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ABSTRACT

Deep neural networks trained in an end-to-end manner have been proven to be
efficient in a wide range of machine learning tasks. However, there is one draw-
back of end-to-end learning: The learned features and information are implicitly
represented in neural network parameters, which are not explainable: The learned
features cannot be used as explicit regularities to explain the data probability dis-
tribution. To resolve this issue, we propose in this paper a new machine learning
theory, which describes in mathematics what are ‘non-randomness’ and ‘regular-
ities’ in a data probability distribution. Our theory applies a spiking function to
distinguish data samples from random noises. In this process, ‘non-randomness’, or
a large amount of information, is encoded by the spiking function into regularities,
a small amount of information. Then, our theory describes the application of multi-
ple spiking functions to the same data distribution. In this process, we claim that
the ‘best’ regularities, or the optimal spiking functions, are those who can capture
the largest amount of information from the data distribution, and then encode the
captured information into the smallest amount of information. By optimizing the
spiking functions, one can achieve an explainable self-supervised learning system.

1 INTRODUCTION

In the past decades, deep neural networks have being brought huge success to a wide range of machine
learning tasks (LeCun et al., 1998; Vaswani et al., 2017; Devlin et al., 2018; Goodfellow et al., 2014;
Rombach et al., 2022; He et al., 2016). Convolutional neural networks (CNNs) revolutionized
computer vision (LeCun et al., 1998), leading to groundbreaking results in image classification,
object detection, and segmentation (Deng et al., 2009; Ronneberger et al., 2015). CNNs became the
backbone of many applications, from medical imaging to autonomous driving. Also, recurrent neural
networks (RNNs) and their variants (Sherstinsky, 2020), such as long short-term memory (LSTM)
networks and gated recurrent units (GRUs) (Hochreiter & Schmidhuber, 1997; Chung et al., 2014),
combining with semantic embeddings, made significant strides in sequence modeling tasks, including
language modeling, speech recognition, and time-series prediction (Zhou & Xu, 2015; Graves et al.,
2013; 2006; Bengio et al., 2000; Mikolov et al., 2013).

The introduction of attention mechanisms and transformers revolutionized NLP by improving the
handling of long-range dependencies and performance (Vaswani et al., 2017). Models like BERT
(Devlin et al., 2018) set new benchmarks in language tasks, driven by pre-training strategies widely
used in transformer models (Radford et al., 2018). Pre-training techniques, such as masked language
modeling (Salazar et al., 2019) and next-word prediction (Qi et al., 2020), have propelled models
like BERT, RoBERTa, ELECTRA, and T5 to excel across tasks (Devlin et al., 2018; Liu et al., 2019;
Clark et al., 2020; Raffel et al., 2020). This has paved the way for large language models (LLMs),
including ChatGPT (Kasneci et al., 2023; Wu et al., 2023), which excel in applications like customer
service and content creation (Ray, 2023).

All these models, supervised or unsupervised, pre-trained or not, are based on an end-to-end learning
process (Carion et al., 2020): The deep neural network is trained to map input data to corresponding
targets, which can be labels in a supervised learning approach or masked data in an unsupervised
learning approach. The loss, which is the difference between the neural network output and the target,
is back propagated through the network to update the trainable parameters (Rumelhart et al., 1986).
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However, there is one drawback of end-to-end learning: All the learned features and information
during training are implicitly kept in network parameters, which cannot form explicit regularities
to explain the data distribution. Without explicit regularities and knowledge, deep neural networks
cannot emulate human-like abilities such as discovering new commonsense, generating ideas, or
making plans driven by specific objectives (An et al., 2019; Sweller, 2009; Davis & Marcus, 2015).

But what are regularities in a data distribution? Or, what differs data samples from random noises?
In this paper, we establish a theory to describe ‘regularities’ and ‘non-randomness’ in mathematics,
which is potentially applicable to build an explainable self-supervised machine learning system.

The contribution of this paper is the proposal of such a theory, which encompasses two aspects:

1. Based on spiking functions, we define in mathematics what is non-random information, or ‘non-
randomness’, in a data probability distribution. Then, based on information theory, we describe that
regularities are a small amount of information encoding a large amount of non-random information.

2. We apply multiple spiking functions to the same data probability distribution. Then, we mathemat-
ically describe that optimal regularities are learned by spiking functions when the maximum amount
of information is represented in the most concise way, or equivalently, encoded into the smallest
possible amount of information. We use simple examples to show that when these optimal spiking
functions are achieved, their spiking behaviors become explainable regarding the data probability
distribution, and hence the system becomes an explainable self-supervised learning system.

We acknowledge that implementation models for our theory have not yet been developed. So, there
are no experimental results presented in this paper. In the rest of this paper, we will first briefly
introduce some related works in Section 2. Then, we describe our theory in Section 3. Finally, we
conclude with a summary of this paper in Section 4.

2 RELATED WORK

Our work is unique since it presents a theory that defines in mathematics what are non-randomness
and regularities in a data probability distribution, which can be potentially applied to practical
machine learning tasks. To the edge of our knowledge, this is the first work presenting such a theory.
But our theory indeed depends on spiking functions (or spiking neural networks in practice) and
information theory.

Spiking Neural Networks (SNNs) have gained attention for their ability to closely mimic brain
processes compared to traditional neural networks (Brown et al., 2004; y Arcas & Fairhall, 2003).
Spike-timing-dependent plasticity (STDP), introduced by (Debanne & Inglebert, 2023), offers a
key learning rule where synaptic strengths adjust based on spike timing. (Maass et al., 2002) then
proposed the Liquid State Machine, showing how dynamic neural circuits process information.
(Gütig & Sompolinsky, 2006) advanced this with the Tempotron model, where neurons learn to
discriminate spatiotemporal spike patterns. Finally, (Sengupta et al., 2019) discussed converting
traditional networks to SNNs, enabling energy-efficient implementations on neuromorphic hardware.
Combining all these works, in our theory, given a vector X as the input to a function f , we regard f
to spike on X if f(X) > 0. This is a very simple setting comparing to many spiking neural networks.

Information theory, foundational to modern communication and data science, was pioneered by
Claude E. Shannon in his paper A Mathematical Theory of Communication (Shannon, 1948). Shannon
introduced key concepts like entropy, which measures uncertainty, and mutual information, which
quantifies the information gained about one variable from another. Subsequent influential works
include the Viterbi algorithm by (Viterbi, 1967), critical for error-correcting codes, and (Slepian
& Wolf, 1973), which explored trade-offs between compression and fidelity in data transmission.
(Fitts, 1954) also applied information theory to human-computer interaction. Based on the solid
ground established by these pioneered works, our work applies information theory to describe
non-randomness and regularities in the data distribution discovered by spiking functions.

3 LEARNING REGULARITIES FROM DATA USING SPIKING FUNCTIONS

We describe our theory with details in this section. First, by applying a single spiking function
to the data distribution, we describes in mathematics how to measure non-randomness and what
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are regularities. After that, we describe how to apply multiple spiking functions to the same data
distribution. Finally, we provide a hypothesis which defines optimal spiking functions (regularities)
to a data distribution. One can achieve an explainable self-supervised learning system simply by
converging to the optimal spiking functions.

3.1 NON-RANDOMNESS VERSUS REGULARITIES

Given a finite-dimensional vector space X, suppose our data space is a bounded sub-region S ⊂ X.
Suppose we have a data probability distribution P defined on S. Our goal is to learn the regularities
from P. In other words, we want to know what distinguishes P from a random probability distribution
P′ (such as a uniform distribution) on S. Inspired by Noise Contrastive Estimation (Gutmann &
Hyvärinen, 2010), our theory focuses on distinguishing samples generated from each of these two
distributions using functions.

That is, suppose we have N data samples {X1, X2, · · · , XN} generated by P, and the same number
of random samples {X ′

1, · · · , X ′
N} generated by P′. Suppose we have a function f : S → R that

maps any vector X ∈ S to a real scalar. Inspired by the way neurons fire (or ‘spike’) in response
to specific biochemical signals (Brown et al., 2004), our desired function f should exhibit a higher
response rate to data samples than to random ones. Regarding f(X) > 0 as a spike of f on X , we
aim for the spiking frequency of f on {Xn}Nn=1 to differ significantly from that of f on {X ′

n}Nn=1.

We use M to denote the number of observed spikes when implementing f on the data samples
{Xn}Nn=1 generated by P. Similarly, we use M ′ to denote the number of spikes when implementing
f on random samples {X ′

n}Nn=1 generated by P′. With p̂ = M/N and p̂′ = M ′/N , we have that
P̂ = (p̂, 1− p̂) is the observed spiking probability distribution of f on the data samples {Xn}Nn=1,
while P̂ ′ = (p̂′, 1 − p̂′) is that of f on the random samples {X ′

n}Nn=1. Then, we can obtain the
Kullback-Leibler divergence (KL-divergence) (Hershey & Olsen, 2007) of P̂ over P̂ ′ as:

DKL(P̂ ||P̂ ′) = p̂ log(
p̂

p̂′
) + (1− p̂) log(

1− p̂

1− p̂′
) =

M

N
log(

M

M ′ ) +
N −M

N
log(

N −M

N −M ′ ). (1)

According to information theory (Shannon, 1948), DKL(P̂ ||P̂ ′) measures the amount of information
obtained if we use P̂ instead of P̂ ′ to estimate the spiking probability distribution of f on the data
samples (Shlens, 2014). Or equivalently, f captures the amount of information DKL(P̂ ||P̂ ′) from
the data distribution P by comparing P with the random distribution P′. We use DKL(P̂ ||P̂ ′) to
measure the non-randomness captured by f from P. That says, we define non-randomness to be the
meaningful or valuable amount of information which differs a data probability distribution from a
random probability distribution.

Define p = limN→∞ p̂ = limN→∞
M
N , and p′ = limN→∞ p̂′ = limN→∞

M ′

N . That is, the limits
of p̂ and p̂′ over N define the theoretical spiking probabilities of f on data and random samples,
respectively. Accordingly, we define the limit of DKL(P̂ ||P̂ ′) over N as the theoretical spiking
efficiency of function f , denoted as SEf . We use DKL(P̂ ||P̂ ′) to define the observed spiking
efficiency of function f , denoted as ŜEf . That is,

SEf = lim
N→∞

(
M

N
log(

M

M ′ ) +
N−M
N

log(
N−M
N−M ′ )

)
(2)

ŜEf =
M

N
log(

M + α

M ′+α
) +

N−M
N

log(
N−M + α

N−M ′+α
) (3)

According to Gibbs’ inequality, we always have DKL(P̂ ||P̂ ′) ≥ 0, and DKL(P̂ ||P̂ ′) = 0 if and
only if P̂ = P̂ ′ (Jaynes et al., 1965). However, in practice, we may occasionally have M ′ = 0 or
M ′ = N , which makes DKL(P̂ ||P̂ ′) = ∞. Or, we may have M = 0 or M = N , which result in
0 log 0. Hence, we add a small positive scalar α to the format of ŜEf to avoid these cases.

Both SEf and ŜEf measure (in theory and by observation, respectively) the amount of information
that f captures from the data distribution P by comparing P with the random distribution P′.
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Intuitively, a larger ŜEf by observation, or a larger SEf in theory indicates that f can capture more
information from the data distribution P, which means that f spikes more efficiently.

However, spiking efficiency itself is not enough to measure regularities learned by f : If f itself is
super complex, we may end up with over-fitting as in many deep learning experiments (Ying, 2019;
Hawkins, 2004). That says, we need to define the ‘size’ of a function to measure its number of
‘trainable’ parameters, or ‘conciseness’:
Definition 1. Suppose a is a scalar parameter in the function f . We say that a is adjustable, if we
can adjust the value of a without changing the computational complexity of f .
Definition 2. The size of a function f , denoted as |f |, is defined as the number of adjustable
parameters in f .

In this paper, we always calculate the size of a function using its format with the lowest computational
complexity. For example, we have |f | = 2 for f(x) = a log x+ b = log xa + b. Also, we always
assume |f | ≥ 1 for any function f , even if f contains no adjustable parameters.

With |f | denoting the size of function f , we define the conciseness of f to be Cf = |f |−1. That says,
we intuitively regard a function with a small size (or limited number of parameters) as a concise one.
Then, we define the theoretical ability of function f to be Af = SEf · Cf . Similarly, we define the
observed ability of f to be Âf = ŜEf · Cf . It is easy to see that limN→∞ Âf = Af . That is,

Af = lim
N→∞

(
M

N
log(

M

M ′ ) +
N−M
N

log(
N−M
N−M ′ )

)
· 1

|f |
(4)

Âf =

(
M

N
log(

M+α

M ′+α
) +

N−M
N

log(
N−M+α

N−M ′+α
)

)
· 1

|f |
(5)

The size of f defined in our theory essentially aligns with Kolmogorov complexity (Li et al., 2008),
which describes the minimum amount of information required to specify f unambiguously (Wallace
& Dowe, 1999). So, intuitively, the ability (theoretical or observed) of function f measures the
amount of information captured by f relative to the amount of information required to specify f . A
function f with high ability implies that f is able to encode a large amount of information into a
small amount of information, which is why we use ‘ability’ to denote this variable.

Summarizing our discussion in this section, we define that regularities are a small amount of
information representing a large amount of information. A spiking function with higher ability learns
stronger or better regularities. Also, we do not strictly differ a spiking function from the regularities
learned by that function. In the rest of this paper, we in most cases regard function f as its learned
regularities, and vice versa.

In the following sections, we describe how to expand our theory to multiple spiking functions. But
we will first introduce some mathematical basis in the next sub-section.

3.2 BASIC CONCEPTS

We assume by default in this paper that the vector space X is either real or complex (i.e., X = Rm

or X = Cm with some finite integer m). Then, we adopt the Euclidean distance as the metric on X
(Gower, 1985), which defines the distance d(X,Y ) between any two vectors X,Y ∈ X. A little bit
more detailed discussion can be found in Appendix A.

Then, we use the Lebesgue measure (Bartle, 2014) to define the ‘volume’ of a subset E ⊂ X. The
Lebesgue measure is a regular choice to measure volumes of subsets within a finite-dimensional
real or complex vector space (Ciesielski, 1989), which coincides with our usual understanding of
volume. Say, when X = R3, the Lebesgue measure of a sphere with radius r is 3

4πr
3. A more

detailed definition on Lebesgue measure is provided in Appendix A.

With these concepts, we can then evaluate the spiking efficiency, conciseness and ability of a function
in a straightforward way. That is, we will first have:
Definition 3. Suppose X is a finite-dimensional real or complex vector space, and suppose S ⊂ X
is a bounded sub-region in X. Suppose f : S → R is a function defined on S. We define the spiking
region of f , denoted by Sf , to be the sub-region in S consisting of the vectors that f spikes on. That
is, Sf = {X ∈ S|f(X) > 0}.

4
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Also, we say that two spiking regions are distinct, if there exists a vector X ∈ S that belongs to one
spiking region but does not belong to the other.

Obviously, there is an unique spiking region Sf to any function f . We will work with many types of
spiking regions in the rest of this paper. We note that spiking region is only an analytical tool we
created in the theory. In practice, it is very difficult and not meaningful to accurately measure the
spiking region of a function, especially in high dimensional data spaces.

When function f is continuous regarding the metric on the vector space X, we have the following
lemma to guarantee that Sf is Lebesgue-measurable (i.e., the region indeed has a determined volume
under Lebesgue measure):
Lemma 1. Suppose X is a finite-dimensional real or complex vector space, and suppose S ⊂ X is a
bounded sub-region in X. Suppose f : S → R is a continuous function defined on S (i.e., for any
ϵ > 0, there exists a δ > 0 such that for any X,Y ∈ S, d(X,Y ) < δ implies |f(X)− f(Y )| < ϵ).
Then, the spiking region Sf = {X ∈ S|f(X) > 0} is always Lebesgue-measurable.

The discussion on Lebesgue-measurable/non-measurable sets as well as the proof of this lemma are
provided in Appendix A. Lebesgue non-measurable sets indeed exist in a finite-dimensional vector
space. However, a non-measurable set is usually extremely complicated. The Vitali set (Kharazishvili,
2011) is a famous non-measurable set in R, which is discussed in Appendix A. To be specific, we
believe that any function f with a finite size cannot possess a non-measurable spiking region. That is,
Hypothesis 1. Suppose X is a finite-dimensional real or complex vector space, and suppose S ⊂ X
is a bounded sub-region in X. Suppose f : S → R is a function defined on S with a finite size (i.e.,
there are finite adjustable parameters in f ). Then, the spiking region Sf = {X ∈ S|f(X) > 0} is
always Lebesgue-measurable.

Based on this hypothesis, we claim that: Any function with a finite size can only capture finite amount
of information from a data distribution, as long as the data distribution is a ‘regular’ one. That is:
Theorem 1. Suppose X is a finite-dimensional real or complex vector space, and suppose S ⊂ X
is a bounded sub-region in X. Suppose we have the data probability distribution P defined on S,
with the probability density function to be g(X). Furthermore, suppose there exists an upper bound
Ω <∞, such that g(X) ≤ Ω for any X ∈ S. Finally, suppose we have the random distribution P′

to be the uniform distribution defined on S.

Then, for any function f : S → R with a finite size |f |, its theoretical spiking efficiency SEf obtained
with respect to P and P′ is bounded by 0 ≤ SEf ≤ Ω · |S| · log (Ω · |S|), where |S| is the Lebesgue
measure of data space S.

Again, we provide the detailed proof of this theorem in Appendix A. However, we want to provide
the following formulas regarding SEf here (in which Sc

f = S\Sf is the complement of the spiking
region Sf in S, g′(X) ≡ 1

|S| is the probability density function of the uniform distribution P′, and
|Sf | is the Lebesgue measure of Sf ):

SEf =

(∫
Sf

g(X) dX

)
· log

( ∫
Sf
g(X) dX∫

Sf
g′(X) dX

)
+

(∫
Sc

f

g(X) dX

)
· log

( ∫
Sc

f
g(X) dX∫

Sc
f
g′(X) dX

)
(6)

=

(∫
Sf

g(X) dX

)
·log

(
|S|
∫
Sf
g(X) dX

|Sf |

)
+

(
1−
∫
Sf

g(X) dX

)
·log

(
|S|−|S|

∫
Sf
g(X) dX

|S|−|Sf |

)
(7)

By a ‘regular’ data distribution P, we mean that there exists an upper bound Ω <∞ for the probability
density function g(X) of P. Otherwise, P will contain singularities with infinitely large probability
density (Meunier & Villermaux, 2007). In such a case our theorem is not true. In the rest part, we
always use the uniform distribution defined on the entire data space S as the random distribution P′.

3.3 APPLYING MULTIPLE SPIKING FUNCTIONS TO THE DATA DISTRIBUTION

In this sub-section, we discuss the situation of multiple spiking functions being applied to the same
data distribution.

5
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Again, suppose we have the data distribution P and random (uniform) distribution P′ defined on
the data space S. Suppose we have a sequence of functions f = (f1, · · · , fK), where each function
fk : S → R has a finite size |fk|. Given the data samples {Xn}Nn=1 generated by P and random
samples {X ′

n}Nn=1 generated by P′, suppose function f1 spikes on M1 data samples and M ′
1 random

samples, respectively. Remember that the objective of each function is to capture information from
the data distribution by discovering non-randomness. Hence, if f1 already spikes on a vector X
(either a data sample or a random sample), it will be meaningless to consider whether f2 spikes on
X . This is because the corresponding non-randomness, or non-random features related to X have
already been discovered by f1, so that it becomes meaningless for f2 to discover these non-random
features again.

As a result, after ignoring the data samples that f1 spikes on, suppose there are M2 data samples in
{Xn}Nn=1 making f2 spike. Similarly, suppose there are M ′

2 random samples in {X ′
n}Nn=1 making

f2 spike while not making f1 spike. Carrying on this process, suppose there are Mk data samples in
{Xn}Nn=1 and M ′

k random samples in {X ′
n}Nn=1 respectively that make fk spike, but do not make

f1, · · · , fk−1 spike. In this way, we can define the theoretical spiking efficiency SEfk and observed
spiking efficiency ŜEfk for each function fk in f = (f1, · · · , fK) as:

SEfk = lim
N→∞

(
Mk

N
log(

Mk

M ′
k

)+
N−Mk

N
log(

N−Mk

N−M ′
k

)

)
(8)

ŜEfk =
Mk

N
log(

Mk +α

M ′
k+α

)+
N−Mk

N
log(

N−Mk +α

N−M ′
k+α

). (9)

Similar to formula 2, α is a small positive number to avoid log(0) or M/0 in practice.

Then, suppose Mf =
∑K

k=1Mk and M ′
f =

∑K
k=1M

′
k. Since there is no overlapping on spiked

samples when calculating Mk and M ′
k, we have that Mf is the total number of data samples in

{Xn}Nn=1 that make at least one function in f to spike. Similarly, M ′
f is the total number of random

samples in {X ′
n}Nn=1 making at least one function in f to spike. We define the theoretical spiking

efficiency and observed spiking efficiency of f = (f1, · · · , fK) as:

SEf = lim
N→∞

(
Mf

N
log(

Mf

M ′
f

)+
N−Mf

N
log(

N−Mf

N−M ′
f

)

)
(10)

ŜEf =
Mf

N
log(

Mf + α

M ′
f+α

)+
N−Mf

N
log(

N−Mf + α

N−M ′
f+α

) (11)

Intuitively, SEf measures (in theory) the amount of information captured by the entire sequence
of functions f = (f1, · · · , fK), while SEfk measures (in theory) the amount of valid information
captured by each function fk in the sequence. By ‘valid information’, we mean the information
related to the newly discovered non-randomness by fk that is not discovered by f1, · · · , fk−1.

We define the spiking region of each fk in f = (f1, · · · , fK) by removing the spiking regions of
functions ahead of fk in the sequence. That is, Sfk = {X ∈ S|fk(X) > 0 and fi(X) ≤ 0 for i =
1, · · · , k−1}. In fact, if Sind

fk
denotes the spiking region of fk when it is considered as an independent

function, then we have that Sfk = Sind
fk

\(∪k−1
i=1 S

ind
fi

). We denote Sind
fk

as the independent spiking
region of each function fk. Then, we define

Sf = {X ∈ S|fk(X) > 0 for any function fk ∈ {f1, · · · , fK}}
to be the spiking region of f . That is, Sf consists of vectors that make at least one function in
f = (f1, · · · , fK) to spike. We have that Sfk ∩ Sfi = ∅ if k ̸= i, and Sf = ∪K

k=1Sfk = ∪K
k=1S

ind
fk

.
A straightforward demonstration is shown in Figure 1.

By Hypothesis 1, each Sind
fk

is measurable since |fk| is finite. This means that Sfk =

Sind
fk

\(∪k−1
i=1 S

ind
fi

) is measurable as well. Hence, Sf = ∪K
k=1Sfk is also measurable. Following

the same proof method as Theorem 1, we have:
Theorem 2. Suppose X is a finite-dimensional real or complex vector space, and suppose S ⊂ X is
a bounded sub-region in X. Suppose there are the data probability distribution P and the uniform
distribution P′ defined on S. Also, suppose the probability density function g(X) of P is bounded by
a finite number Ω (i.e., P is regular).

6
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Figure 1: The spiking regions of functions in f = (f1, f2, f3) defined on the xy-plane. Sf1 is the blue
circle in the front. Sf2 is the red circle but removing overlapping with Sf1 . Then, Sf3 is the yellow
circle after removing Sf1 and Sf2 .

Suppose f = (f1, · · · , fK) is a sequence of functions with each function fk : S → R possessing
a finite size |fk|. Then, with respect to P and P′, the theoretical spiking efficiencies of both
f and each fk are bounded. That is, we have 0 ≤ SEf ≤ Ω · |S| · log (Ω · |S|), as well as
0 ≤ SEfk ≤ Ω · |S| · log (Ω · |S|) for k = 1, · · · ,K. Here, |S| is the Lebesgue measure of data
space S.

We note that independent with the order of functions in f = (f1, · · · , fK), once the set of functions
{f1, · · · , fK} is fixed, the theoretical spiking efficiency SEf and the spiking region Sf will be
determined. In fact, suppose Sc

f = S\Sf denotes the complement of Sf in S, g′(X) ≡ 1
|S| denotes

the probability density function of P′, and |Sf | denotes the Lebesgue measure of Sf . Then, it can be
derived from the same proof method of Theorem 1 that:

SEf =

(∫
Sf

g(X) dX

)
·log

(∫
Sf
g(X) dX∫

Sf
g′(X) dX

)
+

(∫
Sc

f

g(X) dX

)
·log

( ∫
Sc

f
g(X) dX∫

Sc
f
g′(X) dX

)
(12)

=

(∫
Sf

g(X) dX

)
·log

(
|S|
∫
Sf
g(X) dX

|Sf |

)
+

(
1−
∫
Sf

g(X) dX

)
·log

(
|S|−|S|

∫
Sf
g(X) dX

|S|−|Sf |

)
(13)

Also, replacing f by fk in these formulas, we can get the formulas of SEfk for each fk in f =
(f1, · · · , fK).

The above formulas actually imply that: If f = (f1, · · · , fK) and f̃ = (f̃1, · · · , f̃K̃) are two
sequences of finite-sized functions defined on S, we will then have SEf = SEf̃ as long as their
spiking regions Sf and Sf̃ are coincide. But the inverse is not true: If two sequences of finite-sized
functions have the same theoretical spiking efficiency, their spiking regions may still be distinct. The
following definition provides a more throughout description:
Definition 4. Suppose X is a finite-dimensional real or complex vector space, and suppose S ⊂ X
is a bounded sub-region in X. Suppose there are the data probability distribution P and the uniform
distribution P′ defined on S. Also, suppose the probability density function g(X) of P is bounded by
a finite number Ω (i.e., P is regular).

Suppose f = (f1, · · · , fK) and f̃ = (f̃1, · · · , f̃K̃) are two sequences of finite-sized functions defined
on S. We say that f and f̃ are spiking equivalent with respect to P and P′, denoted as f ∼ f̃ , if
SEf = SEf̃ .

Suppose f = (f1, · · · , fK) is a sequence of finite-sized functions defined on S. We define the spiking
equivalence class of f , denoted as Ef , to be the set consisting of all the sequences of finite-sized
functions that are spiking equivalent to f . That is,

Ef = {f̃ = (f̃1, · · · , f̃K̃)
∣∣∣|f̃k| <∞ for k = 1, · · · , K̃; and SEf = SEf̃},

where K and K̃ are not necessarily equal, and different values of K̃ are allowed in Ef .

Finally, if there exists a sequence of finite-sized functions f∗ = (f∗1 , · · · , f∗K∗), such that for any
sequence of finite-sized functions f̃ = (f̃1, · · · , f̃K̃), the inequality SEf∗ ≥ SEf̃ always holds true,
then we call f∗ the most efficient encoder of P based on P′, denoted as f∗P,P′ . We call Ef∗

P,P′ , the
spiking equivalence class of f∗P,P′ , the most efficient class of P based on P′, denoted as E∗

P,P′ .

7
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We note that there is no guarantee on the existence of a most efficient encoder. A regular data
distribution that does not possess a most efficient encoder (i.e., an empty most efficient class) is
discussed at the end of Appendix B. Also, we believe that:

1: Any existing spiking equivalence class contains infinite elements (sequences of finite-sized
functions), which is formally described by Hypothesis 3 in Appendix A.

2: Upon the existence of the most efficient class, every most efficient encoder shall have exactly the
same spiking region. We formally describe this by Hypothesis 4 in Appendix A.

3.4 OPTIMAL ENCODER OF THE DATA DISTRIBUTION

Based on the previous discussion, we can now consider the ability of multiple functions.

Again, suppose we have the regular data distribution P and uniform distribution P′ defined on
the data space S. Suppose f = (f1, · · · , fK) is a sequence of functions defined on S, where each
function fk : S → R has a finite size |fk|. Given N data samples {Xn}Nn=1 generated by P and N
random samples {X ′

n}Nn=1 generated by P′, suppose there are Mk data samples and M ′
k random

samples respectively that make fk spike, but do not make f1, · · · , fk−1 spike. Using Mk, M ′
k and

N , we can obtain the theoretical spiking efficiency SEfk and observed spiking efficiency ŜEfk for
each function fk in f by formula 8.

Then, we can obtain the theoretical ability Afk = SEfk · Cfk and the observed ability Âfk =

ŜEfk · Cfk for each fk in f , where Cfk = |fk|−1 is the conciseness of fk:

Afk = lim
N→∞

(
Mk

N
log(

Mk

M ′
k

) +
N−Mk

N
log(

N−Mk

N−M ′
k

)

)
· 1

|fk|
;

Âfk =

(
Mk

N
log(

Mk+α

M ′
k+α

) +
N−Mk

N
log(

N−Mk+α

N−M ′
k+α

)

)
· 1

|fk|
. (14)

In our opinion, the ability (theoretical or observed) indicates the ‘effort’ or ‘work’ function f made to
encode the captured information into its parameters. As a result, the ability, or ‘work’, of the entire
sequence of functions f = (f1, · · · , fK) should be the sum of that from each function.

That says, with respect to P and P′, we define the theoretical ability of the sequence of functions
f = (f1, · · · , fK) to be Af =

∑K
k=1Afk . We define the observed ability of f = (f1, · · · , fK) to

be Âf =
∑K

k=1 Âfk :

Af =

K∑
k=1

[
lim

N→∞

(
Mk

N
log(

Mk

M ′
k

) +
N−Mk

N
log(

N−Mk

N−M ′
k

)

)
· 1

|fk|

]
;

Âf =

K∑
k=1

[(
Mk

N
log(

Mk+α

M ′
k+α

) +
N−Mk

N
log(

N−Mk+α

N−M ′
k+α

)

)
· 1

|fk|

]
. (15)

According to Theorem 2, for each finite-sized function fk in f , its theoretical spiking efficiency
SEfk is bounded. As discussed in Section 3.1, we require |f | ≥ 1 for any function. Hence, we
have the conciseness Cfk = |fk|−1 ≤ 1 for each fk in f . This means that the theoretical ability
Afk = SEfk ·Cfk of each function fk is also bounded. Hence, the theoretical abilityAf =

∑K
k=1Afk

of f = (f1, · · · , fK) is bounded.

Now, we can present a major hypothesis in our theory, which defines the optimal regularities with
respect to a data probability distribution. This hypothesis is also the key to achieve an explainable
self-supervised learning system.
Hypothesis 2. Suppose X is a finite-dimensional real or complex vector space, and suppose S ⊂ X
is a bounded sub-region in X. Suppose there are the data probability distribution P and the uniform
distribution P′ defined on S. Also, suppose the probability density function g(X) of P is bounded by
a finite number Ω (i.e., P is regular).

Given a sequence of finite-sized functions f = (f1, · · · , fK) defined on S, suppose that with respect
to P and P′, Ef is the spiking equivalence class of f , and Γ = SEf is the theoretical spiking efficiency

8
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of f . Then, there exists at least one sequence of finite-sized functions f† = (f†1 , · · · , f
†
K†) ∈ Ef , such

that for any other f̃ = (f̃1, · · · , f̃K̃) ∈ Ef , the inequality Af† ≥ Af̃ always holds true. We call such
an f† = (f†1 , · · · , f

†
K†) a Γ-level optimal encoder of P based on P′, denoted as f†∼Γ

P,P′ .

Finally, suppose the most efficient class E∗
P,P′ with respect to P and P′ is not empty. Then, there

exists at least one most efficient encoder f† = (f†1 , · · · , f
†
K†) ∈ E∗

P,P′ , such that for any other most
efficient encoder f∗ = (f∗1 , · · · , f∗K∗) ∈ E∗

P,P′ , the inequality Af† ≥ Af∗ always holds true. We call
such an f† = (f†1 , · · · , f

†
K†) an optimal encoder of P based on P′, denoted as f†P,P′ .

Based on the above hypothesis, suppose the data distribution P is also uniformly distributed within
specific regions of S. Then, given the existence of an optimal encoder f†P,P′ = (f†1 , · · · , f

†
K†) with

respect to P and P′, we claim that intuitively, the independent spiking regions {Sind
f†
1

, · · · ,Sind
f†
K†

}

of the functions {f†1 , · · · , f
†
K†} in f†P,P′ divide the data space S in the most appropriate way with

respect to the data distribution P.

We provide several graphs in Figure 2 for a better understanding on this statement. Note that the
example distribution in each graph of Figure 2 has the data space S ⊂ R2. But we claim that the
same statement can be applied to data probability distributions in higher dimensional vector spaces.

Figure 2: Optimal encoders to several simple data distributions.

In the left graph of Figure 2, we have the data distribution P itself to be a uniform distribution within
two disjoint circles:

√
(x− 2)2 + (y − 2)2 = 1 and

√
(x− 5)2 + (y − 2)2 = 1. The data space S

is the rectangle {x, y | 0 ≤ x ≤ 7, 0 ≤ y ≤ 4} ⊂ R2, and the random distribution P′ is uniform
within S. In Appendix E, our evaluation will show that an optimal encoder with respect to P and P′

in this example will likely consist of two binary functions corresponding to the two circles:

f†1 (x, y) =

{
1, if

√
(x− 2)2 + (y − 2)2 ≤ 1;

0, otherwise.
, f†2 (x, y) =

{
1, if

√
(x− 5)2 + (y − 2)2 ≤ 1;

0, otherwise.

However, we acknowledge that our evaluation is a numerical enumeration rather than a strict mathe-
matical proof.

The middle graph of Figure 2 shows a data distribution P that is uniform within the area covered by
two overlapped diamonds (a diamond is a 45◦ rotation from a square). The vertex of each diamond
coincides with the center of the other diamond. The centers of the two diamonds are x = 4, y = 3
and x = 6, y = 3. Again, the random distribution is uniform within S = {x, y | 0 ≤ x ≤ 10, 0 ≤
y ≤ 6}. We will show in Appendix E that an optimal encoder in this example will likely provide the
independent spiking regions exactly matching with these two diamonds.

Finally, in the right graph of Figure 2, there are 15 squares within S = {x, y | 0 ≤ x ≤ 14, 0 ≤ y ≤
8}. The data distribution P is uniform within these 15 squares, while the random distribution P′ is
uniform in S. Similarly, we show in Appendix E that an optimal encoder with respect to P and P′

will likely consist of 15 functions, providing 15 spiking regions fitting each of these squares. From all
the three examples, we can see that K†, the number of functions in an optimal encoder, is naturally
determined by the data distribution P. More example distributions and discussions can be found in
Appendix E.

This property of an optimal encoder (dividing the data space in the most appropriate way regarding
the data probability distribution) is actually self-supervised explainability: Without annotations

9
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or labeling, one can get an explainable sequence of spiking functions f = (f1, · · · , fK) regarding
the data distribution P simply by maximizing the ability of f . In this way, f will approach to an
optimal encoder of P and divide the data space in the most appropriate way, or an ‘explainable way’,
regarding P. That is, one can get explainable spiking functions in a self-supervised manner, which
can be an alternative to end-to-end learning.

In practice, the data distribution P may not be uniformly distributed within its specific regions. In
this case, we admit that an optimal encoder obtained according to our theory will not be perfect. One
should refer to the last example in Appendix E for more details. But in fact, this shows a defect
of our theory: The data probability density variations within a function’s spiking region cannot be
appropriately represented. In other words, beyond spiking or not spiking, we need to further consider
the spiking magnitude, or spiking strength, of a function on an input sample. A refined theory taking
spiking strength into consideration is briefly described in Appendix D.

As we mentioned, there is no actual implementation or realization of our theory. However, we indeed
design an implementation pipeline for spiking functions to converge to an optimal encoder in practice.
Our designed pipeline is based on multiple bi-output functions, which is described in Appendix C.

Once again, given the sequence of functions f = (f1, · · · , fK), its theoretical spiking efficiency SEf

measures the total amount of information captured from the data distribution by all the functions
in f . The theoretical ability Afk of each function fk in f measures the valid effort made by fk on
information encoding: The amount of valid information SEfk (i.e., the amount of information related
to the non-randomness that is discovered by fk but not by f1, · · · , fk−1) is encoded into |fk|, whereas
the effort made in this encoding process is measured by Afk = SEfk/|fk|. Then, the theoretical
ability Af =

∑K
k=1Afk measures the total valid effort made by all the functions in f = (f1, · · · , fK)

on information encoding.

Therefore, given the data distribution P and the uniform distribution P′, if an optimal encoder f†P,P′

does exist, it is the sequence of functions that captures the largest amount of information from P,
and then encodes (or compresses) the information with the greatest effort. That says, the optimal
regularities capture the largest amount of information and represent it in the most concise way, or
equivalently, encode it by the smallest amount of information. Finally, according to these discussions,
we can see that a learning system can obtain explainable and meaningful representations of a data
probability distribution in a self-supervised manner, simply by encoding large amount of information
into small amount of information.

4 CONCLUSION

In this paper, we establish a theory on learning regularities from data using spiking functions.
Throughout this paper, the key to our theory is comparing the spiking behavior of the function on
data samples and random samples. We say that a function f discovers non-randomness from the
data probability distribution, if the spiking frequency of f on data samples differs significantly from
that of f on random samples. Then, taking the size of function f into consideration, we claim that
f learns regularities from the data distribution if f discovers non-randomness using a small size
(or equivalently, a concise format). Finally, by referring to information theory, we propose that
regularities can be regarded as a small amount of information encoding a large amount of information.
Non-randomness is essentially valuable information in the data distribution.

After that, we apply multiple spiking functions to the same data distribution in order to learn the
optimal regularities. We demonstrate that the optimal regularities shall capture the largest amount of
information from the data distribution, and encode it into the smallest amount of information. We
call the corresponding sequence of functions an optimal encoder to the data distribution. Numerical
examples show that an explainable self-supervised learning system can be achieved by making the
sequence of functions converge to an optimal encoder. That is, essentially, an explainable self-
supervised learning system can be achieved by encoding the largest amount of information possible
into the smallest amount of information possible.

In the future, realizing our theory by valid optimization algorithms and appropriate deep neural
networks is the priority of our research.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Abien Fred Agarap. Deep learning using rectified linear units (relu). arXiv preprint arXiv:1803.08375,
2018.

Sensong An, Clayton Fowler, Bowen Zheng, Mikhail Y Shalaginov, Hong Tang, Hang Li, Li Zhou,
Jun Ding, Anuradha Murthy Agarwal, Clara Rivero-Baleine, et al. A deep learning approach for
objective-driven all-dielectric metasurface design. Acs Photonics, 6(12):3196–3207, 2019.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Robert G Bartle. The elements of integration and Lebesgue measure. John Wiley & Sons, 2014.

Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. A neural probabilistic language model.
Advances in neural information processing systems, 13, 2000.

Emery N Brown, Robert E Kass, and Partha P Mitra. Multiple neural spike train data analysis:
state-of-the-art and future challenges. Nature neuroscience, 7(5):456–461, 2004.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-end object detection with transformers. In European conference on computer
vision, pp. 213–229. Springer, 2020.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Krzysztof Ciesielski. How good is lebesgue measure? The Mathematical Intelligencer, 11:54–58,
1989.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. Electra: Pre-training text
encoders as discriminators rather than generators. arXiv preprint arXiv:2003.10555, 2020.

David Daniel Cox and Thomas Dean. Neural networks and neuroscience-inspired computer vision.
Current Biology, 24(18):R921–R929, 2014.

Ernest Davis and Gary Marcus. Commonsense reasoning and commonsense knowledge in artificial
intelligence. Communications of the ACM, 58(9):92–103, 2015.

Dominique Debanne and Yanis Inglebert. Spike timing-dependent plasticity and memory. Current
Opinion in Neurobiology, 80:102707, 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

J. Devlin, M. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional transformers
for language understanding. arXiv preprint, arXiv:1810.04805, 2018.

Tomasz Downarowicz and Eli Glasner. Isomorphic extensions and applications. Topological Methods
in Nonlinear Analysis, 2016.

Paul M Fitts. The information capacity of the human motor system in controlling the amplitude of
movement. Journal of experimental psychology, 47(6):381, 1954.

Zoubin Ghahramani. Unsupervised learning. In Summer school on machine learning, pp. 72–112.
Springer, 2003.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

John Clifford Gower. Properties of euclidean and non-euclidean distance matrices. Linear algebra
and its applications, 67:81–97, 1985.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber. Connectionist temporal
classification: labelling unsegmented sequence data with recurrent neural networks. In Proceedings
of the 23rd international conference on Machine learning, pp. 369–376, 2006.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with deep recurrent
neural networks. In 2013 IEEE international conference on acoustics, speech and signal processing,
pp. 6645–6649. Ieee, 2013.

Robert Gütig and Haim Sompolinsky. The tempotron: a neuron that learns spike timing–based
decisions. Nature neuroscience, 9(3):420–428, 2006.

Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation principle
for unnormalized statistical models. In Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, pp. 297–304, 2010.

Paul R Halmos. Measure theory, volume 18. Springer, 2013.

Douglas M Hawkins. The problem of overfitting. Journal of chemical information and computer
sciences, 44(1):1–12, 2004.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

John R Hershey and Peder A Olsen. Approximating the kullback leibler divergence between
gaussian mixture models. In 2007 IEEE International Conference on Acoustics, Speech and Signal
Processing-ICASSP’07, volume 4, pp. IV–317. IEEE, 2007.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Edwin T Jaynes et al. Gibbs vs boltzmann entropies. American Journal of Physics, 33(5):391–398,
1965.

Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforcement learning: A
survey. Journal of Artificial Intelligence Research, 4:237–285, 1996.

Enkelejda Kasneci, Kathrin Seßler, Stefan Küchemann, Maria Bannert, Daryna Dementieva, Frank
Fischer, Urs Gasser, Georg Groh, Stephan Günnemann, Eyke Hüllermeier, et al. Chatgpt for good?
on opportunities and challenges of large language models for education. Learning and individual
differences, 103:102274, 2023.

Alexander B Kharazishvili. Measurability properties of vitali sets. The American Mathematical
Monthly, 118(8):693–703, 2011.

Nikolaus Kriegeskorte. Deep neural networks: a new framework for modeling biological vision and
brain information processing. Annual review of vision science, 1:417–446, 2015.

Michel L Lapidus and Michael MH Pang. Eigenfunctions of the koch snowflake domain. Communi-
cations in mathematical physics, 172(2):359–376, 1995.

Mian Mian Lau and King Hann Lim. Review of adaptive activation function in deep neural network.
In 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), pp. 686–690.
IEEE, 2018.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Ming Li, Paul Vitányi, et al. An introduction to Kolmogorov complexity and its applications, volume 3.
Springer, 2008.

Zewen Li, Fan Liu, Wenjie Yang, Shouheng Peng, and Jun Zhou. A survey of convolutional neural
networks: analysis, applications, and prospects. IEEE transactions on neural networks and
learning systems, 33(12):6999–7019, 2021.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Wolfgang Maass, Thomas Natschläger, and Henry Markram. Real-time computing without stable
states: A new framework for neural computation based on perturbations. Neural computation, 14
(11):2531–2560, 2002.

Benoit B Mandelbrot. Fractal geometry: what is it, and what does it do? Proceedings of the Royal
Society of London. A. Mathematical and Physical Sciences, 423(1864):3–16, 1989.

Foteini Markatopoulou, Vasileios Mezaris, and Ioannis Patras. Implicit and explicit concept relations
in deep neural networks for multi-label video/image annotation. IEEE transactions on circuits and
systems for video technology, 29(6):1631–1644, 2018.

Patrice Meunier and Emmanuel Villermaux. Van hove singularities in probability density functions
of scalars. Comptes Rendus Mécanique, 335(3):162–167, 2007.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words
and phrases and their compositionality. In Advances in neural information processing systems, pp.
3111–3119, 2013.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814,
2010.

Gail S Nelson. A user-friendly introduction to Lebesgue measure and integration, volume 78.
American Mathematical Soc., 2015.

Weizhen Qi, Yu Yan, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang, and
Ming Zhou. Prophetnet: Predicting future n-gram for sequence-to-sequence pre-training. arXiv
preprint arXiv:2001.04063, 2020.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. 2018.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Partha Pratim Ray. Chatgpt: A comprehensive review on background, applications, key challenges,
bias, ethics, limitations and future scope. Internet of Things and Cyber-Physical Systems, 2023.

Rachid Riad, Olivier Teboul, David Grangier, and Neil Zeghidour. Learning strides in convolutional
neural networks. arXiv preprint arXiv:2202.01653, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Medical image computing and computer-assisted intervention–MICCAI
2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III
18, pp. 234–241. Springer, 2015.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by back-
propagating errors. Nature, 323:533–536, 1986.

Julian Salazar, Davis Liang, Toan Q Nguyen, and Katrin Kirchhoff. Masked language model scoring.
arXiv preprint arXiv:1910.14659, 2019.

Abhronil Sengupta, Yuting Ye, Robert Wang, Chiao Liu, and Kaushik Roy. Going deeper in spiking
neural networks: Vgg and residual architectures. Frontiers in neuroscience, 13:95, 2019.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Claude Elwood Shannon. A mathematical theory of communication. The Bell system technical
journal, 27(3):379–423, 1948.

Alex Sherstinsky. Fundamentals of recurrent neural network (rnn) and long short-term memory (lstm)
network. Physica D: Nonlinear Phenomena, 404:132306, 2020.

Jonathon Shlens. Notes on kullback-leibler divergence and likelihood. arXiv preprint
arXiv:1404.2000, 2014.

David Slepian and Jack Wolf. Noiseless coding of correlated information sources. IEEE Transactions
on information Theory, 19(4):471–480, 1973.

Elias M Stein and Rami Shakarchi. Complex analysis, volume 2. Princeton University Press, 2010.

Wilson A Sutherland. Introduction to metric and topological spaces. Oxford University Press, 2009.

John Sweller. Cognitive bases of human creativity. Educational Psychology Review, 21:11–19, 2009.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, L. Kaiser, and I. Polosukhin.
Attention is all you need. 31st Conference on Neural Information Processing Systems (NIPS),
2017.

Andrew Viterbi. Error bounds for convolutional codes and an asymptotically optimum decoding
algorithm. IEEE transactions on Information Theory, 13(2):260–269, 1967.

Chris S. Wallace and David L. Dowe. Minimum message length and kolmogorov complexity. The
Computer Journal, 42(4):270–283, 1999.

Tianyu Wu, Shizhu He, Jingping Liu, Siqi Sun, Kang Liu, Qing-Long Han, and Yang Tang. A brief
overview of chatgpt: The history, status quo and potential future development. IEEE/CAA Journal
of Automatica Sinica, 10(5):1122–1136, 2023.

Blaise Agüera y Arcas and Adrienne L Fairhall. What causes a neuron to spike? Neural Computation,
15(8):1789–1807, 2003.

Xue Ying. An overview of overfitting and its solutions. In Journal of physics: Conference series,
volume 1168, pp. 022022. IOP Publishing, 2019.

Jie Zhou and Wei Xu. End-to-end learning of semantic role labeling using recurrent neural networks.
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and
the 7th International Joint Conference on Natural Language Processing (ACL-IJCNLP 2015), pp.
1127–1137, 2015.

A SUPPLEMENTAL DISCUSSIONS AND PROOF OF THEORIES

In this appendix, we will provide detailed definitions, discussions, hypotheses, and proofs related
to Section 4. First, here is a more detailed introduction on metric, topology and Lebesgue measure
regarding a vector space:

A metric d on a vector space X is a function d : X×X → R that satisfies the following properties:

1. Non-negativity: d(X,Y ) ≥ 0 for any two vectors X,Y ∈ X. Also, d(X,Y ) = 0 if and only if
X = Y .

2. Symmetry: d(X,Y ) = d(Y,X) for any X,Y ∈ X.

3. Triangle Inequality: d(X,Z) ≤ d(X,Y ) + d(Y,Z) for any X,Y, Z ∈ X.

Then, the Euclidean distance on X = Rm is defined to be d(X,Y ) =
√∑m

j=1(xj − yj)2, where

X = (x1, · · · , xm) and Y = (y1, · · · , ym) are two vectors in Rm. The Euclidean distance on

X = Cm is defined to be d(Z,W ) =
√∑m

j=1 |zj − wj |2 for two vectors Z = (z1, · · · , zm) and

W = (w1, · · · , wm) in Cm. Here, |zj − wj | is the modulus (or absolute value) (Stein & Shakarchi,
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2010) of the complex number zj − wj . It is easy to prove that the Euclidean distance is a metric on
X = Rm and X = Cm.

With the defined metric d on the vector space, we can define an open ball B(X, r) around the vector
X ∈ X as B(X, r) = {Y ∈ X | d(X,Y ) < r}. Then, a subset E ⊂ X is said to be open, if for
any X ∈ E, there exists an r > 0 such that B(X, r) ⊂ E. We can also construct the corresponding
topology T on S by collecting all open sets in X (Sutherland, 2009). Then, given the domain S ⊂ X,
a function f : S → R is said to be continuous around the vector X ∈ S, if for any ϵ > 0, there
exists a δ > 0 such that d(X,Y ) < δ implies |f(X)− f(Y )| < ϵ. Finally, f is said to be continuous
on S if it is continuous around every vector in S.

Suppose X = Rm. Then, we define the rectangular cuboid C on Rm to be a product C =
I1 × · · · × Im of open intervals, with each open interval Ij = (aj , bj) for j = 1, · · · ,m. Let
vol(C) =

∏m
j=1 |bj − aj | be the volume of C. Then, the Lebesgue outer measure λ∗(E) for any

subset E ⊂ Rm is (where RC is the simplification of rectangular cuboids)

λ∗(E) = inf

{ ∞∑
k=1

vol(Ck) : (Ck)k∈N is a countable sequence of RC with E ⊂
∞⋃
k=1

Ck

}
where inf is the infimum (max lower bound) of the set of values.

Then, E is said to be Lebesgue-measurable (or simply measurable), if for any subset A ⊂ Rm,
we have λ∗(A) = λ∗(A ∩ E) + λ∗(A ∩ Ec), where Ec = Rm\E is the complement of E in Rm.
For any measurable subset E ⊂ Rm, its Lebesgue measure, denoted as λ(E) or |E| in this paper, is
defined to be its Lebesgue outer measure λ∗(E). Finally, when X = Cm, the Lebesgue measure
on X is defined with respect to the real space R2m due to the isomorphism between Cm and R2m

(Downarowicz & Glasner, 2016).

Then, here is a more detailed discussion on non-measurable sets:

Non-measurable sets indeed exist within both real and complex vector spaces when considering the
Lebesgue measure. A famous example is the Vitali set (Kharazishvili, 2011) defined on the closed
interval [0, 1]: Given two real numbers x, y ∈ [0, 1], we say that x is equivalent to y (denoted as
x ∼ y) if x − y is a rational number. Then, for any x ∈ [0, 1], its equivalence class is defined as
Cx = {y ∈ [0, 1]|x ∼ y}. In this way, the closed interval [0, 1] can be partitioned into disjoint
equivalence classes. Finally, from each equivalence class, we choose exactly one representative. This
collection of representatives forms a Vitali set V on [0, 1]. It can be proved that a Vitali set is not
measurable under Lebesgue measure (Halmos, 2013). Intuitively, this means that there is no way to
evaluate the volume of a Vitali set.

However, imagine that we have a function f : [0, 1] → R that has its spiking region Sf to be a Vitali
set. Intuitively, this will be extremely difficult: For any real number x ∈ [0, 1], there is exactly one
number v in a Vitali set V such that x− v is rational. By definition, v is the representative of x in
the equivalence class. This means that we can select at will uncountable many irrational numbers in
[0, 1] and obtain their corresponding representatives in V , which implies the extreme ‘chaotic’ of V .
One can imagine how difficult it is for a function f to map every number in a Vitali set to a positive
value, while mapping all the other real numbers in [0, 1] to negative values. In fact, we believe that
it is impossible for f to achieve this with a finite size |f |. Taking one step further, we believe that
the same discussion can be applied to any non-measurable set on a finite-dimensional vector space,
which leads to Hypothesis 1 (presented both here and in Section 3.2):
Hypothesis 1. Suppose X is a finite-dimensional real or complex vector space, and suppose S ⊂ X
is a bounded sub-region in X. Suppose f : S → R is a function defined on S with a finite size (i.e.,
there are finite adjustable parameters in f ). Then, the spiking region Sf = {X ∈ S|f(X) > 0} is
always Lebesgue-measurable.

After that, we provide the detailed proofs for the Lemmas and Theorems in the main paper.
Lemma 1. Suppose X is a finite-dimensional real or complex vector space, and suppose S ⊂ X is
a bounded sub-region in X. Suppose f : S → R is a continuous function defined on S. Then, the
spiking region Sf = {X ∈ S|f(X) > 0} is always Lebesgue-measurable.
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Proof. Suppose f(X) ≤ 0 for any X ∈ S. Then, Sf = ∅ (i.e., the empty set), which is measurable.
Otherwise, suppose Sf ̸= ∅. For any X ∈ Sf , we have f(X) = rX > 0. Since f is continuous on
S, there exists a δ > 0 such that d(X,Y ) < δ implies |f(X)− f(Y )| < rX/2. This also means that
|f(Y )| > rX/2 > 0 when d(X,Y ) < δ. Hence, the open ball B(X, δ) = {Y ∈ X | d(X,Y ) < δ}
is entirely contained within Sf . This means that Sf is open, which is Lebesgue-measurable (Nelson,
2015).

Theorem 1. Suppose X is a finite-dimensional real or complex vector space, and suppose S ⊂ X
is a bounded sub-region in X. Suppose we have the data probability distribution P defined on S,
with the probability density function to be g(X). Furthermore, suppose there exists an upper bound
Ω <∞, such that g(X) ≤ Ω for any X ∈ S. Finally, suppose we have the random distribution P′

to be the uniform distribution defined on S.

Then, for any function f : S → R with a finite size |f |, its theoretical spiking efficiency SEf obtained
with respect to P and P′ is bounded by 0 ≤ SEf ≤ Ω · |S| · log (Ω · |S|), where |S| is the Lebesgue
measure of data space S.

Proof. Suppose Sf is the spiking region of f . Since |f | is finite, we know that Sf is measurable
according to our hypothesis. And certainly, we require the data space S to be measurable in X with
|S| > 0. As we mentioned, S is bounded, indicating that |S| < ∞. Then, suppose f spikes on M
out of N data samples {Xn}Nn=1 generated by P, as well as M ′ out of N random samples {X ′

n}Nn=1
generated by P′. Also, suppose the probability density function of P′ is g′(X). By definition, we
have

∫
S
g(X) dX =

∫
S
g′(X) dX = 1.

Since P′ is the uniform distribution on S, we have that g′(X) = 1
|S| for any X ∈ S. It

is easy to see that Ω ≥ 1
|S| , otherwise we will get

∫
S
g(X) dX < 1. This implies that

ψ = (
∫
Ŝ
Ω dX)/(

∫
Ŝ
g′(X) dX) = (

∫
Ŝ
Ω dX)/(

∫
Ŝ

1
|S| dX) ≥ 1 for any region Ŝ ⊂ S with |Ŝ| > 0,

which also means that log(ψ) ≥ 0.

Now, suppose 0 < |Sf | < |S|, where |Sf | is the Lebesgue measure of the spiking region Sf . This
means that 0 < |Sc

f | < |S| as well, where Sc
f = S\Sf is the complement of Sf in S. Then, we have

that:

SEf = lim
N→∞

(
M

N
log(

M

M ′ ) +
N−M
N

log(
N−M
N−M ′ )

)
(16)

= lim
N→∞

(
M

N
log(

M/N

M ′/N
) +

N−M
N

log(
(N−M)/N

(N−M ′)/N
)

)
=

(∫
Sf

g(X) dX

)
·log

(∫
Sf
g(X) dX∫

Sf
g′(X) dX

)
+

(∫
Sc

f

g(X) dX

)
·log

( ∫
Sc

f
g(X) dX∫

Sc
f
g′(X) dX

)
(17)

≤

(∫
Sf

g(X) dX

)
·log

( ∫
Sf

Ω dX∫
Sf
g′(X) dX

)
+

(∫
Sc

f

g(X) dX

)
·log

( ∫
Sc

f
Ω dX∫

Sc
f
g′(X) dX

)

≤

(∫
Sf

Ω dX

)
· log

( ∫
Sf

Ω dX∫
Sf
g′(X) dX

)
+

(∫
Sc

f

Ω dX

)
· log

( ∫
Sc

f
Ω dX∫

Sc
f
g′(X) dX

)
= Ω · |Sf | · log (Ω · |S|) + Ω · (|S| − |Sf |) · log (Ω · |S|)
= Ω · |S| · log (Ω · |S|) (18)

Suppose |Sf | = 0. Then, for each vector X ∈ Sf , we construct an open ball B(X, d0) = {Y ∈
S | d(X,Y ) < d0}. Combining all the open balls for each X ∈ Sf , we can get the open set
S1 =

⋃
X∈Sf

B(X, d0). Accordingly, if we reduce the radius from d0 to d0/2, we can get S2 =⋃
X∈Sf

B(X, d0/2). In general, we can get Si =
⋃

X∈Sf
B(X, d0/2

i−1) for i ∈ N, with each Si to
be an open set (and hence measurable).
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It is easy to see that Si+1 ⊂ Si, Sf =
⋂∞

i=1 Si, and Sc
f = S\(

⋂∞
i=1 Si) =

⋃∞
i=1(S\Si) =

⋃∞
i=1 S

c
i .

Also, by a routine derivation, we can get that there exists an i0 ∈ N, such that 0 < |Si| < |S| and
0 < |Sc

i | < |S| will be true when i ≥ i0. Then, since integral over a zero-measure region is not
directly defined, the definition of SEf when |Sf | = 0 should be the limit of the integral over {Si}i∈N
as i approaches ∞. That is,

SEf = lim
i→∞

[(∫
Si

g(X) dX

)
·log

(∫
Si
g(X) dX∫

Si
g′(X) dX

)
+

(∫
Sc

i

g(X) dX

)
·log

( ∫
Sc

i
g(X) dX∫

Sc
i
g′(X) dX

)]
(19)

≤ lim
i→∞

[Ω · |S| · log (Ω · |S|)] = Ω · |S| · log (Ω · |S|)

In fact, since the probability density function g(X) ≤ Ω for anyX ∈ S, we can also prove by a routine
derivation based on formula 19 that SEf = 0 when |Sf | = 0. Anyway, SEf ≤ Ω · |S| · log (Ω · |S|)
when |Sf | = 0.

Suppose |Sf | = |S| (in other words, we have |Sc
f | = 0). Then, similarly, we can construct another

sequence of open sets {Si}i∈N such that Si+1 ⊂ Si and Sc
f =

⋂∞
i=1 Si. Following exactly the same

proving process, we can have that SEf ≤ Ω · |S| · log (Ω · |S|) in this case.

Finally, as we mentioned in Section 3.1, DKL(P̂ ||P̂ ′) ≥ 0 for any data samples {Xn}Nn=1 and
random samples {X ′

n}Nn=1. Then, we always have SEf = limN→∞DKL(P̂ ||P̂ ′) ≥ 0. Hence, the
proof is completed.

But before concluding this proof, we want to further discuss when P is not a ‘regular’ probability
distribution. That is, there does not exist an upper bound Ω for the probability density function g(X)
of P. The most simple case is that, there exists one singularity XP ∈ S, such that g(XP) = ∞. For
any sub-region Ŝ ⊂ S, we have

∫
Ŝ
g(X) dX = 1 if XP ∈ Ŝ. Otherwise

∫
Ŝ
g(X) dX = 0. There

can certainly be multiple singularities associated with P. However, without loss of generality, we
assume a unique singularity in P.

Suppose 0 < |Sf | < |S| given a function f : S → R, which also implies that 0 < |Sc
f | < |S|.

We can see that XP must belong to either Sf or Sc
f . We assume XP ∈ Sf . Then, following the

same derivation involved with formulas 17 and 18, we can have that SEf = log( |S|
|Sf | ). Accordingly,

by constructing a sequence of open sets {Si}i∈N converging to Sf , we can prove that when |Sf |
converges to zero (i.e., Sf converges to XP), SEf = log( |S|

|Sf | ) will converge to ∞. By assuming

XP ∈ Sc
f , we will have SEf = log( |S|

|Sc
f |
) = log( |S|

|S|−|Sf | ), and hence we can get the same result

when |Sc
f | converges to zero (i.e., Sc

f converges to XP).

Intuitively, this means that if a zero-measure spiking region Sf contains the singularity of a data
distribution P, the corresponding function f will then capture infinite amount of information from P
by comparing P with a regular uniform distribution P′.

At last, it seems that requiring the size |f | of f to be finite is redundant in our proof, which is in fact
not true: Without |f | <∞, we cannot guarantee that the spiking region Sf is Lebesgue measurable,
which makes the derivation involving formulas 17 and 18 invalid. Hence, |f | <∞ is necessary to
our theorem.

After that, we provide the two hypotheses as mentioned in Section 3.3:
Hypothesis 3. Suppose X is a finite-dimensional real or complex vector space, and suppose S ⊂ X
is a bounded sub-region in X. Suppose there are the data probability distribution P and the uniform
distribution P′ defined on S. Also, suppose the probability density function g(X) of P is bounded by
a finite number Ω (i.e., P is regular).

Then, for any sequence of finite-sized functions f = (f1, · · · , fK), its spiking equivalence class Ef
contains infinite elements. That is, there are infinite sequences of finite-sized functions possessing the
same theoretical spiking efficiency as f .

Providing a strict proof on this hypothesis is beyond the scope of this paper. But intuitively, suppose
the spiking region of f = (f1, · · · , fK) is Sf , and suppose the spiking region of f1 (which is also
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the independent spiking region) is Sf1 . Suppose the dimension of the vector space X is m. Then,
we find an (m− 1)-dimensional hyperplane to divide Sf1 ⊂ X into two pieces S1

f1
and S2

f1
. Since

f1 has a finite size, we should be able to find two finite-sized functions f11 and f21 , such that the
spiking region of f11 is S1

f1
and that of f21 is S2

f1
. Then, we can obtain a new sequence of functions

f̃ = (f11 , f
2
1 , f2, · · · , fK) by replacing f1 with f11 and f21 . We can see that the spiking regions Sf

and Sf̃ are coincide with each other, and hence the theoretical spiking efficiencies SEf = SEf̃ . This
indicates that f̃ ∈ Ef .

Since there are infinite ways to divide Sf1 ⊂ X into S1
f1

and S2
f1

, there are infinite new sequences
of functions f̃ we can obtain. Hence, there are infinite elements in Ef . But again, this is not a strict
proof.
Hypothesis 4. Suppose X is a finite-dimensional real or complex vector space, and suppose S ⊂ X
is a bounded sub-region in X. Suppose there are the data probability distribution P and the uniform
distribution P′ defined on S. Also, suppose the probability density function g(X) of P is bounded by
a finite number Ω (i.e., P is regular).

With respect to P and P′, suppose the most efficient class E∗
P,P′ is not empty. Then, every most

efficient encoder f∗P,P′ ∈ E∗
P,P′ has exactly the same spiking region on S.

By looking into the example data distributions in Figure 2, we can intuitively agree to this hypothesis:
Easy to understand that every most efficient encoder should have its spiking region cover exactly
the data distributed region in each graph (namely, the two circles in the left graph, the overlapped
diamonds in the middle graph, and the 15 squares in the right graph). But again, we do not aim at
proving this hypothesis. Moreover, we hold the highest uncertainty to this hypothesis among all our
proposed hypotheses in this paper.

Before ending this appendix section, we want to discuss again the reason for us to use uniform
distribution P′ as the random distribution throughout Section 3:

The optimal encoder f†P,P′ , the most efficient encoder f∗P,P′ , the most efficient class E∗
P,P′ , and other

concepts purposed by us share a common basis: The random distribution P′ has to be the uniform
distribution on the data space S. Otherwise our theory will have to be adjusted into more complicated
formats, since we need to consider the variance in the probability density function of P′. However,
we claim that even in that case, the essential definitions and hypotheses of our theory (regarding
spiking equivalence, the most efficient encoder, and optimal encoders of different levels) will have
similar formats. As a result, without loss of generality, we always assume P′ to be the uniform
distribution on the data space S in Section 3.

B ENCODING MULTIPLE FUNCTIONS BY A MULTI-OUTPUT FUNCTION

This appendix introduces basic mathematical definitions and descriptions, which serves as a basis for
our next appendix.

Suppose X is a finite-dimensional real or complex vector space, and suppose our data space S is
a bounded sub-region in X. Then, we define a multi-output function: Suppose F : S → RH is a
multi-output function mapping each vector X ∈ S into a real vector (y1, · · · , yH). Intuitively, we
use each output head yh to ‘mimic’ a single-output function yh = fh(X). We use F |h to denote
each mimicked function fh : S → R obtained in this way. That is, (F |1(X), · · · , F |H(X)) =
(y1, · · · , yH) = F (X) for any X ∈ S.

We use fF = (F |1, · · · , F |H) to denote the sequence of single-output functions that is mimicked by
each output head of F . Accordingly, we define the independent spiking region of each mimicked
function F |h to be Sind

F |h = {X ∈ S
∣∣∣F |h(X) > 0}. There is no necessary to consider the spiking

region overlapping for each head F |h. The independent spiking region of each head in a multi-output
function will be enough for our discussion in this appendix section.

Following Section 3.1, we define the size of the multi-output function F : S → RH , denoted as |F |,
to be the number of adjustable parameters in F , where a scalar parameter in F is adjustable if its
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value can be adjusted without changing the computational complexity of F . Then, we purpose the
following hypothesis:

Hypothesis 5. Suppose X is a finite-dimensional real or complex vector space, and suppose S ⊂ X
is a bounded sub-region in X. Suppose F : S → RH is a multi-output function with a finite size |F |,
and suppose fF = (F |1, · · · , F |H) is the sequence of functions mimicked by the output heads in F .

Then, for each mimicked function F |h, there always exists a real single-output function fh : S → R
with a finite size |fh|, such that the (independent) spiking region Sfh of fh exactly coincides with the
independent spiking region Sind

F |h of F |h. We call such a function fh : S → R a projection of F |h.

We provide the following lemma that is necessary for further discussion:

Lemma 2. Suppose X is a finite-dimensional real or complex vector space, and suppose S ⊂ X is a
bounded sub-region in X. Suppose f : S → R is a function with a finite size, and suppose Sf is the
spiking region of f .

Then, there exists a lower bound LSf
depending on Sf , such that for any function f̃ : S → R with

the same (coincided) spiking region as Sf , the inequality |f̃ | ≥ LSf
always holds true. Here, |f̃ | is

the size of f̃ .

Finally, there always exists a function f† : S → R, such that the spiking region of f† coincides with
Sf , and |f†| = LSf

. We call f† an optimal function to Sf .

Proof. The size |f | of function f is defined to be the number of adjustable parameters in f , which is
a finite positive integer as supposed in this lemma. If a function f̃ : S → R has the spiking region
coincided to Sf and is of a smaller size, then the possible values of |f̃ | are constrained to the finite
set {1, 2, · · · , |f |}. As a result, both the lower bound LSf

and the size |f†| of the optimal function
f† will be the minimum value achievable in {1, 2, · · · , |f |}.

Note that there can exist multiple optimal functions to the same spiking region. Intuitively, an
optimal function f† to the spiking region Sf encodes the minimum amount of information required
to describe Sf unambiguously. Then, the following lemma shows that the definitions on optimal
encoders and optimal functions are self-consistent:

Lemma 3. Suppose X is a finite-dimensional real or complex vector space, and suppose S ⊂ X is
a bounded sub-region in X. Suppose there are the data probability distribution P and the uniform
distribution P′ defined on S. Also, suppose the probability density function g(X) of P is bounded by
a finite number Ω (i.e., P is regular). Finally, suppose an optimal encoder f†P,P′ = (f†1 , · · · , f

†
K†)

exists regarding P and P′.

Then, each function f†k in the optimal encoder is also an optimal function to its own independent
spiking region Sind

f†
k

.

Proof. Assume that the statement is false for one function f†k in (f†1 , · · · , f
†
K†). Then, there exists

another function f̃ : S → R whose spiking region coincides with Sind
f†
k

, and has its size |f̃ | < |f†k |.

Then, if we replace f†k by f̃ in the sequence of functions (f†1 , · · · , f
†
K†), f̃ will produce the same

spiking region as Sf†
k
= Sind

f†
k

\(∪k−1
i=1 S

ind
f†
i

), and also produce the same theoretical spiking efficiency

as SEf†
k

. But then, the theoretical ability of f̃ will beAf̃ = SEf†
k
·|f̃ |−1 > Af†

k
, while the theoretical

abilities of other functions in the sequence are the same. Hence, replacing f†k by f̃ , we will obtain
a new sequence of functions with a larger theoretical ability than Af†

P,P′
, which contradicts our

definition on an optimal encoder. Hence, the statement is true.

Now, we combine Lemma 2 and Hypothesis 5 in our discussion: Suppose fF = (F |1, · · · , F |H) is
the sequence of functions mimicked by each head in the multi-output function F : S → RH , and
suppose the independent spiking region of each mimicked function F |h is Sind

F |h . Since there always
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exists a projection (finite-sized single-output function) fh : S → R whose spiking region coincides
with Sind

F |h , we can see that there always exists an optimal function f†h : S → R with respect to Sind
F |h .

We call such an optimal function f†h an optimal projection of F |h.

Then, what is the relationship between the size |F | of the multi-output function F , and the size
summation

∑H
h=1 |f

†
h| of optimal projections regarding all the output heads of F ? In the specific

case as shown in Figure 3, the summation
∑H

h=1 |f
†
h| can be much larger than |F |:

Figure 3: A specific case where the size summation
∑H

h=1 |f
†
h| of optimal projections is much larger

than the size |F |.

In Figure 3, we have the data space S = {x, y|0 ≤ x ≤ 16, 0 ≤ y ≤ 4} to be a sub-region in
R2. Suppose the single-output function f† : S → R is an optimal function to a third-iteration
Koch snowflake (Lapidus & Pang, 1995). Then, for (x, y) ∈ S, we define the multi-output function
F : S → R5 to be F (x, y) = (f†(x, y), f†(x− β, y), f†(x− 2β, y), f†(x− 3β, y), f†(x− 4β, y)).
With β ≈ 3, we can have the independent spiking regions of the mimicked functions in fF =

(F |1, F |2, F |3, F |4, F |5) to be the five Koch snowflakes as shown in Figure 3. With f†h to be the

optimal projection of each F |h, we have that
∑5

h=1 |f†
h|

|F | = 5|f†|
|f†|+4

. In fact, for a general head number

H in this example, we have that
∑H

h=1 |f†
h|

|F | = H|f†|
|f†|+H−1

, which converges to |f†| when H is large

enough. This shows that the ratio
∑H

h=1 |f†
h|

|F | is not bounded in this example.

However, intuitively, this kind of example is rare. We believe that in general, the independent spiking
region of each mimicked function F |h in fF = (F |1, · · · , F |H) is likely to be ‘irrelevant’ to each
other:
Definition 5. Suppose X is a finite-dimensional real or complex vector space, and suppose S ⊂ X
is a bounded sub-region in X. Suppose S1 ⊂ S and S2 ⊂ S are two sub-regions in S. Suppose
f†1 , f

†
2 : S → R are the optimal functions to S1 and S2, respectively.

We say that a mapping M : S → S is a bijection from S1 to S2, if for any vector Y ∈ S2, there
exists a unique vector X ∈ S1 such that Y = M(X). We define the size of M, denoted as |M|, to
be the number of adjustable parameters in M, where a scalar parameter in M is adjustable if its
value can be adjusted without changing the computational complexity of M.

Then, we say that S2 is irrelevant to S1, if for any bijection M from S1 to S2, we always have
|M| ≥ |f†2 |.

Again, the size of a mapping M is defined to be the number of adjustable parameters in M, which is
essentially equivalent to the minimum amount of information required to describe M unambiguously.
And again, the size of an optimal encoder f† represents the minimum amount of information required
to describe its spiking region Sf† unambiguously. So, intuitively, a sub-region S2 ⊂ S is irrelevant to
S1 ⊂ S, if knowing the information required to describe S1 will not reduce the amount of information
required to describe S2.

There is another interesting hypothesis: For two sub-regions S1 ⊂ S and S2 ⊂ S, S2 is irrelevant to
S1 if and only if S1 is irrelevant to S2. Once again, we do not dive deep into proving this intuitively
correct hypothesis. We say that two sub-regions S1 and S2 are mutually irrelevant, if S2 is irrelevant
to S1 and S1 is irrelevant to S2.

Applying this to our multi-output function approach, we hope to provide the following hypothesis:
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Hypothesis 6. Suppose X is a finite-dimensional real or complex vector space, and suppose S ⊂ X
is a bounded sub-region in X. Suppose F : S → RH is a multi-output function with a finite size |F |,
and suppose fF = (F |1, · · · , F |H) is the sequence of functions mimicked by the output heads in F .
Suppose f†h : S → R is an optimal projection of each mimicked function F |h in fF , whose size is
|f†h| <∞.

Furthermore, suppose the independent spiking regions Sind
F |h and Sind

F |j of F |h and F |j are mutually

irrelevant, when h ̸= j. Then, we have that
∑H

h=1 |f
†
h| ≤ |F |.

Intuitively, this hypothesis implies that given a multi-output function F , when the independent spiking
region regarding each of its output head is mutually irrelevant to each other, there is no way for F to
further compress the information required to specify these independent spiking regions.

This hypothesis does not contradict to our main theory: A function f should encode a large amount of
information from the data distribution into a small amount of information (i.e. the parameters in f ),
when f discovers non-randomness from the data distribution. On contrast, mutually irrelevant spiking
regions do not contain non-randomness. In other words, all the information required to describe
mutually irrelevant spiking regions are totally random, which henceforth cannot be further encoded
or compressed into a smaller amount of information.

After reading this appendix section, one may be able to better understand the next appendix section,
in which we always assume two output heads in each multi-output function F1, · · · , FK . In the
next appendix section, we discusses our goal for the independent spiking region of the second head
(Fk|2) in each bi-output function Fk to converge to fixed random samples in the data space, while the
independent spiking region of the first head (Fk|1) converges to optimized data regions.

If this goal is achieved, the independent spiking regions of Fk|1 and Fk|2 in each bi-output function
Fk should become irrelevant to each other. By a routine analysis, we can see that the size of the
optimal projection regarding Fk|2 is at least m · L′

k, where m is the dimension of the vector space,
and L′

k is the number of fixed random vectors making Fk|2 spike (more details can be found in the
next Appendix sub-section C.1). Therefore, the size of the optimal projection regarding Fk|1 can be
estimated by |Fk| −mL′

k according to Hypothesis 6.

As mentioned at the end of Section 3.3, there can exist a regular probability distribution without
a most efficient encoder. We build such a counter example at the end of this appendix. We refer
to Figure 3 again: Imagining that we have a data distribution P which is uniformly distributed in
a full Koch snowflake. Also, we assume that the data space S is large enough comparing to the
Koch snowflake, and P′ is the uniform distribution on S. It is easy to see that P is regular (i.e., the
probability density function of P is bounded). Suppose f : S → R is a finite-sized function whose
spiking region coincides with the L-level iteration of the Koch snowflake in which P distributed.

Then, suppose f̃ : S → R is another finite-sized function whose spiking region coincides with the
(L + 1)-level iteration of such Koch snowflake. It is easy to see that the spiking region Sf ⊂ Sf̃

(Lapidus & Pang, 1995). Since the data space S is large enough and P is uniformly distributed within
the full Koch snowflake, by a routine analysis involving formulas 6 and 7, we can get the theoretical
spiking efficiency SEf ≤ SEf̃ with respect to P and P′. This implies that the higher iteration level
the spiking region coincides with the data distribution Koch snowflake, the larger the theoretical
spiking efficiency of the function will be. However, it is not possible for a function with a finite-size
to possess a spiking region coinciding with the full Koch snowflake: It will need infinite amount
of parameters to represent a full fractal (Mandelbrot, 1989). As a result, there is no most efficient
encoder with respect to P and P′ in this example, leading to E∗

P,P′ = ∅.

In the next appendix, we will propose our designed machine learning pipeline, which aims at
discovering optimal encoders for a given data probability distribution in practice.
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C APPLYING MULTIPLE BI-OUTPUT FUNCTIONS TO APPROACH TO OPTIMAL
ENCODERS IN PRACTICE

We introduce our designed machine learning approach in this section. This approach aims at
discovering optimal encoders for a given data probability distribution in practice. The first part
describes the algorithms and formulas related to our designed approach. The second part describes
a pipeline to implement our designed approach in a layer-wise manner on a given image dataset.
Again, we only provide our designed approach and pipeline here. There is no actual realization or
experimental result involved.

C.1 DESIGNED MACHINE LEARNING APPROACH

Once again, suppose X is a finite-dimensional real or complex vector space, and suppose our data
space S is a bounded sub-region in X. Suppose we have the dataset D = {X1, X2, . . . , XND}, with
each sample vector Xn ∈ S. We use PD to denote the data probability distribution generating D.
We define P′ to be the uniform distribution on S. In practice, we always assume PD to be regular
(i.e., its probability density function is bounded).

In order to approach to an optimal encoder with respect to PD and P′, we create a bi-output function
F : S → R2 that maps a vector X ∈ S to a 2D real vector Y = (y1, y2). In practice, F should be a
deep neural network with developed architectures, such as a multi-layer convolutional neural network
(CNN) (Li et al., 2021) combined with non-linear activation functions (like a ReLU function)(Nair
& Hinton, 2010; Agarap, 2018), layer normalization (Ba et al., 2016), and fully connected layers.
The output of F should consist of two scalars, each of which is produced by a hyperbolic tangent
function (‘tanh’) (Lau & Lim, 2018) to restrict the scalar between -1 and 1.

We define the size of the bi-output function F , denoted as |F |, to be the number of adjustable
parameters in F . Here, a scalar parameter in F is adjustable if its value can be adjusted without
changing the computational complexity of F .

Then, suppose we generate L random samples, denoted as D′
fix = {X ′

1, · · · , X ′
L}, from the uniform

distribution P′, and then fix these samples. Given the bi-output function F , suppose the second head
of F spikes on L′ random samples in D′

fix. That is, we have D′
fix,F ⊂ D′

fix containing L′ random
samples, such that for each X ′ ∈ D′

fix,F , we have y2 > 0 in (y1, y2) = F (X ′). Ideally, we desire the
second head of F to only spike on these L′ fixed random samples in D′

fix,F , or spike on the random
samples that are extremely close to each X ′ ∈ D′

fix,F . That is, we hope the spiking region regarding
the second head of F to consist of very tiny regions around each X ′ ∈ D′

fix,F , as shown in Figure 4.

Figure 4: Suppose the data space S ⊂ R2, and suppose the second head of F spikes on fixed random
samples (points in the figure) in D′

fix,F . Then, the desired spiking region regarding the second head of
F should be the union of the circles, squares and polygons in the figure, converging to each random
sample in D′

fix,F .

Since the random samples in D′
fix = {X ′

1, · · · , X ′
L} are independent and identically distributed (i.i.d),

so are the random samples in D′
fix,F . Hence, there is no way to further encode or compress the

information required to describe these ‘randomly distributed random samples’ in D′
fix,F . This means

that the bi-output function F has to record in its parameters the full amount of information describing
D′

fix,F , in order to have the spiking region of its second head converging to each X ′ ∈ D′
fix,F . We

provide a theoretical analysis regarding this issue in the previous appendix section.
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Suppose the vector space is X = Rm. Then, it requires in total m · L′ parameters to record the
information describing all L′ random samples in D′

fix,F . When X = Cm, the amount of required
parameters becomes 2m · L′. But without lose of generality, we assume X = Rm. The way for F to
record such information may be implicit due to the nature of deep neural networks (Markatopoulou
et al., 2018). But in whatever way, F has to consume equivalent to mL′ parameters to record such
information. Then, if we desire the first head of the bi-output function F to have a different spiking
behavior, the available amount of parameters is at most |F | −mL′.

We use F |1 and F |2 to denote the single-output function ‘mimicked’ by the first and second head
of F , respectively. That is, (F |1(X), F |2(X)) = (y1, y2) = F (X) for any X ∈ S. In this way, we
can obtain two ‘mimicked’ functions F |1, F |2 : S → R. A more detailed discussion is provided the
previous appendix section. But intuitively, it is not difficult to understand that the size of F |1 can
be estimated by |F | −mL′, indicating implicitly the amount of adjustable parameters in F that is
available for the first head.

Suppose we select N data samples {Xn}Nn=1 from dataset D, and generate N random samples
{X ′

n}Nn=1 by the uniform distribution P′. Note that {X ′
n}Nn=1 is independent with D′

fix. According to
the above discussion, F |2 should hardly spike on any sample in {Xn}Nn=1 or {X ′

n}Nn=1. Otherwise,
the amount of information required to describe the spiking region of F |2 may likely be less than
mL′, which invalidates our design. So, we assume that F |2 spikes on M2 data samples in {Xn}Nn=1
and M ′

2 random samples in {X ′
n}Nn=1. We use L′ − λ(M2 +M ′

2) to measure the ‘valid’ spikings
made by F |2 on the fixed random samples in D′

fix, with λ to be far larger than one (say, λ = 50).
During optimization in practice, M2 +M ′

2 should be reduced by high pressure from λ, which will
then keep as many valid spikings as possible for F |2. Accordingly, the size of F |1 is estimated by
|F | −m(L′ − λ(M2 +M ′

2)).

Suppose we have K bi-output functions F1, · · · , FK : S → R2, which are arranged in the sequence
f = (F1, · · · , FK). Again, each Fk is a deep neural network in practice. We use Fk|1 and Fk|2 to
denote the single-output function mimicked by the first and second head of Fk, respectively. We
perform each Fk on the same data samples {Xn}Nn=1 selected from D, the same random samples
{X ′

n}Nn=1 generated by P′, and the L fixed random samples in D′
fix.

We use fmimic = (F1|1, · · · , FK |1) to denote the sequence of single-output functions mimicked by
the first head of F1, · · · , FK . Then, fmimic will be the sequence of functions we work with. We now
discuss how to obtain the observed spiking efficiency and observed ability of fmimic.

Given each Fk|1 in fmimic, suppose there are Mk,1 data samples in {Xn}Nn=1 and M ′
k,1 random

samples in {X ′
n}Nn=1 that make Fk|1 spike, but do not make F1|1, · · · , Fk−1|1 spike. Accordingly,

with respect to PD and P′, the observed spiking efficiency of Fk|1, denoted as ŜEFk|1 , can be
calculated as:

ŜEFk|1 =
Mk,1

N
log(

Mk,1 +α

M ′
k,1+α

)+
N−Mk,1

N
log(

N−Mk,1 +α

N−M ′
k,1+α

). (20)

Suppose Mfmimic =
∑K

k=1Mk,1 and M ′
fmimic

=
∑K

k=1M
′
k,1. Similar to Section 3.3, we know that

Mfmimic is the total number of data samples in {Xn}Nn=1 that make at least one mimicked function in
fmimic = (F1|1, · · · , FK |1) to spike. Also, M ′

fmimic
is the total number of random samples in {X ′

n}Nn=1
that make at least one mimicked function in fmimic to spike. Then, we can get the observed spiking
efficiency of fmimic, denoted as ŜEfmimic , as:

ŜEfmimic =
Mfmimic

N
log(

Mfmimic +α

M ′
fmimic

+α
)+

N−Mfmimic

N
log(

N−Mfmimic +α

N−M ′
fmimic

+α
). (21)

Also, for each bi-output function Fk in f = (F1, · · · , FK), suppose there are Mk,2 data samples in
{Xn}Nn=1 andM ′

k,2 random samples in {X ′
n}Nn=1 that make Fk|2 spike. Note that there are no shared

weights among different Fk. So, there is no further restriction from F1, · · · , Fk−1 upon Mk,2 and
M ′

k,2. Also, suppose there areL′
k fixed random samples in D′

fix that makeFk|2 spike. According to our
previous discussion, the size of Fk|1 can be estimated by |Fk|1| = |Fk| −m(L′

k −λ(Mk,2 +M ′
k,2)).

Then, the observed ability of each mimicked function Fk|1 in fmimic = (F1|1, · · · , FK |1) can be
estimated by ÂFk|1 = ŜEFk|1 · |Fk|1|−1.
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Finally, the observed ability of fmimic can be estimated by Âfmimic =
∑K

k=1 ÂFk|1 =
∑K

k=1[ ŜEFk|1 ·
|Fk|1|−1]. Based on our discussion at the end of Section 3.4, the Objective of learning is to maximize
both ŜEfmimic and Âfmimic . That is, we want to maximize:

Ofmimic = λ1 ·

(
Mfmimic

N
log(

Mfmimic +α

M ′
fmimic

+α
)+

N−Mfmimic

N
log(

N−Mfmimic +α

N−M ′
fmimic

+α
)

)
+

λ2 ·
K∑

k=1

[(
Mk,1

N
log(

Mk,1+α

M ′
k,1+α

)+
N−Mk,1

N
log(

N−Mk,1 +α

N−M ′
k,1+α

)

)
· 1

|Fk|−m(L′
k−λ(Mk,2+M ′

k,2))

]
,

(22)

where λ1, λ2 and λ are pre-defined hyper-parameters. In some cases, increasing ŜEfmimic by a small
margin may require the mimicked functions in fmimic to enlarge their sizes significantly, which reduces
Âfmimic and ultimately reduces Ofmimic . Intuitively, the ratio λ1/λ2 can be viewed as the tolerance for
achieving increased spiking efficiency through size expansion. So, appropriately choosing λ1 and λ2
becomes important in practice.

Here, we summarize our designed approach, which to some extent can be regarded as an unsupervised
feature extraction method (Ghahramani, 2003):

Suppose X = Rm is the vector space, and S ⊂ X is our bounded data space. Suppose we
have the dataset D = {X1, X2, . . . , XND}, with each vector Xn ∈ S. We assume it is the data
probability distribution PD that generates D. Also, we define the uniform distribution P′ on S.
Then, we use P′ to generate and fix L random samples in D′

fix = {X ′
1, · · · , X ′

L}, with L to be
large enough. Finally, we initialize K deep neural networks F1, · · · , FK . Each Fk takes a vector
X ∈ S as its input and provides a 2-dimensional output (y1, y2). We put the neural networks
in a sequence f = (F1, · · · , FK), and obtain the sequence of their first head mimicked functions
fmimic = (F1|1, · · · , FK |1).
In each training (learning) step, we randomly select N data samples {Xn}Nn=1 from D and generate
N random samples {X ′

n}Nn=1 by P′, with N to be large enough. For each Fk in (F1, · · · , FK),
we obtain its spiking scores Mk,1, M ′

k,1, Mk,2, M ′
k,2 and L′

k according to the above discussion.
Then, we shall use an optimization algorithm to maximize Ofmimic in formula 22 with respect to
{Mk,1,M

′
k,1,Mk,2,M

′
k,2, L

′
k}Kk=1, Mfmimic =

∑K
k=1Mk,1 and M ′

fmimic
=
∑K

k=1M
′
k,1.

We repeat this process with new {Xn}Nn=1 and {X ′
n}Nn=1 in each training step until we are satisfied,

which makes fmimic = (F1|1, · · · , FK |1) converge to a potential optimal encoder with respect to PD
and P′, denoted as f†PD,P′ = (f†1 , · · · , f

†
K†). Note that there is no guarantee for K = K†. So, we

may choose a relatively large K, and hopefully a valid optimization algorithm will ultimately make
Mk,1 = M ′

k,1 = 0 (and hence ŜEFk|1 = 0) for some mimicked functions in (F1|1, · · · , FK |1).
These mimicked functions capture no valid information, which will then be excluded from f†PD,P′ =

(f†1 , · · · , f
†
K†).

Again, we have not yet came up with an optimization algorithm to maximize Ofmimic in formula 22. So,
there is no experimental result in this paper. However, we do have some preliminary ideas: In each
training step, we may consider Ofmimic as the reward. The agent is (F1, · · · , FK), and the environment
comprises the sample sets {Xn}Nn=1, {X ′

n}Nn=1, and D′
fix = {X ′

1, · · · , X ′
L}. Then, we may apply

reinforcement learning algorithms to maximize Ofmimic (Kaelbling et al., 1996), which is our future
research focus.

C.2 DESIGNED MACHINE LEARNING PIPELINE

We believe that the most straightforward way to implement our approach is through a convolutional
layer-wise pipeline on an image dataset, which is briefly exhibited in Figure 5.

Suppose we have a dataset containing M images {I1, I2, · · · , IM}, where each image is of the shape
H ×W × C (i.e., height × width × channel number). In the first layer of our pipeline, suppose
there is a convolutional filter cropping out L× L× C-shaped tensors with a stride of 1 (Riad et al.,
2022). We regard each L× L× C tensor as our sample vector X . This leads to a vector space X
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Figure 5: Convolutional layer-wise regularity learning pipeline: Convolutional patches will be
extracted from original images, which are used as input vectors to optimize bi-output functions. Then,
the optimized bi-output functions are implemented back onto the original images to generate output
tensors from their first heads. These output tensors are used as inputs to next-layer optimization.

with dimension C · L2, and brings us a dataset D containing M · (H − L+ 1) · (W − L+ 1) data
samples. Without loss of generality, we assume that pixels in the original images are normalized to
fall between 0 and 1, thereby defining our data space S to be the unit square within X.

We assume that it is the data distribution PD that generates D, and we obtain the uniform distribution
P′ on S. Then, we initialize K deep neural networks as the bi-output functions F1, · · · , FK . After
that, we apply the above approach to make (F1|1, · · · , FK |1), the sequence of mimicked functions by
the first head of F1 through FK , converge to an optimal encoder with respect to PD and P′. Suppose
we can get the optimized sequence of mimicked functions (F1|†1, · · · , FK† |†1) with K† ≤ K, where
each mimicked function has observed spiking efficiency ŜEFk|†1

> 0.

Then, we apply (F1|†1, · · · , FK† |†1) to every L× L× C convolutional patch in each original image
Im among {I1, I2, · · · , IM} again. That is, each mimicked function Fk|†1 will be implemented on
every L× L× C tensor in an original image Im with stride 1. This brings us M output tensors with
shape (H − L+ 1)× (W − L+ 1)×K†, denoted as {O1, O2, · · · , OM}. Each dimension in an
output tensor Om is the output scalar of one mimicked function in (F1|†1, · · · , FK† |†1). To be specific,
each dimension in Om indicates that specific regularities are found in the corresponding area (i.e.,
the L× L× C tensor) of the original image Im.

Then, how does each dimension in Om distribute? Are there non-randomness and regular-
ities in {O1, O2, · · · , OM}? Seeking for an answer, we may apply the same approach on
{O1, O2, · · · , OM}: Each L̃ × L̃ ×K†-shaped tensor in each Om is extracted in a convolutional
manner. Then, we initialize K new bi-output functions, whose first-head mimicked functions should
be optimized to converge to an optimal encoder of the data distribution generating these L̃× L̃×K†

tensors. Implementing these optimized mimicked functions back on each L̃ × L̃ × K† convolu-
tional patch in each tensor Om among {O1, O2, · · · , OM}, we can further obtain the output tensors
{Õ1, Õ2, · · · , ÕM}, which is used as input for next level optimization.

We carry on this layer-wise optimization process until we are satisfied. Assuming the success of
this process, the optimized mimicked functions in each level can explicitly learn regularities from
different hierarchical levels of the image data. We believe that these learned optimal regularities can
intuitively be regarded as vision (Cox & Dean, 2014; Kriegeskorte, 2015).
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D THE REFINED THEORY TAKING SPIKING STRENGTH INTO CONSIDERATION

In this appendix section, we propose a more general theory, which we call the contour spiking theory,
regarding how to learn regularities from data using spiking-level considered functions. Seeking for
clarity, we refer to the theory in the main pages of this paper as simple spiking theory.

As we mentioned in Section 3.4, functions in our simple spiking theory cannot represent the data
probability density variations within their spiking regions. Essentially, this is because we only
consider spiking or not spiking of a function on an input vector, which is a relatively coarse strategy.
Henceforth, we further consider the strength, or level, of spiking made by a function.

Suppose X is a finite-dimensional real or complex vector space, and suppose S ⊂ X is a bounded sub-
region within X. We call a real scalar κ > 0 as the grid. Then, given a function f : S → R, we say
that f makes a l-level spiking (or spikes in the l level) on a vectorX ∈ S, if l ·κ < f(X) ≤ (l+1)·κ.
When l = 0 (i.e., 0 < f(X) ≤ κ), we say that f makes a bottom level spiking on X . Also, by
choosing an integer L ∈ N to be the top level, we say that f makes a top level spiking on vector X ,
if f(X) > L · κ. Finally, we say that f does not spike on X if f(X) ≤ 0, which can be regarded as
a -1 level spiking (i.e., l = −1).

Then, suppose we have the data probability distribution P and random probability distribution P′

defined on S. With a large enough sampling size N , suppose we have N data samples {Xn}Nn=1
generated by P and N random samples {X ′

n}Nn=1 generated by P′. For l = −1, 0, 1, · · · , L, suppose
the function f makes Ml l-level spikings on the data samples {Xn}Nn=1 and M ′

l l-level spikings on
the random samples {X ′

n}Nn=1.

Accordingly, we can get the observed spiking probability distribution on random samples as P̂ ′ =

(
M ′

−1

N ,
M ′

0

N ,
M ′

1

N , · · · , M
′
L

N ), which is also our null hypothesis on the data samples. But instead, we
get the observed spiking probability distribution on data samples as P̂ = (M−1

N , M0

N , M1

N , · · · , ML

N ).
Similar to Section 3.1, the KL-divergence of P̂ over P̂ ′ is calculated by:

DKL(P̂ ||P̂ ′) =

L∑
l=−1

Ml

N
log(

Ml

M ′
l

), (23)

which measures the amount of information obtained if we replace P̂ ′ by P̂ to estimate the spiking
probability distribution of f on data samples Shannon (1948); Shlens (2014). Similar to Section 3.1,
this is also the amount of information f obtained from the data distribution P by comparing P with
P′. Accordingly, we define the theoretical spiking efficiency and observed spiking efficiency of f
to be:

SEf = lim
N→∞

(
L∑

l=−1

Ml

N
log(

Ml

M ′
l

)

)
; ŜEf =

L∑
l=−1

Ml

N
log(

Ml + α

M ′
l + α

). (24)

The size of function f , denoted as |f |, is still the number of adjustable parameters in f . The
conciseness of f is defined as Cf = |f |−1. Then, the theoretical ability of f is defined to be
Af = SEf · Cf , and the observed ability of f is defined to be Âf = ŜEf · Cf :

Af = lim
N→∞

(
L∑

l=−1

Ml

N
log(

Ml

M ′
l

)

)
· 1

|f |
; Âf =

(
L∑

l=−1

Ml

N
log(

Ml + α

M ′
l + α

)

)
· 1

|f |
. (25)

The (theoretical and observed) ability of function f is the ratio between the amount of information
captured by f from P and the amount of information possessed by the parameters in f . Also, the
ability measures the effort made by f to encode the captured information into its own parameters.

We define the l-level spiking region of f , denoted as Sf,l, to be the set containing all vectors in S that
make f spike in the l-level. That is, Sf,l = {X ∈ S | l·κ < f(X) ≤ (l+1)·κ} for l = 0, 1, · · · , L−1.
The top level spiking region of f is Sf,L = {X ∈ S | f(X) > L · κ}. The -1 level spiking region
of f , corresponding to S\Sf in the main pages, is Sf,−1 = {X ∈ S | f(X) ≤ 0}. It is easy to
see that Sf,l ∩ Sf,l̃ = ∅ if l ̸= l̃, and ∪L

l=−1Sf,l = S. If we set the vector space X = R2, one can
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imagine that spiking regions in different levels of f distribute like regions between contour lines on a
geographic map. This is the reason for us to call the refined theory to be ‘contour spiking theory’.

Then, we provide the refined version of Lemma 1, whose proof is very similar to Lemma 1 and not
provided again:
Lemma 1-refined. Suppose X is a finite-dimensional real or complex vector space, and suppose
S ⊂ X is a bounded sub-region in X. Suppose f : S → R is a continuous function defined
on S. Then, for any chosen grid κ > 0 and top level L ∈ N, the non-negative spiking regions
Sf,0,Sf,1, · · · ,Sf,L of f are always Lebesgue-measurable.

Similarly, we provide the refined versions of Hypothesis 1 and Theorem 1:
Hypothesis 1-refined. Suppose X is a finite-dimensional real or complex vector space, and suppose
S ⊂ X is a bounded sub-region in X. Suppose f : S → R is a function defined on S with a finite
size (i.e., there are finite adjustable parameters in f ). Then, for any chosen grid κ > 0 and top level
L ∈ N, the non-negative spiking regions Sf,0,Sf,1, · · · ,Sf,L of f are always Lebesgue-measurable.
Theorem 1-refined. Suppose X is a finite-dimensional real or complex vector space, and suppose
S ⊂ X is a bounded sub-region in X. Suppose we have the data probability distribution P defined on
S, with the probability density function to be g(X). Furthermore, suppose there exists an upper bound
Ω <∞, such that g(X) ≤ Ω for any X ∈ S. Finally, suppose we have the random distribution P′

to be the uniform distribution defined on S.

Suppose we choose the grid κ > 0 and top level L ∈ N. Then, under κ and L, for any function
f : S → R with a finite size |f |, its theoretical spiking efficiency SEf obtained with respect to P and
P′ is bounded by 0 ≤ SEf ≤ Ω · |S| · log (Ω · |S|), where |S| is the Lebesgue measure of data space
S.

One can proof the refined version of Theorem 1 using very similar methods as we described in
Appendix A, through which we can get the formulas of SEf as (in which g′(X) ≡ 1

|S| is the
probability density function of the uniform distribution P′, and |Sf,l| is the Lebesgue-measure of the
l-level spiking region Sf,l):

SEf =

L∑
l=−1

(∫
Sf,l

g(X) dX

)
log

(∫
Sf,l

g(X) dX∫
Sf,l

g′(X) dX

)
=

L∑
l=−1

(∫
Sf,l

g(X) dX

)
log

(
|S|
∫
Sf,l

g(X) dX

|Sf,l|

)
.

(26)

Now, we describe the refined theory when applying multiple functions to the data distribution P,
where the random distribution P′ is default to be the uniform distribution on the data space S.
Suppose we have a sequence of functions f = (f1, · · · , fK), where each function fk : S → R has a
finite size |fk|.
Given N data samples {Xn}Nn=1 generated by P, suppose there are M1,−1,M1,0,M1,1, · · · ,M1,L

data samples that make function f1 spike in the −1, 0, 1, · · · , L levels, respectively. Similarly, given
N random samples {X ′

n}Nn=1 generated by P′, suppose there are M ′
1,−1,M

′
1,0,M

′
1,1, · · · ,M ′

1,L

random samples that make function f1 spike in the −1, 0, 1, · · · , L levels, respectively.

Then, suppose after ignoring all the data samples in {Xn}Nn=1 making f1 spike in any non-negative
level, there are M2,l data samples in {Xn}Nn=1 making f2 spike in the l level (l ≥ 0). Similarly,
suppose after ignoring all random samples making f1 spike in any non-negative level, there are
M ′

2,l random samples in {X ′
n}Nn=1 making f2 spike in the l level (l ≥ 0). In general, we can get

Mk,0,Mk,1, · · · ,Mk,L data samples in {Xn}Nn=1 and M ′
k,0,M

′
k,1, · · · ,M ′

k,L random samples in
{X ′

n}Nn=1 that make fk spike in the 0, 1, · · · , L levels respectively, but do not make f1, · · · , fk−1

spike in any non-negative level. Then, we have Mk,−1 = N −
∑L

l=0Mk,l as well as M ′
k,−1 =

N −
∑L

l=0M
′
k,l.

In our opinion, spiking levels are our subjective classifications. Objectively, if the non-randomness is
already discovered by functions f1, · · · , fk−1 in the sequence f , then such non-randomness cannot
be awarded to fk. So, we ignore any sample making any of f1, · · · , fk−1 spike in any non-negative
level, when counting the ‘valid spikings’ made by fk.
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Then, we can define the theoretical spiking efficiency SEfk and observed spiking efficiency ŜEfk
for each function fk in f = (f1, · · · , fK) as:

SEfk = lim
N→∞

(
L∑

l=−1

Mk,l

N
log(

Mk,l

M ′
k,l

)

)
; ŜEfk =

L∑
l=−1

Mk,l

N
log(

Mk,l +α

M ′
k,l+α

) (27)

Then, suppose Mf ,l =
∑K

k=1Mk,l and M ′
f ,l =

∑K
k=1M

′
k,l for l = 0, 1, · · · , L. We have that Mf ,l

represents the number of data samples in {Xn}Nn=1 making at least one function in f = (f1, · · · , fK)
spike in the l level, while M ′

f ,l represents the number of random samples in {X ′
n}Nn=1 making at

least one function in f spike in the l level. Also, suppose Mf ,−1 = N −
∑L

l=0Mf ,l and M ′
f ,−1 =

N −
∑L

l=0M
′
f ,l. The theoretical spiking efficiency and observed spiking efficiency of f is then

defined by:

SEf = lim
N→∞

(
L∑

l=−1

Mf ,l

N
log(

Mf ,l

M ′
f ,l

)

)
; ŜEf =

L∑
l=−1

Mf ,l

N
log(

Mf ,l +α

M ′
f ,l+α

) (28)

Accordingly, we can obtain the theoretical ability Afk = SEfk · Cfk and the observed ability
Âfk = ŜEfk · Cfk for each fk in the sequence of functions f = (f1, · · · , fK), where Cfk = |fk|−1

is the conciseness of fk:

Afk = lim
N→∞

(
L∑

l=−1

Mk,l

N
log(

Mk,l

M ′
k,l

)

)
· 1

|fk|
; Âfk =

(
L∑

l=−1

Mk,l

N
log(

Mk,l +α

M ′
k,l+α

)

)
· 1

|fk|
(29)

We define the theoretical ability of f = (f1, · · · , fK) to be Af =
∑K

k=1Afk . We define the
observed ability of f = (f1, · · · , fK) to be Âf =

∑K
k=1 Âfk :

Af =

K∑
k=1

[
lim

N→∞

(
L∑

l=−1

Mk,l

N
log(

Mk,l

M ′
k,l

)

)
· 1

|fk|

]
; Âf =

K∑
k=1

[(
L∑

l=−1

Mk,l

N
log(

Mk,l +α

M ′
k,l+α

)

)
· 1

|fk|

]
(30)

Intuitively, SEf measures the total amount of information captured by the sequence of functions
f = (f1, · · · , fK) from the data distribution P, while SEfk measures the amount of valid information
captured by each fk in f . Then, Afk measures the effort made by each function fk to encode the valid
information into the parameters, and Af measures the total valid effort made by f = (f1, · · · , fK) to
encode the captured information into the parameters.

Then, the l-level independent spiking region of fk is defined to be Sind
fk,l

= {X ∈ S | l · κ <

fk(X) ≤ (l + 1) · κ} for l = 0, 1, · · · , L− 1. The top level independent spiking region of fk is
Sind
fk,L

= {X ∈ S | fk(X) > L · κ}. The -1 level independent spiking region of fk, corresponding
to S\Sfk in the main pages, is Sind

fk,−1 = {X ∈ S | fk(X) ≤ 0}.

Accordingly, for l = 0, 1, · · · , L, the l-level spiking region of fk in the sequence of functions
f = (f1, · · · , fK) is defined to be Sfk,l = Sind

fk,l
\(∪k−1

i=1 (∪L
l̃=0

Sind
fi,l̃

)) (i.e., removing all non-negative
independent spiking regions of f1, · · · , fk−1). That is, Sfk,l consists of the vectors on which fk can
make a valid spike in the l level. It is easy to see that Sfk,l ∩ Sfi,l̃

= ∅ when k ̸= i or l ≥ 0 ̸= l̃ ≥ 0.
Also, we have the -1 level spiking region of fk to be Sfk,−1 = S\(∪L

l=0Sfk,l).

Finally, for l = 0, 1, · · · , L, we define the l-level spiking region of the sequence of functions
f = (f1, · · · , fK) to be Sf ,l = ∪K

k=1Sfk,l. That is, Sf ,l consists of the vectors on which at least one
function in the sequence (f1, · · · , fK) can make a valid spike in the l level. Especially, we note that
Sf ,l ̸= ∪K

k=1S
ind
fk,l

, which is different from the simple spiking theory (see Section 3.3). Also, we have
the -1 level spiking region of f to be Sf ,−1 = S\(∪L

l=0Sf ,l). A straightforward demonstration is
shown in Figure 6.

Regarding the bound of SEf and each SEfk , we propose the refined version of Theorem 2:
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Figure 6: The leveled (contour) spiking regions of f = (f1, f2, f3) defined on the xy-plane: In this
example, we have L = 2, leading to 3 non-negative levels of spiking regions for each function. The
0-level spiking region for each fk (and also for f ) is in blue, the 1-level is in red, and the 2-level is in
yellow. For each function fk, its independent spiking regions in 3 non-negative levels form concentric
circles. The non-negative level spiking regions of f1 is in the front, while those of f2 have to remove
the regions overlapped with f1, and those of f3 have to remove the regions overlapped with both f1
and f2.

Theorem 2-refined. Suppose X is a finite-dimensional real or complex vector space, and suppose
S ⊂ X is a bounded sub-region in X. Suppose there are the data probability distribution P and the
uniform distribution P′ defined on S. Also, suppose the probability density function g(X) of P is
bounded by a finite number Ω (i.e., P is regular).

Suppose f = (f1, · · · , fK) is a sequence of functions with each function fk : S → R possessing
a finite size |fk|. Suppose κ is the chosen grid and L is the chosen top level. Then, under κ and
L, with respect to P and P′, the theoretical spiking efficiencies of both f and each fk are bounded.
That is, we have 0 ≤ SEf ≤ Ω · |S| · log (Ω · |S|), as well as 0 ≤ SEfk ≤ Ω · |S| · log (Ω · |S|) for
k = 1, · · · ,K. Here, |S| is the Lebesgue measure of data space S.

Similarly, we can follow the proof method of Theorem 1 to prove this refined version of Theorem 2.
Also, we can get the formula of SEf as (in which g′(X) ≡ 1

|S| is the probability density function of
the uniform distribution P′, and |Sf ,l| is the Lebesgue-measure of the l-level spiking region Sf ,l):

SEf =

L∑
l=−1

(∫
Sf,l

g(X) dX

)
log

(∫
Sf,l

g(X) dX∫
Sf,l

g′(X) dX

)
=

L∑
l=−1

(∫
Sf,l

g(X) dX

)
log

(
|S|
∫
Sf,l

g(X) dX

|Sf ,l|

)
.

(31)

Replacing f by fk in the above formulas, we can then get the corresponding formulas of SEfk for
each function fk in f . Then, similar to the simple spiking theory, two sequences of finite-sized
functions f = (f1, · · · , fK) and f̃ = (f̃1, · · · , f̃K̃) will have the same theoretical spiking efficiency,
if under the chosen grid κ and top level L, their spiking regions Sf ,l and Sf̃ ,l in each non-negative
level l coincide with each other. Accordingly, we have:
Definition 4-refined. Suppose X is a finite-dimensional real or complex vector space, and suppose
S ⊂ X is a bounded sub-region in X. Suppose there are the data probability distribution P and the
uniform distribution P′ defined on S. Also, suppose the probability density function g(X) of P is
bounded by a finite number Ω (i.e., P is regular). Finally, suppose κ is the chosen grid and L is the
chosen top level for evaluating contour spikings.

Suppose f = (f1, · · · , fK) and f̃ = (f̃1, · · · , f̃K̃) are two sequences of finite-sized functions defined
on S. We say that under κ and L, f and f̃ are spiking equivalent with respect to P and P′, denoted
as f ∼ f̃ , if SEf = SEf̃ .

Suppose f = (f1, · · · , fK) is a sequence of finite-sized functions defined on S. Under κ and L, we
define the spiking equivalence class of f , denoted as Ef , to be the set consisting of all the sequences
of finite-sized functions that are spiking equivalent to f . That is,

Ef = {f̃ = (f̃1, · · · , f̃K̃)
∣∣∣|f̃k| <∞ for k = 1, · · · , K̃; and SEf = SEf̃},
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where K and K̃ are not necessarily equal, and different values of K̃ are allowed in Ef .

Finally, under κ and L, if there exists a sequence of finite-sized functions f∗ = (f∗1 , · · · , f∗K∗), such
that for any sequence of finite-sized functions f̃ = (f̃1, · · · , f̃K̃), the inequality SEf∗ ≥ SEf̃ always
holds true, then we call f∗ the most efficient encoder of P based on P′, denoted as f∗P,P′ . We call
Ef∗

P,P′ , the spiking equivalence class of f∗P,P′ , the most efficient class of P based on P′, denoted as
E∗
P,P′ .

Regarding the theoretical and observed abilities of f = (f1, · · · , fK) as discussed earlier in this
appendix section, here is the refined version of Hypothesis 4:
Hypothesis 2-refined. Suppose X is a finite-dimensional real or complex vector space, and suppose
S ⊂ X is a bounded sub-region in X. Suppose there are the data probability distribution P and the
uniform distribution P′ defined on S. Also, suppose the probability density function g(X) of P is
bounded by a finite number Ω (i.e., P is regular). Finally, suppose κ is the chosen grid and L is the
chosen top level for evaluating contour spikings.

Given a sequence of finite-sized functions f = (f1, · · · , fK) defined on S, suppose that under κ
and L, with respect to P and P′, Ef is the spiking equivalence class of f , and Γ = SEf is the
theoretical spiking efficiency of f . Then, there exists at least one sequence of finite-sized functions
f† = (f†1 , · · · , f

†
K†) ∈ Ef , such that for any other f̃ = (f̃1, · · · , f̃K̃) ∈ Ef , the inequality Af† ≥ Af̃

always holds true. We call such a sequence of functions f† = (f†1 , · · · , f
†
K†) a Γ-level optimal

encoder of P based on P′, denoted as f†∼Γ
P,P′ .

Finally, suppose under κ and L, the most efficient class E∗
P,P′ with respect to P and P′ is not empty.

Then, there exists at least one most efficient encoder f† = (f†1 , · · · , f
†
K†) ∈ E∗

P,P′ , such that for any
other most efficient encoder f∗ = (f∗1 , · · · , f∗K∗) ∈ E∗

P,P′ , the inequality Af† ≥ Af∗ always holds
true. We call such a sequence of functions f† = (f†1 , · · · , f

†
K†) an optimal encoder of P based on

P′, denoted as f†P,P′ .

We can see that the refined versions of Theorem 1, Theorem 2, Definition 5 and Hypothesis 4 are
almost the same as the original versions, except for adding the grid and top level regarding contour
spiking. This indicates that the contour spiking theory and simple spiking theory are essentially the
same. One can regard the simple spiking theory as a specific case of contour spiking theory when
L = 0.

The refined version of Hypothesis 4 claims the existence of an optimal encoder under the chosen grid
κ and top level L. We note that the grid κ and top level L is chosen and then fixed in our discussion.
There is another interesting question: Is it possible to find the optimal grid κ† and optimal top level
L†, so that an optimal encoder can provide the largest theoretical ability under κ† and L† among all
other grids and top levels? This is within the scope of our future research.

E OPTIMAL ENCODERS BY EXAMPLES

In this appendix, we will provide different sequences of functions regarding the data distribution in
each graph of Figure 2. We will show how the independent spiking regions regarding each sequence
of functions divide the data space. Seeking for simplicity, in this appendix section, we always use
the observed spiking efficiency with a large enough sampling size N to approximate the theoretical
spiking efficiency. That is, given the positive values M , M ′ and N as well as α = 10−10, we will
calculate ŜE(M,M ′, N) by:

ŜE(M,M ′, N) =
M

N
log(

M + α

M ′+α
) +

N−M
N

log(
N−M + α

N−M ′+α
), (32)

which can be applied to a single function f , a sequence of functions f = (f1, · · · , fK), or a function
fk within the sequence f in order to approximate the theoretical spiking efficiency.

We start from the example data distribution in the left graph of Figure 2, which contains the data
distribution P to be a uniform distribution within two disjoint circles:

√
(x− 2)2 + (y − 2)2 = 1 and
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√
(x− 5)2 + (y − 2)2 = 1. The data space S is the rectangle {x, y | 0 ≤ x ≤ 7, 0 ≤ y ≤ 4} ⊂ R2,

and the random distribution P′ is uniform on S. Figure 7 shows the independent spiking regions of
functions within six different sequences of functions being applied to this example. We note that in
all the six cases, the spiking region of the entire sequence of functions always coincides with the two
circles. By a routine derivation, we know this makes each sequence of functions the most efficient
encoder with respect to P and P′.

Figure 7: Independent spiking regions for different sequences of functions regarding the data
distribution in the two circles.

• In graph (a) of Figure 7, there is only one function in the sequence. That is, f = (f1), where

f1(x, y) =

{
1, if

√
(x− 2)2 + (y − 2)2 ≤ 1 or

√
(x− 5)2 + (y − 2)2 ≤ 1;

0, otherwise.

The area of each circle is πr2 = π, whereas the area of S is 4 · 7 = 28. Suppose we choose the
sampling size to be N = 10000. Then, there are approximately M ′ = 10000 · 2π

28 ≈ 2244 random
samples generated by the uniform distribution P′ that fall inside the two circles. On the other hand, all
data samples must fall inside the spiking region of f1, which is just the two circles. So, M = 10000.
Finally, there are 6 adjustable parameters in f1: the coordinates of each circle’s center, namely, (2, 2)
and (5, 2); as well as the radius, namely, 1 and 1. The exponent 2 is not adjustable, since adjusting
its value will change the computational complexity of f1. Hence, |f1| = 6. As a result, we have the
observed ability of f = (f1) to be Âf = ŜE(10000, 2244, 10000)/6 ≈ 0.249.

• In graph (b) of Figure 7, there are two functions in the sequence: f = (f1, f2), where

f1(x, y) =

{
1, if

√
(x− 2)2 + (y − 2)2 ≤ 1;

0, otherwise.
, f2(x, y) =

{
1, if

√
(x− 5)2 + (y − 2)2 ≤ 1;

0, otherwise.

Comparing to graph (a), only half data samples and random samples will fall inside one single
circle. So, we have that for both f1 and f2, there are M = 5000, M ′ ≈ 1122 and N = 10000.
Also, we can get |f1| = |f2| = 3, since in each function there are three adjustable parameters:
the circle’s center (xc, yc) and the radius r. Hence, we have Âf = ŜE(5000, 1122, 10000)/3 +

ŜE(5000, 1122, 10000)/3 ≈ 0.307.
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• In graph (c) of Figure 7, there are four functions in the sequence: f = (f1, f2, f3, f4), where f1
through f4 stands for each half circle from left to right:

f1(x, y)=

{
1, if

√
(x− 2)2 + (y − 2)2 ≤ 1 and x ≤ 2;

0, otherwise.

f2(x, y)=

{
1, if

√
(x− 2)2 + (y − 2)2 ≤ 1 and x ≥ 2;

0, otherwise.

f3(x, y)=

{
1, if

√
(x− 5)2 + (y − 2)2 ≤ 1 and x ≤ 5;

0, otherwise.

f4(x, y)=

{
1, if

√
(x− 5)2 + (y − 2)2 ≤ 1 and x ≥ 5;

0, otherwise.

Again, comparing to graph (b), half data samples and random samples will fall inside each half
circle. So, we have that for f1 through f4, there are M = 2500, M ′ ≈ 561 and N = 10000. Also,
we can get |fk| = 4 for k = 1, · · · , 4, since in each function there are four adjustable parameters:
the circle’s center (xc, yc), the radius r, and the diameter bar for the half circle. Hence, we have
Âf = 4 · ŜE(2500, 561, 10000)/4 ≈ 0.201.

• In graph (d) of Figure 7, we have f = (f1, · · · , f8). Each fk has its spiking region to be one sector
in the graph. We have f1 through f4 corresponding to the four sectors in the left circle in counter-
clockwise. Similarly, f5 through f8 corresponds to those in the right circle in counter-clockwise.
That is, f1(x, y) = 1 when

√
(x− 2)2 + (y − 2)2 ≤ 1 and x ≤ 2, y ≥ 2; f2(x, y) = 1 when√

(x− 2)2 + (y − 2)2 ≤ 1 and x ≤ 2, y ≤ 2, etc. So, throughout f1 to f8, we have M = 1250,
M ′ ≈ 280 and N = 10000, whereas |fk| = 5. Therefore, Âf = 8 · ŜE(1250, 280, 10000)/5 ≈
0.152.

• In graph (e) of Figure 7, there are two functions in the sequence f = (f1, f2), whereas their
independent spiking regions are overlapped: Sind

f1
is the right half of the left circle adding the whole

right circle, while Sind
f2

is the whole left circle. That is,

f1(x, y) =

{
1, if

(√
(x− 2)2 + (y − 2)2 ≤ 1 and x ≥ 2

)
or
(√

(x− 5)2 + (y − 2)2 ≤ 1
)
;

0, otherwise.

f2(x, y) =

{
1, if

√
(x− 2)2 + (y − 2)2 ≤ 1;

0, otherwise.

We have M = 7500 and M ′ ≈ 1683 for f1, since Sf1 = Sind
f1

covers 3 half circles. On contrast,
the valid spikings made by f2 are only within the left half of the left circle, corresponding to
Sf2 = Sind

f2
\Sind

f1
. So, we have M = 2500 and M ′ ≈ 561 for f2. Also, |f1| = 3 · 2 + 1 = 7, since

f1 contains the center and radius of both circles as well as x ≥ 2. Easy to see |f2| = 3. Hence,
Âf = ŜE(7500, 1683, 10000)/7 + ŜE(2500, 561, 10000)/3 ≈ 0.184.

• Finally, in graph (f) of Figure 7, there are four functions in the sequence f = (f1, f2, f3, f4): The
independent spiking region Sind

f1
covers the inner circle within the left circle, Sind

f2
covers the whole

left circle, Sind
f3

covers the left half of the right circle, and Sind
f4

covers the right half. That is:

f1(x, y)=

{
1, if

√
(x− 2)2 + (y − 2)2 ≤ 0.5;

0, otherwise.

f2(x, y)=

{
1, if

√
(x− 2)2 + (y − 2)2 ≤ 1;

0, otherwise.

f3(x, y)=

{
1, if

√
(x− 5)2 + (y − 2)2 ≤ 1 and x ≤ 5;

0, otherwise.

f4(x, y)=

{
1, if

√
(x− 5)2 + (y − 2)2 ≤ 1 and x ≥ 5;

0, otherwise.
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By a routine analysis, we haveM = 1250 andM ′ ≈ 280 for f1, M = 3750 andM ′ ≈ 842 for f2, as
well asM = 2500 andM ′ = 561 for both f3 and f4. We have |f1| = |f2| = 3, while |f3| = |f4| = 4.
Hence, Âf = ŜE(1250, 280, 10000)/3+ŜE(3750, 842, 10000)/3+2·ŜE(2500, 561, 10000)/4 ≈
0.239.

We can see that the largest observed ability Âf comes from graph (b). In this case, f contains two
functions, and the independent spiking region of each function covers exactly one data distributed
circle in the graph. By the above enumerating analysis, we can see that the sequence of functions in
case (b) is likely an optimal encoder of P based on P′, where the independent spiking regions of
these two functions indeed divide the data space S in the most appropriate way with respect to the
data distribution P.

Then, we discuss the middle graph of Figure 2, in which the data distribution P is uniform within the
area covered by two overlapped diamonds. The vertex of each diamond coincides with the center
of the other diamond. The centers of the two diamonds are x = 4, y = 3 and x = 6, y = 3. Again,
the random distribution P′ is uniform within S = {x, y | 0 ≤ x ≤ 10, 0 ≤ y ≤ 6}. In Figure 8, we
show three sequences of functions regarding the data distribution in this example. Again, we use
ŜE(M,M ′, N) to approximate all encountered spiking efficiencies.

Figure 8: Independent spiking regions for different sequences of functions regarding the data
distribution in the two overlapped diamonds.

• In graph (a) of Figure 8, the sequence only contains one function: f = (f1). The spiking region of
f1 covers both diamonds. The boundary of Sf1 is indicated as in the graph. We have that:

f1(x, y) =


1, if (x− 3 ≤ y ≤ x+ 1 and − x+ 5 ≤ y ≤ −x+ 9) or

(x− 5 ≤ y ≤ x− 1 and − x+ 7 ≤ y ≤ −x+ 11) ;

0, otherwise.

Easy to see that the area of each diamond is (2
√
2)2 = 8. The overlapped area between two diamonds

is 2, and their entire covered area is 14. The area of the data space S is 10 · 6 = 60. Suppose
the sampling size is N = 4200, so there will be approximately 4200 · 14

60 = 980 random samples
generated by P′ that fall inside the two diamonds. On contrast, all data samples generated by P will
fall inside the two diamonds. So, M = 4200, M ′ = 980 and N = 4200.

One may say that there are 16 adjustable parameters in f1: Each ax+ b ≤ y ≤ cx+ d contains 4
parameters, which in total contributes 16 ones. However, to stay consistent with the previous example
regarding the two circles, we do not regard the scalars multiplied by x as adjustable parameters
(which are 1 and -1 in this example). In addition, we only need four parameters to accurately describe
one diamond rotated from a square: the center (xc, yc), the edge length l and the rotation angle θ. So,
in our opinion, there are 8 parameters in f1 describing the two diamonds, indicating |f1| = 8. As a
result, we have the observed ability Âf = ŜE(4200, 980, 4200)/8 ≈ 0.182.

• In graph (b) of Figure 8, we have two functions being contained in the sequence f = (f1, f2),
where f1 stands for the left diamond and f2 stands for the right one:

f1(x, y) =


1, if x− 3 ≤ y ≤ x+ 1 and

−x+ 5 ≤ y ≤ −x+ 9;

0, otherwise.
, f2(x, y) =


1, if x− 5 ≤ y ≤ x− 1 and

−x+ 7 ≤ y ≤ −x+ 11;

0, otherwise.
We have M = 2400 and M ′ = 560 for f1, since its spiking region covers the entire left diamond.
Then, after removing the overlapped region, the spiking region of f2 covers 3/4 of the right diamond.
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So, we have M = 1800 and M ′ = 420 for f2. Then, given |f1| = |f2| = 4, we have Âf =

ŜE(2400, 560, 4200)/4 + ŜE(1800, 420, 4200)/4 ≈ 0.223.

• In graph (c) of Figure 8, the sequence still contains two functions: f = (f1, f2). But their
independent spiking regions are no more overlapped: f1 still stands for the left diamond, while f2
removes the overlapped part from its independent spiking region. That is,

f1(x, y) =


1, if x− 3 ≤ y ≤ x+ 1 and

−x+ 5 ≤ y ≤ −x+ 9;

0, otherwise.
, f2(x, y) =



1, if (x− 5 ≤ y ≤ x− 1 and
−x+ 7 ≤ y ≤ −x+ 11) and not
(x− 3 ≤ y ≤ x+ 1 and
−x+ 5 ≤ y ≤ −x+ 9);

0, otherwise.

Again, we have M = 2400 and M ′ = 560 for f1, as well as M = 1800 and M ′ = 420 for f2.
But this time we have |f1| = 4 and |f2| = 8. Hence, we have Âf = ŜE(2400, 560, 4200)/4 +

ŜE(1800, 420, 4200)/8 ≈ 0.178.

We have that the largest observed ability comes from case (b), where each function in the sequence of
functions stands for one diamond. This is also the most appropriate way, according to our intuition,
for the independent spiking regions to divide the data space with respect to P. One may argue that
the spiking region in graph (a) is the most appropriate dividing of the data space. However, we claim
that our mind will in fact automatically ‘fill in’ the missing edges within the two symmetrically
overlapped diamonds, which coincides with the independent spiking regions of case (b). Anyway, the
sequence of functions in case (b) is likely an optimal encoder with respect to P and P′ in this example.

Finally, we discuss the right graph of Figure 2: There are 15 squares within S = {x, y | 0 ≤ x ≤
14, 0 ≤ y ≤ 8}, whereas each square has edge length 1. The data distribution P is uniform within
these 15 squares, while the random distribution P′ is uniform in S. Then, Figure 9 shows two
different sequences of functions: The left graph in Figure 9 shows a sequence containing only one
function f = (f1), where the independent spiking region of f1 covers all 15 squares. The right graph
in Figure 9 shows a sequence containing 15 functions f = (f1, · · · , f15), where the independent
spiking region of each function covers exactly one square.

Figure 9: Independent spiking regions for two different sequences of functions regarding the data
distribution in the 15 squares.

The area of S is 14 ·8 = 112, and the area of each square is 1. Suppose we choose N = 11200. Then,
there are approximately 11200 · 15

112 = 1500 random samples falling inside all 15 squares, with each
square containing around 100 random samples. So, in the left graph of Figure 9, we have M = 11200
and M ′ = 1500 for f1. The size of f1 is at least 3 · 15 = 45. This is because we need at least three
parameters (the center (xc, yc) and the edge length l) to accurately describe one square. Without
lose of generality, we always work with optimal functions (see Appendix B) for all spiking regions.
Hence, |f1| = 45. As a result, the observed ability is Âf = ŜE(11200, 1500, 11200)/45 ≈ 0.045.

Then, for the right graph of Figure 9, each function fk in f = (f1, · · · , f15) has its independent
spiking region covering exactly one square. We have that M = 11200/15 ≈ 747 and M ′ =
1500/15 = 100 for each fk. Also, |fk| = 3 since each fk needs at least 3 parameters to record the
center and edge length of each square. Hence, we have Âf = 15 · ŜE(747, 100, 11200)/3 ≈ 0.390.
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We also tried other sequences of functions, such as each function in the sequence corresponding to
the squares in one row or one column. But none of them has an observed ability exceeding 0.39.
Hence, the sequence of functions f = (f1, · · · , f15) corresponding to the right graph of Figure 9 is
likely to be an optimal encoder with respect to P and P′ in this example, in which the independent
spiking regions of functions divide the data space in the most appropriate way with respect to P.

As we mentioned in Section 3.4, in the last example, we want to discuss a data probability distribution
that is not uniformly distributed within a region. As shown in Figure 10, the data distribution
P has varied probability density within the two concentric circles: Its probability density within
the inner circle

√
(x− 4)2 + (y − 4)2 ≤ 1 is 5 times higher than that within the outer circle√

(x− 4)2 + (y − 4)2 ≤ 2. Again, P′ is uniform on S = {x, y | 0 ≤ x ≤ 8, 0 ≤ y ≤ 8}.

Figure 10: The data probability distribution whose probability density varies within two concentric
circles.

Suppose we have the sampling size N = 10000. Then, there are approximately 10000 · π
64 ≈ 491

random samples falling in the inner circle, and approximately 10000 · 4π
64 ≈ 1963 random samples

falling in the outer circle. So, there are around 1472 random samples in the annular region. According
to our setting, there are approximately 10000 · 5

8 = 6250 data samples falling in the inner circle, and
approximately 3750 data samples in the annular region.

According to our enumeration, the most efficient encoder is likely f = (f1), with the spiking region
of f1 covering the outer circle:

f1(x, y) =

{
1, if

√
(x− 4)2 + (y − 4)2 ≤ 2;

0, otherwise.

We have the observed spiking efficiency of f = (f1) to be ŜEf = ŜE(10000, 1963, 10000) ≈ 1.628,
which is the largest value we can get in our enumeration. Also, f = (f1) is likely an optimal encoder
in this example, whose observed ability is Âf = ŜE(10000, 1963, 10000)/3 ≈ 0.543. We have
checked the observed ability of f = (f1, f2), where f1 stands for the inner circle and f2 stands
for the outer circle. With the same theoretical (and observed) spiking efficiency as f = (f1), this
sequence of function f = (f1, f2) has a lower observed ability: Âf = ŜE(6250, 491, 10000)/3 +

ŜE(3750, 1472, 10000)/3 ≈ 0.466 < 0.543. We failed to find another sequence of functions with
an observed ability larger than 0.543 in this example. As a result, the obtained optimal encoder
f = (f1) ignores the inner circle, which fails to perfectly match with our intuition.

This example shows a defect of our theory: A spiking function cannot further represent the probability
density variations within its spiking region. That says, we need to further consider how strong a
function’s spiking is, so that functions can encode the information from the data distribution in a
more detailed way. This is just the contour spiking theory we proposed in Appendix D.
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