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Figure 1: EMA efficiently and jointly learns canonical shapes, materials, and motions via differ-
entiable inverse rendering in an end-to-end manner. The method does not require any predefined
templates or riggings. The derived avatars are animatable and can be directly applied to the graphics
rendering pipeline without any post-processing. All figures are best viewed in color.

ABSTRACT

Efficiently digitizing animatable human avatars from videos is a challenging and
active research topic. Recent volume rendering-based neural representations open
a new way for human digitization with their good usability and photo-realistic re-
construction quality. However, they are inefficient for long optimization times and
slow inference speed; their implicit nature results in entangled geometry, materi-
als, and dynamics of humans, which are hard to edit afterward. Such drawbacks
prevent their direct applicability to downstream tasks, especially the prominent
rasterization-based graphics pipeline. We present EMA, a method that Efficiently
learns Meshy neural fields to reconstruct animatable human Avatars. It jointly
optimizes explicit triangular canonical mesh, spatial-varying material, and motion
dynamics, via inverse rendering in an end-to-end fashion. Each above compo-
nent is derived from separate neural fields, relaxing the requirement of a tem-
plate, or rigging. The mesh representation is highly compatible with the effi-
cient rasterization-based renderer, thus our method only takes about an hour of
training and can render in real-time. Moreover, only minutes of optimization are
enough for plausible reconstruction results. The textured meshes enable direct
downstream applications. Extensive experiments illustrate the very competitive
performance and significant speed boost against previous methods. We also show-
case applications including novel pose synthesis, material editing, and relighting.

1 INTRODUCTION

Recent years have witnessed the rise of human digitization (Habermann et al.,[2020; [Alexander et al.}
[2010}, [Peng et al, [2021b} [Alldieck et al.| 2018a} Raj et al. [2021). This technology greatly impacts
the entertainment, education, design, and engineering industries. There is a well-developed industry
solution for this task, which leverages dense observations. Photo-realistic reconstruction of humans
can be achieved either with full-body laser scans (Saito et al, 2021), dense synchronized multi-view

cameras (Xiang et al,[2021b}[2022} [20214), or light stages (Alexander et al.,[2010). However, these
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settings are expensive, tedious to deploy, and consist of a complex processing pipeline, preventing
the technology’s democratization.

Another solution is to formulate the problem as inverse rendering and learn digital humans di-
rectly from sparse observations. Traditional approaches directly optimize explicit mesh representa-
tion (Loper et al., 2015} |Fang et al., 2017} Pavlakos et al.,[2019) which suffers from the problems of
smooth geometry and coarse textures (Prokudin et al., 2021} |Alldieck et al.| 2018b). Besides, they
require professional artists to design human templates, rigging, and unwrapped UV coordinates.
Recently, with the help of volumetric-based implicit representations (Mildenhall et al., 2022 |Park:
et al., 2019; Mescheder et al.,[2019) and neural rendering (Laine et al.l 2020} Liu et al.,2019; |Thies
et al.l2019), one can easily digitize a photo-realistic human avatar from sparse multi-view, or even
single-view video(s) (Jiang et al.,|2022; Weng et al., |2022)). Particularly, volumetric-based implicit
representations (Mildenhall et al.| 2022} Peng et al., 2021b) can reconstruct scenes or objects with
higher fidelity against previous neural renderer (Thies et al.l |2019; [Prokudin et al) 2021)), and is
more user-friendly as it does not need any human templates, pre-set rigging, or UV coordinates.
The captured footage and its corresponding skeleton tracking are enough for training. However,
better reconstructions and better usability are at the expense of the following factors. 1) Inefficiency
in terms of rendering: They require longer optimization times (typically tens of hours or days)
and inference slowly. Volume rendering (Mildenhall et al.| [2022; Lombardi et al., 2019) formu-
lates images by querying the densities and colors of millions of spatial coordinates. In the training
stage, only a tiny fraction of points are sampled due to memory constraints, which leads to slow
convergence speed. 2) Inefficiency in terms of skinning: Previous methods leverage existing the
skinning template (Loper et al.l [2015) which is not trainable and leads to sub-optimal results. To
learn the subject-specific skinning, [Chen et al.| (2021b) proposed a root finding-based method to
query the canonical points, which results in better quality but drastically increases the training time.
3) Graphics incompatibility: Volume rendering is incompatible with the current popular graphic
pipeline, which renders triangular/quadrilateral meshes efficiently with the rasterization technique.
Many downstream applications require mesh rasterization in their workflow (e.g., editing (Founda-
tion)), simulation (Bender et al., 2014), real-time rendering (Moller et al., 2008)), ray-tracing (Wald:
et al.;2019)). Although there are approaches (Lorensen & Cline, |1987; | Labelle & Shewchuk| [2007)
can convert volumetric fields into meshes, the gaps from discrete sampling degrade the output qual-
ity in terms of both geometry and textures.

To address these issues, we present EMA, a method based on Efficient Meshy neural fields to
reconstruct animatable human Avatars. Our method enjoys flexibility from implicit representa-
tions and efficiency from explicit meshes, yet still maintains photo-realistic reconstruction quality.
Given video sequences and the corresponding pose tracking, our method digitizes humans in terms
of canonical triangular meshes, physically-based rendering (PBR) materials, and skinning weights
w.rt. skeletons. We jointly learn the above components via inverse rendering (Laine et al., 2020;
Chen et al., [2021a; [2019) in an end-to-end manner. Each of them is encoded by a separate neu-
ral field, which relaxes the requirements of a preset human template, rigging, or UV coordinates.
Specifically, we predict a canonical mesh out of a signed distance field (SDF) by differentiable
marching tetrahedra (Shen et al., 2021} |Gao et al.l 2022} [2020; [Munkberg et al., |2022), then we
extend the marching tetrahedra (Shen et al.,2021)) for spatial-varying materials by utilizing a neural
field to predict PBR materials on the mesh surfaces after rasterization (Munkberg et al., [2022; |Has-
selgren et al., [2022; Laine et al., |2020). To make the canonical mesh animatable, we use another
neural field to model the forward linear blend skinning for the canonical meshes. Thus, given
a posed skeleton, the canonical meshes are transformed into the corresponding poses. Finally, we
shade the mesh with a rasterization-based differentiable renderer (Laine et al.| [2020) and train our
models with a photo-metric loss. After training, we export the mesh with materials and discard the
neural fields.

There are several merits of our method design. 1) Efficiency in terms of rendering: Powered
by efficient mesh rendering, our method can render in real-time. Besides, the training speed is
boosted as well, since we compute loss holistically on the whole image and the gradients only
flow on the mesh surface. In contrast, volume rendering takes limited pixels for loss computation
and back-propagates the gradients in the whole space. Our method only needs about an hour of
training yet minutes of optimization are enough for plausible reconstruction quality. Our shape,
materials, and motion modules are split naturally by design, which facilitates editing. To further
improve reconstruction quality, we additionally optimize image-based environment lights and non-
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Figure 2: The pipeline of EMA. EMA jointly optimizes canonical shapes, materials, lights, and mo-
tions via efficient differentiable inverse rendering. The canonical shapes are attained firstly through
the differentiable marching tetrahedra (Gao et al., 2020; Shen et al., [2021; Munkberg et al., |2022),
which converts SDF fields into meshes. Next, it queries PBR materials, including diffuse colors,
roughness, and specularity on the mesh surface. Meanwhile, the skinning weights and per-vertices
offsets are predicted on the surface as well, which are then applied to the canonical meshes with
the guide of input skeletons. Finally, a rasterization-based differentiable renderer takes in the posed
meshes, materials, and environment lights, and renders the final avatars efficiently.

rigid motions. 2) Efficiency in terms of skinning: Compared with (Chen et al.,|2021b), the root
finding-based method to query the canonical points to learn forward skinning, Our method leverages
differentiable rasterization to learn both mesh properties and the forward skinning jointly in an
end-to-end optimizable way, which is orders of magnitude faster. Besides, Canonical meshes with
forward skinning modeling handle the out-of-distribution poses better. 3) Graphics compatibility:
Our derived mesh representation is compatible with the prominent graphic pipeline, which leads to
instant downstream applications (e.g., the shape and materials can be edited directly in the design
software (Foundation)).

We conduct extensive experiments on standards benchmarks H36M (Ionescu et al.,[2014) and ZJU-
MoCap (Peng et al.l 2021b). Our method achieves very competitive performance for novel view
synthesis, generalizes better for novel poses, and significantly improves both training time and in-
ference speed against previous arts. Our research-oriented code reaches real-time inference speed
(100+ FPS for rendering 512 x 512 images). We in addition showcase applications including novel
pose synthesis, material editing, and relighting.

2 RELATED WORKS

Explicit Representations for Human Modeling: It is intuitive to model the surfaces of humans
with mesh. However, humans are highly varied in both shape and appearance and have complex
pose distributions, which all contribute to a high-dimensional modeling space. To start with, re-
searchers tried to model humans with statistical models and an assumption of nearly no clothes. One
of the prevalent methods is parametric models (Anguelov et al., 2005} [Loper et al., [2015}; [Pavlakos
et al., |2019; [Romero et al., 2017; |Su et al., | 2021). The models are learned with principal compo-
nent analysis from enormous scans of humans with limited clothes (Loper et al., [2015). However,
fitting humans from scans is inapplicable in real-world applications. Thus, Kanazawa et al.| (2018));
Bogo et al. (2016)); [Kocabas et al.| (2021)); [Zhang et al.| (2021a; |2022); Kocabas et al.[ (2020); |Sun
et al.| (2021) proposed to estimate the human surface from images or videos. To model the clothed
human, [Prokudin et al.| (2021)); |Alldieck et al.| (2022;|2018b)) deform the template human vertices in
canonical T-pose. Nevertheless, these methods are prone to capturing coarse geometry due to the
limited geometry budget and the weak deformation model. Besides, the textures are modeled with
sphere harmonics which are far from photo-realistic. Our method takes the mesh as our core rep-
resentation to enable efficient training and rendering, then achieves the topological change of shape
and photo-realistic texture via neural fields.

Implicit Representations for Human Modeling: Implicit representations (Park et al., 2019;
Mescheder et al., 2019; Mildenhall et al.l |2022) model the objects in continuous functions, where
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those explicit entities cannot be attained directly. The prevalent options are Signed Distance Func-
tion (Park et al., |2019), Occupancy Field (Mescheder et al., [2019) and Radiance Field (Mildenhall
et al., 2022), which can be easily parameterized by neural networks. Given full-body scans as
3D supervision, [Saito et al.| (2019} |2020); He et al.| (2021)); Huang et al| (2020); |Alldieck et al.
(2022) learned the SDFs or occupancy fields directly from images. After training, they directly
predict photo-realistic human avatars in inference time. [Peng et al.| (2021b); [Su et al.| (2021); [Liu
et al.| (2021)); Peng et al.| (2021a)); Li et al.| (2022)); Jiang et al.| (2022); |Chen et al.| (2022); Wang
et al.| (2022); Zhang & Chen| (2022); Noguchi et al.| (2021); |[Zheng et al.| (2022); [Jiang et al.| (2023))
leveraged the radiance field to reconstruct photo-realistic human avatars from multi-view images or
single-view videos without any 3D supervision. Although implicit representations improve recon-
struction quality against explicit ones, they still have drawbacks, e.g., large computation burden or
poor geometry. Besides, volume rendering is presently under-optimized with graphics hardware,
thus the outputs are inapplicable in downstream applications without further post-processing,
which is either extremely slow or loses certain features like pose-dependent deformation. Our
method absorbs the merits of implicit representations by using neural networks to predict canon-
ical shape, pose-dependent deformation, and photo-realistic textures, leveraging (Shen et al., [2021)
to convert SDFs to explicit meshes whose rendering is highly optimized within the graphics pipeline.

Hybrid Representations for Human Modeling: There are two tracks of literature modeling hu-
mans with explicit geometry representations and implicit texture representations. One track of lit-
erature (Khakhulin et al., 2022} [Zhao et al., [2022)) leveraged neural rendering techniques (Thies
et al.| [2019). Meshes (Prokudin et al., [2021; [Zhao et al., 2022} Alldieck et al. 2018bfa; Xiang
et al., 2021a), point clouds (Wang et al., 2021}; [Uzolas et al.} [2023)), or mixture of volumetric prim-
itives (Remelli et al., 2022) are commonly chosen explicit representations. Moreover, fine-grained
geometry and textures are learned by neural networks. However, these methods are either only
applicable for novel view synthesis (Wang et al.l 2021) or restricted to self-rotation video cap-
tures (Alldieck et al.| |2018bga). Besides, the neural renderers have limited capabilities leading to
problems such as stitching texture (Karras et al., 20215 [2020)), or baked textures inside the renderer.
In contrast, the human avatars learned by our method are compatible with graphics pipeline, in-
dicating that they are directly applicable in downstream tasks, e.g., re-posing, editing in design
software. The other track of literature took neural networks to learn both geometry and textures with
differentiable rendering (Laine et al., 2020;|Chen et al.}|2021a;2019). It equips the traditional graph-
ics pipeline with the ability of gradient backpropagation (Liu et al., |2019; Blanz & Vetter, [1999;
Laine et al., 2020; Ravi et al.| 2020} [Lassner & Zollhofer, 2021} Raj et al., [2021)., which makes
scene properties (e.g., assets, lights, cameras poses, efc.) optimizable through gradient descent w.7.¢
photo-metric loss. Thus, both geometry and textures are learned in a way that is compatible with
existing graphics hardware. However, the geometry optimization process is non-convex and highly
unstable (Grassal et al., [2022)), thus it is hard to produce fine-grained geometry details. Besides, the
fixed and limited topology of the mesh results in limited capability of shape modeling. We convert
SDFs to meshes with differentiable marching tets (Munkberg et al., 2022} [Shen et al., 2021}, and
model the motion dynamics with an additional neural field. Our method enjoys flexibility from im-
plicit representations and efficiency brought by explicit meshes, yet still maintains photo-realistic
reconstructions.

3 METHOD

We formulate the problem as inverse rendering and extend [Munkberg et al.|(2022) to model dynamic
actors that are driven solely by skeletons. The canonical shapes, materials, lights, and actor motions
are learned jointly in an end-to-end manner. The rendering happens with an efficient rasterization-
based differentiable renderer (Laine et al., [2020).

Optimization Task: Let ® denote all the trainable parameters in neural networks that encode:
(1) SDF values and corresponding offsets defined on the tet vertices for canonical geometry; (2)
spatial-varying and pose-dependent materials and environmental light probe for shading; (3) forward
skinning weights and non-rigid offsets defined on the mesh vertices for motion modeling.

For a given camera pose ¢ and a tracked skeleton pose P, we render the image Is p(c,P) with
a differentiable renderer D, and compute loss with a loss function L, against the reference image
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I,cf(c,P). The optimization goal is to minimize the empirical risk:

arg;nin Ecp [L(Ie,p(c, P), Lies (¢, P))]. M

The parameters @ are optimized with Adam (Kingma & Ba, 2015)) optimizer. Following (Munkberg
et al.,2022), our loss function L = Ly + Liask + Lreg consists of three parts: an image 1oss Lg
using /1 norm on tone mapped color, and mask loss L,k using squared /-, and regularization
losses Ly to improve the quality of canonical geometry, materials, lights, and motion.

Difference between rasterization-based rendering and volume rendering: At each optimization
step, our method holistically learns both shape and materials from the whole image, while the
volume rendering-based implicit counterparts only learn from limited points per pixels. Besides,
the gradients in our method only flow through the iso-surface, which is drastically less than NeRF,
whose gradients flow over the whole space. Thus, our method can converge even faster.

Powered by an efficient rasterization-based renderer, our method enjoys both faster convergence
and real-time rendering speed. For details about optimization and losses, please refer to our
supplementary.

3.1 CANONICAL GEOMETRY

Rasterization-based differentiable renderers take triangular meshes as input, which means the whole
optimization process happens over the mesh representation. Previous works (Alldieck et al.
2018bja) require a mesh template to assist optimization as either a shape initialization or regular-
ization. The templates that have fixed topology and limited resolutions harm the geometry quality.
Besides, to make the learned geometry generalize to novel poses, the underlying geometry represen-
tations should lie in a canonical space.

We utilize the differentiable marching tetrahedra (Shen et al.| |2021}; |Gao et al., 2020) algorithm to
model the humans in canonical space, which converts SDF fields into triangular meshes. This
method enjoys the merit of being template-free and topology-free from implicit SDF repre-
sentations, then produces explicit triangle meshes that are efficient and directly applicable to
rasterization-based renderers.

Let Viet, Fiet, Ttet and be the pre-defined vertices, faces, and UV coordinates of the tetrahedra grid.
We parameterize both per-tet vertice SDF value S and vertices offsets AV with a coordiante-
based nerual network:

Fy : (Viet) = (S, AViet), 2

geom
the canonical mesh M, = (V,F., T.) (i.e, canonical mesh vertices, faces, and UV map coordi-
nates) is derived by marching tetrahedra operator 11:

IT: (VtetthetaTtet,S»AVtet) — (VC7FC7TC)' 3)

I
VietS5i —VietSi

Specifically, the vertices of the canonical mesh are computed by v/ , where

. . . Sj—S84q

vit, = v + Av® and sign(s;) # sign(s;). In other words, only the edges that cross the surface of
canonical mesh participate the marching tetrahedra operator, which makes the mesh extraction both
computation and memory-efficient.

Besides, compared with the volume rendering-based method whose gradient flows all over the space,
the gradient flow of our method only passes through the iso-surface, which makes our model con-
verge even faster. As well for rendering and loss computation overhead, our method can render
the whole image for loss computing, which further improves the training efficiency. While for
volume rendering counterparts, only a small fraction of pixels are involved.

To reduce the memory usage at the beginning of training, we initialize the SDF field to match the
coarse visual hull of humans. After training, we can discard the SDF and deformation neural nets
Fg,,,, and store the derived meshes. That leads to zero computation overhead in inference time. For
more details about geometry modeling (e.g., initialization, please refer to our supplementary.
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Figure 3: Qualitative results of novel view synthesis on the H36M and ZJU-MoCap datasets.
(Peng et al.| [2021bga) generates blurry textures compared with our method. The mesh representa-
tions and forward skinning modeling help to improve rendering quality. Left: H36M dataset. Right:
ZJU-MoCap dataset. Zoom in for a better view.

3.2 SHADING MODEL

Materials: we use a Physically-Based Rendering (PBR) material model (McAuley et al., [2012),
which is directly applicable to the differentiable renderer. PBR material is a well-developed tech-
nique that is widely used in industries as gaming, movie, design, etc (McAuley et al.| 2012). It con-
sists of a diffuse term with an isotopic GGX lobe representing specularity. Concretely, it consists of
three parts: 1) diffuse lobe k; has four components, i.e. RGB color channels and an additional alpha
channel; 2) specular lobe comprises a roughness value r for GGX normal distribution function and a
metalness factor m which interpolates the sense of reality from plastic to pure metallic appearance.
The specular highlight color is given by an empirical formula k; = (1 —m) - 0.04 + m - k;. We
store the specular lobe into texture Ko, = (0,7, m), where the channel o is unused by convention.
To compensate for the global illumination, we alternatively store the ambient occlusion value into o.
3) normal maps n represents the fine-grained geometry details. The diffues color kg, texture kKo,
and normal maps n are parametrized by an neural network:

Fs ., : (ve,P) = (kKg, Korm, 1). (€))
Following standard rasterization-based rendering, We query the material values given the vertices
after rasterization and barycentric interpolation over the canonical mesh. The PBR material is
further conditioned on poses to model the pose-dependent shading effect.

Lights: Our method learns a fixed environment light directly from the reference images (Munkberg
et al.| [2022)). The lights are represented as a cube light. Given direction w,, We follow the render
equation (Kajiya, |1986) to compute the outgoing radiance L (w,):

L(w,) = /Q L (w3) f (wi, w0) (w; - ) du, 5)

the outgoing radiance is the integral of the incident radiance L; (w;) and the BRDF f (w;,w,). We
do not use spherical Gaussians (Chen et al., 2019) or spherical harmonics (Boss et al.,[2021;Zhang
et al., 2021b)) to approximate the image-based lighting. Instead, we follow (Munkberg et al., [2022)
using the split sum approximation that capable of modeling all-frequency image-based lighting:

L (wy) ~ /Qf(wi,wo) (wi - 1) duws
(6)
/Q L, (wq) D (wi, w(,) (wq; . n) de
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Figure 4: Qualitative results of novel pose synthesis on the H36M and ZJU-MoCap datasets.
(Peng et al., [2021bga) generates blurry textures compared with our method. The mesh representa-
tions and forward skinning modeling help to improve generalization. Left: H36M dataset. Right:
ZJU-MoCap dataset. Zoom in for a better view.

The materials and lights are optimized jointly with geometry and motion modules in an end-to-
end fashion. The decomposed design of geometry and shading, along with compatibility with the
triangle renderer enables editing and content creation instantly after training.

For more details about the shading and lighting model, please refer to the supplementary.

3.3 MOTION MODEL

After we define the mesh-based avatars in canonical space with the PBR materials and the en-
vironmental lights, it is intuitive and natural to choose forward linear skinning (Rumman &
Fratarcangeli, [2016) as our motion model. Given a skeleton with B bones, the skeleton poses
P = {T,,Ts,...,Tp}, where each T; represents the transformation on bone ¢, and the blend
skinning weights W = {wy, ws, ..., wp}, we deform each mesh vertice v in canonical space to
the posed vertice v,, in world space by:

w = LBS(v.,P,W) = sz Wes (7)

to compensate for non-rigid cloth dynamics, we add a layer of pose-dependent non-rigid offsets Av,.

for canonical meshes:
vy = LBS(v. + Av., P, W), (8)

where the blend skinning weights and the pose-dependent non-rigid offsets are, respectively, param-
eterized by neural networks whose inputs are canonical mesh vertices:

Fq)LBS : (VC) - W, 9
Fy, :(ve,P) = Av,. (10)

Modeling forward skinning is efficient for training as it only forward once in each optimization step,
while the volume-based methods (Li et al.| [2022; Wang et al., 2022} |Chen et al., [2021b)) solve the
root-finding problem for canonical points in every iteration, which is computationally expensive and
time-consuming.

We leverage the existing skinning weights from the parametric model SMPL (Loper et al.| 2015) to
initialize and regularize the skinning neural field as (Wang et al.l [2022)). The offset field is as well
regularized to be zero as (Li et al., [2022)). After training, we can export the skinning weight from
neural networks which removes the extra computation burden for inference. For more details about
the motion model, please refer to our supplementary.
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Table 1: Quantitative results. On the marker-based H36M, our method achieves SOTA perfor-
mance in all optimization durations. While on the markerless ZJU-MoCap, our method is compara-
ble with previous arts. “T.F.” means template-free; “Rep.” means representation; “T.T” means the
training time; * denotes the evaluation on a subset of validation splits. Though there exists a lag
of quantitative performance on ZJU-Mocap due to the dataset quality which breaks our constant
lighting assumption (we discuss this in supp.), the visual quality is better as shown in Figure@@}

H36M ZJUMOCAP
‘ TE  Rep ‘ TT Training pose Novel pose Training pose Novel pose
-+ IR PSNRT SSIMT PSNRT SSIMT | PSNRT  SSIMT PSNRT _ SSIMT
NB |Peng et al.|(2021b) NV ~10h 23.31 0.902 2259  0.882 28.10 0.944 2349  0.885
SA-NeRF|Xu et al.|(2022) NV ~30h 24.28 0.909 2325  0.892 28.27 0.945 2442 0902
Ani-NeRF|Peng et al.|(2021a) | v/ NV ~10h 23.00 0.890 22.55  0.880 26.19 0.921 2338  0.892
ARAH |Wang et al.|(2022) v NV ~48 h 24.79 0.918 2342  0.896 28.51 0.948 2463 0911
Ours v Hybr | ~1h 24.72 0.916 23.64 0.899 26.57 0.901 2438  0.875
NB NV 20.58 0.879 20.27  0.867 26.87 0.922 23.67 0.885
SA-NeRF NV 21.03 0.878 20.71  0.869 24.92 0.882 2338  0.869
Ani-NeRF v NV ~1h* 22.54 0.872 21.79  0.856 21.23 0.659 20.65 0.652
ARAH v NV 24.25 0.904 23.61  0.892 26.33 0.924 2467 0911
Ours v Hybr 24.83 0.917 23.64 0.899 26.66 0.901 24.64  0.880
NB NV 20.54 0.863 20.15  0.853 25.37 0.894 2354  0.873
SA-NeRF NV 20.81 0.848 2049 0.841 24.48 0.878 2375  0.872
Ani-NeRF v NV ~10 m* 20.57 0.822 20.22  0.806 21.17 0.652 21.16  0.656
ARAH v NV 23.83 0.895 23.13  0.884 25.09 0.906 2421  0.898
Ours v Hybr 24.27 0.909 2337 0.897 25.51 0.888 2442 0.878

4 EXPERIMENTS

4.1 DATASET AND METRICS

H36M consists of 4 multi-view cameras and uses marker-based motion capture to collect human
poses. For the marker-based motion capture system, several markers are attached to the subject
to indicate the motion of joints during the capture. Then, the 3D coordinate of the joints for each
frame can be recovered via triangulation. The obtained 3D joints can form the tracked poses that
are considerably accurate. Each video contains a single subject performing a complex action. We
follow (Peng et al.l [2021a) data protocol which includes subject S1, S5-S9, and S11. The videos
are split into two parts: ““training poses” for novel view synthesis and “Unseen poses” for novel
pose synthesis. Among the video frames, 3 views are used for training, and the rest views are for
evaluation. The novel view and novel pose metrics are computed on rest views. We use the same
data preprocessing as (Peng et al., [2021a).

ZJU-MoCap records 9 subjects performing complex actions with 23 cameras. The human poses
are obtained with a markerless motion capture system, whose joints are estimated by 2D keypoint
estimation algorithm (Cao et al., [2021)), which are noisy and may lack temporal consistency. The
3D coordinates of joints are produced by triangulation as well. Thus the pose tracking is rather nois-
ier compared with H36M. Likewise, there are two sets of video frames, ‘‘training poses” for novel
view synthesis and ‘“Unseen poses’ for novel pose synthesis. 4 evenly distributed camera views
are chosen for training, and the rest 19 views are for evaluation. The evaluation metrics are com-
puted on rest views. The same data protocol and processing approaches are adopted following (Peng
et al., [2021bzal).

Metrics. We follow the typical protocol in (Peng et al.l 2021bja)) using two metrics to measure
image quality: peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM).

4.2 EVALUATION AND COMPARISON

Methods and Settings. We compare our method with template-based methods (Peng et al., [2021bj
Xu et al., [2022) and template-free methods (Peng et al., 2021a; Wang et al., 2022). Here we list
the average metric values given different training times (i.e., 10 minutes, 1 hour, and fully con-
verged time) in Table [I] to illustrate our very competitive performance and significant speed boost.
1) Tempelate-based methods. Neural Body (NB) (Peng et al.,[2021b) learns a set of latent codes an-
chored to a deformable template mesh to provide geometry guidance. Surface-Aligned NeRF (SA-
NeRF) (Xu et al.| |2022) proposes projecting a point onto a mesh surface to align surface points and
signed height to the surface. 2) Template-free methods. Animatable NeRF (Ani-NeRF) (Peng et al.,
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2021a)) introduces neural blend weight fields to produce the deformation fields instead of explicit
template control. ARAH (Wang et al.,|2022) combines an articulated implicit surface representation
with volume rendering and proposes a novel joint root-finding algorithm.

Comparisons with state-of-the-arts (SOTAs). Table[T]illustrates the quantitative comparisons with
previous arts. Notably, our method achieves very competitive performance within much less training
time. The previous volume rendering-based counterparts spend tens of hours of optimization time,
while our method only takes an hour of training (for previous SOTA method ARAH (Wang et al.,
2022)), it takes about 2 days of training). On the marker-based H36M dataset, our method reaches
the SOTA performance in terms of novel view synthesis on training poses. It outperforms previous
SOTA (ARAH (Wang et al.,|2022)) for novel view synthesis on novel poses, which indicates that our
method can generalize better on novel poses. The significant boost in training speeds lies in, on the
one hand, the core mesh representation which can be rendered efficiently with the current graphic
pipeline (Laine et al., 2020). On the other hand, the triangular renderer uses less memory. Thus
we can compute losses over the whole image to learn the representations holistically. In contrast,
previous NeRF-based methods are limited to much fewer sampled pixels in each optimization step,
which converge slowly and are computationally expensive.

On the markerless ZJU-Mocap dataset, our method falls behind for training poses novel view syn-
thesis and ranks 3rd place in terms of unseen poses novel view synthesis among the competitors.
This is because ZJU-Mocap breaks our assumption of constant lighting. To enable editing of tex-
ture without involving lighting, we do not use view-direction as a condition as in (Mildenhall et al.,
2022). We discuss this in detail in the supplementary. Despite a lag in quantitative comparison
(Table [)), for comparison of fully converged models, our method is still better than most previous
methods and is on par with the SOTA method ARAH (Figure[3|andd). We also encourage our read-
ers to view our supplementary video for further assessment. The misalignment of qualitative and
quantitative results indicates the limitation of current evaluation metrics solely based on similarities.

We evaluate each method under the same optimization duration in Table [I] For the extremely
low inference speed of our competitor, we only evaluate at most 10 frames in each subject, and for
ZJU MoCap we only choose another 4 evenly spaced cameras as the evaluation views. For both
1 hour and 10 minutes optimization time, our method outperforms other methods for both training
poses and unseen poses novel view synthesis on the marker-based H36M dataset. On the markerless
ZJU-Mocap dataset, our method is comparable with previous SOTA in terms of PSNR and SSIM
for both evaluation splits. Again, Figure [3]and[d]shows that our method can achieve more favorable
visual quality against previous methods for 10 minutes and an hour of optimization, which raises
concerns about the misalignment between the visual quality and the quantitative metrics.

Rendering Efficiency: We provide the rendering speed of our FPS .
method against previous methods. Our method reaches real-time 100 o > SA-NeRF
inference speed (100+ FPS for rendering 512x512 images), which o A

is hundreds of times faster than the previous ones. Our method takes O Ours

considerably less memory than the previous ones.

Inference Speed

4.3  APPLICATIONS * Inference Memory

After training, we can export mesh representations, which enables instant downstream applications.
We showcase two examples of novel pose synthesis, material editing, and human relighting in Fig-
ure |1} For more examples, please refer to our supplementary, especially the accompanied video.

5 CONCLUSIONS

We present EMA, which learns human avatars through hybrid meshy neural fields efficiently. EMA
jointly learns hybrid canonical geometry, materials, lights, and motions via a rasterization-based
differentiable renderer. It only requires one hour of training and can render in real-time with a
triangle renderer. Minutes of training can produce plausible results. Our method enjoys flexibility
from implicit representations and efficiency from explicit meshes. Experiments on the standard
benchmark indicate the competitive performance and generalization results of our method. The
digitized avatars can be directly used in downstream tasks. We showcase examples including novel
pose synthesis, material editing, and human relighting.
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