya|xq,c) [O (ξ, pθ) ·R (xq, ya) · log pθ (ya|xq, c) + log pθ (c|xq)] , (9)

where ξ(ya|xq, c) is a behavior policy, pθ(ya|xq, c) is the improvement policy, and O(ξ, pθ) is the
off-policy correction term compensating for the discrepancy between these policies.

6
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To stabilize training, we use query-wise reward whitening and employ a clipping scheme
on the off-policy correction term following PPO (Schulman et al., 2017): O (ξ, p

θ
) =

Clip
(

pθ(ya,c|xq)
ξ(ya,c|xq)

, 0.8, 1.2
)

.

This unified process efficiently integrates the training of two sub-policies into a cohesive framework,
allowing for a neat implementation of iterative data curation and offline RL.

3 EXPERIMENTS

This section addresses the following research questions:

Q1: Effectiveness in Improving Math Capabilities. We evaluate how well the proposed method
enhances performance based on existing math LLMs, on both in-domain and out-of-domain mathe-
matical benchmarks.

Q2: Ablations on the proposed components. We assess the effect of the EM formulation and the
self-reflective data synthesis strategy.

Q3: Analysis of the learned strategies. We analyze how the learned model improves accuracy, in
particular regarding the learned methodology-selection strategies.

Datasets. Training with the proposed method requires only a query set, as it leverages self-taught
fine-tuning and reinforcement learning that collect data through self-exploration. Nonetheless, it pre-
supposes the model be able to solve math queries using code. Thus, we compile public SFT data that
includes CoT reasoning and code solutions for GSM8K (Cobbe et al., 2021) and MATH (Hendrycks
et al., 2021) training queries, from MetaMath (Yu et al., 2023), MathInstruct (Yue et al., 2023),
OpenMath (Toshniwal et al., 2024) and MMOS (Chen et al., 2024b). Detailed dataset statistics are
provided in the appendix.

Benchmarks and Evaluation Protocols. We evaluate our approach on two in-domain datasets:
GSM8k (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021). To test generalization, we use
four out-of-domain benchmarks:AsDIV (Miao et al., 2021), GaokaoMath2023 (Liao et al., 2024),
CollegeMath (Tang et al., 2024), OlympiadBench (He et al., 2024). This selection provides a com-
prehensive test of math reasoning capabilities, ranging from elementary-level to Olympiad-level
math problems. We use accuracy with greedy sampling as our primary metric. We evaluate the
correctness of predicted responses using released codes from DeepseekMath (Shao et al., 2024) and
Qwen2Math (Yang et al., 2024).

Baselines. We compare our method against proprietary models like GPT-4 (Achiam et al., 2023) and
Claude (Anthropic, 2024), as well as open-source and tool-integrated math LLMs such as Numina-
Math (Li et al., 2024b), Mathstral (AI, 2024), Mammoth (Yue et al., 2023), MathCoder (Wang
et al., 2023b), ToRA (Gou et al., 2023), DotaMath (Li et al., 2024a), AlphaMath (Chen et al.,
2024a), MathGenie (Lu et al., 2024). To examine the effectiveness of the proposed approach on
top of existing math LLMs, we consider AutoCode Training on Llama-3.1 (Dubey et al., 2024),
Qwen2Math (Yang et al., 2024), and DeepseekMath (Shao et al., 2024). Since the proposed
method preconditions on the coding ability for math, we use the aforementioned SFT data to
fine-tune Llama-3.1 and Qwen2Math, and term the resulting model as Code4Math-[ModelFamily].
DeepseekMath natively supports writing code to solve math queries.

Due to computational limits, we focus on experiments with 7B models. We report cited performance
metrics for most models, and include larger model performances for the readers’ reference.

Implementation Details. We use K = 5 rollouts for response sampling during self-exploration,
using nucleus sampling with a temperature of 1.0 and top-p set to 0.95. For computing the reference
strategy, we set the temperature parameterα = ∞, reducing it to a hard-max (greedy selection) of
the top-ranking methodology. Regarding learning rate, we set instruction fine-tuning as 2e−5, the
first RL iteration as 1e−5, and the consecutive iterations as 5e−6. We use 8 A100(80G) GPUs. For
reproduction, we upload code and relevant materials to the anonymous repository Repo.

3.1 MAIN RESULTS

Fig. 1 shows the effectiveness of the proposed method. On three family of models, Llama-3.1,
Qwen2Math and DeepseekMath, our method our method significantly improves accuracy while
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Table 1: Effectiveness of AutoCode4Math. The column ”Code?” indicates whether code integration is in-
volved, with ★ representing autonomous determination of code integration by the model. †Alphamath employs
Beam Search during inference, improving accuracy at the cost of additional test-time computation. We report
Pass@1 Accuracy with greedy decoding. For AutoCode models, code rates are provided in parentheses along-
side accuracy. The improvement over code-driven inference is highlighted in the colored row, denoted as ∆.
The results show that AutoCode4Math significantly improves accuracy by 10.2% while reducing unnecessary
code executions up to 66.78% .

Model Code? In-domain Out-of-domain
GSM8K MATH GaoKao Olympiad College AsDIV

Proprietary Model

GPT-4 (2024-08) (Achiam et al., 2023) ✗ 92.9 81.1 67.5 43.3 48.5 91.3
GPT-4 Code Interpreter ✓ 94.2 69.7 43.6 92.6
Claude-3 Opus (Anthropic, 2024) ✗ 95 60.1

Open-Source Models

Mammoth-70B (Yue et al., 2023) ✓ 76.9 41.8 25.2 70.2
ToRA-70B (Gou et al., 2023) ✓ 84.3 49.7 31.7 86.8
MathGenie-70B (Lu et al., 2024) ✓ 88.4 51.2
Mathstral-7B (AI, 2024) ✗ 84.9 56.6 46 21.5 33.7
Mammoth-Coder-7B (Yue et al., 2023) ✓ 59.4 33.4 15.3
MathCoder-7B (Wang et al., 2023b) ✓ 67.8 30.6
ToRA-Code-7B (Gou et al., 2023) ✓ 72.6 44.6 23.9
DotaMath-Deepseek-7B (Li et al., 2024a) ✓ 86.7 64.8 88.5
AlphaMath-Deepseek-7B (Chen et al., 2024a) ✓+ BS† 84.1 66.3 51.4

AutoCode Training

Llama-3.1-Base-8B (Dubey et al., 2024) ✗ 53.9 17.42 13.25 3.11 6.1 74.99
Code4Math-Llama-3.1-8B ✗ 77.03 43.9 25.97 6.96 15.72 79.41

✓ 77.03 (100%) 43.9 (100%) 23.38 6.81 16.93 78.96
AutoCode4Math-Llama3.1 ★ 79.83 (40.94%) 48.7 (59.5%) 31.69 13.19 19.91 83.02
∆ 2.8↑ (59.06%↓) 4.8↑ (40.5%↓) 8.31↑ 6.38↑ 2.98↑ 4.06↑
Qwen2Math-Base-7B (Yang et al., 2024) ✗ 80.74 51.82 43.37 21.62 24.98 90.42
Code4Math-Qwen2 ✗ 81.58 52.68 43.12 18.81 22.39 89.67

✓ 84.68 (100%) 52.44 (100%) 44.94 20.59 26.26 90.07
AutoCode4Math-Qwen2 ★ 87.41 (24.4%) 64.64 (48.9%) 50.39 27.11 28.71 91.96
∆ 2.73↑ (75.6%↓) 10.2↑ (51.1%↓) 5.45↑ 6.52↑ 2.45↑ 1.89↑
DeepseekMath-Instruct-7B (Shao et al., 2024) ✗ 81.27 45.32 42.86 14.81 34.46 90.43

✓ 84.46 (100%) 56.74 (100%) 44.68 20.44 35.49 88.22
AutoCode4Math-DeepSeek ★ 89.38 (6.74%) 65.28 (33.22%) 47.01 23.85 36.3 91.65
∆ 4.9↑ (93.26%↓) 8.54↑ (66.78%↓) 2.33↑ 3.41↑ 0.81↑ 3.43↑

reducing code execution frequency. Notably, AutoCode4Math enhances DeepseekMath’s perfor-
mance by 7% on GSM8k from 82.4% to 89.38%, and 20% on Math from 45.04% to 65.28%. Addi-
tionally, it reduces code executions by up to 90% on GSM8k and 65% on MATH. Importantly, our
method outperforms models like DotaMath without relying on external annotations, and AlphaMath
that requires substantial inference-time beam search. However, the proposed method is orthogonal
to these approaches, we anticipate further improvements in combination with them.

3.2 ABLATION STUDY

The proposed approach relies on two key elements: (1) the EM framework, which factorizes re-
sponse generation into methodology-selection pθ(c|xq) and solution-generation pθ(ya|xq, c), and
(2) a self-reflective data synthesis strategy that generates multi-round responses.

Ablation of the EM Formulation. We compare our method with a baseline using standard RL with-
out explicit methodology-selection, employing an off-policy RL approach for computational parity.
The performance curve on the in-domain test sets is shown in Fig. 3. shows that standard RL rapidly
converges to suboptimal performance, whereas AutoCode achieves better final accuracy through
sustained improvement. This indicates a clear advantage for our EM framework over standard RL.

We also analyze code execution rates for both approaches on in-domain test sets. As Tab. 2 shows,
the standard RL approach often introduces more code executions while remaining inferior accuracy.
We hypothesize that standard RL focuses solely on outcome optimization, overlooking the role
of methodology-selection in improving final accuracy. In contrast, our EM framework enforce its
methodology-selection by leveraging the guidance from the reference strategy, which is computed
through exploration of its capability boundaries.

Logically, selecting the methodology yielding higher expected utility must in turn improve the final
accuracy. We conjecture that the proposed EM framework outperforms standard RL because: the
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Table 2: Ablation Results. We experiment on top of DeepseekMath (Shao et al., 2024) and Qwen2Math (Yang
et al., 2024). We eliminates Self-Reflective Synthesis and EM formulation (reduced to standard RL) from
AutoCode4Math. The results reveal the effects of these components in both learning effective methodology-
selection and improving accuracy.

Models Inference GSM8k MATH
AutoCode4Math-Deepseek Auto 89.39 (6.75%) 65.28 (32.22%)

wo/ Self-Reflective Synthesis (Iter1) Auto 83.09 (2.73%) 57.92 (23.68%)
wo/ EM (RL Iter2) Auto 82.94 (0.3%) 56.74 (29.06%)
DeepseekMath-Instruct Code (100%) 84.46 56.74

AutoCode4Math-Qwen2 Auto 87.41 (24.41%) 64.64 (48.9%)

wo/ Self-Reflective Synthesis (Iter1) Auto 84.61 (21.23%) 60.36 (34.48%)
wo/ EM (RL Iter2) Auto 86.28 (69.6%) 61.28 (64.66%)
Code4Math-Qwen2 Code (100%) 84.68 52.44
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Figure 3: Performance Convergence. Experiments
are conducted based on Qwen2Math (Top) and Deepseek-
Math (Bottom). AutoCode achieves higher accuracy with
sustained improvement, while standard RL converge to
sub-optimal solutions.
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Figure 4: Analysis of the Learned Strategies.
Correct Responses are classified based on their
alignment to the oracle selection, namely, StrictAl-
ign, AllowCode and MisAlign. We show how dif-
ferent categories of alignment contribute to the ac-
curacy in the stacked bars, and include the overall
StrictAlign rate in the separate orange bar.

reference methodology-selection strategy helps narrow the policy search space during training. By
restricting training samples to those methodology choices with higher utility, the language model
can converge more efficiently, benefiting from effective guidance of methodology-selection.

Ablation of the Self-Reflective Synthesis. To assess the impact of Self-Reflective Synthesis, we
compare with a variant that omits this strategy in the initial RL training (denoted NO REFL). Fig. 2
shows that NO REFL lags significantly behind AutoCode, demonstrating the importance of multi-
round response generation in achieving higher accuracy. This observation points out the inherent
connection between performance and multi-round responses. We include a analysis of multi-round
responses and showcase success and failure cases in the appendix.

3.3 ANALYSIS OF THE LEARNED MODEL.

To understand the effectiveness of the learned methodology-selection strategy, particularly its ability
to decide when to use or avoid code, we evaluate its contributions to accuracy. We focus our analysis
on the first round of methodology-selection, arguing that this initial decision captures the essential
characteristics of the strategy, while subsequent rounds play a minor role in overall accuracy.

We introduce the alignment rate as a key metric to measure how closely the learned strategy aligns
with an oracle strategy. The oracle strategy, determined over the test set, dictates that code is used
only if it is the sole path to a correct response; otherwise, CoT reasoning is preferred. We classify the
correct responses into three categories: (1) StrictAlign, where decisions match the oracle exactly, (2)
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AllowCode, where we consider using code acceptable if both code and CoT yield correct answers,
and (3) MisAlign, where the model’s choice diverges from the oracle.

Fig. 4 shows these alignment categories in stacked bars. The RL model has a significantly lower
rate of strict alignment compared to AutoCode (lightblue bar), which is not surprising as the RL
model is not explicitly trained for this alignment. In contrast, the proposed EM framework is forced
to imitate the behavior of the reference strategy, which computes the oracle selection over training
queries. Additionally, regarding code executions, the RL model also tends to favor code more than
AutoCode, particularly in the case of Qwen2Math. This is because Qwen2Math has better overall
accuracy using code than CoT reasoning, and RL captures this statistical relation. In contrast, the
proposed method can implicitly reduces code execution as a side effect, because the oracle selection
to imitate during training by design involves minimal code executions.

Interestingly, compared with other models, a significant proportion of correct responses from Au-
toCode are in the MisAlign category. This seems counter-intuitive at first sight, but we note that
the oracle choice is determined based on their expected utilities, which means the MisAlign choice
can result in correct response at a probability, which is inferior to the oracle choice in the expected
sense. This implies that a MisAlign choice can be optimized for final accuracy by improving the cor-
responding solution-generation capability. Further comparison with NO REFL suggests that multi-
round responses also play a crucial role in this advantage.

4 RELATED WORK AND DISCUSSION

Tool-Integrated Math LLMs. Math language models (LLMs) have been developed primarily along
two major paradigms: Chain-of-Thought (CoT) reasoning and the use of external tools, such as
Python programs (Yu et al., 2023; Yue et al., 2023; Toshniwal et al., 2024). Each paradigm offers
unique benefits, and recent advancements increasingly seek to combine these approaches for syner-
gistic effects, as seen in methods like Hybrid Instruction Tuning (Yue et al., 2023) and various forms
of tool-integrated reasoning (Gou et al., 2023; Li et al., 2024a; Li, 2024; Wang et al., 2023b; Shao
et al., 2024). Despite these advancements, existing models still face challenges with autonomous
code integration, mainly because they rely on supervised fine-tuning where code integration is sub-
optimally dictated by external annotators. To address this gap, our work introduces a novel EM
framework that avoids using external supervision to facilitate AutoCode capabilities.

EM for RL. Expectation-Maximization (EM) has proven effective for maximum likelihood prob-
lems involving hidden variables, such as Expert Iteration (Anthony et al., 2017), Iterative Maximum
Likelihood (Wu, 2016; Agarwal et al., 2019), Meta-Reinforcement Learning (Zintgraf et al., 2019;
Wang et al., 2020), and Adversarial Games (Wang et al., 2023a). In the context of math LLMs,
the most relevant works are (Singh et al., 2023) and (Ni et al., 2022), which apply EM-style itera-
tive self-training to math problem-solving. Unlike these approaches, we employ the EM framework
specifically to tackle the lack of reliable supervision for autonomous code integration in math LLMs.

Discussion. This paper investigates autonomous code integration for math LLMs. To address the
challenge of unreliable external supervision, we propose to factorize out the hidden methodology-
selection from response generation, and develop a novel EM formulation. The EM framework alter-
nates between computing a reference strategy for methodology-selection through self-exploration
and updating language model based on the reference guidance. This approach supports an effi-
cient joint training scheme that allows for holistic offline data collection coupled with RL training.
Our extensive experiments demonstrate the effectiveness of the proposed method, and our ablation
studies further elucidate the properties of the learned model.

However, there are several limitations and areas for future work regarding AutoCode4Math. First,
the generalization of methodology-selection depends significantly on the quality of the collected
query set. Further research is needed to understand what characteristics of queries contribute to
effective generalization. Second, we did not extensively explore the influence of hyperparameters
related to RL iterations, such as dataset size and the number of iterations, in the current version. We
are actively working on this. Third, as this is a preliminary work in autonomous code integration,
we have not yet investigated alternative approaches for decision routing, such as using Mixture-
of-Experts (MoEs) (Masoudnia & Ebrahimpour, 2014), and we not yet fully understand the fun-
damental reason why EM outperforms RL. These areas present important directions for advancing
AutoCode capabilities in math LLMs.
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A APPENDIX

A.1 DERIVATION OF THE EM

We first model RL as a maximum likelihood problem. Specifically, we consider ‘maximizing ex-
pected return’ as ‘maximizing the likelihood of observing a correct response‘, this is equivalent to
maximizing the following log-likelihood,

max
θ

logP (r = 1|xq; θ) (10)

= max
θ

log
∑
c

pθ(c|xq)
∑
ya

pθ(ya|xq, c) · P (r = 1|ya, c, xq) (11)

.
= J (θ), (12)

where we factorize the language model as pθ(ya|xq) =
∑

c pθ(c|xq)pθ(ya|xq, c).

Since the variable c is unobservable for lack of reliable supervision, we resort to the EM framework.
Specifically, we treat c as a hidden variable, and introduce a proposal distribution s(c|xq), which
represents the belief of c given the fixed LLMMθ and the data evidence. We have the following
derivations,

J (θ) = log
∑
c

s(c|xq) ·
pθ(·|xq)

s(·|xq)
·
∑
ya

pθ(ya|xq, c) · P (r = 1|ya, c, xq) (13)

≥
∑
c

s(c|xq)

[
log

pθ(c|xq) ·
∑

ya
pθ(ya|xq, c) · P (r = 1|ya, c, xq)

s(c|xq)

]
(14)

= Es(c|xq)

[
log

pθ(c|xq) · P (r = 1|c, xq; θ)

s(c|xq)

]
(15)

.
= JELBO(s, θ), (16)

where P (r = 1|c, xq; θ) denotes the likelihood of generating correct responses given (xq, c) follow-
ing the solution-generation policy pθ(ya|xq, c).

In the E-step, we are essentially minimizing a KL divergence,

max
s
JELBO(s, θ) = min

s
DKL (s(c|xq) |s∗(c|xq)) , (17)

where the minimizer is s∗(c|xq) ∝ pθ(c|xq) · P (r = 1|c, xq; θ). Intuitively, the belief over the
methodology c following a posterior update: it is based on the prior of the current model pθ(c|xq)
and the likelihood of data P (r = 1|c, xq; θ). The optimal methodology-selection strategy assigns
higher probability to method c if following the current LLM it has higher likelihood to generate
correct responses or higher prior over it.

To compute the optimal strategy, we define P (r = 1|c, xq; θ) =
exp(α·pθ(c|xq)Q

θ(xq,c))
Z(xq)

as an energy-
based distribution, where the negative energy function evaluates the expected return induced by the

13
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current solution-generation policy: Q(xq, c; θ) = Epθ(ya|xq,c)[R(xq, ya)], α > 0 is a temperature
controlling the sharpness of the distribution. Then the minimizer can be computed by enumerating
over c.

In the M-step, we optimize the following,

max
θ
JELBO(s, θ) = max

θ
Es(c|xq)[logP (r = 1|c, xq; θ)]−DKL (s(c|xq) |pθ(c|xq)) (18)

= max
θ

Es(c|xq)[Q(xq, c; θ)]−DKL (s(c|xq) |pθ(c|xq)) , (19)

which maximizes the expected return while imitating the optimal strategy.

B THE EM ALGORITHM DIAGRAM

Algorithm 1 AutoCode4Math EM Learning

1: Input: Query set Q
2: Output: Parameters θ
3: Initialize parameters from base model θ(0)
4: t← 0
5: repeat
6: // E-step: Find the reference strategy s∗(c|xq)
7: Perform K random rollouts for each query to collect the query-methodology-responses

dataset DDictated and DNative. Store the outcome r, and the log-likelihoods.
8: Using DDictated, compute the Q-values for xq ∈ Q, c ∈ {0, 1} according to equation 8.
9: Take hard-max or sample from the soft-max of the Q-values to obtain c∗ ∼ s(c|xq).

10: Synthesize complete trajectories to obtain D, using self-exploratory and self-reflective syn-
thesis, based on the reference selection c∗ for each query, DDictated and DNative.

11: // M-step: Update the LLM pθ
12: Optimize the LLM according to equation 9, using the dataset D.
13: t← t+ 1
14: until convergence

return θ(t)

C ADDITIONAL EXPERIMENTS

We aim to answer the following research questions:

Q4: Effectiveness in Autonomous Code Integration. We evaluate how our models and baselines
perform when required to perform autonomous code integration. Specifically, we investigate the
effectiveness of their methodology-selection and its relation to the final performance.

Baselines. We compare our approach with several models that natively support both code and
Chain-of-Thought (CoT) responses for math queries: GPT-4, Mammoth-70B trained using Hybrid
Instruction Tuning, and DeepseekMath-Instruct-7B trained using tool-integrated reasoning annota-
tions.

Evaluation Metrics.

• Final Pass@1 Accuracy of the Complete Response
– “Autocode”: The LLM autonomously decides the methodology. For baselines without Au-

toCode Training, a four-shot prompt template (Appendix D.3) is used.
– “Code”: The LLM is explicitly prompted to generate a code response. For GPT-4, a four-shot

template is applied. For other baselines, we use their native zero-shot templates.
– “CoT”: The LLM is explicitly prompted to use CoT reasoning with native templates.

• Autocode CodeRate and Improvement Over Best Dictation
– CodeRate reflects the reduction in code usage compared to dictated code prompting.

14
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Table 3: Effectiveness of Autonomous Code Integration. We compare our models with representative
baselines when they are required to make autonomous decisions on methodology. All metrics are represented in
percentage. The results show that existing models that support code integration for math reasoning significantly
degrades performance when required AutoCode inference (as shown in the Autocode Improvement column).
Our model significantly improves over its dictated inference by improving methodology-selection.

Acc CodeRate Improvement Sel. mAcc Acc /w Cor. Sel. CoT Acc Code Acc CoT Sel. Acc Code Sel. Acc
GPT-4 74.16 10.8 -2.5 50.51 89.27 76.66 72.22 100 1.03
Mammoth-70B 31.46 83.64 -5.76 64.87 77.62 16.66 37.22 39.08 90.66
DeepseekMath-Instruct-7B 45.72 12.94 -11.54 64.70 77.77 45.32 57.26 97.62 31.79
Ours-Qwen2-7B 64.64 48.9 +4.68 88.25 96.35 51.92 59.94 89.16 87.34
Ours-Deepseek-7B 65.28 33.22 +5.04 86.53 94.21 43.82 60.24 78.17 94.90

– Accuracy Improvement over best performance of either CoT or code dictation reflects the
improvement of AutoCode over the native dictated inference.

• Methodology-Selection Accuracy and Its Connection to Final Accuracy
– Ground-Truth Labels: Methodology-selection is treated as a binary classification task. The

classification label is derived by performing 10 Monte Carlo rollouts per query with con-
trolled methodologies. The optimal methodology is chosen based on higher expected cor-
rectness.

– Imbalanced Classification: Since model capabilities differ, reference decisions are imbal-
anced (e.g., GPT-4 strongly prefers CoT, with only 7.45% of queries requiring coding).
We report mean accuracy across CoT-preferred and code-preferred queries (Selection
mAcc), along with per-class accuracy (in the last 3 and 4 columns).

– Connection to Final Accuracy: Correct methodology-selection does not always guarantee
a correct response due to prompt context mismatches and greedy decoding. We report
Pass@1 accuracy within correct selections to evaluate how proper methodology-selection
directly contributes to correct responses.

As shown in Tab. 3:

Effectiveness in Methodology-Selection. AutoCode Training significantly improves methodology-
selection accuracy, outperforming baseline models by over 20% (compare row 3 with row 5). In
particular, GPT-4 exhibits low mean accuracy (50.51%) due to its strong bias for CoT. If GPT-
4 intelligently selected methodologies, it could achieve an additional 7.62% gain in accuracy for
queries requiring code responses.

Accuracy Improvements and Code Reduction. AutoCode Training enables our Deepseek-based
model to achieve a 5.04% accuracy improvement compared to the best dictated inference (code
prompting) while reducing code usage by up to 66%. Similar trends are observed with the
Qwen2Math base model. In contrast, baseline models experience substantial accuracy drops when
attempting autonomous methodology-selection. For example, DeepseekMath loses 11.54% accu-
racy when self-selecting methodologies (row 3).

Connection Between Methodology-Selection and Final Accuracy. Baseline models surpass ran-
dom selection (50%) in methodology-selection accuracy but fail to improve final accuracy over best
dictation. This is accredited to the gap between methodology-selection and final correctness: bet-
ter methodology-selection is not always accompanied with correct final response, due to the greedy
decoding and mismatch in prompt context. However, our proposed EM-based joint training sig-
nificantly bridge this gap: it improves Pass@1 accuracy within correct selections, achieving rates
as high as 95% (rows 4 and 5). This success is due to training the LLM with complete responses,
optimizing both methodology-selection and final correctness jointly.

D STATISTICS AND ANALYSIS

We analyze the AutoCode capabilities of the existing tool-integrated LLMs, GPT-4o and Deepseek-
Math in Tab. 4. We prompt AutoCode capbilities using the instruction shown in Sec. E.3. Both
models show clear preference toward using CoT reasoning, with less than 10% code executions.
It is also counter-intuitive at first sight why using very small portion of code executions can result
in significant performance degradation – in the case of GPT-4o, only 1% code executions result in
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6% decrease in accuracy. We conjecture that this owes to the sensitivity to the AutoCode few-shot
prompting. Rarely seeing such demonstrations make the models prone generate wrong responses,
compared to standard clean few-shot prompting.

We list the collected public SFT data in Tab. 5.

We show the distribution of multi-round responses of the model AutoCode4Math-Deepseek in
Tab. 6.

Table 4: Analysis of existing tool-integrated math LLMs. We find that two state-of-the-art tool-integrated
system, GPT-4o and DeepseekMath, struggle with AutoCode. When given few-shot demonstrations for choos-
ing between CoT and code to solve given math queries, they show clear preference of using CoT (less than 10%
code executions). This reveals that these model cannot decide on their own what methodologies to choose for
a given math query. In addition, we observe that there is significant performance degradations when prompted
for AutoCode: only 1% code executions lead to 6% accuracy decrease in the case of GPT-4o. This reflects that
their performance are sensitive to the given few-shot prompting.

Model CoT (Acc/Code Rate) Code (Acc/Code Rate) AutoCode-4shots (Acc/Code Rate)

GPT-4o 77.04 / 0 57.34 / 97.58 71.54 / 1.24
Deepseek-Math-Instruct 46.92 / 0 46.26 / 99.92 41.46 / 5.18
Mammoth-Mistral-7B 19.18 / 0 40.2 / 99.38 37.58 / 95.5

Mammoth-7B 10.7 / 0 29.1 / 99.96 23.86 / 95.4
Mammoth-13B 12.7 / 0 31.4 / 98.96 22.54 / 60.68
Mammoth-70B 20.6 / 0.02 40.58 / 99.62 33.4 / 83.66

Table 5: Public SFT Data Used in this Work. We collect public query set for AutoCode Training. After
Deduplication, the total amount of query used is 119K. If the base model is not trained to write code for math
problems, we use the SFT annotations associated with the above queries.

Dataset Size Unique Queries CoT Solutions Code Solutions

Openmath (Toshniwal et al., 2024) 129917 70002 25116 104801
Math-Instruct (Yue et al., 2023) 237781 219607 188644 49137

Metamath Yue et al. (2023) 285000 161337 285000 0
MMOS (Chen et al., 2024b) 134610 69007 0 134610

Table 6: Distribution of Multi-Round Responses.

Model Dataset Queries Round1 Round2 Round3

Deepseek-math-AutoCode MATH 5000 1252 3719 29
GSM8k 1319 1013 304 2

E EXAMPLES

E.1 SUCCESS CASES

Listing 1: Success case for multi-round.
Round 1:
Question: Henry and 3 of his friends order 7 pizzas for lunch.

Each pizza is cut into 8 slices. If Henry and his friends want
to share the pizzas equally, how many slices can each of them
have?

Solution:
There are 7 pizzas in total, and each pizza is cut into 8 slices.

So, there are 7 * 8 = 56 slices in total.
Henry and his 3 friends want to share the pizzas equally, so they

will each have 56 / 4 = 14 slices.
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Each of them can have 14 slices.
The answer is $\\boxed{14}$.

------------------

Round2:
Question: Henry and 3 of his friends order 7 pizzas for lunch.

Each pizza is cut into 8 slices. If Henry and his friends want
to share the pizzas equally, how many slices can each of them
have?

Solution:
‘‘‘python
def pizza_slices_per_person():
"""Henry and 3 of his friends order 7 pizzas for lunch. Each pizza

is cut into 8 slices. If Henry and his friends want to share
the pizzas equally, how many slices can each of them have?"""

total_pizzas = 7
slices_per_pizza = 8
total_slices = total_pizzas * slices_per_pizza
people = 4 # Henry and his 3 friends
slices_per_person = total_slices // people # Use floor division to

get an integer result
return slices_per_person

slices_per_person = pizza_slices_per_person()
print(slices_per_person)
‘‘‘
‘‘‘output
14
‘‘‘
Each of them can have $\boxed{14}$ slices.

------------------

Round3:
Question: Peter has 4 boxes with the same number of chocolate bars

in each, while Martha has 7 boxes with the same number of
chocolate bars in each. If Peter and Martha have totals of 64
and 56 chocolate bars respectively, how many more chocolate
bars does Peter have in each box than Martha?

Solution:
If Peter has 4 boxes and Martha has 7 boxes, then Martha has 7/4 =

1.75 times as many boxes as Peter.
If Martha has 56 chocolate bars and Peter has 64 chocolate bars,

then Peter has 64/56 = 1.142857 times as many chocolate bars
as Martha.

If Martha has 1.75 times as many boxes as Peter, and Peter has
1.142857 times as many chocolate bars as Martha, then Martha
has 1.75/1.142857 = 1.5 times as many chocolate bars in each
box as Peter.

Therefore, Peter has 1.5 - 1 = 0.5 more chocolate bars in each box
than Martha.

The answer is $\boxed{0.5}$.
Sorry, the above solution may be incorrect. It’s better to write a

program.
‘‘‘python
def chocolate_bars_difference():
"""Peter has 4 boxes with the same number of chocolate bars in

each, while Martha has 7 boxes with the same number of

17
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chocolate bars in each. If Peter and Martha have totals of 64
and 56 chocolate bars respectively, how many more chocolate
bars does Peter have in each box than Martha?"""

peter_total = 64
martha_total = 56
peter_boxes = 4
martha_boxes = 7
peter_bars_per_box = peter_total / peter_boxes
martha_bars_per_box = martha_total / martha_boxes
difference = peter_bars_per_box - martha_bars_per_box
return difference

difference = chocolate_bars_difference()
print(difference)
‘‘‘
‘‘‘output
8.0
‘‘‘
Peter has $\boxed{8}$ more chocolate bars in each box than Martha.

E.2 FAILURE CASES

Listing 2: Failure case for multi-round.
Round 1:
Question: The solution to the inequality
\[\frac{x + c}{xˆ2 + ax + b} \le 0\]is $x \in (-\infty,-1) \cup

[1,2).$ Find $a + b + c.$
Solution:
Let’s reason step by step.
The inequality is equivalent to
\[(x + c)(xˆ2 + ax + b) \le 0.\]Since the roots of $xˆ2 + ax + b$

are $-1$ and $1,$ we can write
\[xˆ2 + ax + b = (x + 1)(x - 1) = xˆ2 - 1.\]Then
\[(x + c)(xˆ2 + ax + b) = (x + c)(xˆ2 - 1) = (x + c)(x + 1)(x - 1)

.\]The inequality is satisfied when $x \in (-\infty,-1) \cup
[1,2),$ so

\[(x + c)(x + 1)(x - 1) \le 0\]when $x \in (-\infty,-1) \cup [1,2)
.$ This means that one of $x + c,$ $x + 1,$ or $x - 1$ is
nonpositive, and the other two are nonnegative.

If $x + c \le 0,$ then $x \le -c.$ Since $x \in [1,2),$ we must
have $-c \ge 2,$ or $c \le -2.$

If $x - 1 \le 0,$ then $x \le 1.$ Since $x \in (-\infty,-1),$ we
must have $-1 \le 1,$ which is always true.

If $x + 1 \le 0,$ then $x \le -1.$ Since $x \in [1,2),$ we must
have $-1 \le 1,$ which is always true.

Therefore, the solution is $x \in (-\infty,-c] \cup [1,2).$ Since
$x \in [1,2),$ we must have $-c \ge 2,$ or $c \le -2.$

Hence, $a + b + c = 0 - 1 + (-2) = \boxed{-3}.$
The answer is $\boxed{-3}$.

------------------
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Round2:
Question: The girls are trying to raise money for a carnival. Kim

raises $320 more than Alexandra, who raises $430, and Maryam
raises $400 more than Sarah, who raises $300. How much money,
in dollars, did they all raise in total?

Solution:
‘‘‘python
def total_money_raised():

"""The girls are trying to raise money for a carnival. Kim
raises $320 more than Alexandra, who raises $430, and
Maryam raises $400 more than Sarah, who raises $300. How
much money, in dollars, did they all raise in total?"""

alexandra_money = 430
kim_money = alexandra_money + 320
sarah_money = 300
maryam_money = sarah_money + 400
total_money = alexandra_money + kim_money + sarah_money +

maryam_money
return total_money

total_money = total_money_raised()
print(total_money)
‘‘‘
‘‘‘output
2180
‘‘‘
The girls raised a total of $\boxed{2180}$ dollars.

------------------

Round3:
Question: The digits from 1 to 6 are arranged to form a six-digit

multiple of 5. What is the probability that the number is
greater than 500,000? Express your answer as a common fraction
.

Solution:
Let’s reason step by step.
To form a six-digit multiple of 5, the last digit must be either 0

or 5.
Since the number must be greater than 500,000, the last digit must

be 5.
The remaining five digits can be arranged in $5!$ ways.
Therefore, the probability is $\frac{5!}{6!} = \boxed{\frac{1}{6}}

$.
The answer is $\boxed{\frac{1}{6}}$.
Based on the above reasoning, we can verify by writing a program.
‘‘‘python
from sympy import Rational

def probability_greater_than_five_million():
"""The digits from 1 to 6 are arranged to form a six-digit

multiple of 5. What is the probability that the number is
greater than 500,000? Express your answer as a common
fraction."""

# Total number of arrangements
total_arrangements = 6*5*4*3*2*1

# Number of arrangements that start with 5 or 6
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valid_arrangements = 2*5*4*3*2*1

# Number of arrangements that start with 1
invalid_arrangements_1 = 1*5*4*3*2*1

# Number of arrangements that start with 2
invalid_arrangements_2 = 1*4*3*2*1

# Number of arrangements that start with 3
invalid_arrangements_3 = 1*3*2*1

# Total number of invalid arrangements
invalid_arrangements = invalid_arrangements_1 +

invalid_arrangements_2 + invalid_arrangements_3

# Calculate the probability
probability = Rational(valid_arrangements, total_arrangements)

return probability

result = probability_greater_than_five_million()
print(result)
‘‘‘
‘‘‘output
1/3
‘‘‘
The probability that the number is greater than 500,000 is $\boxed

{\frac{1}{3}}$.

E.3 AUTOCODE 4SHOTS

Listing 3: Autocode 4shots example.
User: Simplify $\sqrt{25000}$.",
Assistant:
Let’s write a program.
‘‘‘python
from sympy import sqrt

def simplify_sqrt():
"""Simplify $\sqrt{25000}$."""
simplified_sqrt = sqrt(25000)

return simplified_sqrt

result = simplify_sqrt()
print(result)
‘‘‘
User:The function $f(x)$ satisfies \[f(x + f(x)) = 4f(x)\]for all

$x,$ and $f(1) = 4.$ Find $f(21).$
Assistant:
Let’s reason step by step.
We can start by plugging in $x = 1$ into the given equation. This

gives us
\[f(1 + f(1)) = 4f(1).\]
Since we know that $f(1) = 4$, we can substitute this into the

equation to get
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\[f(1 + 4) = 4 \cdot 4.\]
Simplifying, we have
\[f(5) = 16.\]
Next, we can plug in $x = 5$ into the given equation. This gives

us
\[f(5 + f(5)) = 4f(5).\]
Since we know that $f(5) = 16$, we can substitute this into the

equation to get
\[f(5 + 16) = 4 \cdot 16.\]
Simplifying, we have
\[f(21) = 64.\]
Therefore, the value of $f(21)$ is $\\boxed{64}$.
The answer is $\\boxed{64}$.
User:Find the matrix that corresponds to reflecting over the $x$-

axis.
Assistant:
Let’s reason step by step.
The reflection of a point $(x, y)$ over the $x$-axis is $(x, -y)$.
Thus, the matrix that corresponds to reflecting over the $x$-axis

is $\\boxed{\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}}$.
The answer is $\\boxed{\begin{pmatrix}1&0\0&-1\end{pmatrix}}$.
User:If $a$ is three times $b$, $b$ is twice $c$, and $c$ is four

times $d$, what is the value of $\frac{a\cdot c}{b\cdot d}$?
Assistant:
Let’s write a program.
‘‘‘python
from sympy import symbols, simplify

def ratio_of_products():
a, b, c, d = symbols(’a b c d’)

# Given relations
a = 3 * b
b = 2 * c
c = 4 * d

# Substitute the relations into the expression
expr = a * c / (b * d)
expr = expr.subs({a: 3 * b, b: 2 * c, c: 4 * d})

# Simplify the expression
simplified_expr = simplify(expr)

return simplified_expr

result = ratio_of_products()
print(result)
‘‘‘
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