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ABSTRACT

Deep neural networks trained in an end-to-end manner have been proven to be
efficient in a wide range of machine learning tasks. However, there is one draw-
back of end-to-end learning: The learned features and information are implicitly
represented in neural network parameters, which are not explainable: The learned
features cannot be used as explicit regularities to explain the data probability dis-
tribution. To resolve this issue, we propose in this paper a new machine learning
theory, which describes in mathematics what are ‘non-randomness’ and ‘regular-
ities’ in a data probability distribution. Our theory applies a spiking function to
distinguish data samples from random noises. In this process, ‘non-randomness’, or
a large amount of information, is encoded by the spiking function into regularities,
a small amount of information. Then, our theory describes the application of multi-
ple spiking functions to the same data distribution. In this process, we claim that
the ‘best’ regularities, or the optimal spiking functions, are those who can capture
the largest amount of information from the data distribution, and then encode the
captured information into the smallest amount of information. By optimizing the
spiking functions, one can achieve an explainable self-supervised learning system.

1 INTRODUCTION

In the past decades, deep neural networks have being brought huge success to a wide range of machine
learning tasks (LeCun et al., |1998; Vaswani et al.,[2017; Devlin et al., 2018; |Goodfellow et al., 2014;
Rombach et al.| 2022} |[He et al., 2016). Convolutional neural networks (CNNs) revolutionized
computer vision (LeCun et al., [1998)), leading to groundbreaking results in image classification,
object detection, and segmentation (Deng et al., 2009; Ronneberger et al.l 2015). CNNs became the
backbone of many applications, from medical imaging to autonomous driving. Also, recurrent neural
networks (RNNs) and their variants (Sherstinskyl [2020), such as long short-term memory (LSTM)
networks and gated recurrent units (GRUs) (Hochreiter & Schmidhuber, [1997;|Chung et al.| 2014),
combining with semantic embeddings, made significant strides in sequence modeling tasks, including
language modeling, speech recognition, and time-series prediction (Zhou & Xul 2015} |Graves et al.,
2013520065 Bengio et al.,2000; Mikolov et al.| 2013)).

The introduction of attention mechanisms and transformers revolutionized NLP by improving the
handling of long-range dependencies and performance (Vaswani et al.,2017). Models like BERT
(Devlin et al., 2018)) set new benchmarks in language tasks, driven by pre-training strategies widely
used in transformer models (Radford et al.,2018]). Pre-training techniques, such as masked language
modeling (Salazar et al.,[2019) and next-word prediction (Qi et al., 2020), have propelled models
like BERT, RoBERTa, ELECTRA, and T5 to excel across tasks (Devlin et al., 2018} [L1u et al., 2019;
Clark et al., [2020; Raffel et al.,|2020). This has paved the way for large language models (LLMs),
including ChatGPT (Kasneci et al., [2023; Wu et al., | 2023)), which excel in applications like customer
service and content creation (Rayl 2023)).

All these models, supervised or unsupervised, pre-trained or not, are based on an end-to-end learning
process (Carion et al.,|2020): The deep neural network is trained to map input data to corresponding
targets, which can be labels in a supervised learning approach or masked data in an unsupervised
learning approach. The loss, which is the difference between the neural network output and the target,
is back propagated through the network to update the trainable parameters (Rumelhart et al., |1986).
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However, there is one drawback of end-to-end learning: All the learned features and information
during training are implicitly kept in network parameters, which cannot form explicit regularities
to explain the data distribution. Without explicit regularities and knowledge, deep neural networks
cannot emulate human-like abilities such as discovering new commonsense, generating ideas, or
making plans driven by specific objectives (An et al., 2019} |Sweller, 2009; Davis & Marcus, [2015).

But what are regularities in a data distribution? Or, what differs data samples from random noises?
In this paper, we establish a theory to describe ‘regularities’ and ‘non-randomness’ in mathematics,
which is potentially applicable to build an explainable self-supervised machine learning system.

The contribution of this paper is the proposal of such a theory, which encompasses two aspects:

1. Based on spiking functions, we define in mathematics what is non-random information, or ‘non-
randomness’, in a data probability distribution. Then, based on information theory, we describe that
regularities are a small amount of information encoding a large amount of non-random information.

2. We apply multiple spiking functions to the same data probability distribution. Then, we mathemat-
ically describe that optimal regularities are learned by spiking functions when the maximum amount
of information is represented in the most concise way, or equivalently, encoded into the smallest
possible amount of information. We use simple examples to show that when these optimal spiking
functions are achieved, their spiking behaviors become explainable regarding the data probability
distribution, and hence the system becomes an explainable self-supervised learning system.

We acknowledge that implementation models for our theory have not yet been developed. So, there
are no experimental results presented in this paper. In the rest of this paper, we will first briefly
introduce some related works in Section[2] Then, we describe our theory in Section[3] Finally, we
conclude with a summary of this paper in Section

2 RELATED WORK

Our work is unique since it presents a theory that defines in mathematics what are non-randomness
and regularities in a data probability distribution, which can be potentially applied to practical
machine learning tasks. To the edge of our knowledge, this is the first work presenting such a theory.
But our theory indeed depends on spiking functions (or spiking neural networks in practice) and
information theory.

Spiking Neural Networks (SNNs) have gained attention for their ability to closely mimic brain
processes compared to traditional neural networks (Brown et al., [2004} [y Arcas & Fairhall, [2003)).
Spike-timing-dependent plasticity (STDP), introduced by (Debanne & Inglebert, [2023)), offers a
key learning rule where synaptic strengths adjust based on spike timing. (Maass et al., [2002)) then
proposed the Liquid State Machine, showing how dynamic neural circuits process information.
(Giitig & Sompolinskyl, 2006) advanced this with the Tempotron model, where neurons learn to
discriminate spatiotemporal spike patterns. Finally, (Sengupta et al.| |2019) discussed converting
traditional networks to SNNs, enabling energy-efficient implementations on neuromorphic hardware.
Combining all these works, in our theory, given a vector X as the input to a function f, we regard f
to spike on X if f(X) > 0. This is a very simple setting comparing to many spiking neural networks.

Information theory, foundational to modern communication and data science, was pioneered by
Claude E. Shannon in his paper A Mathematical Theory of Communication (Shannonl|1948)). Shannon
introduced key concepts like entropy, which measures uncertainty, and mutual information, which
quantifies the information gained about one variable from another. Subsequent influential works
include the Viterbi algorithm by (Viterbi, |1967), critical for error-correcting codes, and (Slepian
& Wolt] |1973)), which explored trade-offs between compression and fidelity in data transmission.
(Fitts| [1954) also applied information theory to human-computer interaction. Based on the solid
ground established by these pioneered works, our work applies information theory to describe
non-randomness and regularities in the data distribution discovered by spiking functions.

3 LEARNING REGULARITIES FROM DATA USING SPIKING FUNCTIONS

We describe our theory with details in this section. First, by applying a single spiking function
to the data distribution, we describes in mathematics how to measure non-randomness and what
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are regularities. After that, we describe how to apply multiple spiking functions to the same data
distribution. Finally, we provide a hypothesis which defines optimal spiking functions (regularities)
to a data distribution. One can achieve an explainable self-supervised learning system simply by
converging to the optimal spiking functions.

3.1 NON-RANDOMNESS VERSUS REGULARITIES

Given a finite-dimensional vector space X, suppose our data space is a bounded sub-region S C X.
Suppose we have a data probability distribution P defined on S. Our goal is to learn the regularities
from P. In other words, we want to know what distinguishes P from a random probability distribution
P’ (such as a uniform distribution) on S. Inspired by Noise Contrastive Estimation (Gutmann &
Hyvirinen, |2010), our theory focuses on distinguishing samples generated from each of these two
distributions using functions.

That is, suppose we have N data samples { X1, Xo, -+ , X} generated by P, and the same number
of random samples {X7],--- , X/} generated by P’. Suppose we have a function f : S — R that
maps any vector X € S to a real scalar. Inspired by the way neurons fire (or ‘spike’) in response
to specific biochemical signals (Brown et al.,|2004), our desired function f should exhibit a higher
response rate to data samples than to random ones. Regarding f(X) > 0 as a spike of f on X, we
aim for the spiking frequency of f on {X,,})_; to differ significantly from that of f on {X/}_,.

We use M to denote the number of observed spikes when implementing f on the data samples
{X,,}N_, generated by P. Similarly, we use M’ to denote the number of spikes when implementing
f on random samples { X/}, generated by P’. With p = M/N and p’ = M'/N, we have that
pP= (p, 1 — p) is the observed spiking probability distribution of f on the data samples {X,,}_;,
while P’ = (p/,1 — p) is that of f on the random samples {X/ }2_,. Then, we can obtain the
Kullback-Leibler divergence (KL-divergence) (Hershey & Olsenl 2007) of P over P’ as:

p M M N-M N-M

. 1-p
1—p)log(—=) = — log(— 1
)+ (1-D) og(l_ﬁ) og(qp) + = losl—yp

Dg(P||P") = plog( N

). (1)

SHESH

According to information theory (Shannon, [1948)), Dy 1, (ﬁ| \13’ ) measures the amount of information
obtained if we use P instead of P’ to estimate the spiking probability distribution of f on the data
samples (Shlens,2014). Or equivalently, f captures the amount of information D ,(P||P’) from

the data distribution P by comparing P with the random distribution P’. We use D, (P||P’) to
measure the non-randomness captured by f from P. That says, we define non-randomness to be the
meaningful or valuable amount of information which differs a data probability distribution from a
random probability distribution.

Define p = limy 00 P = limy_ oo %, and p’ = limy_ oo P = limpy_ o0 %, That is, the limits
of p and p’ over N define the theoretical spiking probabilities of f on data and random samples,
respectively. Accordingly, we define the limit of D KL(ﬁ| |13’ ) over N as the theoretical spiking
efficiency of function f, denoted as SE;. We use Dg L(P||P') to define the observed spiking
efficiency of function f, denoted as SE ¢. That is,

(M. M. N-M_  N-M
5By :Nlinoo<N1°g(M)+ N log(N—M’)> @
— M, M+a, N-M_ N-M+a
SEp=glos(qp )+ —§ leslg—rs) 3)

According to Gibbs’ inequality, we always have DKL(]3| \13’) >0, and DKL(]3| \13’) = 0if and
only if pP=p (Jaynes et al.,|1965). However, in practice, we may occasionally have M’ = 0 or
M’ = N, which makes D1, (P||P') = co. Or, we may have M = 0 or M = N, which result in
0log 0. Hence, we add a small positive scalar « to the format of @ t to avoid these cases.

Both SE and SE # measure (in theory and by observation, respectively) the amount of information
that f captures from the data distribution P by comparing P with the random distribution P’.
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Intuitively, a larger SE ¢ by observation, or a larger SE in theory indicates that f can capture more
information from the data distribution P, which means that f spikes more efficiently.

However, spiking efficiency itself is not enough to measure regularities learned by f: If f itself is
super complex, we may end up with over-fitting as in many deep learning experiments (Ying} |2019;
Hawkins, [2004). That says, we need to define the ‘size’ of a function to measure its number of
‘trainable’ parameters, or ‘conciseness’:

Definition 1. Suppose a is a scalar parameter in the function f. We say that a is adjustable, if we
can adjust the value of a without changing the computational complexity of f.

Definition 2. The size of a function f, denoted as |f|, is defined as the number of adjustable
parameters in f.

In this paper, we always calculate the size of a function using its format with the lowest computational
complexity. For example, we have |f| = 2 for f(z) = alogx + b = loga® + b. Also, we always
assume | f| > 1 for any function f, even if f contains no adjustable parameters.

With | f| denoting the size of function f, we define the conciseness of f to be C'y = | f|~!. That says,
we intuitively regard a function with a small size (or limited number of parameters) as a concise one.
Then, we define the theoretical ability of function f tobe Ay = SE; - C. Similarly, we define the

observed ability of f to be ﬁf = @f - Cy. Itis easy to see that limy_, o ﬁf = Ay. That s,
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The size of f defined in our theory essentially aligns with Kolmogorov complexity (Li et al., 2008),
which describes the minimum amount of information required to specify f unambiguously (Wallace
& Dowel [1999). So, intuitively, the ability (theoretical or observed) of function f measures the
amount of information captured by f relative to the amount of information required to specify f. A
function f with high ability implies that f is able to encode a large amount of information into a
small amount of information, which is why we use ‘ability’ to denote this variable.

Summarizing our discussion in this section, we define that regularities are a small amount of
information representing a large amount of information. A spiking function with higher ability learns
stronger or better regularities. Also, we do not strictly differ a spiking function from the regularities
learned by that function. In the rest of this paper, we in most cases regard function f as its learned
regularities, and vice versa.

In the following sections, we describe how to expand our theory to multiple spiking functions. But
we will first introduce some mathematical basis in the next sub-section.

3.2 BASICc CONCEPTS

We assume by default in this paper that the vector space X is either real or complex (i.e., X = R™
or X = C™ with some finite integer m). Then, we adopt the Euclidean distance as the metric on X
(Gower, |1985), which defines the distance d(X,Y") between any two vectors X,Y € X. A little bit
more detailed discussion can be found in Appendix [A]

Then, we use the Lebesgue measure (Bartle,|2014) to define the ‘volume’ of a subset E C X. The
Lebesgue measure is a regular choice to measure volumes of subsets within a finite-dimensional
real or complex vector space (Ciesielskil, |1989)), which coincides with our usual understanding of
volume. Say, when X = R3, the Lebesgue measure of a sphere with radius 7 is %777“3. A more
detailed definition on Lebesgue measure is provided in Appendix [A]

With these concepts, we can then evaluate the spiking efficiency, conciseness and ability of a function
in a straightforward way. That is, we will first have:

Definition 3. Suppose X is a finite-dimensional real or complex vector space, and suppose S C X
is a bounded sub-region in X. Suppose f : S — R is a function defined on S. We define the spiking
region of f, denoted by Sy, to be the sub-region in S consisting of the vectors that f spikes on. That
is, Sy = {X € S|f(X) > 0}.
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Also, we say that two spiking regions are distinct, if there exists a vector X € S that belongs to one
spiking region but does not belong to the other.

Obviously, there is an unique spiking region S to any function f. We will work with many types of
spiking regions in the rest of this paper. We note that spiking region is only an analytical tool we
created in the theory. In practice, it is very difficult and not meaningful to accurately measure the
spiking region of a function, especially in high dimensional data spaces.

When function f is continuous regarding the metric on the vector space X, we have the following
lemma to guarantee that Sy is Lebesgue-measurable (i.e., the region indeed has a determined volume
under Lebesgue measure):

Lemma 1. Suppose X is a finite-dimensional real or complex vector space, and suppose S C X is a
bounded sub-region in X. Suppose f : S — R is a continuous function defined on S (i.e., for any
€ > 0, there exists a 6 > 0 such that for any X,Y € S, d(X,Y) < § implies |f(X) — f(Y)| < €).
Then, the spiking region Sy = {X € S|f(X) > 0} is always Lebesgue-measurable.

The discussion on Lebesgue-measurable/non-measurable sets as well as the proof of this lemma are
provided in Appendix [A] Lebesgue non-measurable sets indeed exist in a finite-dimensional vector
space. However, a non-measurable set is usually extremely complicated. The Vitali set (Kharazishvili}
2011) is a famous non-measurable set in R, which is discussed in Appendix |A] To be specific, we
believe that any function f with a finite size cannot possess a non-measurable spiking region. That is,

Hypothesis 1. Suppose X is a finite-dimensional real or complex vector space, and suppose S C X
is a bounded sub-region in X. Suppose f : S — R is a function defined on S with a finite size (i.e.,
there are finite adjustable parameters in f). Then, the spiking region S; = {X € S|f(X) > 0} is
always Lebesgue-measurable.

Based on this hypothesis, we claim that: Any function with a finite size can only capture finite amount
of information from a data distribution, as long as the data distribution is a ‘regular’ one. That is:

Theorem 1. Suppose X is a finite-dimensional real or complex vector space, and suppose S C X
is a bounded sub-region in X. Suppose we have the data probability distribution P defined on S,
with the probability density function to be g(X). Furthermore, suppose there exists an upper bound
0 < o0, such that g(X) < Q for any X € S. Finally, suppose we have the random distribution P’
to be the uniform distribution defined on S.

Then, for any function f : S — R with a finite size | f|, its theoretical spiking efficiency SE obtained
with respect to P and P’ is bounded by 0 < SE; < Q- |S| - log (Q - |S|), where |S| is the Lebesgue
measure of data space S.

Again, we provide the detailed proof of this theorem in Appendix [A] However, we want to provide
the following formulas regarding SE; here (in which S = S\S; is the complement of the spiking

region Sy in S, ¢'(X) = ﬁ is the probability density function of the uniform distribution P’, and
|S¢| is the Lebesgue measure of Sy):

- Js, 9(X)dX Jse 9(X) dX
SE;= </ng(X) dX) -log <fsf 7 (X) dX) + (/S§9(X) dX) -log <fs§ 7% dX> 6)
B 8] Js, 9(X)dX S|-18] Js, 9(X)dX
—(/sﬁ(X”X)'bg <|sf|> : (1‘/sfg<X> dX) '1°g( ER ) 7

By a ‘regular’ data distribution P, we mean that there exists an upper bound {2 < oo for the probability
density function g(X) of P. Otherwise, P will contain singularities with infinitely large probability
density (Meunier & Villermaux,[2007). In such a case our theorem is not true. In the rest part, we
always use the uniform distribution defined on the entire data space S as the random distribution P’.

3.3 APPLYING MULTIPLE SPIKING FUNCTIONS TO THE DATA DISTRIBUTION

In this sub-section, we discuss the situation of multiple spiking functions being applied to the same
data distribution.
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Again, suppose we have the data distribution P and random (uniform) distribution P’ defined on
the data space S. Suppose we have a sequence of functions f = (fy,-- - , fx ), where each function
fr :' S — R has a finite size |fx|. Given the data samples {X,,}_; generated by P and random
samples { X! }NV_, generated by P’, suppose function f; spikes on M; data samples and M| random
samples, respectively. Remember that the objective of each function is to capture information from
the data distribution by discovering non-randomness. Hence, if f; already spikes on a vector X
(either a data sample or a random sample), it will be meaningless to consider whether f5 spikes on
X. This is because the corresponding non-randomness, or non-random features related to X have
already been discovered by f, so that it becomes meaningless for f5 to discover these non-random
features again.

As aresult, after ignoring the data samples that f; spikes on, suppose there are M> data samples in
{X,,}N_, making f» spike. Similarly, suppose there are M} random samples in { X/ }_, making
f2 spike while not making f; spike. Carrying on this process, suppose there are M), data samples in
{X,}N_, and M} random samples in { X}V, respectively that make f spike, but do not make

fi,-++, fe—1 spike. In this way, we can define the theoretical spiking efficiency SE, and observed
spiking efficiency SE s, for each function fj in f = (f1,--- , fx) as:
Mk N — My, N — M,
— Mk M, +()z N — Mj, N—-Mj, +a
SE; = —1 1 . 9

Similar to formula a is a small positive number to avoid log(0) or M /0 in practice.

Then, suppose My = Z r—1 My and Mf Z w—1 Mj. Since there is no overlapping on splked
samples when calculating M, and M, we have that Mf is the total number of data samples in
{X, 1, that make at least one function in f to spike. Similarly, M} is the total number of random
samples in { X/ },'_; making at least one function in f to splke We deﬁne the theoretical spiking
efficiency and observed spiking efficiency of f = (f1,--- , fx) as:

) Mg, N-—DMs N — Mg
Er=1 — log 1 1

Ee= Jim (5 toa(375)+ o sl 5= 3) (10)

— M Ms + « N— Mg N—Ms + «

SEr=—1 1 11
Intuitively, S Er measures (in theory) the amount of information captured by the entire sequence
of functions f = (f1,-- -, fx), while SEy, measures (in theory) the amount of valid information
captured by each function fj in the sequence. By ‘valid information’, we mean the information
related to the newly discovered non-randomness by fj, that is not discovered by f1, -+, fr—1.

We define the spiking region of each fi in f = (f1, -, fx) by removing the spiking regions of
functions ahead of fj, in the sequence. Thatis, Sy, = {X € S|fi(X) > 0and f;(X) < O0fori =
1,---,k—1}. In fact, if Sj];d denotes the spiking region of f;, when it is considered as an independent
function, then we have that Sy, = S\ (U}Z'Si"¥). We denote S/ as the independent spiking
region of each function fj. Then, we define
S¢ = {X € S|fr(X) > 0 for any function f € {f1, -, fx}}

to be the spiking region of f. That is, S¢ consists of vectors that make at least one function in
f = (f1, -, fx) to spike. We have that Sy, NSy, = 0 if k # 4, and S¢ = U Sy, = Ui, S,
A straightforward demonstration is shown in Figure

By Hypothesis 1, each Smd is measurable since |fi| is finite. This means that Sy, =

Smd (i fsmd) is measurable as well. Hence, S¢ = UX_|S;
the same proof method as Theorem 1, we have:

. 15 also measurable. Following
Theorem 2. Suppose X is a finite-dimensional real or complex vector space, and suppose S C X is
a bounded sub-region in X. Suppose there are the data probability distribution P and the uniform
distribution P’ defined on S. Also, suppose the probability density function g(X) of P is bounded by
a finite number S (i.e., P is regular).
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X

Figure 1: The spiking regions of functions in f = (f1, f2, f3) defined on the xy-plane. Sy, is the blue
circle in the front. Sy, is the red circle but removing overlapping with Sy, . Then, Sy, is the yellow
circle after removing Sy, and Sy, .

Suppose £ = (f1, -+, [x) is a sequence of functions with each function fi, : S — R possessing
a finite size |fy|. Then, with respect to P and P’', the theoretical spiking efficiencies of both
f and each fi are bounded. That is, we have 0 < SE¢ < Q-S| -log(Q-S]|), as well as
0< SE; <Q-|S|-log(Q-|S|)fork =1,---,K. Here, |S| is the Lebesgue measure of data
space S.

We note that independent with the order of functions in f = (f1,- - , fk), once the set of functions
{f1, -+, frx} is fixed, the theoretical spiking efficiency SE¢ and the spiking region S¢ will be
determined. In fact, suppose S§ = S\S¢ denotes the complement of S¢ in S, ¢'(X) = @1‘ denotes

the probability density function of P’, and |S¢| denotes the Lebesgue measure of S¢. Then, it can be
derived from the same proof method of Theorem 1 that:

_ Js, 9(X)dX S 9(X) dX
SEp= <~/ng(X) dX)-log (W) + </Sgg(X) dX>~10g<jW) (12)

) (I8l e 90X (18118 fu, 9(X) X
‘</sfg<X)dX>1°g< St )*(1 [0y 1°g< S-St )“3)

Also, replacing f by fj, in these formulas, we can get the formulas of SEy, for each f; in f =

(f1,- 5 fk)

The above formulas actually imply that: If f = (f1,---, fx) and £ = (f1,---, fz) are two
sequences of finite-sized functions defined on S, we will then have SE¢ = SFj; as long as their
spiking regions S¢ and S; are coincide. But the inverse is not true: If two sequences of finite-sized
functions have the same theoretical spiking efficiency, their spiking regions may still be distinct. The
following definition provides a more throughout description:

Definition 4. Suppose X is a finite-dimensional real or complex vector space, and suppose S C X
is a bounded sub-region in X. Suppose there are the data probability distribution P and the uniform
distribution P’ defined on S. Also, suppose the probability density function g(X ) of P is bounded by
a finite number S (i.e., P is regular).

Suppose £ = (f1,-- , fK) and f = (]?1, cee fg) are two sequences of finite-sized functions defined
on S. We say that f and f are spiking equivalent with respect to P and P’', denoted as f ~ f, if
SE¢ = SE;.

Suppose £ = (f1,--- , fx) is a sequence of finite-sized functions defined on S. We define the spiking
equivalence class of £, denoted as Es, to be the set consisting of all the sequences of finite-sized
functions that are spiking equivalent to f. That is,

gf:{ff:(fvh aff() ‘ﬁ‘|<oof0rk:17 71}7 Cll’ldSEf:SEfT},

where K and K are not necessarily equal, and different values of K are allowed in Er.

Finally, if there exists a sequence of finite-sized functions £* = (fy, -+, f+), such that for any

sequence of finite-sized functions f = (f1,--- , fz), the inequality SEg- > SEx always holds true,
then we call £* the most efficient encoder of P based on P', denoted as fp p,. We call &, _, the

spiking equivalence class of T p,, the most efficient class of P based on P’, denoted as &p pr-
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We note that there is no guarantee on the existence of a most efficient encoder. A regular data
distribution that does not possess a most efficient encoder (i.e., an empty most efficient class) is
discussed at the end of Appendix [B] Also, we believe that:

1: Any existing spiking equivalence class contains infinite elements (sequences of finite-sized
functions), which is formally described by Hypothesis 3 in Appendix

2: Upon the existence of the most efficient class, every most efficient encoder shall have exactly the
same spiking region. We formally describe this by Hypothesis 4 in Appendix

3.4 OPTIMAL ENCODER OF THE DATA DISTRIBUTION

Based on the previous discussion, we can now consider the ability of multiple functions.

Again, suppose we have the regular data distribution P and uniform distribution P’ defined on
the data space S. Suppose f = (f1,-- -, fx) is a sequence of functions defined on S, where each
function f : S — R has a finite size | f;|. Given N data samples {X,,}N_, generated by P and N
random samples { X}V, generated by P’, suppose there are M}, data samples and M random
samples respectively that make fy, spike, but do not make f1,- -, fx—1 spike. Using M}, M] and
N, we can obtain the theoretical spiking efficiency SEy, and observed spiking efficiency SE, for
each function f;, in f by formula ]

Then, we can obtain the theoretical ability A; = SEy, - Cy, and the observed ability A fo =
SEy, - Cy, foreach f in f, where Cy, = | fi|~! is the conciseness of f:

(M My, N—Mj, N=My, .
Aj, = Jx}gnoo<N10g(]W/€) TN 1Og(]\ffM,'C )) AL
~ (Mg, Myta,  N-My,  N-Mgta) 1
Ay = (=21 . Al N

In our opinion, the ability (theoretical or observed) indicates the ‘effort’ or ‘work” function f made to
encode the captured information into its parameters. As a result, the ability, or ‘work’, of the entire
sequence of functions f = (f1,- - , fx) should be the sum of that from each function.

That says, with respect to P and P’, we define the theoretical ability of the sequence of functions
f=(f1,-,fx)tobe As = Zle Ay, . We define the observed ability of f = (f1,--- , fx) to
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According to Theorem 2, for each finite-sized function fj in f, its theoretical spiking efficiency
SEy, is bounded. As discussed in Section we require | f| > 1 for any function. Hence, we
have the conciseness Cy, = |fi|~! < 1 for each fy in f. This means that the theoretical ability

Ay, = SEjy, -Cj, of each function f}, is also bounded. Hence, the theoretical ability A¢ = ZkK: LAy,
of f = (f1, -+, fx) is bounded.

Now, we can present a major hypothesis in our theory, which defines the optimal regularities with
respect to a data probability distribution. This hypothesis is also the key to achieve an explainable
self-supervised learning system.

Hypothesis 2. Suppose X is a finite-dimensional real or complex vector space, and suppose S C X
is a bounded sub-region in X. Suppose there are the data probability distribution P and the uniform
distribution P’ defined on S. Also, suppose the probability density function g(X) of P is bounded by
a finite number Q (i.e., P is regular).

Given a sequence of finite-sized functions £ = (f1,- -+ , fx ) defined on S, suppose that with respect
to P and P’, & is the spiking equivalence class of f, and T' = S E is the theoretical spiking efficiency
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of £. Then, there exists at least one sequence of finite-sized functions f' = ( flJr A f;rﬁ) € &, such
that for any other f = (fl, S fg) € &, the inequality Agr > Az always holds true. We call such
anft = (ff,---, f;ﬁ) a T'-level optimal encoder of P based on P’, denoted as fli’NPF,.

Finally, suppose the most efficient class Sf,yp, with respect to P and P’ is not empty. Then, there
exists at least one most efficient encoder 7 = (f{,- -, fIT(T) € &p pi, such that for any other most
efficient encoder £* = (ff, -+, ffzs) € Ep pi» the inequality Agr > Ag+ always holds true. We call
such an fT = (ff, cee f;ﬁ) an optimal encoder of P based on P’', denoted as f;P,.

Based on the above hypothesis, suppose the data distribution P is also uniformly distributed within
specific regions of S. Then, given the existence of an optimal encoder fli',P’ =( f{r J f;ﬁ) with

respect to P and P’, we claim that intuitively, the independent spiking regions {S;ﬁ"l7 Sy S’]ﬁd

1 Kt
of the functions { flT R f;fﬁ} in fllf, p divide the data space S in the most appropriate way with
respect to the data distribution P.

We provide several graphs in Figure [2| for a better understanding on this statement. Note that the
example distribution in each graph of Figure [2] has the data space S C R2. But we claim that the
same statement can be applied to data probability distributions in higher dimensional vector spaces.

Figure 2: Optimal encoders to several simple data distributions.

In the left graph of Figure 2] we have the data distribution P itself to be a uniform distribution within
two disjoint circles: \/(z — 2)2 + (y — 2)2 = 1 and \/(z — 5)2 + (y — 2)2 = 1. The data space S
is the rectangle {z,y |0 < x < 7,0 < y < 4} C R2, and the random distribution P’ is uniform
within S. In Appendix [E] our evaluation will show that an optimal encoder with respect to P and P’
in this example will likely consist of two binary functions corresponding to the two circles:

Lif/(z—2)24+(y—2)2<1; Lif/(z =52+ (y—2)2 < 1;
0, otherwise. 0, otherwise.

ff(x,y)={ , fg(x,y):{

However, we acknowledge that our evaluation is a numerical enumeration rather than a strict mathe-
matical proof.

The middle graph of Figure [2| shows a data distribution P that is uniform within the area covered by
two overlapped diamonds (a diamond is a 45° rotation from a square). The vertex of each diamond
coincides with the center of the other diamond. The centers of the two diamonds are x = 4,y = 3
and z = 6,y = 3. Again, the random distribution is uniform within S = {z,y | 0 < 2 < 10,0 <
y < 6}. We will show in Appendix [E|that an optimal encoder in this example will likely provide the
independent spiking regions exactly matching with these two diamonds.

Finally, in the right graph of Figure there are 15 squares within S = {z,y |0 <2 < 14,0 <y <
8}. The data distribution P is uniform within these 15 squares, while the random distribution P’ is
uniform in S. Similarly, we show in Appendix @ that an optimal encoder with respect to P and P’
will likely consist of 15 functions, providing 15 spiking regions fitting each of these squares. From all
the three examples, we can see that K T, the number of functions in an optimal encoder, is naturally
determined by the data distribution P. More example distributions and discussions can be found in

Appendix [E]

This property of an optimal encoder (dividing the data space in the most appropriate way regarding
the data probability distribution) is actually self-supervised explainability: Without annotations
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or labeling, one can get an explainable sequence of spiking functions f = (f1,- - , fx) regarding
the data distribution P simply by maximizing the ability of f. In this way, f will approach to an
optimal encoder of P and divide the data space in the most appropriate way, or an ‘explainable way’,
regarding P. That is, one can get explainable spiking functions in a self-supervised manner, which
can be an alternative to end-to-end learning.

In practice, the data distribution P may not be uniformly distributed within its specific regions. In
this case, we admit that an optimal encoder obtained according to our theory will not be perfect. One
should refer to the last example in Appendix |E| for more details. But in fact, this shows a defect
of our theory: The data probability density variations within a function’s spiking region cannot be
appropriately represented. In other words, beyond spiking or not spiking, we need to further consider
the spiking magnitude, or spiking strength, of a function on an input sample. A refined theory taking
spiking strength into consideration is briefly described in Appendix D]

As we mentioned, there is no actual implementation or realization of our theory. However, we indeed
design an implementation pipeline for spiking functions to converge to an optimal encoder in practice.
Our designed pipeline is based on multiple bi-output functions, which is described in Appendix [C|

Once again, given the sequence of functions f = (f1,-- -, fi), its theoretical spiking efficiency S F¢
measures the total amount of information captured from the data distribution by all the functions
in f. The theoretical ability Ay, of each function fj, in f measures the valid effort made by fj on
information encoding: The amount of valid information SE, (i.e., the amount of information related

to the non-randomness that is discovered by fj, butnotby f1,--- , fx—1) is encoded into | fx |, whereas
the effort made in this encoding process is measured by Ay, = SEy, /|fx|. Then, the theoretical
ability Ag = Zszl Ay, measures the total valid effort made by all the functions in f = (f1,--- , fx)

on information encoding.

Therefore, given the data distribution P and the uniform distribution P’, if an optimal encoder fli,,P,
does exist, it is the sequence of functions that captures the largest amount of information from P,
and then encodes (or compresses) the information with the greatest effort. That says, the optimal
regularities capture the largest amount of information and represent it in the most concise way, or
equivalently, encode it by the smallest amount of information. Finally, according to these discussions,
we can see that a learning system can obtain explainable and meaningful representations of a data
probability distribution in a self-supervised manner, simply by encoding large amount of information
into small amount of information.

4 CONCLUSION

In this paper, we establish a theory on learning regularities from data using spiking functions.
Throughout this paper, the key to our theory is comparing the spiking behavior of the function on
data samples and random samples. We say that a function f discovers non-randomness from the
data probability distribution, if the spiking frequency of f on data samples differs significantly from
that of f on random samples. Then, taking the size of function f into consideration, we claim that
f learns regularities from the data distribution if f discovers non-randomness using a small size
(or equivalently, a concise format). Finally, by referring to information theory, we propose that
regularities can be regarded as a small amount of information encoding a large amount of information.
Non-randomness is essentially valuable information in the data distribution.

After that, we apply multiple spiking functions to the same data distribution in order to learn the
optimal regularities. We demonstrate that the optimal regularities shall capture the largest amount of
information from the data distribution, and encode it into the smallest amount of information. We
call the corresponding sequence of functions an optimal encoder to the data distribution. Numerical
examples show that an explainable self-supervised learning system can be achieved by making the
sequence of functions converge to an optimal encoder. That is, essentially, an explainable self-
supervised learning system can be achieved by encoding the largest amount of information possible
into the smallest amount of information possible.

In the future, realizing our theory by valid optimization algorithms and appropriate deep neural
networks is the priority of our research.

10



Under review as a conference paper at ICLR 2025

REFERENCES

Abien Fred Agarap. Deep learning using rectified linear units (relu). arXiv preprint arXiv:1803.08375,
2018.

Sensong An, Clayton Fowler, Bowen Zheng, Mikhail Y Shalaginov, Hong Tang, Hang Li, Li Zhou,
Jun Ding, Anuradha Murthy Agarwal, Clara Rivero-Baleine, et al. A deep learning approach for
objective-driven all-dielectric metasurface design. Acs Photonics, 6(12):3196-3207, 2019.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Robert G Bartle. The elements of integration and Lebesgue measure. John Wiley & Sons, 2014.

Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. A neural probabilistic language model.
Advances in neural information processing systems, 13, 2000.

Emery N Brown, Robert E Kass, and Partha P Mitra. Multiple neural spike train data analysis:
state-of-the-art and future challenges. Nature neuroscience, 7(5):456—461, 2004.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-end object detection with transformers. In European conference on computer
vision, pp. 213-229. Springer, 2020.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Krzysztof Ciesielski. How good is lebesgue measure? The Mathematical Intelligencer, 11:54-58,
1989.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. Electra: Pre-training text
encoders as discriminators rather than generators. arXiv preprint arXiv:2003.10555, 2020.

David Daniel Cox and Thomas Dean. Neural networks and neuroscience-inspired computer vision.
Current Biology, 24(18):R921-R929, 2014.

Ernest Davis and Gary Marcus. Commonsense reasoning and commonsense knowledge in artificial
intelligence. Communications of the ACM, 58(9):92-103, 2015.

Dominique Debanne and Yanis Inglebert. Spike timing-dependent plasticity and memory. Current
Opinion in Neurobiology, 80:102707, 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp- 248-255. Ieee, 2009.

J. Devlin, M. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional transformers
for language understanding. arXiv preprint, arXiv:1810.04805, 2018.

Tomasz Downarowicz and Eli Glasner. Isomorphic extensions and applications. Topological Methods
in Nonlinear Analysis, 2016.

Paul M Fitts. The information capacity of the human motor system in controlling the amplitude of
movement. Journal of experimental psychology, 47(6):381, 1954.

Zoubin Ghahramani. Unsupervised learning. In Summer school on machine learning, pp. 72—112.
Springer, 2003.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

John Clifford Gower. Properties of euclidean and non-euclidean distance matrices. Linear algebra
and its applications, 67:81-97, 1985.

11



Under review as a conference paper at ICLR 2025

Alex Graves, Santiago Fernandez, Faustino Gomez, and Jiirgen Schmidhuber. Connectionist temporal
classification: labelling unsegmented sequence data with recurrent neural networks. In Proceedings
of the 23rd international conference on Machine learning, pp. 369-376, 2006.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with deep recurrent
neural networks. In 2013 IEEFE international conference on acoustics, speech and signal processing,

pp. 6645-6649. leee, 2013.

Robert Giitig and Haim Sompolinsky. The tempotron: a neuron that learns spike timing—based
decisions. Nature neuroscience, 9(3):420-428, 2006.

Michael Gutmann and Aapo Hyvirinen. Noise-contrastive estimation: A new estimation principle
for unnormalized statistical models. In Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, pp. 297-304, 2010.

Paul R Halmos. Measure theory, volume 18. Springer, 2013.

Douglas M Hawkins. The problem of overfitting. Journal of chemical information and computer
sciences, 44(1):1-12, 2004.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770-778, 2016.

John R Hershey and Peder A Olsen. Approximating the kullback leibler divergence between
gaussian mixture models. In 2007 IEEE International Conference on Acoustics, Speech and Signal
Processing-ICASSP’07, volume 4, pp. IV-317. IEEE, 2007.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735-1780, 1997.

Edwin T Jaynes et al. Gibbs vs boltzmann entropies. American Journal of Physics, 33(5):391-398,
1965.

Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforcement learning: A
survey. Journal of Artificial Intelligence Research, 4:237-285, 1996.

Enkelejda Kasneci, Kathrin SeBler, Stefan Kiichemann, Maria Bannert, Daryna Dementieva, Frank
Fischer, Urs Gasser, Georg Groh, Stephan Giinnemann, Eyke Hiillermeier, et al. Chatgpt for good?
on opportunities and challenges of large language models for education. Learning and individual
differences, 103:102274, 2023.

Alexander B Kharazishvili. Measurability properties of vitali sets. The American Mathematical
Monthly, 118(8):693-703, 2011.

Nikolaus Kriegeskorte. Deep neural networks: a new framework for modeling biological vision and
brain information processing. Annual review of vision science, 1:417-446, 2015.

Michel L Lapidus and Michael MH Pang. Eigenfunctions of the koch snowflake domain. Communi-
cations in mathematical physics, 172(2):359-376, 1995.

Mian Mian Lau and King Hann Lim. Review of adaptive activation function in deep neural network.
In 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), pp. 686—690.
IEEE, 2018.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

Ming Li, Paul Vitanyi, et al. An introduction to Kolmogorov complexity and its applications, volume 3.
Springer, 2008.

Zewen Li, Fan Liu, Wenjie Yang, Shouheng Peng, and Jun Zhou. A survey of convolutional neural
networks: analysis, applications, and prospects. [EEE transactions on neural networks and
learning systems, 33(12):6999-7019, 2021.

12



Under review as a conference paper at ICLR 2025

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Wolfgang Maass, Thomas Natschliger, and Henry Markram. Real-time computing without stable
states: A new framework for neural computation based on perturbations. Neural computation, 14
(11):2531-2560, 2002.

Benoit B Mandelbrot. Fractal geometry: what is it, and what does it do? Proceedings of the Royal
Society of London. A. Mathematical and Physical Sciences, 423(1864):3—16, 1989.

Foteini Markatopoulou, Vasileios Mezaris, and lIoannis Patras. Implicit and explicit concept relations
in deep neural networks for multi-label video/image annotation. /EEE transactions on circuits and
systems for video technology, 29(6):1631-1644, 2018.

Patrice Meunier and Emmanuel Villermaux. Van hove singularities in probability density functions
of scalars. Comptes Rendus Mécanique, 335(3):162—-167, 2007.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words
and phrases and their compositionality. In Advances in neural information processing systems, pp.
3111-3119, 2013.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807-814,
2010.

Gail S Nelson. A user-friendly introduction to Lebesgue measure and integration, volume 78.
American Mathematical Soc., 2015.

Weizhen Qi, Yu Yan, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang, and
Ming Zhou. Prophetnet: Predicting future n-gram for sequence-to-sequence pre-training. arXiv
preprint arXiv:2001.04063, 2020.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. 2018.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1-67, 2020.

Partha Pratim Ray. Chatgpt: A comprehensive review on background, applications, key challenges,
bias, ethics, limitations and future scope. Internet of Things and Cyber-Physical Systems, 2023.

Rachid Riad, Olivier Teboul, David Grangier, and Neil Zeghidour. Learning strides in convolutional
neural networks. arXiv preprint arXiv:2202.01653, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684—10695, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Medical image computing and computer-assisted intervention—-MICCAI
2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part 111
18, pp. 234-241. Springer, 2015.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by back-
propagating errors. Nature, 323:533-536, 1986.

Julian Salazar, Davis Liang, Toan Q Nguyen, and Katrin Kirchhoff. Masked language model scoring.
arXiv preprint arXiv:1910.14659, 2019.

Abhronil Sengupta, Yuting Ye, Robert Wang, Chiao Liu, and Kaushik Roy. Going deeper in spiking
neural networks: Vgg and residual architectures. Frontiers in neuroscience, 13:95, 2019.

13



Under review as a conference paper at ICLR 2025

Claude Elwood Shannon. A mathematical theory of communication. The Bell system technical
Journal, 27(3):379-423, 1948.

Alex Sherstinsky. Fundamentals of recurrent neural network (rnn) and long short-term memory (Istm)
network. Physica D: Nonlinear Phenomena, 404:132306, 2020.

Jonathon Shlens. Notes on kullback-leibler divergence and likelihood.  arXiv preprint
arXiv:1404.2000, 2014.

David Slepian and Jack Wolf. Noiseless coding of correlated information sources. IEEE Transactions
on information Theory, 19(4):471-480, 1973.

Elias M Stein and Rami Shakarchi. Complex analysis, volume 2. Princeton University Press, 2010.
Wilson A Sutherland. Introduction to metric and topological spaces. Oxford University Press, 20009.
John Sweller. Cognitive bases of human creativity. Educational Psychology Review, 21:11-19, 20009.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, L. Kaiser, and 1. Polosukhin.
Attention is all you need. 31st Conference on Neural Information Processing Systems (NIPS),
2017.

Andrew Viterbi. Error bounds for convolutional codes and an asymptotically optimum decoding
algorithm. IEEE transactions on Information Theory, 13(2):260-269, 1967.

Chris S. Wallace and David L. Dowe. Minimum message length and kolmogorov complexity. The
Computer Journal, 42(4):270-283, 1999.

Tianyu Wu, Shizhu He, Jingping Liu, Sigi Sun, Kang Liu, Qing-Long Han, and Yang Tang. A brief
overview of chatgpt: The history, status quo and potential future development. I[EEE/CAA Journal
of Automatica Sinica, 10(5):1122-1136, 2023.

Blaise Agiiera y Arcas and Adrienne L Fairhall. What causes a neuron to spike? Neural Computation,
15(8):1789-1807, 2003.

Xue Ying. An overview of overfitting and its solutions. In Journal of physics: Conference series,
volume 1168, pp. 022022. IOP Publishing, 2019.

Jie Zhou and Wei Xu. End-to-end learning of semantic role labeling using recurrent neural networks.
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and
the 7th International Joint Conference on Natural Language Processing (ACL-IJCNLP 2015), pp.
1127-1137, 2015.

A SUPPLEMENTAL DISCUSSIONS AND PROOF OF THEORIES

In this appendix, we will provide detailed definitions, discussions, hypotheses, and proofs related
to Section 4. First, here is a more detailed introduction on metric, topology and Lebesgue measure
regarding a vector space:

A metric d on a vector space X is a function d : X x X — R that satisfies the following properties:

1. Non-negativity: d(X,Y") > 0 for any two vectors X,Y € X. Also, d(X,Y’) = 0 if and only if
X=Y.

2. Symmetry: d(X,Y) =d(Y,X) forany X,Y € X.
3. Triangle Inequality: d(X, Z) < d(X,Y) + d(Y, Z) forany X,Y, Z € X.

Then, the Euclidean distance on X = R™ is defined to be d(X,Y) = ,/ Z;nzl(xj — y;)2, where

X = (z1," ,xm) and Y = (y1, -+ ,ym) are two vectors in R™. The Euclidean distance on
X = C™ is defined to be d(Z, W) = 1/2:;”21 |z; — w;|? for two vectors Z = (z1,--- , zn,) and
W = (w1, ,wy) in C™. Here, |z; — w;| is the modulus (or absolute value) (Stein & Shakarchi,

14
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2010) of the complex number z; — w;. It is easy to prove that the Euclidean distance is a metric on
X =R™and X = C™.

With the defined metric d on the vector space, we can define an open ball B(X, r) around the vector
X e Xas B(X,r) ={Y € X|d(X,Y) < r}. Then, a subset E C X is said to be open, if for
any X € E, there exists an r > 0 such that B(X,r) C E. We can also construct the corresponding
topology 7 on S by collecting all open sets in X (Sutherland} [2009). Then, given the domain S C X,
a function f : S — R is said to be continuous around the vector X € S, if for any ¢ > 0, there
exists a 0 > 0 such that d(X,Y") < ¢ implies | f(X) — f(Y')| < e. Finally, f is said to be continuous
on S if it is continuous around every vector in S.

Suppose X = R™. Then, we define the rectangular cuboid C' on R™ to be a product C =
I x --- x I,, of open intervals, with each open interval I; = (a;,b;) for j = 1,--- ,m. Let
vol(C) =[], |bj — a;| be the volume of C. Then, the Lebesgue outer measure \*(E) for any
subset E C R™ is (where RC is the simplification of rectangular cuboids)

A (E) = inf {Z vol(Cy) : (Ck)ren is a countable sequence of RC with E C U Ck}
k=1 k=1
where inf is the infimum (max lower bound) of the set of values.

Then, E is said to be Lebesgue-measurable (or simply measurable), if for any subset A C R™,
we have A*(A) = A*(ANE) + A*(A N E°), where E° = R™\E is the complement of E in R™.
For any measurable subset E C R™, its Lebesgue measure, denoted as A(E) or |E| in this paper, is
defined to be its Lebesgue outer measure \*(E). Finally, when X = C™, the Lebesgue measure
on X is defined with respect to the real space R?>™ due to the isomorphism between C™ and R?*™
(Downarowicz & Glasner, 2016)).

Then, here is a more detailed discussion on non-measurable sets:

Non-measurable sets indeed exist within both real and complex vector spaces when considering the
Lebesgue measure. A famous example is the Vitali set (Kharazishvili, [2011)) defined on the closed
interval [0, 1]: Given two real numbers z,y € [0, 1], we say that z is equivalent to y (denoted as
x ~ y) if  — y is a rational number. Then, for any z € [0, 1], its equivalence class is defined as
Cy = {y € [0,1]|]z ~ y}. In this way, the closed interval [0, 1] can be partitioned into disjoint
equivalence classes. Finally, from each equivalence class, we choose exactly one representative. This
collection of representatives forms a Vitali set V" on [0, 1]. It can be proved that a Vitali set is not
measurable under Lebesgue measure (Halmos, [2013). Intuitively, this means that there is no way to
evaluate the volume of a Vitali set.

However, imagine that we have a function f : [0, 1] — R that has its spiking region S to be a Vitali
set. Intuitively, this will be extremely difficult: For any real number = € [0, 1], there is exactly one
number v in a Vitali set V' such that z — v is rational. By definition, v is the representative of x in
the equivalence class. This means that we can select at will uncountable many irrational numbers in
[0, 1] and obtain their corresponding representatives in V', which implies the extreme ‘chaotic’ of V.
One can imagine how difficult it is for a function f to map every number in a Vitali set to a positive
value, while mapping all the other real numbers in [0, 1] to negative values. In fact, we believe that
it is impossible for f to achieve this with a finite size | f|. Taking one step further, we believe that
the same discussion can be applied to any non-measurable set on a finite-dimensional vector space,
which leads to Hypothesis 1 (presented both here and in Section [3.2):

Hypothesis 1. Suppose X is a finite-dimensional real or complex vector space, and suppose S C X
is a bounded sub-region in X. Suppose f : S — R is a function defined on S with a finite size (i.e.,
there are finite adjustable parameters in f). Then, the spiking region Sy = {X € S|f(X) > 0} is
always Lebesgue-measurable.

After that, we provide the detailed proofs for the Lemmas and Theorems in the main paper.

Lemma 1. Suppose X is a finite-dimensional real or complex vector space, and suppose S C X is
a bounded sub-region in X. Suppose f : S — R is a continuous function defined on S. Then, the
spiking region Sy = {X € S|f(X) > 0} is always Lebesgue-measurable.
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Proof. Suppose f(X) < 0forany X € S. Then, Sy = 0 (i.e., the empty set), which is measurable.
Otherwise, suppose Sy # (). For any X € Sy, we have f(X) = rx > 0. Since f is continuous on
S, there exists a § > 0 such that d(X,Y") < ¢ implies | f(X) — f(Y)| < rx /2. This also means that
lf(Y)| >rx/2>0whend(X,Y) < 4. Hence, the open ball B(X,d) ={Y € X | d(X,Y) < §}
is entirely contained within S¢. This means that S; is open, which is Lebesgue-measurable (Nelson,
2013). ]

Theorem 1. Suppose X is a finite-dimensional real or complex vector space, and suppose S C X
is a bounded sub-region in X. Suppose we have the data probability distribution P defined on S,
with the probability density function to be g(X). Furthermore, suppose there exists an upper bound
0 < oo, such that g(X) < Q for any X € S. Finally, suppose we have the random distribution P’
to be the uniform distribution defined on S.

Then, for any function f : S — R with a finite size | f|, its theoretical spiking efficiency SE obtained
with respect to P and P’ is bounded by 0 < SE; < Q- |S]| - log ( ), where |S| is the Lebesgue
measure of data space S.

Proof. Suppose Sy is the spiking region of f. Since | f| is finite, we know that S is measurable
according to our hypothesis. And certainly, we require the data space S to be measurable in X with
|S| > 0. As we mentioned, S is bounded, indicating that |S| < co. Then, suppose f spikes on M
out of N data samples { X,,}N_, generated by P, as well as M’ out of N random samples { X/ }N_;
generated by P’. Also, suppose the probability density function of P’ is ¢’(X). By definition, we
have [ g(X)dX = [g¢'(X)dX = 1.

Since P’ is the uniform distribution on S, we have that ¢’(X) = ‘S‘ forany X € S. It
is easy to see that Q > ﬁ, otherwise we will get fs g(X)dX < 1. This implies that

= (JgdX)/(Jsg'(X)dX) = (fg2dX)/(J5 1& dX) > 1 for any region S C S with |S| > 0,
which also means that log(¢)) > 0.
Now, suppose 0 < |Sy| < |S|, where |S¢| is the Lebesgue measure of the spiking region S. This

means that 0 < [S%| < [S| as well, where S§ = S\S is the complement of Sy in S. Then, we have
that:

SE; :J\}ij}noo<M log(]\ﬂjl) + N]_VM log(]]vv__]\]\;[,)) (16)
(M, M/N_  N-M, (N-M)/N
Nlﬂnoo(Nl ST log((N— ’)/N)>

fs, fs;c 9(X)dX
:(/sfg(X)dX>-log (fs ) /s g(X ) log (W) (17)
Qdx Jse QdX
() o)
fsf QdX fs; 0dX
< (/szdX> -log (fs ) ( QdX) log (W)

=Q-|Sy|-log (2-[S[) + - ISI Sy) - log (2-S])
= Q-S| -log (2-]S]) (18)

Suppose |Sy| = 0. Then, for each vector X € Sy, we construct an open ball B(X,dy) = {Y €
S |d(X,Y) < do}. Combining all the open balls for each X € Sy, we can get the open set
S1 =Uyx es; B(X,dp). Accordingly, if we reduce the radius from dy to dy/2, we can get So =
Uxes, B(X.do/2). In general, we can get S; = Ux g, B(X,do/2'"") fori € N, with each S; to
be an open set (and hence measurable).
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It is easy to see that S; ;1 C S;, Sy = (2, Si, and 8§ = S\(N7Z, S:) = U=, (S\S:) = U=, S§.
Also, by a routine derivation, we can get that there exists an iy € N, such that 0 < |S;| < |S| and
0 < |S§| < |S| will be true when 7 > iy. Then, since integral over a zero-measure region is not
directly defined, the definition of SE; when |S ¢| = 0 should be the limit of the integral over {S; };cn
as ¢ approaches oco. That is,

Js, 9(X) dX Jse 9(X)dX
Ey=1i X)dX ) log| ———= X)dX |1 _— 1
B = K/sig( ! ) Og(fsig’(x)dx * /;g( Jx) o\ g ax )|
< lim [©-[S]-log (2 - [S])] = - [S] - log (2 - [S])
1—> 00
In fact, since the probability density function g(X ) < Q forany X € S, we can also prove by a routine

derivation based on formula[I9|that SE; = 0 when S| = 0. Anyway, SE; < Q- [S] - log (- [S])
when [S¢| = 0.

Suppose [S¢| = [S| (in other words, we have [S}| = 0). Then, similarly, we can construct another
sequence of open sets {S; };en such that S, C S and 8% = N;=, S;. Following exactly the same
proving process, we can have that SEy < € - [S] - log (€2 - |S]) in this case.

Finally, as we mentioned in Section 3.1, Dy (P||P’) > 0 for any data samples {X, 3N, and

random samples { X/ })_,. Then, we always have SE; = limy o0 DKL(P\ |P’) > 0. Hence, the
proof is completed.

But before concluding this proof, we want to further discuss when P is not a ‘regular’ probability
distribution. That is, there does not exist an upper bound (2 for the probability density function g(X)
of P. The most simple case is that, there exists one singularity Xp € S, such that g(Xp) = oo. For
any sub-region S C S, we have Js9(X)dX =1if Xp € S. Otherwise Js9(X)dX = 0. There
can certainly be multiple singularities associated with P. However, without loss of generality, we
assume a unique singularity in P.

Suppose 0 < [S¢| < |S| given a function f : S — R, which also implies that 0 < [S%| < [S].

C

We can see that Xp must belong to either Sy or S7. We assume Xp € Sy. Then, followmg the

same derivation involved with formulas andl we can have that SE; = log( \ls ‘I ). Accordingly,

by constructing a sequence of open sets {S, };en converging to Sy, we can prove that when |S;|

converges to zero (i.e., Sy converges to Xp), SE; = log( ‘ls ‘I) will converge to co. By assuming

Xp € S%, we will have SEy = log( |‘SC“) = log(ﬁ), and hence we can get the same result

when [S%| converges to zero (i.e., S§ converges to Xp).

Intuitively, this means that if a zero-measure spiking region S contains the singularity of a data
distribution P, the corresponding function f will then capture infinite amount of information from P
by comparing P with a regular uniform distribution P’.

At last, it seems that requiring the size | f| of f to be finite is redundant in our proof, which is in fact
not true: Without | f| < oo, we cannot guarantee that the spiking region S is Lebesgue measurable,
which makes the derivation involving formulas|17| . andﬂ 18| invalid. Hence,
our theorem. O

After that, we provide the two hypotheses as mentioned in Section [3.3}

Hypothesis 3. Suppose X is a finite-dimensional real or complex vector space, and suppose S C X
is a bounded sub-region in X. Suppose there are the data probability distribution P and the uniform
distribution P’ defined on S. Also, suppose the probability density function g(X) of P is bounded by
a finite number ) (i.e., P is regular).

Then, for any sequence of finite-sized functions £ = (f1,- -+ , fx), its spiking equivalence class Es
contains infinite elements. That is, there are infinite sequences of finite-sized functions possessing the
same theoretical spiking efficiency as f.

Providing a strict proof on this hypothesis is beyond the scope of this paper. But intuitively, suppose
the spiking region of f = (f1,- -, fk) is S¢, and suppose the spiking region of f; (which is also
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the independent spiking region) is Sy, . Suppose the dimension of the vector space X is m. Then,
we find an (m — 1)-dimensional hyperplane to divide Sy, C X into two pieces S}, and S . Since

f1 has a finite size, we should be able to find two finite-sized functions f{ and fZ, such that the
spiking region of f| is S} and that of f7 is S7 . Then, we can obtain a new sequence of functions

f=(fL,f2 f2,-- , fx) by replacing f; with f! and f2. We can see that the spiking regions S¢
and S5 are coincide with each other, and hence the theoretical spiking efficiencies SEy = S Fz. This

indicates that f € Es.

Since there are infinite ways to divide Sy, C X into S}l and S?pl, there are infinite new sequences

of functions f we can obtain. Hence, there are infinite elements in . But again, this is not a strict
proof.

Hypothesis 4. Suppose X is a finite-dimensional real or complex vector space, and suppose S C X
is a bounded sub-region in X. Suppose there are the data probability distribution P and the uniform
distribution P’ defined on S. Also, suppose the probability density function g(X ) of P is bounded by
a finite number ) (i.e., P is regular).

With respect to P and P’, suppose the most efficient class Ep p is not empty. Then, every most
efficient encoder £, p, € Ep p/ has exactly the same spiking region on S.

By looking into the example data distributions in Figure 2] we can intuitively agree to this hypothesis:
Easy to understand that every most efficient encoder should have its spiking region cover exactly
the data distributed region in each graph (namely, the two circles in the left graph, the overlapped
diamonds in the middle graph, and the 15 squares in the right graph). But again, we do not aim at
proving this hypothesis. Moreover, we hold the highest uncertainty to this hypothesis among all our
proposed hypotheses in this paper.

Before ending this appendix section, we want to discuss again the reason for us to use uniform
distribution P’ as the random distribution throughout Section

The optimal encoder f;P, , the most efficient encoder fﬁp, , the most efficient class EiS,P, , and other
concepts purposed by us share a common basis: The random distribution P’ has to be the uniform
distribution on the data space S. Otherwise our theory will have to be adjusted into more complicated
formats, since we need to consider the variance in the probability density function of P’. However,
we claim that even in that case, the essential definitions and hypotheses of our theory (regarding
spiking equivalence, the most efficient encoder, and optimal encoders of different levels) will have
similar formats. As a result, without loss of generality, we always assume P’ to be the uniform
distribution on the data space S in Section 3]

B ENCODING MULTIPLE FUNCTIONS BY A MULTI-OUTPUT FUNCTION

This appendix introduces basic mathematical definitions and descriptions, which serves as a basis for
our next appendix.

Suppose X is a finite-dimensional real or complex vector space, and suppose our data space S is
a bounded sub-region in X. Then, we define a multi-output function: Suppose F : S — R is a
multi-output function mapping each vector X € S into a real vector (y1,- -+ ,yx ). Intuitively, we
use each output head yy, to ‘mimic’ a single-output function y;, = f,(X). We use F|; to denote
each mimicked function f5, : S — R obtained in this way. That is, (F|(X), -, F|g(X)) =
(Y1, ,yg) = F(X) forany X € S.

We use fr = (F|1,- -+, F|m) to denote the sequence of single-output functions that is mimicked by
each output head of F. Accordingly, we define the independent spiking region of each mimicked

function F|;, to be Sifbl‘f ={X ¢ S’F|h(X) > 0}. There is no necessary to consider the spiking

region overlapping for each head F'|;. The independent spiking region of each head in a multi-output
function will be enough for our discussion in this appendix section.

Following Section we define the size of the multi-output function F' : S — R denoted as |F|,
to be the number of adjustable parameters in F', where a scalar parameter in F' is adjustable if its
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value can be adjusted without changing the computational complexity of F'. Then, we purpose the
following hypothesis:

Hypothesis 5. Suppose X is a finite-dimensional real or complex vector space, and suppose S C X
is a bounded sub-region in X. Suppose F' : S — R is a multi-output function with a finite size |F
and suppose fr = (F|1,- -+, F|u) is the sequence of functions mimicked by the output heads in F.

s

Then, for each mimicked function F'|p,, there always exists a real single-output function fj, : S — R
with a finite size | f1,|, such that the (independent) spiking region Sy, of f exactly coincides with the
independent spiking region S?ﬁl of F|p. We call such a function fj, : S — R a projection of F |,

We provide the following lemma that is necessary for further discussion:

Lemma 2. Suppose X is a finite-dimensional real or complex vector space, and suppose S C X is a
bounded sub-region in X. Suppose f : S — R is a function with a finite size, and suppose Sy is the
spiking region of f.

Then, there exists a lower bound Ls, depending on Sy, such that for any function f: S — R with
the same (coincided) spiking region as Sy, the inequality |f| > Ls, always holds true. Here, |f| is
the size of f.

Finally, there always exists a function fT : S — R, such that the spiking region of 1 coincides with
Sy, and |fT| = Ls,. We call fT an optimal function 1o Sy.

Proof. The size | f| of function f is defined to be the number of adjustable parameters in f, which is
a finite positive integer as supposed in this lemma. If a function f: S — R has the spiking region
coincided to Sy and is of a smaller size, then the possible values of |f| are constrained to the finite
set {1,2,---,|f|}. As aresult, both the lower bound Ls, and the size | fT| of the optimal function
fT will be the minimum value achievable in {1,2,---,|f|}. O

Note that there can exist multiple optimal functions to the same spiking region. Intuitively, an
optimal function f to the spiking region S + encodes the minimum amount of information required
to describe Sy unambiguously. Then, the following lemma shows that the definitions on optimal
encoders and optimal functions are self-consistent:

Lemma 3. Suppose X is a finite-dimensional real or complex vector space, and suppose S C X is
a bounded sub-region in X. Suppose there are the data probability distribution P and the uniform
distribution P’ defined on S. Also, suppose the probability density function g(X) of P is bounded by

a finite number () (i.e., P is regular). Finally, suppose an optimal encoder f;P/ = (f{f7 cee f]T(T)
exists regarding P and P’.

Then, each function f,;r in the optimal encoder is also an optimal function to its own independent
spiking region S;ﬁd.
k

Proof. Assume that the statement is false for one function f,I in ( ff AR f;(T ). Then, there exists

another function f : S — R whose spiking region coincides with S;’}d, and has its size |f| <| f,i |
Then, if we replace f,i by f in the sequence of functions ( f1T yr f;ﬁ), f will produce the same
spiking region as S = S?}d (uf;fsigd), and also produce the same theoretical spiking efficiency
k JE Ji ~ -
as SE i But then, the theoretical ability of f will be A F= SE e | 1> 4 i while the theoretical
k k k

abilities of other functions in the sequence are the same. Hence, replacing f,;f by f we will obtain
a new sequence of functions with a larger theoretical ability than A+ , which contradicts our
P.P/

definition on an optimal encoder. Hence, the statement is true. O

Now, we combine Lemma 2 and Hypothesis 5 in our discussion: Suppose fr = (F'|1, -+, F|g) is
the sequence of functions mimicked by each head in the multi-output function F' : S — R, and
suppose the independent spiking region of each mimicked function F'|;, is S;f‘l‘i. Since there always
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exists a projection (finite-sized single-output function) f; : S — R whose spiking region coincides
with S@,”li , we can see that there always exists an optimal function f,_TL : S — R with respect to Sil"‘f .

We call such an optimal function f,t an optimal projection of F'|;,.

Then, what is the relationship between the size |F| of the multi-output function F, and the size
summation Zthl | f}:\ of optimal projections regarding all the output heads of F'? In the specific
case as shown in Figure the summation ZhH:1 | f;fb| can be much larger than |F|:

SIS

Figure 3: A specific case where the size summation Zthl | f,1| of optimal projections is much larger
than the size | F|.

4

N

0 6

In Figure [3] we have the data space S = {z,y[0 < z < 16,0 < y < 4} to be a sub-region in
R2. Suppose the single-output function fT : S — R is an optimal function to a third-iteration
Koch snowflake (Lapidus & Pangl [1995). Then, for (z,y) € S, we define the multi-output function
F:S— RE) to be F(I7y) = (fT(z,y),fT(x—ﬂ,y),fT(foB,y),fT(a: 7355y)7f'r(x74ﬂ7y))
With 5 ~ 3, we can have the independent spiking regions of the mimicked functions in fr =
(Fl1, F|2, F|3, F|4, F|5) to be the five Koch snowflakes as shown in Figure With f;i to be the
Shy il _ 5|fT]
[Fl T IfT+4e

optimal projection of each F'|;,, we have that In fact, for a general head number

. . H t t . .
H in this example, we have that Zhﬁi‘lf nl — 7 ﬁﬂ'er‘_l, which converges to | fT| when H is large
iy 1]

enough. This shows that the ratio is not bounded in this example.

12

However, intuitively, this kind of example is rare. We believe that in general, the independent spiking
region of each mimicked function F'|;, in fr = (F'|1,- -, F|g) is likely to be ‘irrelevant’ to each
other:

Definition 5. Suppose X is a finite-dimensional real or complex vector space, and suppose S C X
is a bounded sub-region in X. Suppose S; C S and So C S are two sub-regions in S. Suppose

flT , f;r : S — R are the optimal functions to S1 and Ss, respectively.

We say that a mapping M : S — S is a bijection from S to S, if for any vector Y € S, there
exists a unique vector X € Sy such thatY = M(X). We define the size of M, denoted as | M|, to
be the number of adjustable parameters in M, where a scalar parameter in M is adjustable if its
value can be adjusted without changing the computational complexity of M.

Then, we say that Ss is irrelevant to S1, if for any bijection M from Si to So, we always have
M| = |£3].

Again, the size of a mapping M is defined to be the number of adjustable parameters in M, which is
essentially equivalent to the minimum amount of information required to describe M unambiguously.
And again, the size of an optimal encoder f* represents the minimum amount of information required
to describe its spiking region S+ unambiguously. So, intuitively, a sub-region Sp C S is irrelevant to
S:1 C S, if knowing the information required to describe S; will not reduce the amount of information
required to describe S.

There is another interesting hypothesis: For two sub-regions S; C S and So C S, S5 is irrelevant to
S; if and only if S; is irrelevant to So. Once again, we do not dive deep into proving this intuitively
correct hypothesis. We say that two sub-regions S; and S, are mutually irrelevant, if S, is irrelevant
to S; and Sy is irrelevant to So.

Applying this to our multi-output function approach, we hope to provide the following hypothesis:
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Hypothesis 6. Suppose X is a finite-dimensional real or complex vector space, and suppose S C X
is a bounded sub-region in X. Suppose F : S — RY is a multi-output function with a finite size |F|,
and suppose fp = (F|1, -+ , F|y) is the sequence of functions mimicked by the output heads in F.

Suppose f;{ : S — R is an optimal projection of each mimicked function F|y, in fr, whose size is
Ifi] < .

Furthermore, suppose the independent spiking regions SanI(Z and S;l’l‘j of F|}, and F|; are mutually
irrelevant, when h # j. Then, we have that Zthl |f;:| < |F).

Intuitively, this hypothesis implies that given a multi-output function F', when the independent spiking
region regarding each of its output head is mutually irrelevant to each other, there is no way for F' to
further compress the information required to specify these independent spiking regions.

This hypothesis does not contradict to our main theory: A function f should encode a large amount of
information from the data distribution into a small amount of information (i.e. the parameters in f),
when f discovers non-randomness from the data distribution. On contrast, mutually irrelevant spiking
regions do not contain non-randomness. In other words, all the information required to describe
mutually irrelevant spiking regions are totally random, which henceforth cannot be further encoded
or compressed into a smaller amount of information.

After reading this appendix section, one may be able to better understand the next appendix section,
in which we always assume two output heads in each multi-output function Fi,--- , Fix. In the
next appendix section, we discusses our goal for the independent spiking region of the second head
(F%|2) in each bi-output function F}, to converge to fixed random samples in the data space, while the
independent spiking region of the first head (F}|1) converges to optimized data regions.

If this goal is achieved, the independent spiking regions of F}|; and F} |, in each bi-output function
F}, should become irrelevant to each other. By a routine analysis, we can see that the size of the
optimal projection regarding Fy| is at least m - L}, where m is the dimension of the vector space,
and L}, is the number of fixed random vectors making Fy|» spike (more details can be found in the
next Appendix sub-section . Therefore, the size of the optimal projection regarding F}|; can be
estimated by |F| — mLj, according to Hypothesis 6.

As mentioned at the end of Section [3.3] there can exist a regular probability distribution without
a most efficient encoder. We build such a counter example at the end of this appendix. We refer
to Figure [3]again: Imagining that we have a data distribution P which is uniformly distributed in
a full Koch snowflake. Also, we assume that the data space S is large enough comparing to the
Koch snowflake, and P’ is the uniform distribution on S. It is easy to see that P is regular (i.e., the
probability density function of P is bounded). Suppose f : S — R is a finite-sized function whose
spiking region coincides with the L-level iteration of the Koch snowflake in which P distributed.

Then, suppose f : S — R is another finite-sized function whose spiking region coincides with the
(L + 1)-level iteration of such Koch snowflake. It is easy to see that the spiking region Sy C S 7
(Lapidus & Pang]1995)). Since the data space S is large enough and P is uniformly distributed within
the full Koch snowflake, by a routine analysis involving formulas[6|and[7} we can get the theoretical
spiking efficiency SE; < SE 7 with respect to P and P’. This implies that the higher iteration level
the spiking region coincides with the data distribution Koch snowflake, the larger the theoretical
spiking efficiency of the function will be. However, it is not possible for a function with a finite-size
to possess a spiking region coinciding with the full Koch snowflake: It will need infinite amount
of parameters to represent a full fractal (Mandelbrot, |1989). As a result, there is no most efficient
encoder with respect to P and P’ in this example, leading to Eppr = 0.

In the next appendix, we will propose our designed machine learning pipeline, which aims at
discovering optimal encoders for a given data probability distribution in practice.
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C APPLYING MULTIPLE BI-OUTPUT FUNCTIONS TO APPROACH TO OPTIMAL
ENCODERS IN PRACTICE

We introduce our designed machine learning approach in this section. This approach aims at
discovering optimal encoders for a given data probability distribution in practice. The first part
describes the algorithms and formulas related to our designed approach. The second part describes
a pipeline to implement our designed approach in a layer-wise manner on a given image dataset.
Again, we only provide our designed approach and pipeline here. There is no actual realization or
experimental result involved.

C.1 DESIGNED MACHINE LEARNING APPROACH

Once again, suppose X is a finite-dimensional real or complex vector space, and suppose our data
space S is a bounded sub-region in X. Suppose we have the dataset D = { X7, Xo,..., Xy, }, with
each sample vector X,, € S. We use Pp to denote the data probability distribution generating D.
We define P’ to be the uniform distribution on S. In practice, we always assume Pp to be regular
(i.e., its probability density function is bounded).

In order to approach to an optimal encoder with respect to Pp and P’, we create a bi-output function
F : S — R? that maps a vector X € S to a 2D real vector Y = (y1,y2). In practice, F should be a
deep neural network with developed architectures, such as a multi-layer convolutional neural network
(CNN) (L1 et al., |2021) combined with non-linear activation functions (like a ReLLU function)(Nair|
& Hintonl 2010; |Agarap), [2018)), layer normalization (Ba et al.,|2016), and fully connected layers.
The output of F' should consist of two scalars, each of which is produced by a hyperbolic tangent
function (‘tanh’) (Lau & Liml 2018) to restrict the scalar between -1 and 1.

We define the size of the bi-output function F', denoted as |F'|, to be the number of adjustable
parameters in F'. Here, a scalar parameter in F' is adjustable if its value can be adjusted without
changing the computational complexity of F'.

Then, suppose we generate L random samples, denoted as Df, = {X1,---, X} }, from the uniform
distribution P’, and then fix these samples. Given the bi-output function F, suppose the second head
of I spikes on L’ random samples in Dy,. That is, we have Dy, » C D, containing L’ random

samples, such that for each X’ Df’ix’ > we have yo > 0in (y1,y2) = F(X'). Ideally, we desire the
second head of F' to only spike on these L’ fixed random samples in D{ix’ - or spike on the random
samples that are extremely close to each X' € Dllix, - That is, we hope the spiking region regarding
the second head of F' to consist of very tiny regions around each X' € Dt’m > as shown in Figure

® g
© ® A

= ®

X

Figure 4: Suppose the data space S C R?, and suppose the second head of F spikes on fixed random
samples (points in the figure) in D, . Then, the desired spiking region regarding the second head of
F" should be the union of the circles, squares and polygons in the figure, converging to each random
sample in D, p.

Since the random samples in Df, = {X{,--- , X} are independent and identically distributed (i.i.d),
so are the random samples in Dy, .. Hence, there is no way to further encode or compress the
information required to describe these ‘randomly distributed random samples’ in Dg, 5. This means
that the bi-output function F' has to record in its parameters the full amount of information describing
Df, p» in order to have the spiking region of its second head converging to each X’ € D} . We
provide a theoretical analysis regarding this issue in the previous appendix section. ’
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Suppose the vector space is X = R™. Then, it requires in total m - L’ parameters to record the
information describing all L’ random samples in Df, . When X = C™, the amount of required
parameters becomes 2m - L’. But without lose of generality, we assume X = R™. The way for F' to
record such information may be implicit due to the nature of deep neural networks (Markatopoulou
et al.,[2018). But in whatever way, F' has to consume equivalent to m L’ parameters to record such
information. Then, if we desire the first head of the bi-output function F' to have a different spiking
behavior, the available amount of parameters is at most | F'| — mL’.

We use F'|; and F'|5 to denote the single-output function ‘mimicked’ by the first and second head
of F, respectively. That is, (F|1(X), F|2(X)) = (y1,y2) = F(X) for any X € S. In this way, we
can obtain two ‘mimicked’ functions F'|1, F|3 : S — R. A more detailed discussion is provided the
previous appendix section. But intuitively, it is not difficult to understand that the size of F'|; can
be estimated by |F'| — mL’, indicating implicitly the amount of adjustable parameters in F' that is
available for the first head.

Suppose we select N data samples {X,,})_, from dataset D, and generate N random samples
{X!}N_, by the uniform distribution P’. Note that { X/}, is independent with D}, . According to
the above discussion, F|, should hardly spike on any sample in {X,,}_, or { X/ }N_,. Otherwise,
the amount of information required to describe the spiking region of F'|; may likely be less than
mUL', which invalidates our design. So, we assume that F'|, spikes on M, data samples in { X, }N_;
and M) random samples in { X/ }_,. We use L' — A(Ms + MJ) to measure the ‘valid’ spikings
made by F'|2 on the fixed random samples in D}, with X to be far larger than one (say, A = 50).
During optimization in practice, My + MY should be reduced by high pressure from A, which will
then keep as many valid spikings as possible for F'|o. Accordingly, the size of F|; is estimated by
[F| = m(L" = MMz + M;)).

Suppose we have K bi-output functions Fy, - - - , Fr : S — R?, which are arranged in the sequence
f = (F1, -, Fk). Again, each Fj is a deep neural network in practice. We use Fy|; and Fi|2 to
denote the single-output function mimicked by the first and second head of Fj, respectively. We
perform each F}, on the same data samples {X,, })__; selected from D, the same random samples
{X/}N_, generated by P’, and the L fixed random samples in D, .

n=1
We use fimic = (Fil1, -+, Fk|1) to denote the sequence of single-output functions mimicked by
the first head of Fy, - -+ , F. Then, f,imic will be the sequence of functions we work with. We now

discuss how to obtain the observed spiking efficiency and observed ability of fiimic.

Given each F|; in finimic, suppose there are M), ; data samples in {X, N, and M. 12,1 random
samples in { X/ }N_, that make F}|; spike, but do not make F1|y,--- , Fx_1|1 spike. Accordingly,

with respect to Pp and P’, the observed spiking efficiency of Fy
calculated as:

1, denoted as SEFkh, can be

<5 My,  Myi+a, N—My,,  N—Mgi+a
SEp,), = ——1 : —1 : . 20
LIS Gl VAT OA R TS G v 20
Suppose Mg, . = Zszl Mj.y and Mg = Zle Mj, ;. Similar to Section we know that
Mg, . is the total number of data samples in {X,,})_; that make at least one mimicked function in

fimic = (Fi]1,- -+, Fx|1) to spike. Also, Mg is the total number of random samples in { X7, N

that make at least one mimicked function in fﬂfmc to spike. Then, we can get the observed spiking
efficiency of fiimic, denoted as SFE¢

‘mimic * as:
— Mg . M. .+« N—Ms N—M;g . .+«
SE = mimic 1 mimic mimic 1 mimic . 21
fmlmlc N Og( Mf/‘mimic a )+ N Og( N - Mf/‘mimic @ ) ( )
Also, for each bi-output function F, in f = (F},--- , Fx ), suppose there are Mj, o data samples in
{X,}_, and M, .. random samples in { X /YN _ that make F} | spike. Note that there are no shared
weights among different F},. So, there is no further restriction from F7i, - - - , Fj,_; upon M}, o and

Mj, 5. Also, suppose there are L}, fixed random samples in Dy, that make Fj|2 spike. According to our
previous discussion, the size of Fj|; can be estimated by | Fy|1| = |F)| — m(L}, — A(My 2 + M}, 5)).
Then, the observed ability of each mimicked function Fy|; in fpimic = (Fil1,- -, Fkl1) can be
estimated by A, |, = SEp,), - |Fili| ™"
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Finally, the observed ability of fiimic can be estimated by A\fmimic = 25:1 A Fols = 25:1 [ SE Fili *
| Fi;|1|~*]. Based on our discussion at the end of Section3.4] the Objective of learning is to maximize
both SE¢ . and Ag

Mg . M.  +a N—Mg . N—Me.  +ao
o — A . n]lmlLl mimic II““]I(.I mimic
wie = /1 ( A V7R GRS o v

fmimic mimic

That is, we want to maximize:

Oy,

mi

K
M Mii1+a, N-M, N—My1 +a 1
Y3 I R )t T o Ny ) TR e T )|
1 gito — My, ta | Fie| —m (L), — A(My,2+ k,z))
(22)
where A1, A2 and )\ are pre-defined hyper-parameters. In some cases, increasing @f

mimic by a Small
margin may require the mimicked functions in fj,i;. to enlarge their sizes significantly, which reduces

/Alfmm and ultimately reduces O, . . Intuitively, the ratio A1 /A5 can be viewed as the tolerance for

achieving increased spiking efficiency through size expansion. So, appropriately choosing A; and A
becomes important in practice.

Here, we summarize our designed approach, which to some extent can be regarded as an unsupervised
feature extraction method (Ghahramani, [2003):

Suppose X = R™ is the vector space, and S C X is our bounded data space. Suppose we
have the dataset D = {X1, Xo,..., Xn, }, with each vector X,, € S. We assume it is the data
probability distribution Pp that generates D. Also, we define the uniform distribution P’ on S.
Then, we use P’ to generate and fix L random samples in Df, = {X7,---, X} }, with L to be
large enough. Finally, we initialize K deep neural networks F1,--- , F. Each F}, takes a vector
X € S as its input and provides a 2-dimensional output (y1,y2). We put the neural networks
in a sequence f = (F},--- , F), and obtain the sequence of their first head mimicked functions
frmimic = (Fl‘la T 7FK‘1)~

In each training (learning) step, we randomly select N data samples { X, })_, from D and generate
N random samples { X/ }N_, by P’, with N to be large enough. For each Fy, in (Fy,--- , Fx),
we obtain its spiking scores Mg, 1, M; 1, My 2, M , and Lj according to the above discussion.
Then, we shall use an optimization algorithm to maximize Oy, in formula 22] with respect to
{Mkal’ M];,17 Mkag’ M];,Q’ L;& i(:l’ Mfmimic = Zf:]. Mkvl and Mf/‘mimic = Zf:l M];,l'

We repeat this process with new {X,,}_; and { X/ }N_, in each training step until we are satisfied,
which makes fimic = (F1|1,- -+, Fi|1) converge to a potential optimal encoder with respect to Pp
and P’, denoted as fIJLD p = (f{r, s f;rﬁ). Note that there is no guarantee for K = K. So, we
may choose a relatively large K, and hopefully a valid optimization algorithm will ultimately make
My, = M,’C’1 = 0 (and hence SEp,|, = 0) for some mimicked functions in (F |1, , Fx/|1).
These mimicked functions capture no valid information, which will then be excluded from flJLD p=

(Fly s Fl).

Again, we have not yet came up with an optimization algorithm to maximize O, in formula[22} So,
there is no experimental result in this paper. However, we do have some preliminary ideas: In each
training step, we may consider Og__. as the reward. The agent is (F1, - - - , Fx), and the environment
comprises the sample sets {Xn}z\’uzl, {X!}¥N_,,and D} = {X},---, X} }. Then, we may apply
reinforcement learning algorithms to maximize O . (Kaelbling et al.,|1996)), which is our future

mimic
research focus.

C.2 DESIGNED MACHINE LEARNING PIPELINE

We believe that the most straightforward way to implement our approach is through a convolutional
layer-wise pipeline on an image dataset, which is briefly exhibited in Figure 5]

Suppose we have a dataset containing M images {11, I2, - - - , Ins }, where each image is of the shape
H x W x C (i.e., height x width x channel number). In the first layer of our pipeline, suppose
there is a convolutional filter cropping out L x L x C-shaped tensors with a stride of 1 (Riad et al.|
2022). We regard each L x L x C' tensor as our sample vector X. This leads to a vector space X
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Optimizati

LxLxC r‘ phimization ‘ Optimized functions

tensors u F1 Fk bi-output " mimicked by first heads
deep neural networks

ExtractLxLx C
convolutional patches

Each scalar indicates that
specific regularities are
detected in the corresponding
location of the original image.

Implement back on
every L x L x C tensor
in original images

E—)

Next layer

5

Output tensors

Original images

Figure 5: Convolutional layer-wise regularity learning pipeline: Convolutional patches will be
extracted from original images, which are used as input vectors to optimize bi-output functions. Then,
the optimized bi-output functions are implemented back onto the original images to generate output
tensors from their first heads. These output tensors are used as inputs to next-layer optimization.

with dimension C - L?, and brings us a dataset D containing M - (H — L+ 1) - (W — L + 1) data
samples. Without loss of generality, we assume that pixels in the original images are normalized to
fall between 0 and 1, thereby defining our data space S to be the unit square within X.

We assume that it is the data distribution P that generates D, and we obtain the uniform distribution
P’ on S. Then, we initialize K deep neural networks as the bi-output functions F1, - - - , Fic. After
that, we apply the above approach to make (F |y, -+ , Fix|1), the sequence of mimicked functions by
the first head of F; through F', converge to an optimal encoder with respect to Pp and P’. Suppose
we can get the optimized sequence of mimicked functions (F} H, s Pt H) with KT < K, where

each mimicked function has observed spiking efficiency S E Fell > 0.

Then, we apply (F1 |J{, N |J{) to every L x L x C convolutional patch in each original image
I,, among {I1, I, -- ,Ip;} again. That is, each mimicked function F}, |]; will be implemented on
every L x L x C' tensor in an original image I,,, with stride 1. This brings us M output tensors with
shape (H — L + 1) x (W — L+ 1) x KT, denoted as {O1, Oz, --- ,Oys}. Each dimension in an
output tensor Oy, is the output scalar of one mimicked function in (F} |J{, RN |J{) To be specific,
each dimension in O,,, indicates that specific regularities are found in the corresponding area (i.e.,
the L x L x C tensor) of the original image I,,

Then, how does each dimension in O,, distribute? Are there non-randomness and regular-
ities in {O1,02,--- ,0p}? Seeking for an answer, we may apply the same approach on
{01,032, ,0p}: Each LxLxK f_shaped tensor in each O,, is extracted in a convolutional
manner. Then, we initialize K new bi-output functions, whose first-head mimicked functions should
be optimized to converge to an optimal encoder of the data distribution generating these LxLxKT
tensors. Implementing these optimized mimicked functions back on each L x L x K convolu-
tional patch in each tensor O,,, among {O1, Os, - -- , O}, we can further obtain the output tensors
{017 02, . OM} which is used as input for next level optimization.

We carry on this layer-wise optimization process until we are satisfied. Assuming the success of
this process, the optimized mimicked functions in each level can explicitly learn regularities from

different hierarchical levels of the image data. We believe that these learned optimal regularities can
intuitively be regarded as vision (Cox & Dean| [2014; |Kriegeskortel 2015).
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D THE REFINED THEORY TAKING SPIKING STRENGTH INTO CONSIDERATION

In this appendix section, we propose a more general theory, which we call the contour spiking theory,
regarding how to learn regularities from data using spiking-level considered functions. Seeking for
clarity, we refer to the theory in the main pages of this paper as simple spiking theory.

As we mentioned in Section [3.4] functions in our simple spiking theory cannot represent the data
probability density variations within their spiking regions. Essentially, this is because we only
consider spiking or not spiking of a function on an input vector, which is a relatively coarse strategy.
Henceforth, we further consider the strength, or level, of spiking made by a function.

Suppose X is a finite-dimensional real or complex vector space, and suppose S C X is a bounded sub-
region within X. We call a real scalar x > 0 as the grid. Then, given a function f : S — R, we say
that f makes a [-level spiking (or spikes in the [ level) on a vector X € S,ifl-xk < f(X) < (I+1)-k.
When ! = 0 (i.e., 0 < f(X) < k), we say that f makes a bottom level spiking on X. Also, by
choosing an integer L € N to be the top level, we say that f makes a top level spiking on vector X,
if f(X) > L - . Finally, we say that f does not spike on X if f(X) < 0, which can be regarded as
a -1 level spiking (i.e., [ = —1).

Then, suppose we have the data probability distribution P and random probability distribution P’
defined on S. With a large enough sampling size IV, suppose we have N data samples {X,, }2_;
generated by P and N random samples { X/, }V_, generated by P’. Forl = —1,0,1,--- , L, suppose
the function f makes M, [-level spikings on the data samples { X, })_; and M] I-level spikings on
the random samples { X/ }V_,.

Accordingly, we can get the observed spiking probability distribution on random samples as P =

(M;\;l , %‘3, %{ R %i), which is also our null hypothesis on the data samples. But instead, we
get the observed spiking probability distributign on dita samples as P = (M]\y L %, %, ceey %)
Similar to Section the KL-divergence of P over P’ is calculated by:
L
=05 M, M,
Dy (P||P) = — log(— 23
k(P[P N Og(Ml,% (23)

l=—1

which measures the amount of information obtained if we replace P by P to estimate the spiking
probability distribution of f on data samplesShannon| (1948)); [Shlens| (2014). Similar to Section 3.1}
this is also the amount of information f obtained from the data distribution P by comparing P with
P’. Accordingly, we define the theoretical spiking efficiency and observed spiking efficiency of f
to be:

L L
ST Ml Ml - Ml Ml + o
SEy = ]\}gn (lgl N IOg(Z\JZ’)> ; SEy = N log(Ml/ n a). (24)

00
I=—1

The size of function f, denoted as |f|, is still the number of adjustable parameters in f. The
conciseness of f is defined as Cy = |f|~!. Then, the theoretical ability of f is defined to be

Ay = SE; - Cy, and the observed ability of f is defined to be Ef = @f -Ch:

L L
T Ml Ml 1 . T~ Ml MlJrOl 1
Afwh“&( Nlog(zu;))'ﬂ ’ Af_<l_1N10g(Ml’+a)> i ®

I=—1

The (theoretical and observed) ability of function f is the ratio between the amount of information
captured by f from P and the amount of information possessed by the parameters in f. Also, the
ability measures the effort made by f to encode the captured information into its own parameters.

We define the I-level spiking region of f, denoted as S ;, to be the set containing all vectors in S that
make f spike in the {-level. Thatis, S;; = {X € S|l-x < f(X) < (I+1)-k}forl =0,1,--- ,L—1.
The top level spiking region of f is Sy ; = {X € S| f(X) > L - k}. The -1 level spiking region
of f, corresponding to S\Sy in the main pages, is Sy 1 = {X € S| f(X) < 0}. Itis easy to
seethat Sy NS, ;= 0if I # [, and UL Sy, = S. If we set the vector space X = R?, one can
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imagine that spiking regions in different levels of f distribute like regions between contour lines on a
geographic map. This is the reason for us to call the refined theory to be ‘contour spiking theory’.

Then, we provide the refined version of Lemma 1, whose proof is very similar to Lemma 1 and not
provided again:

Lemma 1-refined. Suppose X is a finite-dimensional real or complex vector space, and suppose
S C X is a bounded sub-region in X. Suppose f : S — R is a continuous function defined
on S. Then, for any chosen grid k > 0 and top level L € N, the non-negative spiking regions
Sf0:Sf1, -+ ,Ss,1 of f are always Lebesgue-measurable.

Similarly, we provide the refined versions of Hypothesis 1 and Theorem 1:

Hypothesis 1-refined. Suppose X is a finite-dimensional real or complex vector space, and suppose
S C X is a bounded sub-region in X. Suppose f : S — R is a function defined on S with a finite
size (i.e., there are finite adjustable parameters in f). Then, for any chosen grid k > 0 and top level
L € N, the non-negative spiking regions Sfo,Ss1,--,Sy 1 of [ are always Lebesgue-measurable.

Theorem 1-refined. Suppose X is a finite-dimensional real or complex vector space, and suppose
S C X is a bounded sub-region in X. Suppose we have the data probability distribution P defined on
S, with the probability density function to be g(X ). Furthermore, suppose there exists an upper bound
Q < oo, such that g(X) < Q for any X € S. Finally, suppose we have the random distribution P’
to be the uniform distribution defined on S.

Suppose we choose the grid k > 0 and top level L. € N. Then, under  and L, for any function
f 'S — Rwith a finite size | f|, its theoretical spiking efficiency SE obtained with respect to P and
P’ is bounded by 0 < SEy < -|S|-log (Q - |S|), where |S| is the Lebesgue measure of data space
S.

One can proof the refined version of Theorem 1 using very similar methods as we described in
Appendix |A| through which we can get the formulas of SEy as (in which ¢'(X) = ﬁ is the

probability density function of the uniform distribution P’, and |S¢ ;| is the Lebesgue-measure of the

l-level spiking region S¢ ;):
Sl Js,, 9(X)dX
/ g(X) dX|log fsf’l .
S S 1.l

Js,, 9(X) X\ &
AJ?(X) d)() 10g (fsf,l g/(X) dX) - Z (
(26)

L
SEf:Z<
=1

I=—1

Now, we describe the refined theory when applying multiple functions to the data distribution P,
where the random distribution P’ is default to be the uniform distribution on the data space S.
Suppose we have a sequence of functions f = (f1,- - , fi ), where each function f; : S — R has a
finite size |f%|.

Given N data samples {Xn}nN:1 generated by P, suppose there are My _1, My o, My 1,--- , My 1,

data samples that make function f; spike in the —1,0, 1, --- , L levels, respectively. Similarly, given
N random samples {X] })_, generated by P’, suppose there are M{ _,, M{ o, M{ 1,---, M |
random samples that make function f; spike in the —1,0,1,--- , L levels, respectively.

Then, suppose after ignoring all the data samples in {X,,}2_; making f; spike in any non-negative
level, there are M, ; data samples in {X,,}2_; making f> spike in the [ level (I > 0). Similarly,
suppose after ignoring all random samples making f; spike in any non-negative level, there are
Mé’l random samples in {X/ }_, making f, spike in the [ level (I > 0). In general, we can get

n=1
My 0, Mg, -+, My 1, data samples in {X,,}2 | and Mj. o, M,le, e ,M,Q,L random samples in
{X/}N_, that make fj, spike in the 0,1, - , L levels respectively, but do not make f1,--- , fr_1

spike in any non-negative level. Then, we have M, _; = N — Y./ My, as well as M} | =
L

N =300 My

In our opinion, spiking levels are our subjective classifications. Objectively, if the non-randomness is

already discovered by functions f1,--- , fx—1 in the sequence f, then such non-randomness cannot

be awarded to fj. So, we ignore any sample making any of f1,--- , fr—1 spike in any non-negative
level, when counting the ‘valid spikings’ made by fi.
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Then, we can define the theoretical spiking efficiency SE, and observed spiking efficiency SE fu
for each function fy in f = (f1, -, fx) as:

L L
. M. M. —_— M. M+«
F, =1 —] . ; FE = ] . 27
5B Nﬂo(ll N Og(MéJ)) P SER= 2y 3 ra) @

Then, suppose My ; = Zle M,y and My | = Zszl Mj,, forl=0,1, -, L. We have that Ms
represents the number of data samples in { X,, }_, making at least one function in f = (f1,--- , fx)
spike in the [ level, while Mg ; represents the number of random samples in { X7, N_| making at

least one function in f spike in the [ level. Also, suppose Mg _1 = N — ZzL:o Mgy and My _ | =

N — Zf:o Mf’ ;- The theoretical spiking efficiency and observed spiking efficiency of f is then
defined by:

L L

) Mz, Mz, == Mz, M +a
Ee=1 | ’ ; Ee= 1 ’ 28
S f Ngnoo<l;1 N Og(Mf/',l )) ) S f lzz_:l N Og( Mt{)ﬁ‘@) ( )

Accordingly, we can obtain the theoretical ability Ay, = SEy, - Cy, and the observed ability

Ay, = SEj, - Oy, foreach fy in the sequence of functions £ = (f1,- -+, fx ), where Cy, = | fi| ™!
is the conciseness of fj:

L L
. My, My I My, My +a 1
A.fk - 1\/151100 ( £ N log( M;;l )) |fk‘ 9 Afk - (lz_l N 10g( M]I¢71+a )) |fk‘ (29)

We define the theoretical ability of f = (f1, -, fx) to be Af = Z,Ile Ay, We define the
observed ability of f = (f,--- , fx) tobe Ay = Yo, Ay,

K L K L
. My My 1| » My, My +a 1
Ae= lim “log(=—=) | -—|; Ae= E ~log (- )|
; [N—mo( 2. N UML) fl — |\ N M+’ ) | fil
(30)

Intuitively, S E¢ measures the total amount of information captured by the sequence of functions
f = (f1, -, fr) from the data distribution P, while SE;, measures the amount of valid information
captured by each fj, in f. Then, Ay, measures the effort made by each function f, to encode the valid
information into the parameters, and Ag measures the total valid effort made by £ = (f1,--- , fx) to
encode the captured information into the parameters.

Then, the /-level independent spiking region of f}, is defined to be S}';dl ={X eS|l k<
k(X) < (I4+1)-k}forl =0,1,---,L — 1. The top level independent spiking region of f}, is
S}Z?L ={X €8 fi(X) > L-k}. The -1 level independent spiking region of f},, corresponding
to S\Sy, in the main pages, is S’f’;‘f_l ={X eS| fr(X) <0}

Accordingly, for I = 0,1,---, L, the [-level spiking region of f; in the sequence of functions
f=(f1, -, fx)is defined to be Sy, ; =S¥ (Uf:_f(UZL:OS;’?%)) (i.e., removing all non-negative
independent spiking regions of f1,---, fx—1). Thatis, Sy, ; consists of the vectors on which f}, can

make a valid spike in the [ level. It is easy to see that S¢, ; N Sff, j=0whenk #iorl>0# [>0.
Also, we have the -1 level spiking region of f; tobe Sy, _1 = S\(UF Sy, 1)

Finally, for [ = 0,1,---, L, we define the [-level spiking region of the sequence of functions
f=(f1, -, fx)tobeSg; = UK Sy ;. Thatis, S¢,; consists of the vectors on which at least one
function in the sequence (f1,-- - , fx) can make a valid spike in the [ level. Especially, we note that
Sei # Ules}’:fll, which is different from the simple spiking theory (see Section . Also, we have
the -1 level spiking region of f to be S¢ 1 = S\ (U ,S¢,). A straightforward demonstration is
shown in Figure[§]

Regarding the bound of SFEf and each SEy, , we propose the refined version of Theorem 2:
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X

Figure 6: The leveled (contour) spiking regions of f = (f1, f2, f3) defined on the xy-plane: In this
example, we have L = 2, leading to 3 non-negative levels of spiking regions for each function. The
0-level spiking region for each fj, (and also for f) is in blue, the 1-level is in red, and the 2-level is in
yellow. For each function fy, its independent spiking regions in 3 non-negative levels form concentric
circles. The non-negative level spiking regions of f; is in the front, while those of f; have to remove
the regions overlapped with f;, and those of f3 have to remove the regions overlapped with both f;
and fs.

Theorem 2-refined. Suppose X is a finite-dimensional real or complex vector space, and suppose
S C X is a bounded sub-region in X. Suppose there are the data probability distribution P and the
uniform distribution P’ defined on S. Also, suppose the probability density function g(X) of P is
bounded by a finite number S (i.e., P is regular).

Suppose £ = (f1, -+, fx) is a sequence of functions with each function fi, : S — R possessing
a finite size | fi|. Suppose k is the chosen grid and L is the chosen top level. Then, under x and
L, with respect to P and P’, the theoretical spiking efficiencies of both f and each f) are bounded.
That is, we have 0 < SEg < - [S|-log (- [S]), aswellas 0 < SEy, < Q- |S|-log (2 - |S|) for
k=1,---,K. Here, |S| is the Lebesgue measure of data space S.

Similarly, we can follow the proof method of Theorem 1 to prove this refined version of Theorem 2.
Also, we can get the formula of SF¥ as (in which ¢’ (X) = ﬁ is the probability density function of

the uniform distribution P’, and |S¢ | is the Lebesgue-measure of the {-level spiking region S¢ ;):

& Js,, 000X\ L S Js,, 9(X) dX
o 712221 </Sf,2q(X) dX) o8 (fsf,l g9'(X) dX) P> </squ(X) dX) log< S, )
€1y

I=—1
Replacing f by f, in the above formulas, we can then get the corresponding formulas of SEy, for
each function fi in f. Then, similar to the simple spiking theory, two sequences of finite-sized

functions f = (f1,---, fx)and f = (f1,--- , f ) will have the same theoretical spiking efficiency,
if under the chosen grid  and top level L, their spiking regions S¢; and Sz, in each non-negative

level [ coincide with each other. Accordingly, we have:

Definition 4-refined. Suppose X is a finite-dimensional real or complex vector space, and suppose
S C X is a bounded sub-region in X. Suppose there are the data probability distribution P and the
uniform distribution P’ defined on S. Also, suppose the probability density function g(X) of P is
bounded by a finite number § (i.e., P is regular). Finally, suppose k is the chosen grid and L is the
chosen top level for evaluating contour spikings.

Suppose £ = (f1,---, [K) and f = (]?1, cee ]?f{) are two sequences of finite-sized functions defined
on S. We say that under x and L, f and f are spiking equivalent with respect to P and P/, denoted
as f ~ f, ifSEf = SEF.

Suppose £ = (f1, -, fx) is a sequence of finite-sized functions defined on S. Under « and L, we
define the spiking equivalence class of f, denoted as &, to be the set consisting of all the sequences
of finite-sized functions that are spiking equivalent to f. That is,

Ef:{F:(ﬁ7 h%vf() ‘.EC| <oof0rk:1,~~ 7}%; andSEf:SE{'}a
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where K and K are not necessarily equal, and different values of K are allowed in Es.

Finally, under  and L, if there exists a sequence ofﬁnlte szzedﬁmcttons £ = (ff, -, fi~), such

that for any sequence of finite-sized functions f= ( fl, f K) the inequality SEg+ > S Ez always
holds true, then we call £* the most efficient encoder of P based on P’, denoted as £ p,. We call

Ef; o the spiking equivalence class of fp p/, the most efficient class of P based on P’, denoted as

;
£ pr-

Regarding the theoretical and observed abilities of £ = (f1,-- -, fx) as discussed earlier in this
appendix section, here is the refined version of Hypothesis 4:

Hypothesis 2-refined. Suppose X is a finite-dimensional real or complex vector space, and suppose
S C X is a bounded sub-region in X. Suppose there are the data probability distribution P and the
uniform distribution P’ defined on S. Also, suppose the probability density function g(X) of P is
bounded by a finite number $ (i.e., P is regular). Finally, suppose k is the chosen grid and L is the
chosen top level for evaluating contour spikings.

Given a sequence of finite-sized functions £ = (f1,--- , fx) defined on S, suppose that under k
and L, with respect to P and P’, & is the spiking equivalence class of f, and I' = SEyx is the
theoretlcal splkmg efficiency of £. Then, there exists at least one e sequence of finite-sized functions

(f1 o 7fKT) € &, such that for any other f = (fl, e ,fK) € &, the inequality Agr > A

always holds true. We call such a sequence of functions fT = ( f{r AR f};f) a I'-level optimal

encoder of P based on P’, denoted as flJLNFI:,

Finally, suppose under r and L, the most efficient class Ep p, with respect to P and P’ is not empty.

Then, there exists at least one most efficient encoder f1 = (flT, cee f;rﬁ) € &b pr, such that for any
other most efficient encoder £* = (f{,- -, fjc.) € Ep pi, the inequality Agi > Ag- always holds
true. We call such a sequence of functions fT = ( f{r AR f;rﬁ) an optimal encoder of P based on

P’, denoted as fll7p,.

We can see that the refined versions of Theorem 1, Theorem 2, Definition 5 and Hypothesis 4 are
almost the same as the original versions, except for adding the grid and top level regarding contour
spiking. This indicates that the contour spiking theory and simple spiking theory are essentially the
same. One can regard the simple spiking theory as a specific case of contour spiking theory when
L=0.

The refined version of Hypothesis 4 claims the existence of an optimal encoder under the chosen grid
 and top level L. We note that the grid x and top level L is chosen and then fixed in our discussion.
There is another interesting question: Is it possible to find the optimal grid £ and optimal top level
LT, so that an optimal encoder can provide the largest theoretical ability under x and Lt among all
other grids and top levels? This is within the scope of our future research.

E OPTIMAL ENCODERS BY EXAMPLES

In this appendix, we will provide different sequences of functions regarding the data distribution in
each graph of Figure[2] We will show how the independent spiking regions regarding each sequence
of functions divide the data space. Seeking for simplicity, in this appendix section, we always use
the observed spiking efficiency with a large enough sampling size IV to approximate the theoretical
spiking efficiency. That is, given the positive values M, M’ and N as well as o = 10710, we will

calculate §E(M, M’, N) by:

— M M+« N-M N-M+«
SE(M,M',N)= "1 1 32
(M, M, N) = 5 log(2) + = loe( 30 (32)
which can be applied to a single function f, a sequence of functions f = (f1,--- , fi), or a function

fr within the sequence f in order to approximate the theoretical spiking efficiency.

We start from the example data distribution in the left graph of Figure [2| which contains the data
distribution P to be a uniform distribution within two disjoint circles: v/(z —2)2 + (y — 2)2 = 1 and
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V/(z —5)2 + (y — 2)2 = 1. The data space S is the rectangle {z,y |0 < 2 < 7,0 <y <4} C R?,
and the random distribution P’ is uniform on S. Figure shows the independent spiking regions of
functions within six different sequences of functions being applied to this example. We note that in
all the six cases, the spiking region of the entire sequence of functions always coincides with the two
circles. By a routine derivation, we know this makes each sequence of functions the most efficient
encoder with respect to P and P’.

Figure 7: Independent spiking regions for different sequences of functions regarding the data
distribution in the two circles.

e In graph (a) of Figure there is only one function in the sequence. That is, f = (f1), where

Lif/(z =22+ (y—2)2<lory/(z—5)2+(y—2)2<1;
0, otherwise.

fl(xay){

The area of each circle is mr2 = 7, whereas the area of S is 4 - 7 = 28. Suppose we choose the
sampling size to be N = 10000. Then, there are approximately A/’ = 10000 - %—g ~ 2244 random
samples generated by the uniform distribution P’ that fall inside the two circles. On the other hand, all
data samples must fall inside the spiking region of f;, which is just the two circles. So, M = 10000.
Finally, there are 6 adjustable parameters in fi: the coordinates of each circle’s center, namely, (2, 2)
and (5, 2); as well as the radius, namely, 1 and 1. The exponent 2 is not adjustable, since adjusting
its value will change the computational complexity of f1. Hence, |f1| = 6. As a result, we have the

observed ability of £ = (f;) to be A¢ = SE(10000,2244,10000)/6 ~ 0.249.
e In graph (b) of Figure there are two functions in the sequence: f = (f1, f2), where

Lif/(z-22+(y-2?2 <1
0, otherwise.

Lif/(z-5)2+(y—-2?2 <1
0, otherwise.

fi(z,y) = { . fala,y) = {

Comparing to graph (a), only half data samples and random samples will fall inside one single
circle. So, we have that for both f; and fs, there are M = 5000, M’ =~ 1122 and N = 10000.
Also, we can get |fi| = |f2| = 3, since in each function there are three adjustable parameters:

the circle’s center (., y.) and the radius r. Hence, we have Ag = @(5000, 1122,10000)/3 +
SE(5000,1122,10000)/3 = 0.307.
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e In graph (c) of Figure there are four functions in the sequence: f = (f1, fo, f3, f1), where f1
through f4 stands for each half circle from left to right:

fl(x,y):{(l): gt}}f{r(vffi;:)Q +(y—2?%<landz <2
fa(ay)= {(1) gﬂgrjls—& W—22<1landz <5

Again, comparing to graph (b), half data samples and random samples will fall inside each half
circle. So, we have that for f; through f4, there are M = 2500, M’ = 561 and N = 10000. Also,
we can get | fr| = 4 for k = 1,--- , 4, since in each function there are four adjustable parameters:
the circle’s center (., y.), the radius r, and the diameter bar for the half circle. Hence, we have

Ag = 4 - SE(2500,561,10000) /4 ~ 0.201.
e In graph (d) of Figure we have f = (f1,- -, fs). Each fj has its spiking region to be one sector

in the graph. We have f; through f, corresponding to the four sectors in the left circle in counter-
clockwise. Similarly, f5 through fs corresponds to those in the right circle in counter-clockwise.

That is, fi(z,y) = 1 when \/(z —2)2+ (y—2)2 < land x < 2,y > 2; fo(z,y) = 1 when
\/(m —2)2+(y—2)2 <landz < 2,y < 2, etc. So, throughout f; to fg, we have M = 1250,

M’ ~ 280 and N = 10000, whereas | fi,| = 5. Therefore, Ay = 8 - SE(1250, 280, 10000)/5 ~
0.152.

e In graph (e) of Figure I 7} there are two functions in the sequence f = (f1, f2), whereas their
independent spiking regions are overlapped: Smd is the right half of the left circle adding the whole

right circle, while S”;d is the whole left circle. That is,

Filz,y) = {L if (\/(33—2)24-(.@—2)2 < 1andx22> or (\/(x—5)2+(y—2)2 < 1);

0, otherwise.

o= {1 YT S

0, otherw1se.

We have M = 7500 and M’ ~ 1683 for f, since S = S?fd covers 3 half circles. On contrast,
the valid spikings made by fo are only within the left half of the left circle, corresponding to
Sy, = Si\S%. So, we have M = 2500 and M’ = 561 for fa. Also, |f1| =3 -2+ 1 =7, since
f1 contains the center and radius of both circles as well as © > 2. Easy to see |f2| = 3. Hence,
A = SE(7500,1683,10000) /7 + SE(2500, 561, 10000) /3 ~ 0.184.

e Finally, in graph (f) of Flgure there are four functions in the sequence f = (f1, f2, f3, f4): The
independent spiking region Sm covers the inner circle within the left circle, Smd covers the whole

left circle, S“s’d covers the left half of the right circle, and S“:d covers the right half That is:

,if /(x —2)2 + (y — 2)% < 0.5;
Al y)= { otherwise.
1f\/(x—2)2—|—(y—2)2 <1
, otherwise.
B 1f\/(:c—5)2+(y—2)2Slandm§5;
- , otherwise.
1f\/xf (y—2)2<landz > 5;
, otherwise.
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By a routine analysis, we have M = 1250 and M’ ~ 280 for f1, M = 3750 and M’ = 842 for f5, as
well as M = 2500 and M’ = 561 for both f5 and fy. We have |f1] = \f2| = 3, while | f3] = | f4] = 4.

Hence, Ay = SE(1250, 280, 10000)/3+ SE(3750, 842, 10000) /3+2- SE(2500, 561, 10000) /4 ~
0.239.

We can see that the largest observed ability A\f comes from graph (b). In this case, f contains two
functions, and the independent spiking region of each function covers exactly one data distributed
circle in the graph. By the above enumerating analysis, we can see that the sequence of functions in
case (b) is likely an optimal encoder of P based on P’, where the independent spiking regions of
these two functions indeed divide the data space S in the most appropriate way with respect to the
data distribution P.

Then, we discuss the middle graph of Figure 2| in which the data distribution P is uniform within the
area covered by two overlapped diamonds. The vertex of each diamond coincides with the center
of the other diamond. The centers of the two diamonds are x = 4,y = 3 and z = 6,y = 3. Again,
the random distribution P’ is uniform within S = {z,y |0 < £ < 10,0 < y < 6}. In Figure we
show three sequences of functions regarding the data distribution in this example. Again, we use

§E(M ,M', N) to approximate all encountered spiking efficiencies.

(@ (b)

0 2 4 6 8 0 0 2 4 6 8 0 0 2 a4 6 8 10

Figure 8: Independent spiking regions for different sequences of functions regarding the data
distribution in the two overlapped diamonds.

e In graph (a) of Figure the sequence only contains one function: f = (f1). The spiking region of
f1 covers both diamonds. The boundary of Sy, is indicated as in the graph. We have that:

1,if (—3<y<z+land —z+5<y<-—-x+9)or
fi(z,y) = (r—b<y<z—1land —z+7<y<—-x+11);
0, otherwise.

Easy to see that the area of each diamond is (2v/2)? = 8. The overlapped area between two diamonds
is 2, and their entire covered area is 14. The area of the data space S 1s 10 - 6 = 60. Suppose
the sampling size is N = 4200, so there will be approximately 4200 - @ = 980 random samples
generated by P’ that fall inside the two diamonds. On contrast, all data samples generated by P will

fall inside the two diamonds. So, M = 4200, M’ = 980 and N = 4200.

One may say that there are 16 adjustable parameters in f;: Each ax + b < y < cz + d contains 4
parameters, which in total contributes 16 ones. However, to stay consistent with the previous example
regarding the two circles, we do not regard the scalars multiplied by = as adjustable parameters
(which are 1 and -1 in this example). In addition, we only need four parameters to accurately describe
one diamond rotated from a square: the center (x., y.), the edge length [ and the rotation angle 6. So,
in our opinion, there are 8 parameters in f; describing the two diamonds, indicating |f1| = 8. As a

result, we have the observed ability Ay = SE (4200, 980, 4200)/8 ~ 0.182.

e In graph (b) of Figure |8, we have two functions being contained in the sequence f = (f1, f2),
where f; stands for the left diamond and f> stands for the right one:

1,ifr—3<y<x+1and lL,ifr—5<y<x—1and
filz,y) = —r+5<y<-z+9 , foz,y)= —r+T7<y<—z+1L
0, otherwise. 0, otherwise.

We have M = 2400 and M’ = 560 for fi, since its spiking region covers the entire left diamond.
Then, after removing the overlapped region, the spiking region of f> covers 3/4 of the right diamond.
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So, we have M = 1800 and M’ = 420 for f,. Then, given |f| = |fa| = 4, we have Ay =
SE(2400, 560, 4200) /4 + SE(1800, 420, 4200) /4 ~ 0.223.
e In graph (c) of Figure [8] the sequence still contains two functions: f = (f1, f2). But their

independent spiking regions are no more overlapped: f; still stands for the left diamond, while f5
removes the overlapped part from its independent spiking region. That is,

1,if(x—5<y<zxz—1land

1,ifr—3<y<zxz+1and —x+7<y< —x+11)and not
fi(z,y) = —r+5<y<—x+9; , falz,y) = (x-3<y<z+1land
0, otherwise. —x+5<y< —x+9);

0, otherwise.

Again, we have M = 2400 and M’ = 560 for fi, as well as M = 1800 and M’ = 420 for fo.
But this time we have |f;| = 4 and |f2| = 8. Hence, we have Ay = SE(2400, 560, 4200)/4 +
SE(1800, 420, 4200) /8 ~ 0.178.

We have that the largest observed ability comes from case (b), where each function in the sequence of
functions stands for one diamond. This is also the most appropriate way, according to our intuition,
for the independent spiking regions to divide the data space with respect to P. One may argue that
the spiking region in graph (a) is the most appropriate dividing of the data space. However, we claim
that our mind will in fact automatically ‘fill in’ the missing edges within the two symmetrically
overlapped diamonds, which coincides with the independent spiking regions of case (b). Anyway, the
sequence of functions in case (b) is likely an optimal encoder with respect to P and P’ in this example.

Finally, we discuss the right graph of Figure There are 15 squares within S = {z,y |0 < z <
14,0 < y < 8}, whereas each square has edge length 1. The data distribution P is uniform within
these 15 squares, while the random distribution P’ is uniform in S. Then, Figure E] shows two
different sequences of functions: The left graph in Figure [0]shows a sequence containing only one
function f = (f1), where the independent spiking region of f; covers all 15 squares. The right graph
in Figure@] shows a sequence containing 15 functions f = (f1,- -, f15), where the independent
spiking region of each function covers exactly one square.

0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

Figure 9: Independent spiking regions for two different sequences of functions regarding the data
distribution in the 15 squares.

The area of Sis 14 -8 = 112, and the area of each square is 1. Suppose we choose N = 11200. Then,
there are approximately 11200 - % = 1500 random samples falling inside all 15 squares, with each
square containing around 100 random samples. So, in the left graph of Figure[9] we have M = 11200
and M’ = 1500 for f;. The size of fi is at least 3 - 15 = 45. This is because we need at least three
parameters (the center (., y.) and the edge length [) to accurately describe one square. Without
lose of generality, we always work with optimal functions (see Appendix [B)) for all spiking regions.

Hence, |f1| = 45. As a result, the observed ability is A = @(11200, 1500, 11200) /45 =~ 0.045.

Then, for the right graph of Figure [9] each function f; in f = (fi,---, f15) has its independent
spiking region covering exactly one square. We have that M = 11200/15 ~ 747 and M’ =
1500/15 = 100 for each fy. Also, |fx| = 3 since each fj needs at least 3 parameters to record the

center and edge length of each square. Hence, we have Ap=15- §E(7477 100, 11200)/3 = 0.390.
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We also tried other sequences of functions, such as each function in the sequence corresponding to
the squares in one row or one column. But none of them has an observed ability exceeding 0.39.
Hence, the sequence of functions f = (f1,- -, fi5) corresponding to the right graph of Figure@]is
likely to be an optimal encoder with respect to P and P’ in this example, in which the independent
spiking regions of functions divide the data space in the most appropriate way with respect to P.

As we mentioned in Section[3.4] in the last example, we want to discuss a data probability distribution
that is not uniformly distributed within a region. As shown in Figure the data distribution
P has varied probability density within the two concentric circles: Its probability density within
the inner circle \/(z —4)2 + (y — 4)2 < 1is 5 times higher than that within the outer circle

V(z—4)2 + (y — 4)2 < 2. Again, P’ is uniformon S = {z,y | 0 < 2 < 8,0 < y < 8}.

Figure 10: The data probability distribution whose probability density varies within two concentric
circles.

Suppose we have the sampling size N = 10000. Then, there are approximately 10000 - g7 ~ 491

random samples falling in the inner circle, and approximately 10000 - ‘é—z ~ 1963 random samples
falling in the outer circle. So, there are around 1472 random samples in the annular region. According
to our setting, there are approximately 10000 - g = 6250 data samples falling in the inner circle, and
approximately 3750 data samples in the annular region.

According to our enumeration, the most efficient encoder is likely f = (f;), with the spiking region
of f1 covering the outer circle:

1, if \/(z —4)2 + (y—4)? < 2;
filz,y) = vie -4+ -4)

0, otherwise.
We have the observed spiking efficiency of f = (f1) to be SE¢ = @(10000, 1963, 10000) =~ 1.628,
which is the largest value we can get in our enumeration. Also, f = (f1) is likely an optimal encoder
in this example, whose observed ability is A¢ = SFE(10000, 1963,10000)/3 ~ 0.543. We have
checked the observed ability of £ = (f1, f2), where f; stands for the inner circle and f, stands
for the outer circle. With the same theoretical (and observed) spiking efficiency as f = (f1), this
sequence of function f = (f1, f2) has a lower observed ability: As = SE(6250,491,10000)/3 +
SE(3750,1472,10000)/3 ~ 0.466 < 0.543. We failed to find another sequence of functions with
an observed ability larger than 0.543 in this example. As a result, the obtained optimal encoder
f = (f1) ignores the inner circle, which fails to perfectly match with our intuition.

This example shows a defect of our theory: A spiking function cannot further represent the probability
density variations within its spiking region. That says, we need to further consider how strong a
function’s spiking is, so that functions can encode the information from the data distribution in a
more detailed way. This is just the contour spiking theory we proposed in Appendix D]
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