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ABSTRACT

Engineering regulatory DNA sequences with precise activity levels remains a ma-
jor challenge in medicine and biotechnology due to the vast combinatorial space of
possible sequences and the complex regulatory grammars governing gene expres-
sion. DNA discrete diffusion (D3) has emerged as a promising approach for learn-
ing these distributions and generating biologically relevant sequences, yet several
key aspects of its capabilities remain unexplored. Here we systematically inves-
tigate D3’s performance in biologically relevant, understudied scenarios. First,
we demonstrate that D3 maintains robust performance even with limited train-
ing data, highlighting its practical utility in real-world applications where data is
scarce. Second, we extend D3’s conditional generation capabilities for categorical
data, employing classifier-free guidance to improve the quality and specificity of
generated sequences. Third, we analyze sequence trajectories during the diffusion
process, providing insights into how discrete diffusion navigates the sequence-
function landscape. Together, these findings expand our understanding of D3’s
strengths and limitations, while introducing new methodological advances for en-
gineering functional regulatory DNA sequences.

1 INTRODUCTION

Gene expression is tightly regulated by non-coding DNA sequences that encode complex rules for
transcription factor (TF) binding. These cis-regulatory elements are essential for cellular func-
tion, development, and environmental adaptation, but mutations can rewire their activity, leading
to disease. Precisely engineering these elements to control gene expression holds great promise for
therapeutic and biotechnological applications. However, this remains challenging due to the vast
sequence space and the complex, context-dependent nature of cis-regulatory grammars.

Recent approaches to regulatory DNA design rely on treating supervised models as in silico oracles,
where candidate sequences are scored based on predicted activity (Taskiran et al.|[2024; | de Almeida
et al., [2024; |Gosai et al.| 2023)). However, supervised oracles are constrained by their training dis-
tribution and often struggle to generalize under covariate shifts, a well-documented limitation of
genomic deep learning (Sasse et al., 2023} [Huang et al., 2023} [Tang et al.| 2023)). Furthermore, se-
quence optimization methods—such as in silico evolution (Vaishnav et al.||2022), simulated anneal-
ing (Gosai et al.,[2023)), and gradient-based approaches (Linder & Seeligl |2020)—are fundamentally
local search strategies. These methods navigate a restricted subset of sequence space, making in-
cremental modifications rather than discovering truly novel regulatory elements, often leading to
suboptimal solutions.

Deep generative models offer a more powerful approach by learning the full distribution of func-
tional sequences, rather than treating design as an optimization problem over a fixed oracle. Genera-
tive models have demonstrated success in protein design, where strong sequence-level evolutionary
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constraints provide clear inductive biases. However, applying these methods to DNA sequence
design has proven far more challenging. Unlike proteins, which have structured grammars and
conserved domains, regulatory DNA is governed by weak, context-dependent constraints and con-
tains sparse functional elements embedded within vast non-informative regions. This sparsity makes
genomic language models and other reconstruction-based approaches (Nguyen et al., [2023; |Dalla-
Torre et al.,[2023;|Schiff et al., 2024} |Gu & Daol [2023) poorly suited for regulatory sequence design,
as they rely on objective functions that reconstruct entire sequences, leading to memorization rather
than generalization.

Diffusion-based generative models offer a compelling alternative. Unlike genomic language mod-
els, diffusion models iteratively refine sequences through a structured denoising process, making
them better suited for capturing sparse regulatory signals. These methods have recently been in-
troduced for DNA sequence generation, demonstrating early promise in models such as Dirichlet
Diffusion Score Model (DDSM) (Avdeyev et al., [2023)), DiscDiff (Li et al., [2024), DNA-Diffusion
(Ferreira DaSilva et al.| 2024), DNA Flow Matching (DFM) (Stark et al., [2024)), and DNA Discrete
Diffusion (D3) (Sarkar et al., 2024).

Among these, D3’s discrete approach is particularly suited for regulatory sequence design, where
functional motifs are sparsely distributed within large non-informative regions. By directly model-
ing nucleotide transitions, D3 refines key motifs without being overwhelmed by surrounding noise.
In contrast, models like DiscDiff and DFM, which reconstruct sequences from compressed latent
spaces or continuous vector fields, risk introducing distortions during reconstruction. We hypothe-
size that D3 mitigates these limitations by selectively mutating nucleotides, mirroring how evolution
fine-tunes functional elements while tolerating neutral drift elsewhere.

Despite the growing promise of diffusion-based DNA design, several key questions remain: How
do these models perform in data-limited settings, which characterize most biological applications?
Can they reliably generate functional sequences that capture cell-type-specific regulatory grammars?
And how do the internal dynamics of the diffusion process shape the sequences they generate?

In this study, we focus on D3 to address these gaps. We investigate its capabilities in small-data
regimes, extend its conditional generation to accommodate cell-type specificity, and analyze its dif-
fusion process to gain insights into how sequence transformations unfold during generation. These
efforts not only enhance D3’s utility for designing functional regulatory DNA but also advance our
broader understanding of diffusion-based approaches in genomics. Our main contributions include:

* Demonstrating D3’s efficacy in the small data regime and introducing strategies to enhance
learning efficiency.

» Extending D3 for conditional sequence generation, enabling cell-type-specific regulatory
sequence design.

* Providing insights into the diffusion process through sequence trajectory analysis.

2 EFFICIENT GENERATION IN THE SMALL DATA REGIME

Motivation. Biological applications often operate in data-limited settings, where the underlying
biological phenomena or experimental constraints—such as cost, time, and resource availability—
restrict dataset size and diversity. Understanding how D3 performs under these conditions is essen-
tial for its practical application.

Experiments. To assess D3’s generative capabilities in low-data scenarios, we systematically
downsampled the training set of a fly enhancer dataset, where D3 previously outperformed DFM
(de Almeida et al.| 2022). Specifically, we used a STARR-seq dataset that quantifies enhancer ac-
tivity in Drosophila S2 cells (de Almeida et al., [2022), originally consisting of 402,278 training
sequences, 40,570 validation sequences, and 41,186 test sequences. Each sequence was measured
under two independent conditions, capturing enhancer activity when driving a promoter from either
a housekeeping gene or a developmental gene. To simulate data-limited conditions, the training set
was reduced to 10%, 25%, 50%, and 75% of its original size, while validation and test sets remained
unchanged for consistency. Models were trained on each downsampled dataset, and performance
was evaluated based on sequences generated to match activities from the test set.
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Figure 1: (a) Performance evaluation of D3 models in small data regime. We train with both con-
volution and transformer architecture, for each downsampled version, and evaluate on conditional
generation fidelity averaged over developmental (Dev) and housekeeping (HK) enhancer task ac-
tivities. (b,c) Informativeness analysis of D3 generated sequences with different training strategies.
Downsampled STARR-seq dataset (25%) are used to train D3 models with (EvoAug and ATAC-seq)
and without fine-tuning. Each of these trained models are then tasked to generate 3 sets of sequences
conditioned on the enhancer activities of that downsampled 25% dataset. These generated sequences
are augmented progressively to the original 25% dataset to create different sized dataset versions for
each D3 model. Performance of all these trained prediction models through Pearson correlation co-
efficient for Dev and HK enhancer task activities are presented. Augmentation size refers to the sets
of additional generated sequences. Each model training is repeated 5 times leading to error bars for
every result in both these plots.

Model architecture. Our transformer model architecture and training procedure followed the
specifications outlined in the original D3 study (Sarkar et al., 2024). We also considered the same
convolutional architecture, employed by DFM (Stark et al.,|2024) and DDSM (Avdeyev et al.,|2023)),
and later followed by D3 (Sarkar et al.l 2024)) for consistent comparison. No modifications were
made to the hyperparameter details as of D3.

Metrics. Performance was evaluated using conditional generation fidelity (Sarkar et al., |2024),
measured by the mean squared error (MSE) between predicted activities for matched sets of natural
and generated sequences using DeepSTARR (de Almeida et al.,[2022) — a supervised model trained
on the full STARR-seq dataset.

Results. Our experiments show that D3 maintains strong performance even with significantly re-
duced training data for both convolution and transformer architectures(Figure [I(a)). However, the
transformer model displays greater resilience when trained on smaller datasets. With just 25% of
the original training data, D3 performs comparably to models trained on the full dataset measured
by our evaluation metric. However, performance declines sharply when trained on only 10% of the
data. These findings suggest that D3 is highly data-efficient, generalizing well even under extreme
data limitations—down to as little as 10% of the original dataset. Further benchmarking across more
datasets and baseline diffusion and language models is needed to establish whether these findings
provide a generalizable solution, that we plan to explore as future research.

3 D3-GENERATED SYNTHETIC SEQUENCES IMPROVE SUPERVISED
MODELING

Motivation. A key question in evaluating generative models is whether the generated sequences
capture meaningful biological mechanisms. If D3 effectively learns underlying cis-regulatory gram-
mars, its synthetic sequences should provide complementary value when integrated with real data.

Experiment. Using the transformer-based D3 model trained on the 25% downsampled training
set, we generated synthetic sequences conditioned on training set activities. These sequences were
used to augment the training set by factors of 2x, 3x, and 4x. We then trained a DeepSTARR
model from scratch on these augmented datasets and evaluated its performance using the Pearson
correlation coefficient for both enhancer tasks on the original test set.
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Methods. The transformer-based D3 trained on 25% downsampled training set was used as a
baseline. To enhance performance in small-data settings, we explored transfer learning and data
augmentation, both of which expose the model to broader cis-regulatory sequence patterns that may
overlap with the fly enhancer dataset.

Transfer learning. We leveraged an ATAC-seq dataset from Drosophila embryos—previously used
for pretraining supervised models for fly enhancer design(de Almeida et al.|[2024)—as a pretraining
dataset for D3. The dataset consists of 1,001-bp sequences with binary accessibility labels across 18
tissue pseudo-bulk ATAC-seq profiles. For training, we used the fold09 dataset, with the training set
(471,536 sequences) drawn from all chromosomes except chrX, while validation and test sets were
from chrX. During pretraining, D3 used the binary labels as conditional inputs. Fine-tuning was
then performed on the downsampled STARR-seq dataset, with the learning rate reduced from le-4
to le-5.

Data augmentations. We applied EvoAug, a 2-stage evolution-inspired augmentation strategy that
has demonstrated significant performance gains in supervised learning. During pretraining, EvoAug
introduces random translocations, insertions, deletions, inversions, and mutations (using default pa-
rameters) to increase sequence diversity. While these transformations may alter sequence function,
the assumption—aligned with the billboard model of gene regulation—is that key regulatory fea-
tures are largely preserved. In the fine-tuning stage, the model was trained on the original dataset,
refining its understanding of cis-regulatory grammar and motif interactions. This two-step process—
first learning generalizable motifs through augmentation, then fine-tuning on unperturbed data—has
been shown to improve performance in supervised tasks. Here, we assess whether EvoAug sim-
ilarly enhances D3 generated synthetic sequences to improve supervised modeling in small-data
regimes. A learning rate of 3e-4 was used during pretraining, followed by a reduction to le-5 during
fine-tuning.

Results. Supervised models like DeepSTARR struggle in small-data regimes, as they rely on large
datasets to learn complex cis-regulatory mechanisms. However, augmenting the training set with
D3-generated sequences consistently improved DeepSTARR’s predictive performance on both en-
hancer tasks (Fig. [T[b,c)). These results suggest that D3 has learned meaningful cis-regulatory
features, enabling it to generate sequences that provide complementary information to real data, ul-
timately benefiting supervised models. Performance gains were observed across all augmentation
levels (2x, 3x, and 4x the original dataset size), demonstrating that D3-generated sequences en-
hance regulatory signal learning in data-limited settings. Among the different D3 training strategies,
EvoAug-trained D3 models produced the most substantial and consistent improvements, suggest-
ing that EvoAug enhances the diversity and informativeness of generated sequences. In contrast,
sequences generated by D3 models trained solely on 25% of the real data yielded more modest
improvements, while ATAC-seq pretraining provided only limited additional benefit.

These findings indicate that D3 can generate functionally relevant cis-regulatory sequences that
help supervised models overcome data limitations, improving their ability to capture meaningful
sequence-function relationships. They also highlight the potential of data augmentation and transfer
learning in enhancing the sequence quality generated by D3 in the small data regime. A major
advantage of EvoAug is that it eliminates the need for a carefully curated pretraining dataset that
closely matches the target task, which is often difficult or impossible to obtain. This makes EvoAug
a promising approach for further exploration, as it could provide performance improvements even
in cases where suitable pretraining data is unavailable. These methods underscore D3’s potential as
a synthetic data generation tool for advancing predictive modeling in regulatory genomics.

4 EVALUATION OF CONDITIONAL GENERATION CAPABILITIES

Motivation. Generating cell-type-specific enhancer sequences is essential for understanding reg-
ulatory mechanisms and designing functional DNA sequences. While D3 has demonstrated con-
ditional generation capabilities, its evaluation has been limited to a small set of enhancer tasks or
cell types. It remains unclear whether D3 can generalize across a diverse range of cell types and
accurately model enhancer sequence distributions.
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Experiment. We evaluate D3’s ability to generate enhancer sequences conditioned on cell types
using a fly brain enhancer dataset (Janssens et al., [2022). This dataset contains 104,000 enhancer
sequences (500-bp), each labeled with one of 81 cell types, determined from ATAC-seq data (Buen-
rostro et al. [2013). The base architecture for D3 on this dataset was the same 20 layer 1D convo-
lution architecture to train D3 as DFM (Stark et al.l [2024). We trained D3 for 500,000 steps with
batch size of 128 on a single NVIDIA H100 GPU, using FBD (see below) on the validation set for
early stopping.

Metric. We use Fréchet Biological Distance (FBD) (Stark et al.| [2024)) to evaluate how well gen-
erated sequences match real enhancer distributions. FBD measures the similarity between the fea-
ture space representations of real and generated sequences, computed using a pretrained classifier.
Lower FBD values indicate better alignment between synthetic and real enhancer sequences. Fol-
lowing (Stark et al.| [2024), we use the same 5-layer 1D convolutional classifier to compute FBD.
We calculate FBD between the data and the generative model’s distribution, where the 10.4k test
sequences from the fly brain enhancer dataset are treated as the real data distribution. Generated
sequences are sampled using different generative models under the same cell-type conditions as the
test sequences to ensure a direct comparison.

—e— D3 CFG
20 DFM CFG
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Results. We compare D3 with DFM, as DFM has been

shown to outperform other methods such as random se-

quence benchmarks, language models, and linear flow matching (Stark et al., 2024). We first eval-
uate by calculating the FBD between the models’ generated sequences and the unconditional data
distribution. D3 outperforms DFM by a large margin, which is shown by black squares in Fig.
Applying CFG to D3 further improves performance, reducing FBD to as low as 0.55. Notably, the
performance of both methods varies with the guidance factor, reaching optimal levels before degrad-
ing at higher values. D3 achieves its best FBD (0.55) at guidance level 1.5, whereas DFM attains its
lowest FBD (1.0) at level 3 (marked by black stars in Figure @)

We also evaluate D3’s ability to generate sequences conditioned on specific cell types. For this,
we calculate FBD between generated sequences and real sequences from the test set belonging to
a given cell type. Sequences are generated under the same conditioning labels as their real coun-
terparts, ensuring a direct comparison. Additionally, we assess how well the generated sequences
are classified as their intended cell types using the pretrained classifier from (Stark et al., |2024)).
We focus on three representative cell types (2, 68, and 16) used in (Stark et al.,|2024) and evaluate
performance across different guidance factors. D3 consistently achieves lower FBD and higher clas-
sification probabilities than DFM across all tested cell types (Figure [3|in Appendix). These results
demonstrate the effectiveness of D3 in generating cell-type-specific sequences, with classifier-free
guidance further enhancing performance. D3 significantly outperforms DFM in both unguided and
guided scenarios, highlighting its potential for precise regulatory sequence generation.
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S5 INVESTIGATING DIFFUSION PROCESS THROUGH SEQUENCE EVOLUTION

Motivation. D3 has demonstrated strong potential for designing regulatory sequences, particu-
larly in small data regimes and class-conditional generation. However, the underlying evolutionary
pathways that guide sequence transformation during sampling remain unclear. Investigating these
trajectories provides key insights into how sequences traverse the diffusion landscape, shedding light
on the internal mechanisms of the model and its biological implications. By analyzing intermediate
sequences throughout the sampling process, we aim to understand how the model navigates se-
quence space, whether it efficiently optimizes functional properties, and whether there are inherent
inefficiencies in its generative trajectory.

Experiment. Using a transformer-based D3 model trained on the STARR-seq dataset, we exam-
ined sequences throughout the generative sampling process. To assess their functional and mecha-
nistic properties, we utilized the DeepSTARR model (de Almeida et al.,[2022)) as an oracle to predict
sequence activity and applied GradientSHAP from Captum (Kokhlikyan et al.,[2020) with gradient
correction (Majdandzic et al.,[2023)) to infer underlying cis-regulatory mechanisms. Sequence logos
were plotted using Logomaker (Tareen & Kinneyl 2020). This analysis allowed us to investigate
how the model modifies sequences across sampling trajectories, revealing whether sequence evolu-
tion follows an efficient optimization pathway or encounters unnecessary deviations.

Results. To analyze how D3 modifies regulatory sequences during sampling, we tracked sequence
activity at each step of the reverse diffusion process. We found that D3 consistently drives sequences
toward low-activity states before optimizing them to the desired final condition. This was observed
even when starting from sequences with already high activity in the target condition. For example,
when evolving sequences from high-high Dev/HK activity to the same high-high state, D3 initially
reduced activity before restoring it to the final target. This inefficiency suggests that the model
does not retain beneficial sequence features but instead follows a generic reconstruction pathway,
treating all sequences as if they originated from noise. This behavior was consistent across various
initial-target conditions (Fig. ).

To better understand this generative trajectory, we analyzed mutational dynamics across the sam-
pling process. Sequences exhibited widespread mutations in the early steps, resembling a nearly
complete mutagenesis of the original sequence, followed by more targeted refinements in later steps
(Fig. [5). This suggests that early diffusion steps primarily erase existing sequence features, replacing
them with background-like sequences before motifs are gradually reintroduced. Attribution analyses
further confirmed this pattern. Using GradientSHAP to visualize regulatory motif structures during
sampling, we observed that known motifs were lost in the early steps. Motif-like patterns only
started re-emerging around step 65, with increasingly refined structures appearing by step 132 (Fig.
[6). This pattern suggests that D3 does not operate by iteratively improving functional sequences but
instead destroys and then reconstructs them.

To quantify this behavior across a broader set of sequences, we computed mutation fractions at each
sampling step across 40k sequences. Mutation rates were highest in the initial steps and gradually
declined around step 50, stabilizing near zero (Fig. [7). This supports the hypothesis that early steps
aim to generate a generic sequence background before refining motifs.

6 CONCLUSION

Our study establishes DNA Discrete Diffusion as a robust framework for regulatory DNA se-
quence design, demonstrating strong performance in data-limited settings and effective conditional
sequence generation. By leveraging a structured diffusion process, D3 generalizes cis-regulatory
grammars beyond the constraints of supervised models, which often require large datasets and can
struggle with spurious correlations. We show that D3 excels in generating functional regulatory
sequences and enhancing predictive modeling by providing informative synthetic data. Its ability
to integrate data augmentation and transfer learning further extends its utility, making it well-suited
for applications where experimental data is scarce. The successful application of classifier-free
guidance in D3 also underscores its flexibility in cell-type-specific sequence generation. While D3
significantly advances generative modeling for regulatory genomics, its mutation trajectory could
be optimized to improve sampling efficiency. Early diffusion steps often transition sequences into
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low-density regions before refinement, which could be mitigated with better-guided transitions. Fu-
ture work should focus on refining diffusion dynamics to enhance efficiency and further improve the
interpretability of generated sequences. Overall, D3 provides a scalable and biologically grounded
approach to sequence design, expanding the capabilities of generative models in genomics. Future
directions include experimental validation, continued refinement of sampling strategies, and further
exploration of its potential for regulatory sequence engineering and synthetic biology applications.
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