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ABSTRACT

Data augmentation is an essential building block for learning efficient deep learning
models. Among all augmentation techniques proposed so far, linear interpolation
of training data points, also called mixup, has found to be effective for a large
panel of applications. While the majority of works have focused on selecting
the right points to mix, or applying complex non-linear interpolation, we are
interested in mixing similar points more frequently and strongly than less similar
ones. To this end, we propose to dynamically change the underlying distribution of
interpolation coefficients through warping functions, depending on the similarity
between data points to combine. We define an efficient and flexible framework to do
so without losing in diversity. We provide extensive experiments for classification
and regression tasks, showing that our proposed method improves both performance
and calibration of models.

1 INTRODUCTION

The Vicinal Risk Minimization (VRM) principle (Chapelle et al., 2000) improves over the well-known
Empirical Risk Minimization (ERM) (Vapnik, 1998) for training deep neural networks by drawing
virtual samples from a vicinity around true training data. This data augmentation principle is known to
improve the generalization ability of deep neural networks when the number of observed data is small
compared to the task complexity. In practice, the method of choice to implement it relies on hand-
crafted procedures to mimic natural perturbations (Yaeger et al., 1996; Ha & Bunke, 1997; Simard
et al., 2002). However, one counterintuitive but effective and less application-specific approach for
generating synthetic data is through interpolation, or mixing, of two or more training data.

The process of interpolating between data have been discussed multiple times before (Chawla et al.,
2002; Wang et al., 2017; Inoue, 2018; Tokozume et al., 2018), but mixup (Zhang et al., 2018)
represents the most popular implementation and continues to be studied in recent works (Pinto et al.,
2022; Liu et al., 2022b; Wang et al., 2023). Ever since its introduction, it has been a widely studied
data augmentation technique spanning applications to image classification and generation (Zhang
et al., 2018), semantic segmentation (Franchi et al., 2021; Islam et al., 2023), natural language
processing (Verma et al., 2019), speech processing (Meng et al., 2021), time series and tabular
regression (Yao et al., 2022a) or geometric deep learning (Kan et al., 2023), to that extent of being
now an integral component of competitive state-of-the-art training settings (Wightman et al., 2021).
The idea behind mixup can be seen as an efficient approximation of VRM (Chapelle et al., 2000), by
using a linear interpolation of data points selected from within the same batch to reduce computation
overheads.

The process of mixup as a data augmentation during training can be roughly separated in three phases:
(i) selecting tuples (most often pairs) of points to mix together, (ii) sampling coefficients that will
govern the interpolation to generate synthetic points, (iii) applying a specific interpolation procedure
between the points weighted by the coefficients sampled. Methods in the literature have mainly
focused on the first and third phases, i.e. the process of sampling points to mix through predefined
criteria (Hwang et al., 2022; Yao et al., 2022a;b; Palakkadavath et al., 2022; Teney et al., 2023) and
on the interpolation itself, by applying sophisticated and application-specific functions (Yun et al.,
2019; Franchi et al., 2021; Venkataramanan et al., 2022; Kan et al., 2023). On the other hand, these
interpolation coefficients, when they exist, are always sampled from the same distribution throughout
training. Recent works have shown that mixing different points can result in arbitrarily incorrect
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Figure 1: Different approaches to take into account similarity between points in Mixup. (Left) Vanilla
mixup process, any pair of points can be mixed with the same interpolation. (Middle) Only similar
pairs are mixed. This restricts the possible synthetic data generated. (Right) We argue that similarity
of points to mix should govern the interpolation coefficients, to avoid restricting possible directions
of mixing.

labels especially in regression tasks (Yao et al., 2022a), while mixing similar points helps in diversity
(Chawla et al., 2002; Dablain et al., 2022). Furthermore, several previous work have highlighted
a trade-off between performance and calibration in Mixup (Thulasidasan et al., 2019; Pinto et al.,
2022; Wang et al., 2023). Our main assumption is that mixing distant points can result in manifold
intrusion (Guo et al., 2019; Baena et al., 2022), i.e. conflicts between the synthetic labels of the
mixed samples and the labels of the original data, which can degrade calibration. However, the actual
similarity between points is only considered through the selection process, and consequently these
approaches generally suffer from three downsides: (i) they are inefficient, since the data used to mix
are sampled from the full training set leading to memory constraints, and the sampling rates have
to be computed beforehand; (ii) they reduce diversity in the generated data by restricting the pairs
allowed to be mixed; (iii) it is difficult to apply the same approach between different tasks, such as
classification and regression. In this work, we aim to provide an efficient and flexible framework
for taking similarity into account when interpolating points without losing in diversity. Notably, we
argue that similarity should influence the interpolation coefficients rather than the selection process.
A high similarity should result in strong interpolation, while a low similarity should lead to almost no
changes. Consequently, controlling the interpolation through the distance of the points to mix should
improve calibration by reducing manifold intrusion and label noise. Figure 1 illustrates the different
ways to take into account similarity between points in Mixup.
Our contributions 1 towards this goal are the following:

• We define warping functions to change the underlying distributions used for sampling
interpolation coefficients. This defines a general framework that allows to disentangle inputs
and labels when mixing, and spans several variants of mixup.

• We propose to then apply a similarity kernel that takes into account the distance between
points to select a parameter for the warping function tailored to each pair of points to mix,
governing its shape and strength. This tailored function warps the interpolation coefficients
to make them stronger for similar points and weaker otherwise.

• We show that our Kernel Warping Mixup is general enough to be applied in classification as
well as regression tasks, improves both performance and calibration while being an efficient
data augmentation procedure. Our method is competitive with state-of-the-art approach and
requires fewer computations.

2 RELATED WORK

In this section, we discuss related work regarding data augmentation through mixing data and the
impact on calibration of modern neural network.

1Partial code is available as supplementary materials, full code will be released upon acceptance.
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2.1 DATA AUGMENTATION BASED ON MIXING DATA

The idea of mixing two or more training data points to generate additional synthetic ones has been
developed in various ways in the literature.
Offline interpolation Generating new samples offline, i.e. before training, through interpolation
of existing ones, is mainly used for oversampling in the imbalanced setting. Algorithms based on
SMOTE (Chawla et al., 2002), and its improvements (Han et al., 2005; He et al., 2008; Dablain
et al., 2022), are interpolating nearest neighbors in a latent space for minority classes. These methods
are focusing on creating synthetic data for specific classes to fix imbalanced issues, and thus only
consider interpolating elements from the same class.
Online non-linear interpolation Non-linear combinations are mainly studied for dealing with
image data. Instead of a naive linear interpolation between two images, the augmentation process
is done using more complex non-linear functions, such as cropping, patching and pasting images
together (Takahashi et al., 2019; Summers & Dinneen, 2019; Yun et al., 2019; Kim et al., 2020)
or through subnetworks (Ramé et al., 2021; Liu et al., 2022b; Venkataramanan et al., 2022). Not
only are these non-linear operations focused on images, but they generally introduce a significant
computational overhead compared to the simpler linear one (Zhu et al., 2020). The recent R-Mixup
(Kan et al., 2023), on the other hand, considers other Riemannian geodesics rather than the Euclidean
straight line for graphs, but is also computationally expensive.
Online linear interpolation Mixing samples online through linear interpolation represents the most
efficient technique compared to the ones presented above (Zhang et al., 2018; Inoue, 2018; Tokozume
et al., 2018). Among these different approaches, combining data from the same batch also avoids
additional samplings. Several follow-up works extend mixup from different perspectives. Notably,
Manifold Mixup (Verma et al., 2019) interpolates data in the feature space, k-Mixup (Greenewald
et al., 2021) extends the interpolation to use k points instead of a pair, Guo et al. (2019) and Baena
et al. (2022) apply constraints on the interpolation to avoid manifold intrusion, Remix (Chou et al.,
2020) separates the interpolation in the label space and the input space and RegMixup (Pinto et al.,
2022) considers mixup as a regularization term.
Selecting points A family of methods apply an online linear combination on selected pairs of
examples (Yao et al., 2022a;b; Hwang et al., 2022; Palakkadavath et al., 2022; Teney et al., 2023),
across classes (Yao et al., 2022b) or across domains (Yao et al., 2022b; Palakkadavath et al., 2022; Tian
et al., 2023). These methods achieve impressive results on distribution shift and Out Of Distribution
(OOD) generalization (Yao et al., 2022b), but recent theoretical developments have shown that much
of the improvements are linked to a resampling effect from the restrictions in the selection process,
and are unrelated to the mixing operation (Teney et al., 2023). These selective criteria also induce high
computational overhead. One related approach is C-Mixup (Yao et al., 2022a), that fits a Gaussian
kernel on the labels distance between points in regression tasks. Then points to mix together are
sampled from the full training set according to the learned Gaussian density. However, the Gaussian
kernel is computed on all the data before training, which is difficult when there is a lot of data and no
explicit distance between them.

2.2 CALIBRATION IN CLASSIFICATION AND REGRESSION

Calibration is a metric to quantify uncertainty, measuring the difference between a model’s confidence
in its predictions and the actual probability of those predictions being correct.

In classification Modern deep neural network for image classification are now known to be
overconfident leading to miscalibration (Guo et al., 2017). One can rely on temperature scaling
(Guo et al., 2017) to improve calibration post-hoc, or using different techniques during learning
such as ensemble (Lakshminarayanan et al., 2017; Wen et al., 2021), different losses (Chung et al.,
2021; Moon et al., 2020), or through mixup (Thulasidasan et al., 2019). The problem of the trade-off
between performance and calibration with Mixup have been extensively studied in previous work
(Thulasidasan et al., 2019; Zhang et al., 2022; Pinto et al., 2022; Wang et al., 2023) However, Wang
et al. (2023) recently contested improvements observed on calibration using mixup after temperature
scaling and proposed another improvement of mixup, MIT, by generating two sets of mixed samples
and then deriving their correct label. We make the same observation of degraded calibration in
our study, but propose a different and more efficient approach to preserve it while reaching better
performance.
In regression The problem of calibration in deep learning has also been studied for regression
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tasks (Kuleshov et al., 2018; Song et al., 2019; Laves et al., 2020; Levi et al., 2022), where it is more
complex as we lack a simple measure of prediction confidence. In this case, regression models are
usually evaluated under the variational inference framework with Monte Carlo (MC) Dropout (Gal &
Ghahramani, 2016) to quantify confidence.
In our work, in order to better control the trade-off between adding diversity and uncertainty with
mixup, we propose to tailor interpolation coefficients to the training data. To do so, we use warping
functions parameterized by a similarity kernel between the points to mix. This allows to mix
more strongly similar data and avoid mixing less similar ones, leading to preserving label quality
and confidence of the network. We present in Appendix B an empirical analysis on the effect
of distance on calibration when mixing, which back up our main assumption that controlling the
interpolation through the distance can improve calibration. To keep it efficient, we apply an online
linear interpolation and mix data from the same batch. As opposed to all other methods discussed
above, we also show that our approach is effective both for classification and regression tasks. We
present it in detail and the kernel warping functions used in the next section.

3 KERNEL WARPING MIXUP

3.1 PRELIMINARY NOTATIONS AND BACKGROUND

First, we define the notations and elaborate on the learning conditions that will be considered
throughout the paper. Let D = {(xi, yi)}Ni=1 = (X,y) ∈ XN × YN ⊂ Rd×N × RN be the
training dataset. We want to learn a model fθ parameterized by θ ∈ Θ ⊂ Rp, that predicts
ŷ := fθ(x) for any x ∈ X. For classification tasks, we have Y ⊂ Rc, and we further assume that
the model fθ can be separated into an encoder part hφ and classification weights w ∈ Rc, such
that ∀x ∈ X, fθ(x) = w⊤hφ(x). To learn our model, we optimize the weights of the model θ in a
stochastic manner, by repeating the minimization process of the empirical risk computed on batch of
data Bt = {(xi, yi)}ni=1 sampled from the training set, for t ∈ {1, . . . , T} iterations.

With mixup (Zhang et al., 2018), at each iteration t, the empirical risk is computed on augmented batch
of data B̃t = {(x̃i, ỹi)}ni=1, such that x̃i := λtxi + (1− λt)xσt(i) and ỹi := λtyi + (1− λt)yσt(i),
with λt ∼ Beta(α, α) and σt ∈ Sn a random permutation of n elements sampled uniformly. Thus,
each input is mixed with another input randomly selected from the same batch, and λt represents
the strength of the interpolation between them. Besides simplicity, mixing elements within the batch
significantly reduces both memory and computation costs.

In the following part, we introduce a more general extension of this framework using warping
functions, that spans different variants of mixup, while preserving its efficiency.

3.2 WARPED MIXUP
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Figure 2: Behavior of ωτ for different
values of τ .

Towards dynamically changing the interpolation depend-
ing on the similarity between points, we rely on warping
functions ωτ , to warp interpolation coefficients λt at every
iteration t depending on the parameter τ . These func-
tions ωτ are bijective transformations from [0, 1] to [0, 1]
defined as such:

ωτ (λt) = BetaCDF(λt; τ, τ) (1)

=

∫ λt

0

uτ−1(1− u)τ−1

B(τ, τ)
du, (2)

where BetaCDF is the cumulative distribution function
(CDF) of the Beta distribution, B(τ, τ) is a normalization
constant and τ ∈ R∗

+ is the warping parameter that gov-
erns the strength and direction of the warping. Although
the Beta CDF has no closed form solution for non-integer
values of its parameters α and β, accurate approximations
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Original Sampling Warping func�ons Target Sampling

Figure 3: Two examples of coefficients warped to change their underlying distributions. (Left)
Original sampling of interpolation coefficients λ from Beta(1, 1). (Middle) Warping functions ω0.5

(top) and ω7 (bottom) applied. (Right) Resulting distributions of ω0.5(λ) (top) and ω7(λ) (bottom).
We can see that ω0.5(λ) closely follows a Beta(2.1, 2.1) distribution, and ω7(λ) a Beta(0.2, 0.2),
respectively shown in blue and black lines in the corresponding plots.

are implemented in many statistical software packages.
Our motivation behind such ωτ is to preserve the same type of distribution after warping, i.e. Beta
distributions with symmetry around 0.5. Similar warping has been used in the Bayesian Optimization
literature (Snoek et al., 2014), however many other suitable bijection with sigmoidal shape could
be considered in our case. Figure 2 illustrates the shape of ωτ and their behavior with respect to
τ . These functions have a symmetric behavior around τ = 1 (in green), for which warped outputs
remain unchanged. When τ > 1 (in red and purple) they are pushed towards the extremes (0 and 1),
and when τ < 1 (in orange and blue), they are pulled towards the center (0.5). We further note that
the strength of the warping is logarithmic with respect to τ .

Using such warping functions presents the advantage of being able to easily separate the mixing of
inputs and targets, by defining different warping parameters τ (i) and τ (o). We can now extend the
above framework into warped mixup:

x̃i := ωτ(i)(λt)xi + (1− ωτ(i)(λt))xσt(i) (3)

ỹi := ωτ(o)(λt)yi + (1− ωτ(o)(λt))yσt(i). (4)

Disentangling inputs and targets can be interesting when working in the imbalanced setting (Chou
et al., 2020). Notably, with τ (i) = 1, τ (o) ≈ +∞, we recover the Mixup Input Only (IO) variant
(Wang et al., 2023) where only inputs are mixed, and with τ (i) ≈ +∞, τ (o) = 1, the Mixup Target
Only (TO) variant (Wang et al., 2023), where only labels are mixed.

Figure 3 presents two examples of warping interpolation coefficients λ, using two different warping
parameters τ to illustrate the corresponding changes in the underlying distribution of these coefficients.
In the following part, we detail our method to select the right τ depending on the data to mix.

3.3 SIMILARITY-BASED KERNEL WARPING

Recall that our goal is to apply stronger interpolation between similar points, and reduce interpolation
otherwise, using the warping functions ωτ defined above. Therefore, the parameter τ should be
exponentially correlated with the distance, with a symmetric behavior around 1. To this end, we
define a class of similarity kernels, based on an inversed, normalized and centered Gaussian kernel,
that outputs the correct warping parameter for the given pair of points. Given a batch of data
x = {xi}ni=1 ∈ Rd×n, the index of the first element in the mix i ∈ {1, . . . , n}, along with the
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permutation σ ∈ Sn to obtain the index of the second element, we compute the following similarity
kernel:

τ(x, i, σ; τmax, τstd) =
1

τmax
exp

(
d̄n(xi,xσ(i))− 1

2τ2std

)
, (5)

with d̄n(xi,xσ(i)) =

∑d
k=1(x(k,i) − x(k,σ(i)))

2

1
n

∑n
j=1

∑d
k=1(x(k,j) − x(k,σ(j)))2

, (6)

where d̄ is the squared L2 distance divided by the mean distance over the batch, and τmax, τstd are
respectively the amplitude and standard deviation (std) of the Gaussian, which are hyperparameters
of the similarity kernel. The amplitude τmax governs the strength of the interpolation in average, and
τstd the extent of mixing. Our motivation behind this kernel is to have small values of τ for small
distances and high τ otherwise, while being able to shut down the mixing effect for points that are too
far apart. Figure 4 illustrates the evolution of the density of warped interpolation coefficients ωτ (λ),
depending on the distance between the points to mix. Using this similarity kernel to find the correct
τ to parameterize the warping functions ωτ defines our full Kernel Warping Mixup framework. A
detailed algorithm of the training procedure can be found in Appendix F.

Note that this exact form of similarity kernel is defined for the warping functions ωτ discussed above
and used in the experiments in the next section. Other warping functions might require different
kernels depending on their behavior with respect to τ . Likewise, we could consider other similarity
measures instead of the squared L2, such as a cosine similarity or an optimal transport metric.

4 EXPERIMENTS
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Figure 4: Density of interpolation coeffi-
cients after warping with the similarity
kernel ωτ (λ) depending on the distance
between pairs (xi,xσ(i)) to mix. Close
distances (top lines of the heatmap) in-
duce strong interpolations, while far dis-
tances (bottom lines of the heatmap) re-
duce interpolation.

We focus our experiments on two very different sets of
tasks, namely Image Classification and Regression on
Time Series and tabular data. A presentation of the differ-
ent calibration metrics used can be found in Appendix A.
Image Classification We mainly follow experimental set-
tings from previous works (Pinto et al., 2022; Wang et al.,
2023) and evaluate our approach on CIFAR-10 (C10) and
CIFAR-100 (C100) datasets (Krizhevsky et al., 2009) us-
ing Resnet34 and Resnet50 architectures (He et al., 2016),
and on Tiny-Imagenet (Tiny-IN) (Deng et al., 2009) with
a Resnet50. For all our experiments on C10 and C100,
we use SGD as the optimizer with a momentum of 0.9
and weight decay of 10−4, a batch size of 128, and the
standard augmentations random crop, horizontal
flip and normalization. Models are trained for 200
epochs, with an initial learning rate of 0.1 divided by a fac-
tor 10 after 100 and 150 epochs. On Tiny-IN, models are
trained for 100 epochs using SGD with an initial learning
rate of 0.1 divided by a factor 10 after 40 and 60 epochs,
a momentum of 0.9 and weight decay of 10−4, following
(Liu et al., 2022a). We use a batch size of 64 and the same
standard augmentations as C10 and C100. We evaluate
calibration using ECE (Naeini et al., 2015; Guo et al., 2017), negative log likelihood (NLL) (Hastie
et al., 2009) and Brier score (Brier, 1950), after finding the optimal temperature through Temperature
Scaling (Guo et al., 2017). Results are reproduced and averaged over 4 different random runs, and we
report standard deviation between the runs. For each run, we additionally average the results of the
last 10 epochs following (Wang et al., 2023).
Regression Here again, we mainly follow settings of previous work on regression (Yao et al.,
2022a). We evaluate performance on Airfoil (Kooperberg, 1997), Exchange-Rate and Electricity
(Lai et al., 2018) datasets using Root Mean Square Error (RMSE) and Mean Averaged Percentage
Error (MAPE), along with Uncertainty Calibration Error (UCE) (Laves et al., 2020) and Expected
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Figure 5: Heatmaps of Accuracy (left) and ECE (right) from cross validation on C100 for Resnet50.

Table 1: Comparative study on similarity used for Resnet50 on CIFAR10.

Input similarity Output similarity ((τ (i)max, τ
(i)
std )) ((τ (o)max, τ

(o)
std )) Accuracy (↑) ECE (↓) Brier (↓) NLL (↓)

Inputs Inputs (2,1) (2,1) 95.73 ± 0.07 0.77 ± 0.07 6.91 ± 0.16 17.06 ± 0.47
Embedding Embedding (2,1) (2,1) 95.82 ± 0.04 0.65 ± 0.09 6.86 ± 0.05 17.05 ± 0.3
Classif. weights Classif. weights (5,0.75) (5,0.75) 95.68 ± 0.07 0.84 ± 0.1 6.96 ± 0.11 17.29 ± 0.31
Embedding Classif. weights (2,1) (2,1.25) 95.79 ± 0.18 0.66 ± 0.03 6.89 ± 0.23 17.29 ± 0.31
Inputs Embedding (2,1) (2,1) 95.68 ± 0.12 0.88 ± 0.11 6.97 ± 0.17 16.95 ± 0.39

Normalized Calibration Error (ENCE) (Levi et al., 2022) for calibration. We train a three-layer fully
connected network augmented with Dropout (Srivastava et al., 2014) on Airfoil, and LST-Attn (Lai
et al., 2018) on Exchange-Rate and Electricity. All models are trained for 100 epochs with the Adam
optimizer (Kingma & Ba, 2014), with a batch size of 16 and learning rate of 0.01 on Airfoil, and a
batch size of 128 and learning rate of 0.001 on Exchange-Rate and Electricity. To estimate variance
for calibration, we rely on MC Dropout (Gal & Ghahramani, 2016) with a dropout of 0.2 and 50
samples. Results are reproduced and averaged over 5 different random runs for Exchange Rate and
Electricity, and over 10 runs for Airfoil. We also report standard deviation between the runs.

4.1 CLASSIFICATION

To find the optimal pair of parameters (τmax, τstd), we conducted cross-validation separately on C10
and C100 datasets. We detail the process of cross-validation in Appendix E. We provide heatmaps of
the experiments in Figure 5 for C100, and refer to Appendix E for C10. We can clearly see frontiers
and regions of the search spaces that are more optimal than others. In particular, high amplitude
and std increase accuracy for both datasets, showing the importance of strong interpolation and not
being restrictive in the points to mix. However, while calibration is best when τstd is low for C10,
good calibration requires that τmax and τstd are both high for C100. This might reflect the difference
in terms of number of class and their separability between both datasets, but a deeper study of the
behavior of the confidence would be required.

The flexibility in the framework presented allows to measure similarity between points in any space
that can represent them, and also disentangle the similarity used for input and targets. For our
experiments in classification, we considered different possible choice:
(1) Input distance: we compute the distance between raw input data, i.e. d̄n(xi,xσ(i));
(2) Embedding distance: we compute the distance between embeddings of the input data obtained
by the encoder at the current training step, i.e. d̄n(hφ(xi), hφ(xσ(i)));
(3) Classification distance: we compute the distance between the classification weights at the current
training step of the class corresponding to the input data, i.e. d̄n(wyi ,wyσ(i)

);
In Table 1, we compared results for each of these choice and for different combinations of similarity
between inputs and targets. We conducted cross-validation in each case to find the best pairs of
parameters (τ (i)max, τ

(i)
std ) for input similarity and (τ

(o)
max, τ

(o)
std ) for output similarity. We found that results

are robust to the choice of similarity considered as difference in performance and calibration are
small between them, but using embedding distance for both inputs and targets seems to yield the best
results. This is the setting chosen for the remaining experiments in classification.
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Table 2: Performance (Accuracy in %) and calibration (ECE, Brier, NLL) comparison with Resnet50.
Best in bold, second best underlined.

Dataset Methods α Accuracy (↑) ECE (↓) Brier (↓) NLL (↓)

C10

ERM Baseline – 94.26 ± 0.12 0.56 ± 0.05 8.56 ± 0.23 17.93 ± 0.36

Mixup
1 95.6 ± 0.17 1.40 ± 0.12 7.13 ± 0.31 17.32 ± 0.88

0.5 95.53 ± 0.18 1.29 ± 0.15 7.22 ± 0.30 17.44 ± 0.66
0.1 94.98 ± 0.25 1.29 ± 0.21 7.83 ± 0.37 17.84 ± 0.78

Mixup IO
1 94.74 ± 0.34 0.47 ± 0.07 7.78 ± 0.41 16.13 ± 0.75

0.5 95.07 ± 0.17 0.48 ± 0.08 7.39 ± 0.14 15.23 ± 0.34
0.1 94.79 ± 0.06 0.7 ± 0.16 7.85 ± 0.20 16.37 ± 0.61

Manifold Mixup
1 96.02 ± 0.08 1.32 ± 0.35 6.64 ± 0.15 16.72 ± 0.34

0.5 95.64 ± 0.31 1.36 ± 0.11 7.15 ± 0.51 17.63 ± 1.11
0.1 94.79 ± 0.34 1.19 ± 0.16 8.4 ± 0.54 19.77 ± 1.45

RegMixup 20 96.14 ± 0.15 0.91 ± 0.06 6.41 ± 0.23 14.77 ± 0.33
MIT-A (∆λ > 0.5) 1 95.68 ± 0.28 0.88 ± 0.19 6.58 ± 0.43 13.88 ± 0.83
MIT-L (∆λ > 0.5) 1 95.42 ± 0.14 0.66 ± 0.08 6.85 ± 0.18 14.41 ± 0.32

Kernel Warping Mixup (Ours) 1 95.82 ± 0.04 0.65 ± 0.09 6.86 ± 0.05 17.05 ± 0.3

C100

ERM Baseline – 73.83 ± 0.82 2.20 ± 0.13 35.90 ± 1.04 96.39 ± 3.45

Mixup
1 78.05 ± 0.23 2.41 ± 0.23 31.26 ± 0.26 88.01 ± 0.53

0.5 78.51 ± 0.37 2.55 ± 0.22 30.44 ± 0.44 85.57 ± 1.88
0.1 76.49 ± 0.86 2.69 ± 0.13 32.75 ± 1.05 89.82 ± 3.87

Mixup IO
1 75.25 ± 0.72 1.77 ± 0.13 34.24 ± 0.68 91.41 ± 2.18

0.5 76.42 ± 0.81 1.94 ± 0.15 32.65 ± 1.01 86.1 ± 3.04
0.1 75.82 ± 0.98 2.1 ± 0.22 33.45 ± 1.26 89.54 ± 3.75

Manifold Mixup
1 80.39 ± 0.31 2.58 ± 0.07 28.54 ± 0.34 79.06 ± 0.96

0.5 79.46 ± 0.91 2.76 ± 0.30 29.63 ± 1.09 82.92 ± 3.43
0.1 76.85 ± 1.28 2.87 ± 0.28 32.54 ± 1.49 90.09 ± 4.92

RegMixup 10 78.44 ± 0.24 2.20 ± 0.23 30.82 ± 0.29 83.16 ± 1.19
MIT-A (∆λ > 0.5) 1 77.81 ± 0.42 2.19 ± 0.05 30.84 ± 0.53 80.49 ± 1.45
MIT-L (∆λ > 0.5) 1 77.14 ± 0.71 2.13 ± 0.17 31.74 ± 1.11 82.87 ± 3.24

Kernel Warping Mixup (Ours) 1 79.62 ± 0.68 1.84 ± 0.22 29.18 ± 0.78 80.46 ± 2.08

TinyIN

ERM Baseline - 66.74 ± 0.34 1.62 ± 0.22 44.36 ± 0.44 135.44 ± 1.94

Mixup
1 67.21 ± 0.21 1.63 ± 0.10 44.42 ± 0.29 136.67 ± 1.03

0.5 67.34 ± 0.69 1.56 ± 0.05 44.08 ± 1.0 135.83 ± 4.36
0.1 66.48 ± 0.57 1.66 ± 0.17 45.32 ± 0.62 141.8 ± 2.49

Mixup IO
1 66.17 ± 0.28 1.49 ± 0.21 45.02 ± 0.31 136.85 ± 0.98

0.5 66.98 ± 0.39 1.75 ± 0.12 44.17 ± 0.26 134.55 ± 1.3
0.1 65.87 ± 0.57 1.51 ± 0.21 45.5 ± 0.57 139.22 ± 2.46

Manifold Mixup
1 69.49 ± 0.31 1.39 ± 0.2 41.64 ± 0.33 128.85 ± 0.82

0.5 68.46 ± 0.24 1.57 ± 0.15 42.73 ± 0.36 132.76 ± 1.38
0.1 67.97 ± 0.45 1.87 ± 0.08 43.37 ± 0.51 135.69 ± 1.81

RegMixup 20 69.71 ± 0.42 1.17 ± 0.19 40.97 ± 0.68 124.31 ± 2.45
10 69.39 ± 0.62 1.31 ± 0.08 41.6 ± 0.77 126.77 ± 2.73

MIT-A (∆λ > 0.5) 1 67.94 ± 0.59 1.62 ± 0.26 42.89 ± 0.70 131.20 ± 1.76
MIT-L (∆λ > 0.5) 1 67.30 ± 0.96 1.7 ± 0.16 43.75 ± 1.15 134.36 ± 4.23

Kernel Warping Mixup (Ours) 1 68.18 ± 0.26 1.29 ± 0.35 43.21 ± 0.47 133.01 ± 1.61

Then, we present an extensive comparison of results on C10, C100 and Tiny-IN for Resnet50 in
Table 2. Results with Resnet34 can be found in Appendix C. We compare our Kernel Warping Mixup
with Mixup (Zhang et al., 2018), its variants Mixup-IO (Wang et al., 2023) and Manifold Mixup
(Verma et al., 2019), and with the recent RegMixup (Pinto et al., 2022) and MIT (Wang et al., 2023).
We can see that our method outperforms in accuracy both Mixup and Mixup IO variants, with better
calibration scores in general. It also yields competitive accuracy and calibration with state-of-the-art
approaches RegMixup, MIT and Manifold Mixup. In particular, for C100 with Resnet50, it obtains
about 1 percentage point (p.p.) higher in accuracy than Mixup, 3 p.p. higher than Mixup-IO, 1.2 p.p.
higher than RegMixup and 2 p.p. higher than MIT, while having strong calibration scores. Exact
values of (τmax, τstd) used to derive these results are presented in Appendix E.
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Table 3: Performance (RMSE, MAPE) and calibration (UCE, ENCE) comparison on several regres-
sion tasks. Best in bold, second best underlined.

Dataset Methods α RMSE (↓) MAPE (↓) UCE (↓) ENCE (↓)

Airfoil

ERM Baseline – 2.843 ± 0.311 1.720 ± 0.219 107.6 ± 19.179 0.0210 ± 0.0078
Mixup 0.5 3.311 ± 0.207 2.003 ± 0.126 147.1 ± 33.979 0.0212 ± 0.0063
Manifold Mixup 0.5 3.230 ± 0.177 1.964 ± 0.111 126.0 ± 15.759 0.0206 ± 0.0064

C-Mixup 0.5 2.850 ± 0.13 1.706 ± 0.104 111.235 ± 32.567 0.0190 ± 0.0075

Kernel Warping Mixup (Ours) 0.5 2.807 ± 0.261 1.694 ± 0.176 126.0 ± 23.320 0.0180 ± 0.0047

Exch. Rate

ERM Baseline – 0.019 ± 0.0024 1.924 ± 0.287 0.0082 ± 0.0028 0.0364 ± 0.0074
Mixup 1.5 0.0192 ± 0.0025 1.926 ± 0.284 0.0074 ± 0.0022 0.0352 ± 0.0059
Manifold Mixup 1.5 0.0196 ± 0.0026 2.006 ± 0.346 0.0086 ± 0.0029 0.0382 ± 0.0085

C-Mixup 1.5 0.0188 ± 0.0017 1.893 ± 0.222 0.0078 ± 0.0020 0.0360 ± 0.0064

Kernel Warping Mixup (Ours) 1.5 0.0186 ± 0.0020 1.872 ± 0.235 0.0074 ± 0.0019 0.0346 ± 0.0050

Electricity

ERM Baseline – 0.069 ± 0.003 15.372 ± 0.474 0.007 ± 0.001 0.219 ± 0.020
Mixup 2 0.071 ± 0.001 14.978 ± 0.402 0.006 ± 0.0004 0.234 ± 0.012
Manifold Mixup 2 0.070 ± 0.001 14.952 ± 0.475 0.007 ± 0.0007 0.255 ± 0.015

C-Mixup 2 0.068 ± 0.001 14.716 ± 0.066 0.007 ± 0.0006 0.233 ± 0.015

Kernel Warping Mixup (Ours) 2 0.068 ± 0.0006 14.827 ± 0.293 0.007 ± 0.001 0.230 ± 0.013

However, our method achieves its competitive results while being much more efficient than the other
state-of-the-art approaches. Indeed, our Kernel Warping Mixup is about as fast as Mixup when using
input or classification distance, and about 1.5× slower with embedding distance as we have additional
computations to obtain the embeddings. However, both RegMixup and MIT are about 2× slower,
along with significant memory constraints, since they require training on twice the amount of data
per batch which limits the maximum batch size possible in practice. Exact running time comparison
can be seen in Appendix D.

4.2 REGRESSION

To demonstrate the flexibility of our framework regarding different tasks, we provide experiments
on regression for tabular data and time series. Regression tasks have the advantage of having an
obvious meaningful distance between points, which is the label distance. Since we are predicting
continuous values, we can directly measure the similarity between two points by the distance between
their labels, i.e. d̄n(yi, yσ(i)). This avoids the costly computation of embeddings.

In Table 3, we compare our Kernel Warping Mixup with Mixup (Zhang et al., 2018), Manifold
Mixup (Verma et al., 2019) and C-Mixup (Yao et al., 2022a). We can see that our approach achieves
competitive results with state-of-the-art C-Mixup, in both performance and calibration metrics. Exact
values of (τmax, τstd) used to derive these results are presented in Appendix E. Notably, unlike C-
Mixup, our approach do not rely on sampling rates calculated before training, which add a lot of
computational overhead and are difficult to obtain for large datasets. Furthermore, since we only use
elements from within the same batch of data, we also reduce memory usage.

5 CONCLUSION

In this paper, we present Kernel Warping Mixup, a flexible framework for linearly interpolating data
during training, based on warping functions parameterized by a similarity kernel. The coefficients
governing the interpolation are warped to change their underlying distribution depending on the
similarity between the points to mix. This provides an efficient and strong data augmentation
approach that can be applied to different tasks by changing the similarity function depending on the
application. We show through extensive experiments the effectiveness of the approach to improve
both performance and calibration in classification as well as in regression. It is also worth noting that
the proposed framework can be extended by combining it with other Mixup variants such as CutMix
(Yun et al., 2019), RegMixup (Pinto et al., 2022) or Manifold Mixup (Verma et al., 2019). Future
works include applications to more complex tasks such as semantic segmentation or monocular depth
estimation.
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A INTRODUCTION TO CALIBRATION METRICS

As discussed in Section 2.2, calibration measures the difference between predictive confidence and
actual probability. More formally, with ŷ and y ∈ Y, respectively the model’s prediction and target
label, and p̂ its predicted confidence, a perfectly calibrated model should satisfy P (ŷ = y|p̂ = p) = p,
for p ∈ [0, 1].

We use several metrics for calibration in the paper, namely, ECE, Brier score and NLL for classification
tasks, and UCE and ENCE for regression tasks. We formally introduce all of them here.

NLL The negative log-likelihood (NLL) is a common metric for a model’s prediction quality
(Hastie et al., 2009). It is equivalent to cross-entropy in multi-class classification. NLL is defined as:

NLL(x,y) = − 1

N

N∑
i=1

log(p̂(yi|xi)), (7)

where p̂(yi|xi) represents the confidence of the model in the output associated to xi for the target
class yi.

Brier score The Brier score (Brier, 1950) for multi-class classification is defined as

Brier(x,y) = − 1

N

N∑
i=1

c∑
j=1

(p̂(y(i,j)|xi)− y(i,j))
2, (8)

where we assume that the target label yi is represented as a one-hot vector over the c possible class,
i.e., yi ∈ Rc. Brier score is the mean square error (MSE) between predicted confidence and target.

ECE Expected Calibration Error (ECE) is a popular metric for calibration performance for clas-
sification tasks in practice. It approximates the difference between accuracy and confidence in
expectation by first grouping all the samples into M equally spaced bins {Bm}Mm=1 with respect
to their confidence scores, then taking a weighted average of the difference between accuracy and
confidence for each bin. Formally, ECE is defined as (Guo et al., 2017):

ECE :=

M∑
m=1

|Bm|
N
|acc(Bm)− conf(Bm)|, (9)

with acc(Bm) = 1
|Bm|

∑
i∈Bm

1ŷi=yi
the accuracy of bin Bm, and conf(Bm) =

1
|Bm|

∑
i∈Bm

p̂(yi|xi) the average confidence within bin Bm.

A probabilistic regression model takes x ∈ X as input and outputs a mean µy(x) and a variance
σ2
y(x) targeting the ground-truth y ∈ Y. The UCE and ENCE calibration metrics are both extension

of ECE for regression tasks to evaluate variance calibration. They both apply a binning scheme with
M bins over the predicted variance.

UCE Uncertainty Calibration Error (UCE) (Laves et al., 2020) measures the average of the absolute
difference between mean squared error (MSE) and mean variance (MV) within each bin. It is formally
defined by

UCE :=

M∑
m=1

|Bm|
N
|MSE(Bm)−MV(Bm)|, (10)

with MSE(Bm) = 1
|Bm|

∑
i∈Bm

(µyi
(xi)− yi)

2 and MV(Bm) = 1
|Bm|

∑
i∈Bm

σ2
yi
(xi)

2.
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Table 4: Performance (Accuracy in %) and calibration (ECE, Brier, NLL) comparison with Resnet34
when mixing only elements higher or lower than a quantile q. Best in bold, second best underlined.

Dataset Quantile of Distance Accuracy (↑) ECE (↓) Brier (↓) NLL (↓)

C10

Lower 0.0 / Higher 1.0 (ERM Baseline) 94.69 ± 0.27 0.82 ± 0.11 8.07 ± 0.31 17.50 ± 0.61
Lower 1.0 / Higher 0.0 (Mixup) 95.97 ± 0.27 1.36 ± 0.13 6.53 ± 0.36 16.35 ± 0.72

Lower 0.1 95.59 ± 0.42 0.88 ± 0.26 7.20 ± 0.56 16.56 ± 1.52
Lower 0.25 95.73 ± 0.18 1.74 ± 0.45 7.07 ± 0.26 19.39 ± 1.11
Lower 0.5 95.88 ± 0.28 1.56 ± 0.28 6.68 ± 0.34 15.86 ± 0.71
Lower 0.75 96.16 ± 0.09 1.12 ± 0.16 6.35 ± 0.15 15.20 ± 0.44
Lower 0.9 96.31 ± 0.08 1.10 ± 0.05 6.14 ± 0.11 15.16 ± 0.29
Higher 0.9 95.58 ± 0.34 1.86 ± 0.25 7.4 ± 0.48 20.32 ± 1.25
Higher 0.75 95.91 ± 0.14 1.85 ± 0.17 6.84 ± 0.22 20.06 ± 1.12
Higher 0.5 95.58 ± 0.28 1.67 ± 0.13 7.23 ± 0.37 19.12 ± 0.74
Higher 0.25 95.98 ± 0.3 1.24 ± 0.18 6.65 ± 0.51 17.06 ± 0.99
Higher 0.1 96.28 ± 0.03 1.13 ± 0.11 6.14 ± 0.04 15.24 ± 0.37

C100

Lower 0.0 / Higher 1.0 (ERM Baseline) 73.47 ± 1.59 2.54 ± 0.15 36.47 ± 2.05 100.82 ± 6.93
Lower 1.0 / Higher 0.0 (Mixup) 78.11 ± 0.57 2.49 ± 0.19 31.06 ± 0.69 87.94 ± 1.98

Lower 0.1 75.40 ± 0.53 3.48 ± 0.24 35.92 ± 0.5 105.87 ± 1.41
Lower 0.25 77.14 ± 0.51 2.54 ± 0.22 32.95 ± 0.62 95.42 ± 1.78
Lower 0.5 77.66 ± 0.15 1.85 ± 0.43 31.94 ± 0.28 89.97 ± 1.53
Lower 0.75 78.43 ± 0.62 1.95 ± 0.6 30.64 ± 0.7 85.06 ± 1.89
Lower 0.9 79.24 ± 0.7 1.99 ± 0.03 29.72 ± 0.94 82.54 ± 2.82

Higher 0.9 77.3 ± 0.43 1.92 ± 0.22 32.0 ± 0.59 88.69 ± 1.67
Higher 0.75 77.8 ± 1.05 2.29 ± 0.24 31.48 ± 1.18 88.16 ± 3.86
Higher 0.5 78.74 ± 0.43 2.52 ± 0.22 30.37 ± 0.56 84.64 ± 1.63
Higher 0.25 78.51 ± 84.64 2.34 ± 0.26 30.42 ± 0.59 84.64 ± 2.23
Higher 0.1 79.14 ± 0.53 2.23 ± 0.34 29.62 ± 0.51 82.22 ± 1.28

ENCE Expected Normalized Calibration Error (ENCE) (Levi et al., 2022) measures the absolute
normalized difference, between root mean squared error (RMSE) and root mean variance (RMV)
within each bin. It is formally defined by

ENCE :=
1

M

M∑
m=1

|RMSE(Bm)− RMV(Bm)|
RMV(Bm)

, (11)

with RMSE(Bm) =
√

1
|Bm|

∑
i∈Bm

(µyi(xi)− yi)2 and RMV(Bm) =
√

1
|Bm|

∑
i∈Bm

σ2
yi
(xi)2.

B EFFECT OF DISTANCE ON CALIBRATION

In this section, we provide an empirical study of the effect of distance on calibration. The assumption
underlying this work is that there is a trade-off in data augmentation procedures between adding
diversity and introducing uncertainty through manifold intrusion (Guo et al., 2019; Baena et al.,
2022), i.e, conflicts between the synthetic labels of the mixed-up examples and the labels of original
training data. To show that, we conduct in Table 4 an empirical analysis that compares accuracy
and calibration metrics when mixing only pairs of points with distances lower or higher than a
given quantile of the overall pairwise distances within the batch, using a Resnet34 on CIFAR10 and
CIFAR100 datasets. Note that one should compare results of "Lower q" with "Higher 1− q" to have
equivalent numbers of possible element to mix with (diversity). We can see that, in general, mixing
pairs with lower distances leads to better calibration than mixing pairs with higher distances.
These results confirm that there is a trade-off between adding diversity and uncertainty with data
augmentation.

C FULL RESULTS WITH RESNET34

We present in Table 5 results with Resnet34 on C10 and C100 datasets. We can see that our proposed
approach achieves competitive results both in terms of performance and calibration.

16



Under review as a conference paper at ICLR 2024

Table 5: Performance (Accuracy in %) and calibration (ECE, Brier, NLL) comparison with Resnet34.
Best in bold, second best underlined.

Dataset Methods α Accuracy (↑) ECE (↓) Brier (↓) NLL (↓)

C10

ERM Baseline – 94.69 ± 0.27 0.82 ± 0.11 8.07 ± 0.31 17.50 ± 0.61

Mixup
1 95.97 ± 0.27 1.36 ± 0.13 6.53 ± 0.36 16.35 ± 0.72

0.5 95.71 ± 0.26 1.33 ± 0.08 7.03 ± 0.46 17.47 ± 1.18
0.1 95.37 ± 0.22 1.13 ± 0.11 7.37 ± 0.36 17.43 ± 0.79

Mixup IO
1 95.16 ± 0.22 0.6 ± 0.11 7.3 ± 0.33 15.56 ± 0.67

0.5 95.31 ± 0.17 0.58 ± 0.06 7.12 ± 0.21 15.09 ± 0.45
0.1 95.12 ± 0.21 0.7 ± 0.09 7.38 ± 0.27 15.76 ± 0.55

RegMixup 20 96.51 ± 0.2 0.76 ± 0.08 5.78 ± 0.26 13.14 ± 0.47
MIT-A (∆λ > 0.5) 1 95.78 ± 0.22 1.02 ± 0.19 6.51 ± 0.29 14.04 ± 0.67
MIT-L (∆λ > 0.5) 1 95.71 ± 0.06 0.67 ± 0.12 6.57 ± 0.12 13.89 ± 0.28

Kernel Warping Mixup (Ours) 1 96.16 ± 0.09 0.51 ± 0.07 6.39 ± 0.16 16.59 ± 0.55

C100

ERM Baseline – 73.47 ± 1.59 2.54 ± 0.15 36.47 ± 2.05 100.82 ± 6.93

Mixup
1 78.11 ± 0.57 2.49 ± 0.19 31.06 ± 0.69 87.94 ± 1.98

0.5 77.14 ± 0.67 2.7 ± 0.36 32.01 ± 0.93 91.22 ± 3.05
0.1 76.01 ± 0.62 2.54 ± 0.24 33.41 ± 0.57 93.96 ± 1.76

Mixup IO
1 74.44 ± 0.49 2.02 ± 0.14 35.25 ± 0.43 96.5 ± 1.62

0.5 74.45 ± 0.6 1.94 ± 0.09 35.2 ± 0.58 96.75 ± 1.89
0.1 74.21 ± 0.46 2.39 ± 0.11 35.38 ± 0.48 98.24 ± 1.81

RegMixup 10 78.49 ± 0.35 1.64 ± 0.14 30.42 ± 0.26 82.20 ± 0.78
MIT-A (∆λ > 0.5) 1 77.39 ± 0.32 2.38 ± 0.14 31.37 ± 0.46 83.08 ± 1.38
MIT-L (∆λ > 0.5) 1 76.51 ± 0.33 2.54 ± 0.16 32.62 ± 0.28 86.81 ± 0.89

Kernel Warping Mixup (Ours) 1 79.13 ± 0.44 1.75 ± 0.44 29.59 ± 0.52 82.88 ± 1.32

Table 6: Training time comparison (in seconds) for a single epoch of CIFAR10 with a Resnet50,
measured on a single NVIDIA A100 GPU.

Method Time per epoch (in s)

Mixup 20

Manifold Mixup 33
RegMixup 38
MIT-L 40
MIT-A 46

Kernel Warping Mixup - Input 21
Kernel Warping Mixup - Classif. 22
Kernel Warping Mixup - Embedding 28

D EFFICIENCY COMPARISON

Table 6 presents comparison of training time for a single epoch on CIFAR10 with a Resnet50. We
can see that our Kernel Warping Mixup is about as fast as Mixup when using input or classification
distance, and about 1.5× slower with embedding distance as we have additional computations to
obtain the embeddings, while both RegMixup and MIT are about 2× slower.

E CROSS VALIDATION

We detail the cross-validation settings that we use here. For all different experimental settings, we
search for the best τmax and τstd before training, by conducting cross-validation with a stratified
sampling on a 90/10 split of the training set, similarly to Pinto et al. (2022), and average the results
across 4 different splits. The hyperparameters are selected to have a good trade-off between calibration
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Figure 6: Heatmaps of Accuracy (left) and ECE (right) from cross validation on CIFAR10 (top) and
CIFAR100 (bottom) for Resnet50.

Table 7: Parameters of the kernel similarity found through cross-validation for each dataset.

Hyperparameter

Model and Dataset

Resnet34 Resnet50 Airfoil Exchange Rate Electricity
C10 C100 C10 C100 Tiny-IN

τmax 0.5 1 2 2 2 0.0001 500 0.001
τstd 1.25 0.75 1 1 1.25 1.5 1 1.5

and accuracy. The optimal values vary between datasets, since they depend on the statistics of the
pairwise distances. In Table 7, we present the hyperparameters found through cross-validation
for each dataset and model. These values were used to obtain the results discussed in Section 4.
We provide separate heatmaps of cross-validation for both CIFAR10 and CIFAR100 datasets with
Resnet50 in Figure 6, and repeat our observations here. High amplitude and std increase accuracy for
both datasets, showing the importance of strong interpolation and not being restrictive in the points to
mix. However, while calibration is best when τstd is low for C10, good calibration requires that τmax
and τstd are both high for C100. This might reflect the difference in terms of number of class and
their separability between both datasets, but a deeper study of the behavior of the confidence would
be required.

F DETAILED ALGORITHM

We present a pseudocode of our Kernel Warping Mixup procedure for a single training iteration in
Algorithm 1. The generation of new data is explained in the pseudocode as a sequential process for
simplicity and ease of understanding, but the actual implementation is optimized to work in parallel
on GPU through vectorized operations.

G ON THE DEPENDENCE TO BATCH SIZE STATISTICS
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Algorithm 1: Kernel Warping Mixup training procedure
Input: Batch of data B = {(xi, yi)}ni=1, mixup parameter α, similarity parameters (τmax, τstd),

parameters of the model at the current iteration θt
B̃ ← ∅
σt ∼ Sn // Sample random permutation
for ∀i ∈ {1, . . . , n} do

λi ∼ Beta(α, α)
// Compute warping parameters for inputs and targets

separately through Equations (5) and (6)

τ
(i)
i := τ (i)(x, i, σ; τ

(i)
max, τ

(i)
std )

τ
(o)
i := τ (o)(x, i, σ; τ

(o)
max, τ

(o)
std )

// Generate new data
x̃i := ω

τ
(i)
i
(λi)xi + (1− ω

τ
(i)
i
(λi))xσ(i)

ỹi := ω
τ
(o)
i

(λi)yi + (1− ω
τ
(o)
i

(λi))yσ(i)

// Aggregate new batch

B̃ ← B̃ ∪ (x̃i, ỹi)

Compute and optimize loss over B̃
Output: updated parameters of the model θt+1

Table 8: Performance (RMSE, MAPE) and calibration (UCE, ENCE) comparison on several regres-
sion tasks. Best in bold, second best underlined.

Dataset Methods α RMSE (↓) MAPE (↓) UCE (↓) ENCE (↓)

Airfoil

ERM Baseline – 2.843 ± 0.311 1.720 ± 0.219 107.6 ± 19.179 0.0210 ± 0.0078
Mixup 0.5 3.311 ± 0.207 2.003 ± 0.126 147.1 ± 33.979 0.0212 ± 0.0063
Manifold Mixup 0.5 3.230 ± 0.177 1.964 ± 0.111 126.0 ± 15.759 0.0206 ± 0.0064

C-Mixup 0.5 2.850 ± 0.13 1.706 ± 0.104 111.235 ± 32.567 0.0190 ± 0.0075

Batch - Kernel Warping Mixup (Ours) 0.5 2.807 ± 0.261 1.694 ± 0.176 126.0 ± 23.320 0.0180 ± 0.0047
Global - Kernel Warping Mixup (Ours) 2.568 ± 0.235 1.529 ± 0.143 95.553 ± 14.737 0.0155 ± 0.0046

Exch. Rate

ERM Baseline – 0.019 ± 0.0024 1.924 ± 0.287 0.0082 ± 0.0028 0.0364 ± 0.0074
Mixup 1.5 0.0192 ± 0.0025 1.926 ± 0.284 0.0074 ± 0.0022 0.0352 ± 0.0059
Manifold Mixup 1.5 0.0196 ± 0.0026 2.006 ± 0.346 0.0086 ± 0.0029 0.0382 ± 0.0085

C-Mixup 1.5 0.0188 ± 0.0017 1.893 ± 0.222 0.0078 ± 0.0020 0.0360 ± 0.0064

Batch - Kernel Warping Mixup (Ours) 1.5 0.0186 ± 0.0020 1.872 ± 0.235 0.0074 ± 0.0019 0.0346 ± 0.0050
Global - Kernel Warping Mixup (Ours) 1.5 0.0186 ± 0.0020 1.875 ± 0.236 0.0074 ± 0.0019 0.0346 ± 0.0050

The distance d̄n presented in Section 3.3 depends on the batch statistics. The rationale behind the
normalization by the mean is mainly to rescale the distances to similar scales between tasks and
models. If the batch size is too small, one can normalize the distance with the median instead of the
mean to make it more robust to outliers. We did not observe difference in results between the two
in our experiments. Then, if one can use a meaningful distance between data points different from
the distance in the embedding space of the model to train, statistics such as mean or median of the
pairwise similarity matrix can be computed beforehand to normalize the distance during training. In
our experiments on regression tasks, we also compared with normalizing using the mean over the
whole training set instead of the batch. We found slightly improved results on Airfoil, for which the
batch size is 16, but no meaningful improvements for the two other datasets, for which the batch size
is 128. These results are provided in Table 8.
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