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ABSTRACT

LLM-as-a-Judge and reward models are widely used alternatives of multiple-
choice questions or human annotators for large language model (LLM) evalua-
tion. Their efficacy shines in evaluating long-form responses, serving a critical
role as evaluators of leaderboards and as proxies to align LLMs via reinforcement
learning. However, despite their popularity, their effectiveness in diverse contexts,
such as non-English prompts, factual verification, or challenging questions, re-
mains unexplored. In this paper, we conduct a comprehensive analysis of auto-
mated evaluators, reporting several key findings on their behavior. First, we dis-
cover that English evaluation capabilities significantly influence language-specific
evaluation capabilities, often more than the language proficiency itself, enabling
evaluators trained in English to easily transfer their skills to other languages. Sec-
ond, we identify critical shortcomings, where LLMs fail to detect and penalize er-
rors, such as factual inaccuracies, cultural misrepresentations, and the presence of
unwanted language. Finally, we find that state-of-the-art evaluators struggle with
challenging prompts in either English or Korean, underscoring their limitations in
assessing or generating complex reasoning questions. We release the dataset and
codes used in this research.1

1 INTRODUCTION

Assess responses across different languages.
Penalize factual or cultural inaccuracies.
Evaluate challenging prompts (i.e., GPQA)

Automated Evaluators Checklist

Figure 1: Summary of findings from this paper. While
LLM-as-Judge and Reward Models can be easily transferred
to new languages, they struggle in penalizing cultural misrep-
resentations or the evaluation of challenging prompts.

Automated evaluators, such as LLM-as-
a-Judge and reward models (RMs), sup-
plant human effort across a broad spec-
trum of large language model (LLM) re-
search. The applications range from qual-
ity filtering of pretraining corpora (Korbak
et al., 2023; Penedo et al., 2024) to repli-
cating human preferences (Ouyang et al.,
2022; Touvron et al., 2023; Lee et al.,
2023) and evaluating complex model out-
puts (Zheng et al., 2024). As scalable al-
ternatives to costly human annotation (Min et al., 2023; Mishra et al., 2022), they contribute to the
development of user-friendly chat systems like ChatGPT (OpenAI, 2022) and Claude (Bai et al.,
2022). While some research (Park et al., 2024) highlights the biases these models are prone to,
there is limited understanding of their broader abilities. In this work, we examine a diverse array of
automated evaluators, focusing on their failure cases.

For analysis, we create KUDGE, a bilingual meta-evaluation dataset of Korean and English. The
Original subset contains two categories: Pointwise, where a model assesses a single response on
a Likert scale, and Pairwise, where the evaluator chooses the better of two responses. We also in-
troduce the Challenge subset, putting emphasis on STEM questions requiring complex reasoning.
Finally, we construct an ablation set with human-corrupted responses containing cultural misrepre-
sentations or false information. This setup simulates hallucinations (Huang et al., 2023)—a common
phenomenon in LLMs—to evaluate the ability of LLM judges to detect knowledge-related errors.

1https://anonymous.4open.science/r/kudge-0648
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Figure 1 summarizes the key findings of this research. First, LLM-as-Judges and RMs demonstrate
equal proficiency in Korean, a language they have not been trained in. Interestingly, the capability
of models to evaluate Korean question and answer (QA) pairs can be predicted by their performance
on REWARDBENCH (Lambert et al., 2024), an English meta-evaluation dataset. This predictive abil-
ity surpasses that of Korean language benchmarks (Son et al., 2024; 2023; Kim, 2024; Kim et al.,
2022), challenging the expectation that proficient Korean speakers would naturally excel at evaluat-
ing Korean text. We conjecture that a significant portion of evaluation ability is language-agnostic,
which explains this positive correlation. Secondly, however, we identify weaknesses in the trans-
ferability of proprietary and fine-tuned LLMs. These models fail to detect and penalize instances
containing false information or cultural misrepresentations. This limitation indicates that they may
not serve effectively as factual verifiers in unfamiliar languages or cultural contexts. Finally, auto-
mated evaluators struggle to assess QA pairs that include questions requiring complex reasoning in
either language, underscoring the need for better judge models.

The main contributions of this work are as follows:

1. We empirically analyze the circumstances under which automated evaluators are effective
in new languages and when not.

2. We identify the shortcomings of state-of-the-art (SOTA) judge models in evaluating chal-
lenging prompts, even in English, highlighting the need for improved evaluators.

3. We release KUDGE, a bilingual meta-evaluation dataset—the first of its kind in Korean. It
also includes a challenge subset designed to enhance the evaluation of English models.

2 RELATED WORKS

Traditional metrics such as BLEU (Papineni et al., 2002) and ROUGE (Lin, 2004), which measure
lexical overlap between texts, have long been the standard for evaluating generated text. However, as
LLMs advance, they are now capable of producing semantically equivalent yet syntactically varied
expressions that these metrics cannot accurately assess (Chung et al., 2023). Although human evalu-
ation may be ideal, it is often impractical due to resource constraints (Li et al., 2023). Consequently,
model-based evaluation (i.e., LLM-as-a-Judges and RMs) has emerged as an alternative, employing
LLMs in a peer-review-like setup.

Automated Evaluators Initially, the LLM-as-a-Judge approach involved prompting LLMs to
evaluate outputs (Zheng et al., 2024; Liu et al., 2023; Verga et al., 2024). However, recent efforts
have shifted towards specifically training LLMs to enhance their evaluative accuracy (Kim et al.,
2024c; Vu et al., 2024; Park et al., 2024; Wang et al., 2024e). LLM-as-a-Judge models offer high
flexibility, employing customizable rubrics (Ye et al., 2023) and scoring ranges (Dong et al., 2024).
Typically, these models are prompted to provide feedback (Wang et al., 2024e;d) before their evalu-
ations, which boosts performance and enhances interpretability for users. However, relying on gen-
eration for every evaluation step may be resource-intensive. Instead, reward models (RMs) attach
classification heads to LLMs to directly output continuous scores (Munos et al., 2023; Wang et al.,
2024c; Swamy et al., 2024). These models may be easily integrated into training systems, serving
as proxies for human preferences and facilitating the training of aligned LLMs (Lee et al., 2023;
Dong et al., 2023; Aksitov et al., 2023). Recent efforts also include merging the two approaches by
training RMs with a next-token prediction objective (Zhang et al., 2024).

Meta-Evaluation As automated evaluators gain traction, meta-evaluation tools have been devel-
oped to assess their reliability (Zeng et al., 2023; Lambert et al., 2024). These benchmarks evaluate
how closely LLMs mirror human judgments and determine their efficacy as reliable proxies for hu-
man annotators. Such tools are crucial in guaranteeing the significance of LLM-based evaluations.
However, despite their widespread use in multilingual settings (Aryabumi et al., 2024; Chiang et al.,
2024), the full capabilities of these evaluators remain largely unexamined. This work presents a
comprehensive analysis of automated evaluators across diverse settings, including non-English con-
texts, factual verification, and complex reasoning tasks. We assess their reliability, determine when
they can be trusted, and identify key limitations in handling such scenarios.

2
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Table 1: An overview of the 31 LLMs used for response generation. We use the instruct/chat version of
each model if available.

Type Models

Proprietary GPT-4 (Turbo-2024-04-09), HyperCLOVA X

Multilingual Chat
Command-R (35B, 104B), Llama-3 (8B, 70B), Gemma-1.1 (2B, 9B),
Qwen-1.5 (4B, 7B, A2.7B, 14B, 32B, 72B), Yi (6B, 34B),
AYA-101, ORION, Mixtral (8x7B, 8x22B)

English Chat DBRX-Instruct, Falcon (7B, 40B), Mistral (7B), SOLAR (10.7B)

Korean Transfer EEVE (2.8B, 10.8B), KULLM (10.7B), KORani (13B)

Korean Chat 42dot-LLM (1.3B)

3 KUDGE: A BILINGUAL BENCHMARK FOR AUTOMATED JUDGES

In this section, we introduce KUDGE, a dataset designed to assess the performance of automated
judges. The original subset primarily focuses on Korean to complement existing English datasets
of similar difficulty (Lambert et al., 2024; Park et al., 2024). The challenge subset is created in both
English and Korean. Sections 3.1 to 3.3 detail the creation of the original subset, while Section 3.4
describes the development of the challenge subset. The dataset is made publicly available 2.

3.1 DATASET CREATION

Existing Korean benchmarks for long-form question answering (Research, 2024; Park, 2024) pri-
marily translate or replicate MT-Bench (Zheng et al., 2024), omitting aspects of Korean culture. To
address this issue, we handcraft 90 unique instructions. We classify Korean knowledge into nine dis-
tinct categories and map seven unique reasoning skills to ensure comprehensive coverage of topics
and reasoning abilities, distributing the instructions evenly across these categories. We also incorpo-
rate personalized evaluation rubrics and gold-standard responses for each question. The concise size
of the instruction set aims to keep evaluation and annotation feasible within budget constraints. Fol-
lowing this, to collect model responses of a wide variety, we generate answers for each instruction
using 31 LLMs, ranging in size from 1.3 billion to over 100 billion parameters. For an overview of
all models utilized in generating responses, see Table 1. Finally, fifteen human annotators, including
five authors and ten hired experts compensated at ten US dollars per hour, evaluate the responses.
Annotators were provided the above-mentioned reference answers and scoring rubrics to rate model
generations on a Likert scale from 1 to 5. To prevent negligence, they were required to justify their
scores. For quality control, each instance undergoes evaluation by two different annotators. For ad-
ditional details on the creation process, see Appendix A.

3.2 QUALITY ANALYSIS

To assess the quality of the collected annotations, we analyze the evaluation times and agreement
rates between authors and hired annotators. The average evaluation time is 146 seconds for authors
and 150 seconds for hired annotators, showing no significant difference. In 83.85% of cases, anno-
tations by the two annotators are identical or within a 1-point margin, likely due to the subjective
nature of the task. However, in 8.36% of cases, disagreements exceed a 2-point margin, indicating
significant discrepancies. Such discrepancies often stem from annotators assigning identical scores
to multiple responses with very brief evaluation times or from unusually long annotation times ex-
ceeding 1000 seconds, which may indicate negligence or loss of concentration. In our experiments,
we average scores for instances where the discrepancy between annotators is 1 point or less. Fur-
thermore, we exclude instances with larger margins or those with only one annotation. The missing
annotations are likely due to platform failures or human errors in curation.

2Removed for review.
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3.3 POINTWISE & PAIRWISE SUBSETS

LLM-as-a-Judge applications typically include two evaluation methods: pointwise and pair-
wise (Vu et al., 2024; Kim et al., 2024c). Pointwise evaluation involves assigning integer scores
to individual responses, whereas pairwise evaluation contrasts two responses to determine a pref-
erence. Although initially intended for pointwise assessment with a Likert scale, we have adapted
KUDGE for pairwise evaluation by pairing responses from distinct models into pairs. This approach
involves selecting a “chosen” response with a score exceeding three and a “rejected” response scor-
ing two or less. Accordingly, the original subset of KUDGE features a pointwise subset comprising
2506 instances and a pairwise subset totaling 818 instances.

3.4 CHALLENGE SUBSET

Table 2: Overview of the KUDGE dataset. The
figures in braces indicate the number of questions
in Korean and English, respectively. The slight
numerical differences between the two languages
within the Challenge subset reflect adjustments
made during translation quality checks.

Subset Category # N

Original Pointwise 2506
Pairwise 818

Challenge Pairwise-Easy {266, 282}
Pairwise-Hard {99, 99}

The prompts in KUDGE are focused primarily
on Korean culture, excluding STEM topics. To
address this limitation, we introduce the KUDGE
CHALLENGE subset, a bilingual evaluation set
in English and Korean with two levels of diffi-
culty. The “easy” level features questions from the
MMLU dataset (Hendrycks et al., 2020), specif-
ically from four categories identified by Gema
et al. (2024) to have minimal issues: college
physics, college mathematics, high school chem-
istry, and high school geography. For each ques-
tion, Exaone-3-7.8B-Instruct generates 32
Chain-of-Thought (CoT) reasonings in Korean, from
which we select one correct and one incorrect
response. These are then translated into English.
The “hard” level incorporates questions from the
GPQA (Rein et al., 2023) dataset, following the same process but using GPT-4o. We exclude
questions if neither a correct nor incorrect response emerges from the 32 CoTs, and the authors
manually review translations for accuracy. We present evaluation results for this subset in Section 8.
See Table 2 for an overview of the KUDGE dataset.

4 EXPERIMENTAL SETUP

4.1 PROMPT CONFIGURATION

For the evaluation of LLM-as-a-Judges, we employ a generative setting in which models are
prompted to first generate an analysis and append their final decisions in a standardized format.
In pointwise evaluation, models are instructed to generate the “[RESULT]” token followed by an
integer from 1 to 5. In pairwise evaluation, models select the superior response as either “[[A]]” or
“[[B]]”, which is subsequently parsed. If a model fails to generate the correct format, we attempt up
to three retries. For further details on generation configuration and prompts, refer to Appendix B.
For RMs, we adopt the codebase provided from Lambert et al. (2024).

4.2 EVALUATED MODELS

In Table 3, we assess 20 LLMs, including three proprietary models: GPT-4o (OpenAI, 2024),
Claude-3.5-Sonnet (Anthropic, 2024), and HyperCLOVA X (Yoo et al., 2024); along with
five open-source model families: Llama-3.1 (Meta, 2024), Qwen 1.5/2 (Yang et al., 2024),
Mistral (Mistral AI, 2024; Mistral, 2024), and Command-R (Cohere, 2024). We also include
EXAONE-3.0-7.8B-Instruct (Research et al., 2024), a model pretrained on 8 trillion to-
kens of bilingual English and Korean text. Due to hardware constraints, a quantized version of
Llama-3.1-405B is used. Additionally, in Section 6.2 we also explore fine-tuned LLM-as-a-
Judge models like Prometheus2 (Kim et al., 2024c) and RMs such as FsfairX (Xiong et al.,
2024), OffsetBias (Park et al., 2024), and Skywork-RM (Liu & Zeng, 2024).

4
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Table 3: Evaluation results for 20 LLMs on KUDGE ORIGINAL. For the pointwise category, off-by-0.5
accuracy is considered to account for mismatches caused by averaging human annotation scores. Accordingly,
random guessing accuracies are set at 30.86% for pointwise and 50% at pairwise. The highest-scoring model
across all categories is highlighted in bold, while the top model in each category is underlined. Missing evalu-
ation results will be updated shortly.

Models
KUDGE Original Additional Stats.

Point (Acc) Point (Pear.) Pair (Acc) Average KMMLU RB.

proprietary language models
GPT-4o 61.26 0.62 87.76 74.51 64.28 87.28
Claude-3.5-Sonnet 56.46 0.59 89.11 72.79 - 85.17
HyperCLOVA X 51.84 0.55 85.10 68.47 53.40 -

openly available language models
Llama-3.1-405B-Instruct (FP8) 58.88 0.57 87.42 73.15 65.07 90.67
Llama-3.1-70B-Instruct 51.59 0.44 83.40 67.49 51.94 86.13
Llama-3.1-8B-Instruct 29.96 0.24 82.05 56.01 41.56 72.94
Mistral-Large-Instruct 58.44 0.60 87.93 73.19 61.17 88.08
Mixtral-8x22B-Instruct 49.25 0.46 84.67 66.96 47.84 79.84
Mixtral-8x7B-Instruct 24.48 0.25 81.51 53.00 40.61 74.02
Mistral-Nemo-Instruct 41.36 0.27 79.63 60.50 43.46 71.08
Command-R-Plus 28.34 0.19 71.98 50.16 47.84 73.18
Command-R-v01 22.48 0.04 71.18 46.83 39.83 66.67
Qwen2-72B-Instruct 50.58 0.62 86.06 68.32 63.66 84.51
Qwen2-7B-Instruct 24.03 0.20 73.05 48.54 46.12 68.10
Qwen2-1.5B-Instruct 13.65 0.11 47.86 30.75 26.59 52.17
Qwen1.5-72B-Chat 15.30 0.32 76.07 45.68 51.31 76.60
Qwen1.5-32B-Chat 30.48 0.39 76.28 53.38 46.65 76.96
Qwen1.5-14B-Chat 23.54 0.24 73.75 48.64 43.16 68.05
Qwen1.5-MoE-A2.7B-Chat 17.69 0.08 59.02 38.36 36.75 51.62
EXAONE-3-7.8B-Instruct 34.58 0.39 81.86 58.22 44.94 67.86

5 EVALUATION RESULTS

The performance of 20 LLMs on KUDGE ORIGINAL is summarized in Table 3. Propri-
etary language models show the best results, with large and recent open LLMs demonstrat-
ing comparable performance. Specifically, GPT-4o (74.51) leads in overall performance, with
Claude-3.5-Sonnet (72.79) trailing slightly in overall average score. Among open-weight
models, Llama-3.1-405B-Instruct (73.15) and Mistral-Large-Instruct (73.19)
stand out, particularly in pairwise accuracy, where they compete closely with GPT-4o. However,
the Pearson correlation for the pointwise subset remains below 0.6 for most models, indicating a
moderate correlation at best and suggesting significant room for improvement in this area.

Interestingly, several large models, despite their size, underperform compared to their peers.
For instance, Qwen1.5-72B-Chat posts KMMLU and REWARDBENCH scores similar to
Mixtral-8x22B-Instruct (51.31 vs. 47.84 in KMMLU and 76.60 vs. 79.84 in RB.),
but lags by 21.28% in KUDGE (45.68 vs. 66.96). Similarly, Command-R-Plus matches
Mixtral-8x22B-Instruct in other benchmarks, but falls 16.8% behind in KUDGE (50.16
vs. 66.96). This suggests that while scale remains important, as evidenced within the same family
of models like the Llama-3.1 series, where larger models outperform smaller ones, it appears
that newer models consistently outperform older models of similar size. This may be attributed to
improvements in training data quality, larger datasets, and higher training budgets.

Figure 2 illustrates the average margin between human annotators and LLM-as-a-Judges for each
score. We notice a performance gradient across score ranges. Smaller models typically struggle in the
lower score range (1-2.5), demonstrating difficulty in accurately penalizing lower-quality inputs. In
contrast, GPT-4o or the Llama-3.1 models tend to be conservative in awarding higher scores, as

5
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shown by lighter shades in the higher score spectrum. Furthermore, the variance in margins per score
is lowest for GPT-4o (0.06), followed by Claude-3.5-Sonnet (0.08), Llama-3.1-405B
(0.07), and Mistral-Large-Instruct (0.08), correlating with performance, implying that
better models tend to exhibit lower variance and consistent performance across the score range.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

GPT-4o

Claude-3.5-Sonnet

HCX-Large

Llama-3.1-405B

Llama-3.1-70B

Qwen2-72B

Mistral-Large

Mistral-Nemo

EXAONE-3.0-7.8B

Qwen2-7B

Llama-3.1-8B

0.91 0.78 0.86 0.62 0.66 0.43 0.71 0.86 1.4

1.2 1.2 1.3 1.1 0.95 0.72 0.61 0.44 0.65

1.2 1.2 1.6 1.8 1.4 1.2 0.95 0.65 0.5

1 0.89 0.9 0.64 0.58 0.41 0.68 0.91 1.4

1.4 1.4 1.2 0.75 0.64 0.4 0.67 0.87 1.5

1.3 1.4 1.6 1.4 1 0.7 0.61 0.34 0.5

1.1 1.1 1.1 0.75 0.66 0.4 0.63 0.62 1.2

2 1.7 1.5 1.2 0.86 0.7 0.72 0.9 1.2

2.3 1.9 1.8 1.5 1.1 0.75 0.55 0.31 0.75

3 2.6 2.3 2 1.6 1.1 0.83 0.39 0.55

2.4 2.2 1.9 1.5 1.3 1 0.9 0.83 1.1

Figure 2: Average Delta Between Human and
LLM Judges. Lighter shades represent larger deltas.
The X-axis shows scores annotated by humans, while
the text in the heatmap cells indicates the average
margin with the scores given by models.
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Figure 3: Accuracy from Ensembling N LLMs.
The table shows the average accuracy of N randomly
sampled LLMs across five trials. GPT-4o achieves
scores of 61.26 and 87.76 on the pointwise and pair-
wise subsets.

5.1 EVALUATION WITH MAJORITY VOTING

Verga et al. (2024) suggests that aggregating judgments from multiple LLMs could enhance correla-
tion with human evaluations. We test this hypothesis using KUDGE. In Figure 3, we sample N mod-
els from proprietary and open-source LLMs with over 70B parameters, excluding the top-performing
GPT-4o, and average their accuracy across five trials. Similar to prior findings, we observe aggregat-
ing models yield improvement; however, the margins are minimal and still underperform compared
to GPT-4o alone. We find that the underperformance of aggregated models compared to GPT-4o
alone could be attributed to multicollinearity among the models, as indicated in Figure 3. We observe
that the Variance Inflation Factor (VIF) increases from 10.02 to 16.91 as more models are included
in the ensemble, suggesting that these models contribute similar, rather than diverse, perspectives.
This lack of diversity means the ensemble is limited in its ability to rectify incorrect assessments,
undermining the effectiveness of model aggregation.

6 ARE JUDGING CAPABILITIES TRANSFERRED TO NEW LANGUAGES?

In Table 3, we observe that models display comparable performance despite not being explicitly
trained in Korean, prompting the question: Are judging capabilities transferable to new languages?
In this section, we investigate this issue by identifying statistically significant features that predict
KUDGE scores (Section 6.1), observe whether evaluation capabilities learned in English transfer to
Korean (Section 6.2) and conducting a qualitative analysis of the conditions in which transfer fails
(Section 6.3).

Table 4: Regression results for model performance on KUDGE. XpK|Sq, and XpRB|Sq denote Korean capa-
bilities, and RewardBench scores, all adjusted for model size. Significance levels: ** p ă 0.05, *** p ă 0.01.

Subset βXK|S
βXRB|S

R2 F-Stats

Pointwise 0.05 1.01˚˚ 0.48 2.30
Pairwise 0.02 0.26˚˚ 0.52 2.72

6.1 CORRELATION WITH DIFFERENT FEATURES

We examine the correlation of evaluation results on KUDGE with performance on KMMLU, and
REWARDBENCH, as shown in Figure 4. Regression against REWARDBENCH scores yields a higher

6
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R2 value compared to KMMLU scores, suggesting that models better at English evaluations tend
to perform well in Korean contexts, despite potential shortcomings in Korean-specific capabilities.

30 40 50 60
KMMLU

0

20

40

60

80

P
er

fo
rm

an
ce

Point (Acc) R² = 0.680
Pair (Acc) R² = 0.645

50 60 70 80 90
Reward Bench

0

20

40

60

80

P
er

fo
rm

an
ce

Point (Acc) R² = 0.718
Pair (Acc) R² = 0.807

Figure 4: Regression analysis of performance
KUDGE against different benchmarks. R2 values are
annotated. Pointwise scores are in blue, Pairwise score
are noted in red.

To further validate that Korean-specific abilities
are less influential on Korean evaluation capa-
bilities, we add the following benchmarks to
our analysis: GSM8K-Ko, HAE-RAE Bench,
and HellaSwag-KoBEST. Given the correlation
in these benchmarks (Ilić, 2023; Burnell et al.,
2023), we apply PCA to distill the first princi-
pal component, capturing the low-dimensional
Korean capability of each model. To control for
the influence of model size, which is often cor-
related with better scores across benchmarks,
we orthogonalize both the principal compo-
nent (representing Korean capabilities), and the
REWARDBENCH scores with respect to model
size. While controlling for computing budget
would be ideal, we opt to use model size as a proxy since some open models do not disclose their
training tokens, complicating the precise calculation of FLOPs used during training. The orthogo-
nalization is denoted as XK|S for Korean capabilities and XRB|S for REWARDBENCH, where:

XK|S “ XK ´ βSXS

and similarly for XRB|S , where XK and XRB are the original scores, XS is model size, and βS is
the coefficient from regressing the feature on size. By removing the size effect, XK|S and XRB|S

represent the residual Korean and reward capabilities independent of model size. Table 4 presents the
regression results. The size-adjusted language features XK|S show poor statistical significance, im-
plying that Korean language capabilities have a limited impact on judging capabilities once adjusted
for size. Conversely, XRB|S exhibits relatively higher coefficients and serves as a stronger predictor
of performance in KUDGE. This observation aligns with discussions in Section 5 on why targeted
training in Korean does not necessarily lead to better scores, highlighting that longer training and
enhanced cognitive capabilities might be more crucial.

6.2 EVALUATION WITH FINE-TUNED LLMS

Table 5: Performance comparison between
Prometheus2 and its base model. The failure column
denotes how often the models fail to generate in
the desired format Higher performance metrics are
highlighted in bold.

Model Accuracy Pearson Failure

Mistral-7B 20.29 0.26 64.33
Prometheus2-7b 46.46 0.43 7.7

Mixtral-8x7B 22.77 0.27 19.6
Prometheus2-8x7b 46.45 0.41 20.9

Recently, there have been increasing efforts
to develop dedicated LLMs for evaluation,
either by fine-tuning them with instruction-
like data to induce judgment capabilities (Kim
et al., 2024c) or by integrating a classifi-
cation head and adopting a Bradley–Terry
model (Wang et al., 2024b;a; Liu et al., 2024).
In this section, we explore whether LLMs
fine-tuned for English meta-evaluation are di-
rectly applicable as judges for Korean. In Ta-
ble 5, we compare Prometheus2 with its
base model Mistral (Mistral, 2024). No-
tably, Prometheus2 demonstrates improve-
ments of 20.17% and 23.68% in accuracy
across different model sizes, suggesting that although primarily tuned in English, its meta-evaluation
capabilities may effectively extend to other languages. Meanwhile, we also observe a language
bias where Prometheus favors responses containing or written in English. In instances where
Prometheus errs while Mistral is correct, the average count of English characters is 765.6,
compared to 673 when the roles are reversed, indicating a preference for longer English strings.
This suggests that the English-focused training of Prometheus introduces a subtle bias. We fur-
ther investigate related biases in Section 6.3

In Table 6, we report the performance of four reward models on the pairwise subset of KUDGE
ORIGINAL and compare it to their performance on REWARDBENCH. Surprisingly, reward models
trained only with English data prove equally effective in Korean meta-evaluation. Notably, the top-
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performing model, FsfairX-RM-8B (90.22), surpasses Claude-3.5-Sonnet (89.11), the best
model evaluated in a generative setting. This suggests that training conducted in English can be
effectively transferred to pairwise evaluation without additional adaptation. This observation aligns
with the findings of Wu et al. (2024), which demonstrate that English RMs are also effective for
cross-lingual alignment.

Table 6: Evaluation result of four RMs on
KUDGE and REWARDBENCH. The highest per-
formance metrics are highlighted in bold, while
the second-highest are underlined.

Models KUDGE RewardBench

FsfairX-RM-8B 90.22 84.4
OffsetBias-RM-8B 89.11 89.4
Skywork-Reward-8B 88.14 92.5
Skywork-Reward-27B 81.05 93.8

Interestingly, the performance rankings on KUDGE
and REWARDBENCH are inversely related, with
models excelling in one dataset tending to under-
perform in the other. We hypothesize that the per-
formance disparities may be attributed to the size
and diversity of the training datasets. For exam-
ple, FsfairX-RM-8B utilizes the smallest dataset,
while OffsetBias-RM-8B is a merge of a re-
ward model trained on the OffsetBias dataset and
FsfairX-RM-8B. Similarly, the Skywork Reward
series uses a larger dataset, including the datasets
from Park et al. (2024). We suspect that such data
curation might lead models to overfit on English evaluations or REWARDBENCH specifically, po-
tentially limiting their effectiveness in broader evaluation contexts. However, it should be noted that
the analysis of the four models is insufficient to generalize, and future work is required to study this
behavior further.

6.3 QUALITATIVE ANALYSIS ON BIASES

LLM-as-a-Judges are known to be susceptible to various biases (Park et al., 2024; Chen et al., 2024).
To investigate such bias in KUDGE, we conduct a qualitative analysis on 15% of the pointwise subset.
We identify two main types of biases: (1) Unwanted Character, where we find 149 responses
containing non-Korean characters or sentences, and (2) Incomplete Answers, noted in 105 cases
where responses are perceived as incomplete by humans due to refusal or low-confidence baseless
claims. See Figure 9 for examples of the selected samples.
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Figure 5: Results for the Two-Sample Kolmogorov-Smirnov Test. “U.C” denotes unwanted characters, and
“I.A” stands for incomplete answers. Significance levels are indicated as follows: ** for p ă 0.05, *** for
p ă 0.01. Analysis for remaining models are presented in Figure 15.

To determine if models struggle more when evaluating instances with such bias, we analyze their
average errors, defined as the margin between model scores and human scores, across the two above-
mentioned instances. If the error margins in these instances align with the model’s typical error
rates, it suggests that models do not specifically suffer in these scenarios. Conversely, differing error
patterns indicate that models struggle with these error-prone instances.

In Figure 5, we present the cumulative distribution functions and statistics from a two-
sample Kolmogorov-Smirnov (KS) test for four models. The distribution for GPT-4o approx-
imates a normal distribution, indicating a balanced scoring pattern, whereas other models like
Claude-3.5-Sonnet, Exaone-3.7-8B, and Qwen2-7B-Instruct display right-skewed
patterns, suggesting a tendency to award higher scores compared to human evaluations. Specifically,
the KS test reveals statistically significant differences in scoring patterns between the full evaluation
set and subsets with errors such as unwanted characters or incomplete answers. These discrepancies
are particularly pronounced in EXAONE-3.0-7.8B-Instruct, which shows the most signifi-
cant distribution shift, indicating a greater sensitivity to these error types.
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7 CAN LLMS JUDGE RESPONSES WITH FALSE INFORMATION?

While models trained in English may transfer particular learned preferences, their robustness against
factual inaccuracies—easily spotted by native Korean speakers—remains uncertain. To assess this,
we initially sampled 106 responses, each scoring above four from human evaluators. We exclude
18 instructions unsuitable for factual corruption, such as those requiring the creation of imaginary
stories. A human annotator then corrupts the remaining responses to include false information. The
annotator was required to highlight the corrupted spans and add explanations on the changes made.
The corruption is performed at one of three levels: “word,” involving subtle perturbations to indi-
vidual words; “sentence,” entailing alterations to entire sentences; and “paragraph,” where broader
changes are made by modifying arguments or altering comparisons. These modified responses un-
dergo review by three human reviewers, who verify the truthfulness of each corrupted segment with
a simple ‘yes’ or ‘no’. We discarded 34 cases where the reviewers could not identify errors. Ulti-
mately, we retain 54 instances unanimously identified as incorrect by all reviewers. Examples of
perturbations are available in Appendix D.

Table 7: Results from a manual review on the gen-
erated feedback. Evaluation is done in a pointwise set-
ting using corrupted responses containing false infor-
mation.

Type Count GPT-4o Claude-3.5-Sonnet

Word 34 1 (2.94%) 0 (0%)
Sentence 13 4 (30.8%) 3 (21.4%)
Paragraph 7 4 (57.1%) 6 (85.7%)

Total 54 9 (16.7%) 9 (16.7%)

Feedback Analysis As it is unclear how
much we should deduct from the original
score according to each corruption, instead of
comparing scores, we input the corrupted re-
sponses for evaluation to two models GPT-4o
and Claude-3.5-Sonnet and conduct a
qualitative analysis on the generated feed-
back to count the number of cases where
the two models succeed in identifying the
errors. In Table 7, we observe that top-
performing proprietary models struggle sig-
nificantly in detecting factual errors. Both
models perform best on paragraph-type er-
rors, with Claude-3.5-Sonnet identifying
nearly all, likely because these alterations significantly change the overall context, making them
easily visible. However, as the errors become subtler, both models face difficulties in detection,
highlighting a limitation of LLM-as-a-Judges. While they may effectively assess the logic or coher-
ence of responses, they are less suitable for identifying the truthfulness or hallucinations in LLM
outputs.

Table 8: Evaluations results of 4 automated evalua-
tors using a pairwise setting. Evaluation is done using
corrupted responses containing false information.

Type Model Accuracy

LLM-as-a-Judge
Claude-3.5-Sonnet 68.52

GPT-4o 66.67

Reward Model
OffsetBias-RM-8B 42.59

FsfairX-RM-8B 38.89

Pairwise In the pairwise subset, we pair cor-
rupted responses with their original versions
and present them to LLMs to assess their abil-
ity to distinguish between the two. Surpris-
ingly, in contrast to the full subset where reward
models outperformed LLM-as-a-Judges (Sec-
tion 6.2), we observe an opposite trend. Reward
models perform poorly, scoring below the ran-
dom baseline of 50. Moreover, we manually re-
view the feedback from the models and quan-
tify how often the generative judges identify
errors. GPT-4o and Claude-3.5-Sonnet
detected the correct factual errors 26 and 32
times, respectively, significantly outperforming their results from Table 7. This suggests that pair-
wise comparisons may enhance evaluation accuracy. However, it is important to note that encoun-
tering two nearly identical responses with subtle differences is rare in real-world scenarios, making
the detection of factual errors even more challenging. Additionally, we identify 13 and 16 instances
where each model provided incorrect, fabricated reasons to differentiate between the responses, in-
dicating potential robustness issues.
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Table 9: Evaluation results for 4 LLM-as-a-Judge and 4 RMs on KUDGE CHALLENGE. Random guessing
accuracies are set at 50% for all subset. The highest-scoring model across all categories is highlighted in bold,
while the top model in each category is underlined.

Subset Easy Hard
Language Ko En Average Ko En Average

openly available language models (>70B)
Llama-3.1-405B-Instruct (FP8) 70.92 83.08 77.00 53.53 64.64 59.09
Llama-3.1-70B-Instruct 68.79 71.80 70.30 63.63 48.48 56.06
Qwen-2-72B-Instruct 71.73 78.94 75.34 30.30 41.41 35.86
Mistral-Large-Instruct 74.11 79.32 76.72 46.46 53.53 50.00

reward models
Skywork-Reward-27B 80.49 81.58 81.04 9.09 10.10 9.60
Skywork-Reward-8B 72.34 72.93 72.64 12.12 18.18 15.15
OffsetBias-RM-8B 75.17 73.68 74.43 19.19 34.34 26.77
FsfairX-RM-8B 76.59 81.20 78.90 17.17 19.19 18.18

8 CAN LLMS EVALUATE CHALLENGING PROMPTS?

Intuitively, evaluating a problem necessitates solving it, as the evaluator must determine the cor-
rectness of an answer. We posit that models may find it difficult to assess challenging questions that
they themselves cannot solve. In this section, we use the KUDGE CHALLENGE subset to explore
how question difficulty influences judgability.

In Table 9, we observe that model performance significantly correlates with the difficulty of the
prompts. All models manage reasonable success on simpler MMLU questions but encounter sub-
stantial difficulties with the more demanding GPQA subset. No model surpasses a 70% accuracy
rate on these harder questions, a concerning performance given that random guessing would result
in 50% accuracy. Reward models, although competitive on easier sets, underperform on tougher
questions, likely due to their relatively smaller size (the largest being 27B parameters) compared to
the LLMs-as-judges, all of which exceed 70B parameters. This disparity suggests that the complex-
ity of GPQA questions particularly challenges smaller models. Overall, the findings indicate that
models struggle with complex questions, revealing a significant limitation in employing state-of-
the-art, open-source judges for training LLMs (OpenAI, 2024) on advanced reasoning tasks.

9 CONCLUSION

In this paper, we introduce KUDGE, a bilingual meta-evaluation dataset that assesses meta-evaluation
capability in both Korean and English. Our findings show that LLM-as-a-Judges and RMs perform
comparably in Korean, effectively evaluating questions and answers beyond their English training.
This observation challenges the assumption that native Korean proficiency is essential for high-
quality text evaluation. However, we also uncover significant deficiencies in proprietary and finely-
tuned models’ ability to detect cultural misrepresentations or false information. This underscores
a substantial gap in their effectiveness as reliable fact-checkers across varied languages and con-
texts. Furthermore, both model types struggle with complex reasoning tasks in our Challenge subset,
pointing to a widespread limitation in current automated evaluators.
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A ADDITIONAL DETAILS OF KUDGE

A.1 K2-EVAL

Given the absence of long-form question datasets in Korean at the time of this research, we create
K2-EVAL, a curated set of 90 prompts encompassing various aspects of Korean knowledge. The
concise dataset size is intended to keep evaluation and annotation manageable within budgetary
limits. Despite its small size, we ensure broad coverage by categorizing Korean knowledge into nine
distinct areas and identifying seven unique reasoning skills, with each task in the dataset pairing
one knowledge category with one reasoning skill. See Table 10 for an overview of the knowledge
and reasoning types. The gold answer for each instruction is crafted through a three-step process.
Initially, we generate answers for each prompt using GPT-4, enhanced with a browsing-augmented
chain of thought (CoT) technique (Yao et al., 2022). Subsequently, two authors independently review
and amend any problematic responses. Finally, one author consolidates these revisions to finalize
the gold standard answers. We also establish specific scoring rubrics and evaluation metrics for each
task, linked to the paired knowledge and reasoning categories. These assessment tools measure the
effectiveness of responses, their cultural accuracy, and the use of unique Korean linguistic elements,
including honorifics. The scoring rubric and evaluation criteria are not unique to each instruction
instead, they are shared within each combination of knowledge and reasoning types.

Table 10: Summary of the knowledge and reasoning types defined for instruction creation.

Category Subcategory Description

Knowledge Art Traditional and contemporary Korean art, including historical context.
Knowledge Culinary Knowledge of traditional Korean foods, recipes, and food culture.
Knowledge Culture & Traditions Understanding of diverse cultural practices in Korea.
Knowledge Geography Korean natural environments, topography, and architectural influence.
Knowledge History Recognition of historical events, and figures from ancient to modern

times.
Knowledge Linguistics Comprehension of Korean linguistic characteristics and dialects.
Knowledge Politics & Economy Understanding of government systems, and economic policies.
Knowledge Social Issues Awareness of contemporary social challenges in Korean society.

Reasoning Empathetic Reasoning Ability to understand and interpret others’ emotions and perspectives.
Reasoning Brainstorming Capacity for divergent thinking and generating creative solutions.
Reasoning Cause & Effect Analysis Skill in identifying and analyzing causal relationships between events.
Reasoning Comparative Analysis Ability to compare and contrast subjects to evaluate similarities and dif-

ferences.
Reasoning Numerical Estimation Competence in making mathematical estimations in data-limited sce-

narios.
Reasoning Creative Writing Capability to generate original narratives and use various literary de-

vices.
Reasoning Proposing Solutions Skill in suggesting feasible solutions to problems within realistic con-

straints.

In Figure 6, we examine the relationship between response length and the average score annotated
by humans. We observe a slight trend where higher scores correlate with longer average lengths,
however not to a concerning extent.

A.2 HUMAN ANNOTATION

A group of 15 human annotators, consisting of authors and 10 hired experts, all native Korean
speakers with at least a bachelor’s degree from a Korean university, were recruited for this task. The
group included a diverse mix of seven females and eight males. Annotators were tasked with scoring
model responses on a Likert scale from 1 to 5, using a provided scoring rubric, a reference answer
representing a score of 5, and specific evaluation criteria. To ensure consistent evaluation standards,
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Figure 6: An analysis between length and human scores. The X-axis represents the average scores
annotated by human reviewers, while the Y-axis shows the response lengths in number of characters.

annotators received a 30-minute training session with examples from the dataset. To minimize hu-
man error, each instance was independently annotated by two different annotators, securing two sets
of evaluations per instance.

Figure 7: Agreement rate of the two annotators.
Note that the values are normalized column-wise.

We observe that annotators completely agree
only 52.2% of the time. 30.7% of the time, they
assign scores with a one-point difference. Sur-
prisingly, despite the detailed evaluation crite-
ria and rubrics provided, 17.1% of the time an-
notators disagree by a margin bigger than two.
In our work, we treat cases where scores dif-
fer by one point as agreements and calculate
the final score by averaging these two scores.
However, in instances where the score differ-
ence is two points or more, occurring 17% of
the time, we consider these significant disagree-
ments and exclude them from our analysis.

Figure 7 presents a cross-tabulation of the
scores given by the two annotators, normal-
ized column-wise. We observe that the agree-
ment rate is highest for the lowest score and de-
creases progressively towards the highest score.
This trend suggests that while annotators com-
monly agree on identifying poor responses, they often differ on recognizing high-quality responses.

A.3 BENCHMARK RESULTS

We leverage 31 LLMs, mentioned in Table 1, to generate responses for the K2-EVAL dataset and
subsequently hire annotators to evaluate these responses. Figure 8 presents the performance of these
31 models as evaluated by humans. HyperCLOVA X shows the highest performance, followed
closely by GPT-4 and Command-R-Plus. Interestingly, smaller models specifically fine-tuned
on Korean instruction data, such as EEVE-Korean-Instruct-10.8B (Kim et al., 2024b) and
KULLM3 (Kim et al., 2024a), outperform larger counterparts like Mixtral-8x22B-Instruct
and Qwen-1.5-72B-Chat. This underscores the significance of localized tuning, which ad-
dresses linguistic and cultural nuances to enhance performance in terms of human preference, be-
yond mere model size.
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Figure 8: K2-EVAL human evaluation result.

B EVALUATION PROMPTS

For evaluation, we use the following prompting formats.

Pointwise Evaluation

###Task Description:
An instruction (might include an Input inside it), a response to

evaluate, a reference answer that gets a score of 5, and a
score rubric representing a evaluation criteria are given.

1. Write a detailed feedback that assess the quality of the
response strictly based on the given score rubric, not
evaluating in general.

2. After writing a feedback, write a score that is an integer
between 1 and 5. You should refer to the score rubric.

3. The output format should look as follows: "Feedback: (write a
feedback for criteria) [RESULT] (an integer number between 1
and 5)"

4. Please do not generate any other opening, closing, and
explanations.

5. Respond in fluent Korean.

###The instruction to evaluate:
{orig_instruction}
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###Response to evaluate:
{orig_response}

###Reference Answer (Score 5):
{orig_reference_answer}

###Score Rubrics:
{score_rubric}

###Feedback:

Pairwise Evaluation

Please act as an impartial judge and evaluate the quality of the
responses provided by two AI assistants to the user question
displayed below. You should choose the assistant that follows
the user’s instructions and answers the user’s question better.
Your evaluation should consider factors such as the
helpfulness, relevance, accuracy, depth, creativity, and level
of detail of their responses. Begin your evaluation by
comparing the two responses and provide a short explanation.
Avoid any position biases and ensure that the order in which
the responses were presented does not influence your decision.
Do not allow the length of the responses to influence your
evaluation. Do not favor certain names of the assistants. Be as
objective as possible. After providing your explanation,
output your final verdict by strictly following this format:
"[[A]]" if assistant A is better, "[[B]]" if assistant B is
better.

### Instruction:
{instruction}

### Response A:
{response_a}

### Response B:
{response_b}

###Feedback:

C EXAMPLES FROM QUALITATIVE ANALYSIS

In Section 6.3, we identify two common error types that humans easily detect but models frequently
struggle: Unwanted Characters and Incomplete Answers. Examples of these biases, as identified
by human annotators, are illustrated in Figure 9.

In Section 7, authors manually conduct reviews on model feedback to assess their ability to detect
factual errors. In Figures 10 and 11, we present examples of cases where the model detects an error
in its feedback.

D FURTHER DETAILS ON FACTUAL PERTURBATIONS

In Section 7, we manually add three types of corruption to KUDGE ORIGINAL to create a factually
corrupted subset. In Figures 12 to 14 provide examples of the perturbations.
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Unwanted Charecters

저출산 probleM(Low Fertility Problem)은 Korea(South Korea)가 recent years(오랜 시간)에 서 serious
challenge(심각한 Challenges)로인정됨. Current Situation(현 Status)은 Koreaś Total Fertility Rate(Korea의총
출생 Rate)가 1.2(2019년 base)로 1.3(population replacement level)을 significantly undershoot(크게 미달)함.
[...]

Incomplete Answers

As an AI language model, I cannot have my own opinions or beliefs. However, I can provide some sugges-
tions to help you analyze the issue of coal mining in Korea and propose policies to solve it:
1. Analyze the current situation of coal mining in Korea: You can start by understanding the current situation of
coal mining in Korea [...]

Figure 9: Example of a model response with non-Korean charecters

Feedback by GPT-4o

Both responses attempt to analyze and compare the works 광장 by 최인훈 and 무진기행 by 김
승옥. They discuss the relationship between individuals and society, focusing on themes of in-
ternal struggle, societal pressures, and the reflection of 1960s-70s Korean society in each novel.
However, there are crucial factual errors in Response B. Response B incorrectly attributes광장 to김승옥 and

무진기행 to최인훈, while these works are generally known to be authored by최인훈 and김승옥 respectively.
This error significantly affects the clarity and reliability of the analysis provided. [...]

Figure 10: Example where GPT-4o detects a factual error in the response within its feedback.

E ADDITIONAL RESULTS

In this section, we present additional experimental results. Figure 15 displays the outcomes of the
Two-Sample Kolmogorov-Smirnov Test on the remaining models, continuing from Section 6.3.
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Feedback by Claude-3.5-Sonnet

응답 A와 B를 비교해보면, 두 응답 모두 한국 사회의 높은 교육열과 과도한 사교육 문제에 대한 원인, 결
과, 그리고 해결책을 제시하고 있습니다. 그러나 응답 A가 더 정확하고 현실적인 분석을 제공하고 있습

니다.응답 A는 입시 위주의 교육 체계를 한국의 교육 문제의 주요 원인으로 정확히 지적하고 있습니다.

반면응답 B는 ”기초과학위주의교육체계”와 ”노벨상수상”을언급하고있는데 , 이는 한국의 교육 현실과 맞지 않

는부정확한분석입니다.[...]

English Translation

When comparing responses A and B, both address the causes, effects, and solutions to the high educational fervor
and excessive private tutoring in Korean society. However, response A provides a more accurate and realistic anal-
ysis. Response A correctly identifies the exam-oriented education system as the main cause of educational issues in

Korea. On the other hand, response B mentions an ”education system focused on basic sciences” and ”Nobel Prize winning,”

which are inaccurate analyses that do not align with the realities of education in Korea.[...]

Figure 11: Example where Claude-3.5-Sonnet detects a factual error in the response within
its feedback. Translations are provided for broader accessibility.

˚ The Japanese Colonial Period started in 1910.

Original Response

일제강점기(1910-1945) 는한국역사에서매우어두운시기로,일본의식민지배는한국의정치,경제,사회,문화등여러

분야에 깊은 영향을 미쳤습니다. 특히, 한일 정치 관계는 한국어 정책과 교육에 직접적인 영향을 끼쳤으며, 그 여파는 현대
한국어에도여전히남아있습니다. [...]

The Japanese Colonial Period (1910-1945) is a very dark time in Korean history. Japan’s colonial rule deeply influenced

various sectors in Korea such as politics, economy, society, and culture. Particularly, the political relations between Korea and
Japan had a direct impact on Korean policies and education, and its effects still remain in modern Korea.

Corrupted Response

일제강점기(1110-1945) 는한국역사에서매우어두운시기로,일본의식민지배는한국의정치,경제,사회,문화등여러

분야에 깊은 영향을 미쳤습니다. 특히, 한일 정치 관계는 한국어 정책과 교육에 직접적인 영향을 끼쳤으며, 그 여파는 현대
한국어에도여전히남아있습니다. [...]

The Japanese Colonial Period (1110-1945) is a very dark time in Korean history. Japan’s colonial rule deeply influenced

various sectors in Korea such as politics, economy, society, and culture. Particularly, the political relations between Korea and
Japan had a direct impact on Korean policies and education, and its effects still remain in modern Korea.

Figure 12: Example of a word level corruption. Additional details on the corruption is provided in
red. Translations are provided for broader accessibility.
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˚ The explanation of the two poets “Yun Dong Ju” and “Baek Seok” has been reversed.

Original Response

두 시인은 일제 강점기라는 시대적 상황을 경험했지만, 그들의 시 세계는 사뭇 다르게 나타납니다.

윤동주가시대의아픔을절망과우울,그리고항거로써표현했다면,백석은그상황속에서도일상의아름다움과소중함을

노래했습니다. 그러나그들의시에는공통적으로잃어버린조국에대한사랑과그리움이녹아있으며,이는암울한시대에

위로와희망을주었습니다.

Although the two poets experienced the era of Japanese colonial rule, their poetic worlds are dis-

tinctly different. While Yun Dong-ju expressed the pain of the times through despair, depression, and resistance,

Baek Seok sang about the beauty and preciousness of everyday life even in those circumstances. However, in their po-

etry, there is a common theme of love and longing for the lost homeland, which provided comfort and hope during the dark
times.

Corrupted Response

두 시인은 일제 강점기라는 시대적 상황을 경험했지만, 그들의 시 세계는 사뭇 다르게 나타납니다.

윤동주가시대의아픔과절망속희망및행복,그리고수용을표현했다면,백석은일상의아름다움의상실과허무감을

노래했습니다. 그러나그들의시에는공통적으로잃어버린조국에대한사랑과그리움이녹아있으며,이는암울한시대에

위로와희망을주었습니다.

Although the two poets experienced the era of Japanese colonial rule, their poetic worlds are markedly

different. Yun Dong-ju expressed hope and happiness amidst the pain and despair of the times, and acceptance,

whereas Baek Seok sang about the loss of everyday beauty and a sense of emptiness. However, their poetry commonly

embodies love and longing for the lost homeland, providing comfort and hope during the bleak era.

Figure 13: Example of a sentence-level corruption. Additional details on the corruption are provided
in red. Translations are provided for broader accessibility.
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˚ Explanation of artistic styles in Korea and France has been reversed throughout the entire passage.

Original Response

전통적인한국식정원과프랑스바로크식정원을설계하는원칙을비교하는것은매우흥미롭습니다.대칭성,공간활용도,
철학적근거와같은측면에초점을맞추면서이러한정원이각문화의미학과가치를어떻게반영하는지에대해논의해보

겠습니다.
대칭성은두정원의가장큰차이점중하나입니다.한국식정원은자연의불균형을반영하기위해대칭성을피하는경향이
있습니다.반면,프랑스바로크식정원은완벽한비율과균형을추구하며대칭성이중요합니다.이는동양과서양의미학적
인관점에서비롯된것입니다.동양에서는불완전함,즉자연스러움이미덕으로간주되는반면,서양에서는균형과정확성이
더중요시됩니다.

Comparing the design principles of traditional Korean gardens and French Baroque gardens is very intriguing. We will discuss
how these gardens reflect the aesthetics and values of each culture by focusing on aspects such as symmetry, spatial utilization,
and philosophical foundations.
Symmetry is one of the biggest differences between the two types of gardens. Korean gardens tend to avoid symmetry to reflect
the asymmetry of nature, whereas French Baroque gardens seek perfect proportions and balance, and symmetry is crucial. This
originates from the aesthetic perspectives of the East and West. In the East, imperfection, or naturalness, is considered a virtue,
while in the West, balance and precision are more valued.

Corrupted Response

전통적인프랑스식정원과한국바로크식정원을설계하는원칙을비교하는것은매우흥미롭습니다.대칭성,공간활용도,
철학적근거와같은측면에초점을맞추면서이러한정원이각문화의미학과가치를어떻게반영하는지에대해논의해보

겠습니다.
대칭성은두정원의가장큰차이점중하나입니다.프랑스식정원은자연의불균형을반영하기위해대칭성을피하는경향이
있습니다.반면,한국바로크식정원은완벽한비율과균형을추구하며대칭성이중요합니다.이는동양과서양의미학적인
관점에서 비롯된 것입니다. 동양에서는 불완전함, 즉 자연스러움이 미덕으로 간주되는 반면, 서양에서는 균형과 정확성이
더중요시됩니다.

Comparing the design principles of traditional French gardens and Korean Baroque gardens is very interesting. We will discuss
how these gardens reflect the aesthetics and values of each culture by focusing on aspects such as symmetry, spatial utilization,
and philosophical foundations.
Symmetry is one of the biggest differences between the two types of gardens. French gardens tend to avoid symmetry to reflect
the asymmetry of nature, whereas Korean Baroque gardens seek perfect proportions and balance, with symmetry being crucial.
This stems from the aesthetic perspectives of the East and West. In the East, imperfection, or naturalness, is considered a virtue,
while in the West, balance and precision are more highly valued.

Figure 14: Example of a word-level corruption. Additional details on the corruption are provided in
red. Translations are provided for broader accessibility.
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EXAONE-3.0-7.8B-Instruct

Full Unwanted Character Incomplete Answer

Figure 15: Results for the Two-Sample Kolmogorov-Smirnov Test. ”U.C” denotes unwanted characters,
and ”I.A” stands for incomplete answers. Significance levels are indicated as follows: ** for p ă 0.05, *** for
p ă 0.01.
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