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Abstract

We study the meta-learning for support recovery (i.e., non-zero entries of the eigenvectors) in
high-dimensional Principal Component Analysis. We reduce the sufficient sample complexity
in a novel task, with the information that is learned from auxiliary tasks, where a task is
defined as a random Principal Component (PC) matrix with its own support. We pool data
from all the tasks to execute an improper estimation of a single PC matrix, by maximising
the ℓ1-regularised predictive covariance. With m tasks for p-variate sub-Gaussian random
vectors, we establish the sufficient sample complexity for each task to be of the order
O(
√

m−1 log p), with high probability. This is very relevant for meta-learning where there
are many tasks m = O(log p), each with very few samples, i.e., n = O(1), in an scenario where
multi-task learning fails. For a novel task, we prove that the sufficient sample complexity
of successful support recovery can be reduced to O(log |J |), under an additional constraint
that the support of the novel task is a subset of the estimated support union (J) from
the auxiliary tasks. This reduces the original sample complexity of O(log p) for learning a
single task. Theoretical claims are validated with numerical simulations and the problem of
true covariance estimation in brain-imaging and cancer genetics data sets are considered to
validate the proposed methodology.

1 Introduction

Principal component analysis (PCA) is an important problem in high-dimensional statistical learning with
several applications in information theory (Deshpande & Montanari, 2014), image classification (Sun et al.,
2019), brain computer interface (Lin et al., 2008), speech recognition (Zheng et al., 2015) among others.
Traditionally, PCA focuses on finding the most significant eigenvectors of a covariance matrix calculated from
independent and identically distributed (i.i.d.) samples. However, heterogeneous datasets are ubiquitous
across various practical fields, and it is reasonable to infer that variables partitioned by categorical attributes
such as country, race, gender, and season do not exhibit identical distributions.

Apart from the issue of heterogeneity, high-dimensional PCA brings unique theoretical challenges of its
own kind. For instance, it is known that the estimates PCA produces in high-dimensional situations are
often inconsistent (Johnstone & Lu, 2009; Nadler, 2008; Paul, 2007). In particular, it has been shown that
the eigenvalues of the covariance matrix in high-dimensional data can exhibit unexpected behaviour (Kato,
1949; Bickel & Levina, 2008). Moreover, the eigenvectors of a sample covariance matrix are known to be an
inconsistent estimator for the true eigenvectors, i.e., the eigenvectors of the population covariance matrix
(Bai et al., 2007). Hence, these challenges present a clear case for carefully understanding conditions under
which heterogeneity can be efficiently ameliorated.

In this paper, we refer to the matrix of eigenvectors as PC matrix. Literature about the problem of learning
multiple PC matrices is sparse; where there is a compelling argument for efficiently transferring knowledge
already gained from a previous learning task to a new one, given some structural similarity between previous
task and the new PC matrix (referred to henceforth as a “novel” task). This transfer of knowledge is also
known as “transfer learning”; Pan & Yang (2010) provide a comprehensive discussion of this topic.

This presents to us three questions. Let m be the number of different PC matrices, referred to henceforth
as “auxiliary” tasks, each having n samples of p-variate sub-Gaussian random vectors. Then, this paper is
mainly concerned with answering the following questions:
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1. What is an optimal number of auxiliary tasks m to estimate the underlying PC matrix?

2. Given m auxiliary tasks, what is the optimal number of samples n?

3. Given a PC matrix estimated from m tasks, what is the optimal number of samples to estimate the
PC matrix of a novel task?

While multi-task learning (Yamane et al., 2016; Yu et al., 2006) allows to partially answer the first two
questions (albeit not optimally since it requires to learn every single PC matrix), we focus on meta-learning
(Hospedales et al., 2022) which allows to simultaneously and optimally address the above three questions.
Furthermore, a common situation in the real world is that there are usually many auxiliary tasks (m) but only
a small number of samples (n) in each task. For instance, for m = 5000 taks but only n = 2 samples per task,
it is infeasible to learn the support of each of the m PC matrices, rendering the multi-task learning method
meaningless. In contrast, our meta-learning approach performs “improper” estimation since it estimates a
single PC matrix with data from different tasks. This enables us to efficiently recover the true support with
an optimal number of samples per task.

There are no prior studies on meta-learning for PCA. For other machine learning problems, prior work
includes experimental studies, without theoretical guarantees (Lake et al., 2015; Lemke et al., 2015; Vinyals
et al., 2016; Ravi & Larochelle, 2017; Finn et al., 2017; Snell et al., 2017; Grant et al., 2018; Yoon et al.,
2018; Hospedales et al., 2022). Thus far, theoretical work on meta-learning pertains only to generalisation
bounds in learning theory (Maurer, 2005; Pentina & Lampert, 2014; Amit & Meir, 2018; Denevi et al., 2018;
Khodak et al., 2019a; Huang et al., 2020; Tripuraneni et al., 2020; Farid & Majumdar, 2021; Chen & Chen,
2022; Guan et al., 2022) and convergence rates in optimisation (Fallah et al., 2020; Finn et al., 2019; Khodak
et al., 2019a; Gao & Sener, 2020). In the aforementioned works, performance is only viewed in terms of risks
(e.g., misclassification rate, mean squared error) and not in terms of support recovery.

While there has been some work on multi-task PCA (Tiomoko et al., 2023; Yamane et al., 2016), non-
asymptotic statistical analyses are not available for multi-task PCA. The closest result for PCA is on
structured sparsity (Deng, 2019, Corollary II.5), which sets the sample complexity of multi-task PCA to
n ∈ O(m log(mp)) for each task. The main difference between multi-task learning and meta learning, is
that multi-task learning estimates one PC matrix for each of the different m tasks simultaneously while
meta-learning estimates a single PC matrix from different tasks. This allows us to obtain a sample complexity
of n ∈ O(

√
m−1 log p) for each task. For instance, our PCA meta-learning results imply that a regime of

many auxiliary tasks m ∈ O(log p), only requires few samples n ∈ O(1) per task. That is, in meta-learning,
the number of samples per task (n) is constant with respect to the dimension (p). Under the same regime,
PCA multi-task learning would require n ∈ O((log p)2) samples per task. That is, in multi-task learning, the
number of samples per task (n) grows poly-logarithmically in the dimension (p). Thus, when there are only
few samples n ∈ O(1) per task, multi-task learning fails.

The superiority of meta-learning can be seen across different statistical tasks like regression (Wang & Honorio,
2021), logistic regression (Xie & Honorio, 2022), precision matrix estimation (Zhang et al., 2021), classification
(Wang et al., 2021; Wu et al., 2019) and neural networks (Hospedales et al., 2022). Techniques for incorporating
aspects of multi-task learning under the meta-learning framework have been studied by Khodak et al. (2019b).
Besides our non-asymptotic theoretical results for estimation of PC matrices under sparsity conditions, we
also show experimentally that meta-learning produces better estimates than multi-task learning.

1.1 Summary of our contributions and organisation of the article

Let Σ(1) . . . Σ(m) be m many covariance matrices with their corresponding PC matrices Π(1) . . . , Π(m), both
being random perturbations of a true underlying covariance matrix Σ with PC matrix Π. Let J be the
support of Π, i.e., the set of nonzero entries in the eigenvectors. Our key contributions in this paper can be
summarised as follows:

(a) The minimax sample complexity for estimating J is given by n ∈ O(|J |
√

m−1 log p) for each task
(Theorems 3.2 and 3.3). Thus, our a meta-learning method works on a challenging scenario where
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there are many tasks m = O(|J |2 log p), each with very few samples, i.e., n = O(1). In this same
scenario, multi-task learning fails.

(b) Given a correctly estimated support union J , the optimal sample complexity for estimating a novel
task Π(m+1) is O(log |J |), where |J | is the cardinality of the set J (Theorem 4.2). This considerably
reduces the original sample complexity of O(log p) for learning a single task. To the best of our
knowledge, this improvement is unique to meta-learning and cannot be replicated by other multi-task
learning techniques.

Outline. The rest of this paper is outlined as follows: In Section 2, we formally introduce the meta-learning
setup and formulate the estimation as a primal-dual problem. In Sections 3 and 4, we formalise the theorems
for recovering the sample complexities of meta-learning and learning the novel task. In Section 5, we provide
simulation studies to experimentally validate our claims. We end with a summary followed by discussions in
Section 6.

2 Preliminaries

In this section, we introduce the definitions of the concepts important to our meta-learning problem. A
summary of notations used in the paper is illustrated in Table 1.

Table 1: Notations used in the paper

Notation Description Notation Description
[a] The first a integers, i.e., {1, 2, . . . , a} |J | Cardinality of a set J

Ai,j The i, jth cell of matrix A Ui The ith coordinate of a vector u
supp(A) Support of A, i.e., {i : Ai,i ̸= 0} A∗,i (or Ai,∗) The ith column (or row) of matrix A
sign(x) The sign of x, x ∈ R Σ The true covariance A

Σ(i) Covariance of auxiliary task i λk(A) The kth largest eigenvalue of A
∥u∥q lq-norm of the vector u ∈ Rp ∥A∥q1,q2 ∥ (∥A1,∗∥q1 , . . . , ∥Ap,∗∥q1) ∥q2

∥A∥F The Frobenius norm of a matrix A ⟨A, B⟩ The matrix inner product, i.e., tr(AT B)
diag(A) Diagonal of matrix A A ⊗ B The matrix Kronecker product
D(A) The diagonal matrix with entries Ai,i Ip The p-dimensional identity matrix
AI,J Submatrix of A with rows I and columns J

Multivariate sub-Gaussian Distribution. This paper is concerned with meta-learning of multiple
principal component matrices, each of which are generated randomly. To make inferences about those
matrices in sufficient generality, we must first formally define the class of sub-Gaussian vectors with random
covariance matrices.
Definition 2.1. For j ∈ [n(i)] and i ∈ [m], we say X

(i)
j ∈ Rp follows a family of random p-dimensional

multivariate sub-Gaussian vectors with randomised covariance matrices
{

Σ(i)} distribution of size m and
parameter σ if

1. X
(i)
j are independent random variables.

2. For each i and all j, X
(i)
j is distributed according to a distribution Pi such that E[X(i)

j ] = 0,
Cov

(
X

(i)
j

)
= Σ(i).

3. X
(i)
l,j

Σ(i)
l,l

is sub-Gaussian with parameter σ, ∀i ∈ [m] and j ∈ [n(i)] and l ∈ [p].

Remark 2.2. We would like to point out that such definitions are standard in the literature and have been
used extensively in prior work (see for instance Zhang et al. (2021)) for modelling sub-Gaussian random
variables with randomised covariance matrices under the meta-learning setup. We have deferred the definition
of sub-Gaussian and sub-exponential distributions to Appendix A.
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Problem Formulation. In this paper, we have focused on estimating the support of the PC matrix of a
multivariate sub-Gaussian distribution. We first estimate a superset of the support of the PC matrices. Then
we solve a novel task utilising the recovered support union.

To be precise, let for i ∈ [m], Σ be the true underlying covariance matrix and Σ(i) be perturbations of Σ,
with each Σ(i) forming the covariance matrix of an auxiliary task i. Then, we are interested in using those
auxiliary tasks to recover support union J of the PC matrix Π corresponding to Σ, i.e., J = supp(Π). This is
because we are interested in a novel task where the support of its PC matrix is assumed to be a subset of
the support of Π. This allows us to achieve a substantial reduction in sample complexity from O(log(p)) to
O(log |J |) while estimating the support in the novel task.

2.1 A Meta-Learning Model

In this section, we define a generative model for the population covariance matrices. Let Σ be a positive
semi-definite, real symmetric matrix. For some orthogonal matrix U , and positive diagonal matrix Λ, the
spectral decomposition of Σ gives us,

Σ = UΛUT :=
p∑

l=1
λl(Σ)U∗,lU

T
∗,l, (2.1)

where U∗,l are orthonormal vectors and λi are the diagonal entries of Λ. If λl(Σ) > λl+1(Σ), ∀l, then,

Π =
k∑

l=1
U∗,lU

T
∗,l (2.2)

gives us the unique k-component PC matrix of Σ. With random matrices R(i) and D(i), we generate a
sequence of random matrices Σ(1), . . . , Σ(m) ∈ Rp. For each i ∈ [m], the covariance matrix Σ(i) corresponding
to the i-th auxiliary task is generated as,

Σ(i) = R(i)U(Λ + D(i))UT
(

R(i)
)T

. (2.3)

Referring to Definition 2.1, we assume that for j ∈ [n(i)], our data, X
(i)
j is a random p-dimensional multivariate

sub-Gaussian random variable with randomised covariance matrix Σ(i). Let S(i) := 1
n(i)

∑n(i)

j=1 X
(i)
j (X(i)

j )T

be the sample covariance matrix corresponding to the auxiliary task Σ(i). A “pooled” estimator S of Σ is
defined below:

S := 1
m

m∑
i=1

S(i). (2.4)

2.2 The Predictive Covariance Loss Function

In this subsection, we describe the objective function that we maximise to obtain the improper estimator.
Recall from Theorem 1 in Overton & Womersley (1992) that PCA can be interpreted as a covariance
maximisation technique maximising the predictive covariance tr (Cov(X, HX|H)). Observe that,

tr (Cov (X, HX|H)) = ⟨Σ, H⟩,

for Cov(X) = Σ and a rank k orthogonal matrix H. Accordingly, the k-component sparse PCA seeks the
rank-k orthogonal projection matrix H such that for a penalty ρ > 0 the penalised predictive covariance

⟨Σ, H⟩ − ρ∥H∥1,1 (2.5)

is maximised. Crucial to getting a consistent estimate of the principal component matrix is its identifiability.
Unless the PC matrix is unique, there is no hope to correctly estimate the PC matrix. For instance, if Σ = Ip,
then every k-dimensional subspace of Rp is a valid principal component. Slightly abusing notation, by λk we
denote λk(Σ) and by λk+1 we denote λk+1(Σ). We make our first assumption about the uniqueness of the
PC matrix, denoted in terms of the spectral gap of the covariance matrix Σ.
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Assumption 1 (Uniqueness). Let λk and λk+1 be the k-th and k+1-th eigenvalues of Σ. Then, λk −λk+1 > 0.
Remark 2.3. The above condition ensures that the principal subspace is identifiable. Subsequently, we need
to define the notion of sparsity of the PC matrix. Recall from Equation (2.2) that Π is a positive semi-definite
matrix. Consequently, the i-th row/column of Π is 0 is non-zero if and only if Πi,i ≠ 0. Hence, it is sufficient
to recover the set of non-zero entries in the diagonal of Π. Hence, we can make our sparsity assumption.
Assumption 2 (Sparsity). Let Π be the k-component PC matrix corresponding to Σ. The support union
J = supp(Π) fulfills |J | ≪ p.

Throughout Section 3, we will assume that Σ satisfies both Assumption 1 and Assumption 2.

2.3 The Improper Objective Function

As illustrated in Section 2, we recover the support union by estimating the true covariance matrix. To be
specific, we pool together all the samples from m tasks and maximise the l1-regularised predictive covariance
between the true and the estimated covariance matrices, i.e., we solve the following optimisation problem
with regularisation constant ρ > 0

Π̂ := arg sup
H

m∑
i=1

Ti

{
⟨S(i), H⟩ − ρ∥H∥1,1

}
(2.6)

subject to H ∈ Fk, where,
Fk := {M ∈ Rp×p : 0 ⪯ M ⪯ Ip and tr(M) = k},

and Ti’s are weights proportional to the number of samples n(i) for each i. For clarity of exposition, we
assume that n(i) = n for all values of i for the reminder of this paper. This allows us to assume T (i) = 1

m
without losing generality. Consequently, we can rewrite the objective function in (2.6) as

π̂ = arg sup
H

⟨S, H⟩ − ρ∥H∥1,1 subject to H ∈ Fk, (2.7)

where S is as defined in Equation (2.4). It is noteworthy that Equation (2.6) is an improper estimation
technique since it estimates a single PC matrix with data from different tasks. This enables us to efficiently
recover the true support with an optimal number of sample size per task (see Section 3).

For the next step, suppose that we have successfully recovered the true support union J in the first step. Then
for the novel task, (m + 1-th task), we can assume that the support of its PC matrix is also a subset of the
recovered support union. Then, for a noisy estimate S(m+1) of Σ(m+1) we propose the following l1-regularised
predictive covariance loss function

⟨S(m+1), H⟩ − ρ∥H∥1,1 subject to H ∈ Fk

and supp(H) ⊆ J. (2.8)

Due to presence of the extra constraint, the above estimation technique reduces the dimension of the
optimisation problem from p × p to |J | × |J |.

3 Support Union Recovery for the Auxiliary Tasks

In this section, we formally show that a sample complexity of O(
√

m−1 log p) for each task, is sufficient for
the recovery of the support union via optimising Equation (2.7). Thus, our a meta-learning method works on
a challenging scenario where there are many tasks m = O(log p), each with very few samples, i.e., n = O(1).
In this same scenario, multi-task learning fails. One key task in achieving the said sample complexity is
to carefully upper bound the tail probabilities of ∥S − Σ∥∞,∞. To that end, we prove the following tail
probability for a family of multivariate sub-Gaussian vectors with randomised covariance matrices. Let
S(i) = 1

n

∑n
t=1 X

(i)
t (X(i)

t )T.
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Lemma 3.1. Let Σ(i) be a sequence of random covariance matrices such that
∥∥Σ(i)

∥∥
∞,∞ ≤ η. Then, for

{X
(i)
j }1≤j≤n,1≤i≤m following a family of random p-dimensional multivariate sub-Gaussian distributions with

parameter σ and random covariance matrices Σ(i),

P
(∥∥∥ 1

m

∑(
S(i) − Σ(i))∥∥∥

∞,∞
≥ ε

)
≤ p(p + 1)

2 e
− nmε2

512σ4η ,

whenever 0 < ε < 32ησ2.

The proof of this lemma is presented in Appendix B.1. Recall from Equation (2.3) that we defined each
auxiliary task Σ(i) in terms of random matrices R(i) and random matrices D(i). Key to the process of improper
estimation is the control of the maximal loss between the auxiliary tasks Σ(i) and the true underlying task Σ.
In other words, we need to find theoretical guarantees for

∥∥Σ(i) − Σ
∥∥

∞,∞. We achieve it by controlling the
variance and support of the perturbations R(i) and D(i). To that end, we make the following assumption.
Assumption 3. Assume that for each 1 ≤ i ≤ m, R(i) and D(i) in Equation (2.3) are random matrices that
fulfill the following conditions:

1. Each R(i) is i.i.d. with,

E
[
R(i) ⊗ R(i)

]
= Ip2 (3.1)

Furthermore, we assume that

∥R(i) − Ip∥∞,1 ≤ c
√

gp − 1 =: CR (3.2)

almost surely for some gp bounded from above by 2p, and c is a positive universal constant. Without
losing generality, we put c = 1. The proofs would proceed very similarly in all other cases.

2. Each D(i) is i.i.d. with E[D(i)] = 0. Moreover, for some constant L > 0,

λ1(D(i)) < L almost surely. (3.3)

White noise additive models have been used extensively in prior literature to study precision and covariance
matrices (Wang & Honorio, 2021; Zhang et al., 2021). It is noteworthy that under our assumptions, we can
recover additive models from Equation (2.3) when R(i) = Ip for every i. However, R(i) suffers from curse of
dimensionality, and consequently Equation (3.2) is required to control the rate of growth of R(i). We note
that Assumption 3.2 is weak, but still sufficient to produce a minimax optimal sample complexity. However,
it is not a necessary assumption. In this light, a necessary condition on the matrices R(i) is by itself an
interesting question and is part of a future work. Our final technical assumption is given below.
Assumption 4. If Σ is a covariance satisfying Assumption 2. Then,

8|J |
λk − λk+1

∥ΣJc,J∥2,∞ =: (1 − α) < 1.

This condition previously appears in Lei & Vu (2015) and recovers the conditions by Amini & Wainwright
(2008) when ΣJc,J = 0. It is also similar to the irrepresentability condition in the seminal papers (Zhao &
Yu, 2006; Meinshausen & Bühlmann, 2006; Meinshausen & Yu, 2009) for l1 penalised sparse regression and
lasso type recovery. As far as we know, this is the most general condition for the support recovery of PC
matrices and encompasses the conditions when Σ is block diagonal. For ease of exposition, we define the
following notation:

λdiff := λk − λk+1 λ† := 2 (CR + 1)2 (λ1(Σ) + L) ,

ρ1 := 4λ†

√
log(p)

m
ρ2 := 16

√
2σ4λ† log (p + 1)

nm
.

The following theorem establishes the O(|J |2log p/m) per-task sample complexity for the support union
recovery from multiple auxiliary tasks.
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Theorem 3.2 (Support Union Recovery). Let Assumption 3 and Assumption 4 hold. Then there exists a
large enough constant Cπ > 0 such that, whenever

α max {ρ1, ρ2} < ρ, and

ρ < min
{

(λdiff ) minj∈J Πj,j

16|J | ,
(λdiff )2

4|J | (λdiff + 8λ1(Σ))

}
then, with probability at least 1 − 2

p2 − 1
2(p+1)2 the solution Π̂ to the objective function Equation (2.7) satisfies,

1. supp(Π̂) = J, 2.
∥∥∥Π̂ − Π

∥∥∥
∞,∞

≤ Cπρ.

In other words, Theorem 3.2 gives us our required sample complexity for sign consistency and error bound.
Recalling CR from Equation (3.2) we find that λ† = (λ(Σ) + L) × gp. Therefore, as long as

α max
{

4λ†

√
log(p)

m
, 16
√

2σ4λ† log (p + 1)
nm

}
< min

{
(λdiff ) minj∈J Πj,j

16|J |
,

(λdiff )2

4|J | (λdiff + 8λ1(Σ))

}

with probability at least 1 − 2
p2 − 1

2(p+1)2 , we recover the true support. Our next objective is to provide a
matching lower bound for the previous per-task sample complexity.
Theorem 3.3. In the setup of Theorem 3.2, there exists an estimation problem such that, for all p large
enough any estimator Ĵ of the support union J , if n ≤ gp|J| log p−|J| log |J|

2m ., then

P
(

Ĵ ̸= J
)

≥ 1
4 .

The proof of the above theorem is provided in Appendix B.3.
Remark 3.4. Observe that, by setting n = 1, we also obtain a corresponding error lower bound whenever
m ≤ gp|J| log |p|−|J| log |J|

2 which matches the upper bound up to a factor of gp.

3.1 Sketch of Proof for Theorem 3.2

The complete proof of this theorem may be found at Appendix B.2 and we only make the outline here. The
proof of Theorem 3.2 is via primal-dual witness method. It starts by writing down the objective function
Equation (2.7).

max
H∈Fk

⟨S, H⟩ − ρ∥H∥1,1.

Define the subspace
Bp :=

{
Z ∈ Rp×p : diag(Z) = 0, Z = ZT , ∥Z∥∞,∞ ≤ 1

}
.

Using strong-duality of ∥ · ∥1,1, we can rewrite the objective function as,

max
H∈Fk

Z∈B

⟨S, H⟩ − ρ⟨H, Z + Ip⟩ ≡ max
H∈Fk

Z∈B

⟨S, H⟩ − ρ⟨H, Z⟩ − ρk

≡ max
H∈Fk

Z∈B

⟨H, S − ρZ⟩, (3.4)

where the last step follows from the fact that k is a constant. To maximise Equation (3.4), we need to find
solutions (Ĥ, Ẑ) such that Karush-Kuhn-Tucker (KKT) (Boyd et al., 2004) conditions

Ẑi,j = sign(Ĥi,j), ∀i ̸= j and Ĥi,j ̸= 0, (3.5)
Ẑi,j ∈ [−1, 1], ∀i ̸= j and Ĥi,j = 0, (3.6)
Ĥ = arg max⟨S − ρẐ, H⟩, (3.7)
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are satisfied. Proceeding according to the primal-dual witness method, we construct the constrained
optimisation problem where the supp(H) ⊆ J .

max
H∈Fk,supp(H)⊆J

⟨S, H⟩ − ρ∥H∥1,1. (3.8)

Let (H̃, Z̃) be the corresponding primal and dual variables. The proof selects an appropriate |J | × |J |
orthonormal matrix Q according to Lemma A.6 with the correct rotation such that the Frobenius norm
between the true eigenvectors UJ,∗ and the estimated eigenvectors ÛJ,∗ is small. Then we propose the following
solution (Ĥ, Ẑ) to the dual objective Equation (3.4). It is noteworthy that this construction is similar to that
in Theorem 1 in Lei & Vu (2015).

Ĥ = H̃,

ẐJ,J = Z̃J,J , (3.9)

Ẑij = 1
ρ

{
Sij − ⟨Qi,∗, ΣJ,j⟩

}
, (i, j) ∈ J × Jc, (3.10)

Ẑij = 1
ρ

(S − Σ)ij , (i, j) ∈ Jc × Jc, i ̸= j. (3.11)

The rest of the proof follows in 4 parts.

1. Finding an appropriate Q matrix and an appropriate tail probability bound under Assumption 3 by
using a combination of Matrix Chernoff bound (see Appendix A) and Lemma 3.1.

2. Proving that the proposed solution satisfies the KKT conditions (3.5), (3.6), and (3.7) with high
probability for our choices of ρ and is unique.

3. Find an upper bound for estimation error. We achieve this through the following upper bound,∥∥∥Ĥ − Π
∥∥∥

∞,∞
< 2 ρ|J|

λdiff
, which is a mild variation of a similar upper bound from Lemma 2 in Vu et al.

(2013). Thus, for sufficiently small enough ρ, we prove that sign(Π̂) = sign(Π), and our estimate is
sign consistent.

4. Showing that the proposed solution is sign consistent using a similar technique to part 3.

4 Support Recovery for the Novel Task

In this section, we show that O (log |J |) sample complexity is sufficient for the support recovery for a novel
task where J is the recovered support union in Section 3. This considerably reduces the original sample
complexity of O(log p) for learning a single task. We also show that for the novel task, the estimation problem
can be reduced from estimating a p × p dimensional matrix to a |J | × |J | dimensional matrix. Let n(m+1) be
the number of samples in the novel task. We begin by establishing the reduction in dimension. Let Σ(m+1)

be the variance matrix corresponding to the novel task with spectral decomposition

U (m+1)Λ(m+1)
(

U (m+1)
)T

,

and the k-component PC matrix Π(m+1). Throughout the rest of this section, we assume that Σ(m+1) satisfies
Assumption 1 and Assumption 2. We write Σ(m+1) and its estimator S(m+1) as the following block matrices

Σ(m+1) =
[

Σ(m+1)
J,J Σ(m+1)

J,Jc

Σ(m+1)
Jc,J Σ(m+1)

Jc,Jc

]
S(m+1) =

[
S

(m+1)
J,J S

(m+1)
J,Jc

S
(m+1)
Jc,J S

(m+1)
Jc,Jc

]
. (4.1)

We obtain the k-component PC matrix of the novel task Π(m+1) by optimising the objective function,

max
H∈Fk

⟨S(m+1), H⟩ − ρ∥H∥1,1. (4.2)

8
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However, we have already recovered the support union J . Hence, we can add another constraint on H:
supp(H) = J . Moreover, since the row and column i of the principal component Π(m+1) is 0 if and on
Π(m+1)

i,i = 0, we can rewrite this additional constraint as,

H =
[
HJ,J 0

0 0

]
.

Since H ∈ Fk, the maximisation problem only makes sense if |J | > k. This also automatically implies that
H ∈ Fk

J , where Fk
J :=

{
M ∈ R|J|×|J| : 0 ⪯ M ⪯ I|J| and tr(M) = k

}
. Therefore, the objective corresponding

to the novel task maximises ⟨S(m+1), H⟩ − ρ∥H∥1,1 subject to H ∈ Fk and supp(H) ⊆ J . This is equivalent
to maximising

Π̂(m+1) := arg sup
HJ,J

⟨S(m+1)
J,J , HJ,J⟩ − ρ∥HJ,J∥1,1, for

HJ,J ∈ Fk
J (4.3)

where supp(Π̂) = J from Theorem 3.2 is the recovered support union, and HJ,J , SJ,J ∈ R|J|×|J|. The following
proposition on the eigenvalues and eigenvectors of Σ(m+1)

J,J shows that the estimation problem can be reduced
from estimating a p × p dimensional matrix to a |J | × |J | dimensional matrix.

Proposition 4.1. For 1 ≤ l ≤ k, U
(m+1)
l,J are the first k eigenvectors of Σ(m+1)

J,J with corresponding eigenvalues
λ

(m+1)
l .

The proof of this proposition is given in Appendix B.4. Following from the fact that Σ(m) satisfies Assumption 1
and Assumption 2, Proposition 4.1 establishes as an immediate consequence that

λ
(m+1)
k − λ

(m+1)
k+1 > 0, and, J (m+1) = supp(Π(m+1)).

This establishes that the k-component PC matrix of Σ(m+1)
J,J is sparse and unique, as well as the solution to a

lower dimensional objective function.

Overloading notation, define λ
(m+1)
diff := λ

(m+1)
k − λ

(m+1)
k+1 . We make the following technical assumption on the

entries of Σ(m+1)
J,J .

Assumption 5. Let Σ(m+1) be the covariance matrix corresponding to the novel task and J be the recovered
support union. Then,

8|J (m+1)|
λ

(m+1)
diff

∥Σ(m+1)
(J(m+1))c,J(m+1)∥2,∞ =:

(
1 − α(m+1)

)
< 1.

This condition is similar to Assumption 4, and as we mention before, previously appears in (Lei & Vu, 2015)
and recovers the conditions by Amini & Wainwright (2008) when ΣJc,J = 0. With this, we can now proceed
to state our theorem regarding support recovery in novel task. We first define

Cn1 := 1
32λ1

(
Σ(m+1)σ2

) ,

Cn2 :=
4|J (m+1)|

(
1 + 8λ

(m+1)
1

λ
(m+1)
k

−λ
(m+1)
k+1

)
λ

(m+1)
k − λ

(m+1)
k+1

,

Cn3 :=

(
λ

(m+1)
k − λ

(m+1)
k+1

)
minj∈[|J(m+1)|] Π(m+1)

j,j

4|J (m+1)|
.

The following theorem shows the O(log |J |) sample complexity for support recovery of the novel task.

9
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Theorem 4.2 (Novel Task Support Recovery). Let Σ(m+1) be the covariance matrix corresponding to the
novel task satisfying Assumption 5 and J be the recovered support union. Furthermore, assume that,

n
1
3 > max {Cn1,Cn2,Cn3} and,

1
n1/3α(m+1) < ρ <

λ
(m+1)
k − λ

(m+1)
k+1

4|J (m+1)|
(

1 + 8λ
(m+1)
1

λ
(m+1)
k

−λ
(m+1)
k+1

) ,

then, with probability at least 1 − |J|(|J|+1)
2 e

− n1/3

8Cσ2(2λ1(Σ(m+1))) , the maximiser Π̂(m+1) to the objective function
Equation (2.8) satisfies, supp(Π̂(m+1)) = J (m+1).

The proof of this theorem is deferred to Appendix B.5.

5 Experiments

In this section, we empirically validate our theoretical claims in Sections 3 and 4.

Synthetic Experiments. For all the experiments in this subsection, we let p = 50, k = 5 and |J | = 5 and
perform 100 repetitions of each setting. We first consider the setting of different sample sizes. We choose
n ∈ {3, 5, 7, 9} and use ρ =

√
log(p+1)

mn for all pairs of (m, n). The number of tasks m is rescaled to T defined
by mn

log(p+1) . For each j ∈ [n], X
(i)
j is generated from a Gaussian distribution with mean a p-dimensional 0

vector and covariance matrix Σ(i). Figure 1 depicts the outcome of our experiments. For different choices of
n, the graphs overlap each other perfectly (both P(Ĵ = J) and ∥Π̂ − Π∥∞,∞). Then, we took the recovered
support union and derived the probability of support recovery for a novel task. We perform the experiments
when there are 2, 3, or 4 extra zeros and all of those have greater than 95% probability of accurately identifying
the extra zeros.
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Figure 1: (a), (b): Simulations for Theorem 3.2 on the probability of support union recovery and maximal
error under various settings of n. ρ =

√
log(p+1)

mn . The x-axis is set by T := mn
log(p+1) varying from {1, . . . , 15}

for support union recovery. (c): Probability of support recovery for novel task. ρ =
√

log(|J|+1)
n . The x-axis

is set by T := n
log(|J|+1) varying from {10, . . . , 25}

In Appendix C.1 we provide more details and show extra results for the uniform distribution as well as a
mixture of sub-Gaussian distributions. Furthermore, we conduct comparisons to show the superiority of
meta-learning over multi-task learning Appendix C.2 and over single task learning in Appendix C.3.

10
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Real World Experiments. In Appendix C.4, we show that our method obtains anywhere between
85 − 95% accuracy in a real world brain-imaging dataset and similar results in a cancer dataset. We also
found consistent results with brain imaging (Rubia et al., 2000; Yan et al., 2005; Baron-Cohen et al., 2006)
and cancer genetics (Huang et al., 2014; Sun et al., 2020; Feber et al., 2004; Hu et al., 2009) studies. These
findings demonstrate the applicability and interpretability of meta-learning in practical applications.

6 Concluding Remarks

We believe we are taking a meaningful and important first step that will potentially motivate further
developments in the community. Dependencies in the data, such as when the data is from a time series makes
an interesting scenario. Similarly, it is also unclear how estimation should proceed when there is missing data.
Finally, we would like to point out that extending our results to kernel methods would also be an interesting
future endeavor.
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A Technical Desiderata

In this section of the appendix, we state some technical definitions and lemmas. We begin with the definition
of a real valued sub-Gaussian random variable (Zhang et al., 2021).
Definition A.1. A random variable X is called sub-Gaussian with parameter σ ≥ 0 if, ∀ρ ∈ R

E[eρX ] ≤ e
ρ2σ2

2 . (A.1)

As noted in Example 5.8 in Vershynin (2012), all bounded or Gaussian random variables are also sub-Gaussian.
We can extend the definition of univariate sub-Gaussian distributions to define a general class of multivariate
sub-Gaussian distribution on Rp. Let Σ ∈ Rp×p be a positive semi-definite, real symmetric matrix.
Definition A.2. We say that a random vector X ∈ Rp follows a multivariate sub-Gaussian distribution with
covariance matrix Σ and parameter σ if

1. E[X] = 0, and Cov(X) = Σ.

2. For 1 ≤ i ≤ p, Xi√
Σi,i

is a sub-Gaussian random variable with parameter σ.

Our last definition of this section is the sub-exponential distribution (Pollard, 1990).
Definition A.3. A random variable X with mean 0 is said to follow a sub-exponential distribution with
parameters (η, b) if,

E[eλX ] ≤ e
λ2η2

2 for |λ| <
1
b

.

Remark A.4. It is well established that (see for instance Equation (6) in Honorio & Jaakkola (2014)) the
square of a sub-Gaussian random variable with parameter σ is sub-exponential with parameters (4

√
2σ2, 4σ2).

Next, we recall the matrix Chernoff bound (Theorem 5.1.1 in Tropp (2015)).
Lemma A.5. Let Ai be random matrices such that E[Ai] = 0. If ∥Ai∥∞,∞ ≤ γ almost surely, then for every
ε > 0,

P

(∥∥∥∥ 1
m

∑
Ai

∥∥∥∥
∞,∞

≥ ε

)
≤ 2pe

− 3ε2m
8γ2 .

We then recall the following lemma from Lei & Vu (2015).
Lemma A.6. Under the assumptions in Theorem 3.2, let H̃ be the solution to the further constrained problem
(3.8). Then H̃ is rank k and unique. Furthermore, there exist |J | × k orthonormal matrices UJ , ÛJ such that:

1.
[
UJ

0

]
and

[
ÛJ

0

]
spans the k-dimensional principal subspaces of Σ and S − ρZ̃, respectively.

2. There exists a |J | × |J | orthonormal matrix Q such that

ÛJ = QUJ ,

∥Q − I|J|∥F ≤ 8ρ|J |
λdiff

.

We also recall the following lemma about the principal subspace projection of a matrix. Theorem 1 in Overton
& Womersley (1992).
Lemma A.7. Let A be a symmetric matrix with eigenvalues γ1 ≥ · · · ≥ γp and orthonormal eigenvectors
v1, . . . , vp.

maxH∈Fk ⟨A, H⟩ = γ1 + · · · + γk and the maximum is achieved by the projector of a k-dimensional principal
subspace of A. Moreover, the maximiser is unique if and only if γk > γk+1.
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We also produce the following lemma along with the proof on the upper bound of the infinite norm of the
product of two matrices.
Lemma A.8. Let A and B be two matrices with conformable dimensions. Then,

∥AB∥∞,∞ ≤ ∥A∥∞,∞ ∥B∥1,∞

Proof.

∥AB∥∞,∞ = max
i,j∈[p]

|
∑

k∈[p]

Ai,kBk,j | ≤ max
i,j,k0∈[p]

|Ai,k0 ||
∑

k∈[p]

Bk,j | ≤ ∥A∥∞,∞ ∥B∥1,∞.

B Proofs of Main Theorems

B.1 Proof of Lemma 3.1

Proof. We note that S(i) − Σ(i) are i.i.d with E
[
S(i) − Σ(i)] = 0. We begin by finding an entrywise bound

for 1
m

∑(
S(i) − Σ(i)). Since S(i) = 1

p

∑
X

(i)
p

(
X

(i)
p

)T

,

P

∣∣∣∣∣∣ 1
mn

∑
i,p

X
(i)
k,pX

(i)
l,p − σ

(i)
k,l

∣∣∣∣∣∣ ≥ ε

 .

Let σk := max1≤i≤K σ
(i)
k,k, X̃

(i)
k,p := X

(i)
k,p√
σk

, ρ̃
(k)
ij := σ

(i)
k,l√

σkσl
. We have

P

∣∣∣∣∣∣ 1
mn

∑
i,p

X
(i)
k,pX

(i)
l,p − σ

(i)
k,l

∣∣∣∣∣∣ ≥ ε

 = P

4

∣∣∣∣∣∣
∑
i,p

(
X̃

(i)
k,pX̃

(i)
l,p − ρ̃

(i)
k,l

)∣∣∣∣∣∣ >
4nmε
√

σkσl


Define U

(i)
p,k,l := X̃

(i)
p,k + X̃

(i)
p,l , V

(i)
p,k,l := X̃

(i)
p,k − X̃

(i)
p,l . Then for any r ∈ R,

4
∑
i,p

(
X̃

(i)
k,pX̃

(i)
l,p − ρ̃

(i)
k,l

)
=
∑
k,t

{(
U

(i)
p,k,l

)2
− 2

(
r + ρ̃

(i)
k,l

)}
−
∑
k,t

{(
V

(i)
p,k,l

)2
− 2

(
r − ρ̃

(i)
k,l

)}
(B.1)

Thus,

P

∣∣∣∣∣∣ 1
mn

∑
i,p

X
(i)
k,pX

(i)
l,p − σ

(i)
k,l

∣∣∣∣∣∣ ≥ ε

 ≤P

∣∣∣∑
k,t

{(
U

(k)
t,ij

)2
− 2

(
r + ρ̃

(k)
ij

)} ∣∣∣ >
2nmε
√

σkσl


+ P

∣∣∣∑
k,t

{(
V

(k)
t,ij

)2
− 2

(
r − ρ̃

(k)
ij

)} ∣∣∣ >
2nmε
√

σkσl

 .

(B.2)

Consider the first term

P

∣∣∣∑
i,p

{(
U

(i)
p,k,l

)2
− 2

(
r + ρ̃

(k)
ij

)} ∣∣∣ >
2nmε
√

σkσl

 ,

and let r = σ
(i)
k,k

σk
+ σ

(i)
l,l

σl
. Then,
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E
[(

U
(i)
p,k,l

)2
− 2

(
r + ρ̃

(k)
ij

)]
= 0.

Let Z
(i)
p,k,l :=

(
U

(i)
p,k,l

)2
− 2

(
r + ρ̃

(k)
ij

)
. Consequently,

P

∣∣∣∑
i,p

{(
U

(i)
p,k,l

)2
− 2

(
r + ρ̃

(k)
ij

)} ∣∣∣ >
2nmε
√

σkσl

 = P

∑
i,p

Z
(i)
p,k,l >

2nmε
√

σkσl

 (B.3)

+ P

∑
i,p

Z
(i)
p,k,l < − 2nmε

√
σkσl



To see that U
(i)
p,k,l is sub-Gaussian, we note that,

E(eλU
(i)
p,k,l) = E

(
e

λ
(

X
(i)
p,k

+X
(i)
p,l

))
≤
[
Ee2λX̃

(i)
p,k

]0.5 [
Ee2λX̃

(i)
p,l

]0.5

≤ e
λ2

(
σ

(i)
k,k
σk

σ

)2

e
λ2

(
σ

(i)
l,l
σl

σ

)2

.

Since σ
(i)
k,k

σk
and σ

(i)
l,l

σl
are upper bounded by 1, we consequently have,

E(eλU
(i)
p,k,l) ≤ e2λ2σ2

,

which shows that U
(i)
p,k,l is sub-Gaussian with parameter 2σ. We also know, from Section 5.2.4 in Vershynin

(2012), that if U
(i)
p,k,l is a sub-Gaussian random variable with then

(
U

(i)
p,k,l

)2
is a sub-exponential random

variable. As noted in Section 2 if X is a sub-Gaussian with parameter ω, then, X2 is a sub-exponential
distribution with parameters (4

√
2ω2, 4ω2). Consequently, if |t| < 1

4ω2 ,

E[etX2
] ≤ e16ω4t2

.

Returning to Equation (B.3), we observe that each Z
(i)
p,k,l is i.i.d. subexponential with parameter

(16
√

2σ2, 16σ2). Hence for any 1
16σ2 > θ > 0,

P

∑
i,p

Z
(i)
p,k,l >

2nmε
√

σkσl

 = P

θ
∑
i,p

Z
(i)
p,k,l > θ

2nmε
√

σkσl


= P

(
e

θ
∑

i,p
Z

(i)
p,k,l > e

θ 2nmε√
σkσl

)
.
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Thus, by Markov’s inequality, it follows that,

P

∑
i,p

Z
(i)
p,k,l >

2nmε
√

σkσl

 ≤ E
[
e

θ
∑

i,p
Z

(i)
p,k,l

]
e

−θ 2nmε√
σkσl

=
∏
i,p

E
[
eθZ

(i)
p,k,l

]
e

−θ 2nmε√
σkσl

≤
∏
i,p

e512θ2σ4
e

−θ 2nmε√
σkσl

= e512nmθ2σ4
e

−θ 2nmε√
σkσl

= e
512mnθ2σ4−θ 2nmε√

σkσl

Minimising over θ > 0, we get the derivative of the exponent with respect to θ to be equal to 0. In other
words,

512mnθσ4 − 2nmε
√

σkσl
= 0,

which in turn implies that whenever
ε

512σ4√
σkσl

<
1

16σ2 ,

the minimum is achieved when θ = ε
512σ4√

σkσl
. In other words, if

ε < 32σ2√
σkσl,

the minimum is, e
− nmε2

512σ4√
σkσl . Consequently, our upper bound can be further refined as,

P

∑
i,p

Z
(i)
p,k,l >

2nmε
√

σkσl

 ≤ e
− nmε2

512√
σkσlσ4 .

Since for each k ∈ [m], σk < maxi∈[m]
∥∥Σ(i)

∥∥
∞,∞ < η, this in turn implies that the upper bound is independent

of the value of Σ(i)’s. In particular, this upper bound is distribution free. Hence, for ε < 32ησ2,

P

∑
i,p

Z
(i)
p,k,l >

2nmε
√

σkσl

 ≤ e
− nmε2

512ησ4 .

Similarly, the upper bound to P
(∑

i,p Z
(i)
p,k,l < − 2nmε√

σkσl

)
, can be achieved; and,

P

∑
i,p

Z
(i)
p,k,l < − 2nmε

√
σkσl

 ≤ e
− nmε2

512ησ4 .

Hence, we have found the entrywise error bound to 1
m

∑(
S(i) − Σ(i)). To find an upper bound to∥∥ 1

m

∑(
S(i) − Σ(i))∥∥

∞,∞, we use a union bound.

P

(∥∥∥∥ 1
m

∑(
S(i) − Σ(i)

)∥∥∥∥
∞,∞

> ε

)
≤
∑
k,l

P

∣∣∣∣∣∣ 1
mn

∑
i,p

X
(i)
k,pX

(i)
l,p − σ

(i)
k,l

∣∣∣∣∣∣ ≥ ε

 .

≤ p(p + 1)
2 e

− nmε2
512ησ4 .

This completes the proof.
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B.2 Proof of Theorem 3.2

Proof. Continue from the setup in Section 3.1. We now have to complete the proof by verifying the remaining
4 steps.

STEP 1. We begin by finding a probabilistic upper bound on ∥S − Σ∥∞,∞. As seen in Equation (2.4),
S = 1

m

∑m
i=1 S(i), where S(i) = 1

n

∑n
j=1 X

(i)
j (X(i)

j )T are estimated variance matrix from auxiliary tasks.

∥S − Σ∥∞,∞ ≤

∥∥∥∥∥ 1
m

m∑
i=1

(
S(i) − Σ(i)

)∥∥∥∥∥
∞,∞

+

∥∥∥∥∥ 1
m

m∑
i=1

Σ(i) − Σ

∥∥∥∥∥
∞,∞

(B.4)

Term 1 + Term 2.

TERM 2. We begin by analysing the second term in Equation (B.4). We note that for any fixed i,∥∥∥Σ(i) − Σ
∥∥∥

∞,∞
=
∥∥∥R(i)U(Λ + D(i))(R(i)U)T − UΛUT

∥∥∥
∞,∞

≤
∥∥∥R(i)U(Λ + D(i))(R(i)U)T

∥∥∥
∞,∞

+
∥∥UΛUT

∥∥
∞,∞

=
∥∥∥(R(i) − Ip + Ip)U(Λ + D(i))UT (R(i) − Ip + Ip)T

∥∥∥
∞,∞

+
∥∥UΛUT

∥∥
∞,∞

≤
∥∥∥(R(i) − Ip)U(Λ + D(i))UT (R(i) − Ip)T

∥∥∥
∞,∞

+
∥∥∥U(Λ + D(i))UT (R(i) − Ip)T

∥∥∥
∞,∞

+
∥∥∥(R(i) − Ip)U(Λ + D(i))UT

∥∥∥
∞,∞

+
∥∥UΛUT

∥∥
∞,∞ .

Applying Lemma A.8 we get,∥∥∥Σ(i) − Σ
∥∥∥

∞,∞
≤ ∥R(i) − Ip∥2

1,∞

∥∥∥U(Λ + D(i))UT
∥∥∥

∞,∞
+ 2∥R(i) − Ip∥1,∞

∥∥∥U(Λ + D(i))UT
∥∥∥

∞,∞

+
∥∥UΛUT

∥∥
∞,∞ ,

which can be upper bounded by,(
∥R(i) − Ip∥1,∞ + 1

)2
(∥∥UΛUT

∥∥
∞,∞ +

∥∥∥UD(i)UT
∥∥∥

∞,∞

)
. (B.5)

Since U is an orthogonal matrix,
∥∥UD(i)UT

∥∥
∞,∞ ≤ λ1(D(i)). Then, from Assumption 3, we get,∥∥∥Σ(i) − Σ

∥∥∥
∞,∞

≤ (CR + 1)2 (λ1(Σ) + L)

= λ†

2 almost everywhere.

It is easy to see, by an application of triangle inequality and Jensen’s inequality that,∥∥∥Σ(i) − Σ − E[Σ(i) − Σ]
∥∥∥

∞,∞
≤ 2 (CR + 1)2 (λ1(Σ) + L)

= λ†

We next show that Σ(i) are centered random variables. In other words, we show that E[Σ(i)] = Σ. Observe
from Equation (2.1) and Equation (2.3) that

E
[
Σ(i)

]
= E

[
R(i)U(Λ + D(i))UT

(
R(i)

)T
]

.
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By linearity of the vec operator, which converts matrices to vectors, by Equation (3.1), the property of the
Kronecker product and by Assumption 3, we have

vec
(
E
[
Σ(i)

])
= vec

(
E
[
R(i)U(Λ + D(i))UT

(
R(i)

)T
])

= E
[
vec
(

R(i)U(Λ + D(i))UT
(

R(i)
)T
)]

= E
[(

R(i) ⊗ R(i)
)

vec
(

U(Λ + D(i))UT
)]

= E
[
R(i) ⊗ R(i)

]
vec
(
E
[
U(Λ + D(i))UT

])
= E

[
R(i) ⊗ R(i)

]
vec
(

Σ + UE[D(i)]UT
)

= E
[
R(i) ⊗ R(i)

]
vec(Σ)

= vec(Σ).

Thus, we get

E[Σ(i)] = Σ. (B.6)

Now, putting Ai = Σ(i) − Σ − E[Σ(i) − Σ] applying Lemma A.5, we get that for any ε > 0

P

∥∥∥∥∥ 1
m

m∑
i=1

(
Σ(i) − Σ − E[Σ(i) − Σ]

)∥∥∥∥∥
∞,∞

> ε

 ≤ 2pe
− 3ε2m

8(λ†)2
.

Following Equation (B.6), we set E[Σ(i) − Σ] = 0 and let

ε = 4λ†

√
log(p)

m
.

Now by an application of triangle inequality, we get

1
m

m∑
i=1

∥∥∥Σ(i) − Σ
∥∥∥

∞,∞
≥

∥∥∥∥∥ 1
m

m∑
i=1

(
Σ(i) − Σ

)∥∥∥∥∥
∞,∞

≥ 4λ†

√
log(p)

m

with probability at most 2
p2 .

TERM 1. In this part of the proof, we provide an upper bound for the first term from Equation (B.4). We
begin by finding an upper bound to

∥∥Σ(i)
∥∥

∞,∞. Similarly, as to the derivation of Equation (B.5) we can
write, ∥∥∥Σ(i)

∥∥∥
∞,∞

=
∥∥∥R(i)U(Λ + D(i))(R(i)U)T

∥∥∥
∞,∞

=
∥∥∥(R(i) − Ip + Ip)U(Λ + D(i))UT (R(i) − Ip + Ip)T

∥∥∥
∞,∞

≤
∥∥∥(R(i) − Ip)U(Λ + D(i))UT (R(i) − Ip)T

∥∥∥
∞,∞

+
∥∥∥U(Λ + D(i))UT (R(i) − Ip)T

∥∥∥
∞,∞

+
∥∥∥(R(i) − Ip)U(Λ + D(i))UT

∥∥∥
∞,∞

.

Applying Lemma A.8 we can decompose the second and the third terms. This yields us,∥∥∥Σ(i)
∥∥∥

∞,∞
≤ ∥R(i) − Ip∥2

1,∞

∥∥∥U(Λ + D(i))UT
∥∥∥

∞,∞
+ 2∥R(i) − Ip∥1,∞

∥∥∥U(Λ + D(i))UT
∥∥∥

∞,∞

≤ ∥R(i) − Ip∥2
1,∞

∥∥∥U(Λ + D(i))UT
∥∥∥

∞,∞
+ 2∥R(i) − Ip∥1,∞

∥∥∥U(Λ + D(i))UT
∥∥∥

∞,∞

+
∥∥UΛUT

∥∥
∞,∞

= λ†,
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with the last inequality following trivially by the fact that
∥∥UΛUT

∥∥
∞,∞ ≥ 0. By using Lemma 3.1 we get,

P

(∥∥∥∥ 1
m

∑(
S(i) − Σ(i)

)∥∥∥∥
∞,∞

≥ ε

)
≤ p(p + 1)

2 e− nmε2
512σ4λ† .

putting ε = 16
√

2σ4λ† log(p+1)
nm , we get with probability 1 − 1

2(p+1)2 ,

P

(∥∥∥∥ 1
m

∑(
S(i) − Σ(i)

)∥∥∥∥
∞,∞

≤ 16
√

2σ4λ† log (p + 1)
nm

)
.

Thus,

P

(
∥S − Σ∥∞,∞ > max

{
4λ†

√
log(p)

m
, 16
√

2σ4λ† log (p + 1)
nm

})
≤ 2

p2 + 1
2(p + 1)2 .

Since,
8|J |

λk − λk+1
∥ΣJc,J∥2,∞ < 1,

there exists a constant α ∈ (0, 1) such that if,

ρ > α max
{

4λ†

√
log(p)

m
, 16
√

2σ4λ† log (p + 1)
nm

}
,

then with probability at least 1 − 2
p2 − 1

2(p+1)2 ,

ρ−1∥S − Σ∥∞,∞ + 8|J |
λdiff

∥ΣJc,J∥2,∞ ≤ 1. (B.7)

It only remains to choose an appropriate matrix Q. By the application of Lemma A.6 there exists a Q matrix
such that

∥Q − I|J|∥F ≤ 8ρ|J |
λdiff

,

and
UJ = QÛJ ,

where UJ and ÛJ are defined as in Lemma A.6. We select this Q for the remainder of the proof.

STEP 2. In this section of the proof, we show that our proposed estimator is feasible, unique, and optimal,
i.e., satisfies the KKT conditions (3.5,3.6,3.7).

FEASIBLITY. The feasibility of Ĥ is obvious from construction. To check the feasibility of Ẑ, we need to
verify that for a given choice of ρ,

Ẑij ∈ [−1, 1], ∀(i, j) ∈ (J × J)c.

Therefore, it is sufficient to verify

1
ρ

[
|Sij − Σij | +

∣∣Σij − ⟨Qi∗, ΣJ,j⟩
∣∣] ≤ 1.

By an application of Cauchy-Schwarz inequality, we get

1
ρ

[
|Sij − Σij | +

∣∣Σij − ⟨Qi∗, ΣJ,j⟩
∣∣] ≤ 1

ρ

[
| ∥S − Σ∥∞,∞ + ∥Q − I|J|∥F ∥Σ∥2,∞

]
≤ 1

ρ

[
∥S − Σ∥∞,∞ + 8ρ|J |

λdiff
∥Σ∥2,∞

]
.
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Thus, with probability at least 1 − 2
p2 − 1

2(p+1)2 ,

ρ−1∥S − Σ∥∞,∞ + 8|J |
λdiff

∥ΣJc,J∥2,∞ ≤ 1. (B.8)

OPTIMALITY. Ĥ only has non-zero entries in the sub-matrix ĤJ,J . By construction (Ĥi,j , Ẑi,j) = (H̃i,j , Z̃i,j),
∀(i, j) ∈ J × J . From the optimality of (H̃, Z̃), Equation (3.5) is satisfied.

The fact that Equation (3.6) is satisfied follows from the optimality of (H̃, Z̃) when (i, j) ∈ J × J and
feasibility of Z̃ otherwise.

Note that ÛJ spans the k-dimensional principal subspace of S − ρZ̃. We now show that Û spans one (not
necessarily principal) k-dimensional subspace of S − ρẐ. In other words, it is enough to show that, for some
diagonal matrix D0,

(S − ρẐ)
[
ÛJ

0

]
= D

[
ÛJ

0

]
. (B.9)

Analysing the term on the left-hand side of the previous equation, we get,

(S − ρẐ)
[
ÛJ

0

]
=
[
SJ,J − ρZ̃J,J QΣJ,Jc

ΣJc,JQT ΣJc,Jc + D(SJc,Jc − ΣJc,Jc)

] [
ÛJ

0

]
=
[
(SJ,J − ρZ̃J,J)ÛJ

ΣJcJQT ÛJ

]
=
[
(SJ,J − ρZ̃J,J)ÛJ

ΣJcJQT QUJ

]

Recall from Lemma A.6 that there exists a diagonal matrix D1 such that (SJ,J − ρZ̃J,J)ÛJ = D1ÛJ . Also,

the fact that
[
UJ

0

]
spans the k-dimensional principal subspace of Σ implies that ΣJcJUJ = 0. Therefore,

[
(SJ,J − ρZ̃J,J)ÛJ

ΣJcJQT QUJ

]
=
[

D1ÛJ

ΣJcJUJ

]
=
[
D1ÛJ

0

]
=
[
D1ÛJ

0

]
=
[
D1 0
0 0

] [
ÛJ

0

]
Setting

D0 =
[
D1 0
0 0

]
we successfully show that Equation (B.9) holds. We will further prove that diag(D1) are the first k eigenvalues
of (S − ρẐ), and λk(S − ρẐ) − λk+1(S − ρẐ) > 0. Then uniqueness will follow by Lemma A.6.

(S − ρẐ) =
[
SJJ − ρZ̃JJ − QΣJJQT 0

0 ΣJc,Jc + D(SJc,Jc − ΣJc,Jc)

]
+
[

QΣJJQT QΣJJc

ΣJcJQT ΣJcJc

]

=
[
SJJ − ρZ̃JJ − QΣJJQT 0

0 ΣJc,Jc + D(SJc,Jc − ΣJc,Jc)

]
+
[
Q 0
0 I

]
× Σ ×

[
QT 0
0 I

]
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However, since we just proved that (S − ρẐ) satisfies the conditions of Proposition 4.1, the problem reduces
to finding an upper bound to λl(SJ,J − ρZ̃J,J − QΣJ,JQT ) for each l ∈ [|J |]. Note that,

λl(SJ,J − ρZ̃J,J − QΣJ,JQT ) ≤ λl(SJ,J − ρZ̃J,J − ΣJ,J) + λl(ΣJ,J − QΣJ,JQT )
≤ ∥SJ,J − ρZ̃J,J − ΣJ,J∥F + ∥ΣJ,J − QΣJ,JQT ∥F

≤ ∥SJ,J − ρZ̃J,J − ΣJ,J∥F + 2∥ΣJ,J∥F × ∥Q − I∥F

≤ 2ρ|J | + 2λ1(Σ) × 8ρ|J |/(λk − λk+1).

Where the last inequality follows from the combination of part 1 and Lemma A.6. The rest of the proof
follows since for a large enough ρ we have,

4ρ|J | + 32λ1(Σ)ρ|J |
(λk − λk+1) ≤ λk − λk+1.

This completes the proof of step 2.

STEP 3. In this section of the proof, we prove that
∥∥∥Ĥ − Π

∥∥∥
∞,∞

< 2 ρ|J|
λdiff

. By step 2, we have,

∥∥∥Ĥ − Π
∥∥∥

∞,∞
=
∥∥∥∥[ÛJ ÛT

J 0
0 0

]
−
[
UJUT

J 0
0 0

]∥∥∥∥
∞,∞

=
∥∥∥∥[QUJUT

J QT 0
0 0

]
−
[
UJUT

J 0
0 0

]∥∥∥∥
∞,∞

=
∥∥QUJUT

J QT − UJUT
J

∥∥
∞,∞

≤ λ1(UJUT
J )∥I − Q∥F

≤ 8|J |ρ
λdiff

.

Setting Cπ = 8|J|
λdiff

, completes the proof of the upper bound for
∥∥∥Ĥ − Π

∥∥∥
∞,∞

.

STEP 4. Set
ρ < min

i∈J

Πi,iλdiff

16|J |
.

The rest of the proof now follows from the step 3.

B.3 Proof of Theorem 3.3

We start with a technical lemma.
Lemma B.1.

∥∥R(i)(J) − Ip

∥∥
1,∞ ≤ 2√

p, |R(i)(J)| ≤ 1/
√

p and
(
R(i)(J)

)2 is an upper triangular matrix
such that,

(
R(i)(J ′)

)2
=


1 2p−1/2 − 2p−1 . . . . . . 2p−1/2 − 2p−1

0 1 . . . . . . 0
...

...
...

...
...

0 0 . . . . . . 1

 .

Proof. First, we note that, ∥∥∥R(i)(J ′) − Ip

∥∥∥
1,∞

=
p∑

l=2
|p−1/2 − p−1|

= p
√

p
− 1

≤ 2√
p.
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This proves the first part. To observe the second part, note that R(i)(J ′) is an upper triangular matrix such
that,

(
R(i)(J ′)

)
=


1 p−1/2 − p−1 . . . . . . p−1/2 − p−1

0 1 . . . . . . 0
...

...
...

...
...

0 0 . . . . . . 1

 .

Since p is even, the determinant can be calculated as∣∣∣R(i)(J ′)
∣∣∣ = 1 +

p∑
l=2

(−1)l

(
1

√
p

− 1
p

)
= 1

√
p

− 1
p

≤ 1
√

p

By simple matrix multiplication, we can verify that

(
R(i)(J ′)R(i)(J ′)

)
=


1 2 × (−1)p−1/2 − p−1 . . . . . . 2 × (−1)lp−1/2 − p−1

0 1 . . . . . . 0
...

...
...

...
...

0 0 . . . . . . 1

 . (B.10)

To invert R(i)(J ′)R(i)(J ′), observe that
1 2 × (−1)2p−1/2 − p−1 . . . . . . 2 × (−1)p+1p−1/2 − p−1

0 1 . . . . . . 0
...

...
...

...
...

0 0 . . . . . . 1

R(i)(J ′)R(i)(J ′)

=


1 2 × (−1)p−1/2 − p−1 + 2(−1)2p−1/2 − p−1 . . . . . . 2 × (−1)pp−1/2 − p−1 + 2(−1)p+1p−1/2 − p−1

0 1 . . . . . . 0
...

...
...

...
...

0 0 . . . . . . 1


= Ip

which proves our lemma.

Next, we formally prove Theorem 3.3.

Proof. To show this part, let p be an odd number, let gp be 2p. Set U = Ip, and let the true support be
J∗. It is easy to see that |J∗| = k. Observe that there are

(
p
k

)
many choices for J∗ and assume that nature

chooses one uniformly. Fix one such choice J . For that J , define the diagonal matrix Λ(J) as follows:

Λjj(J) =
{

k+1
k ; j ∈ J

1; j /∈ J.

Next, recall that there are
(

p
k

)
many choices for J . For first half of those (denoted by J (1)), assign

diag(R(i)(J)) = (1, . . . , 1)) and for l in 2, . . . , p set R
(i)
1,l(J) = p−1/2 − p−1. Every other cell is set to be 0.

For the other half (denoted by J (2)), set them to be Ip. We can see that
∥∥R(i)

∥∥
1,∞ ≤ gp. Next, define

D(i)(J) as follows: Let s be the smallest element of i modulo k + 1, i ∈ J and t be the smallest element of
i modulo p − k + 1, i ∈ Jc. Then,

D
(i)
jj (J) =


− 1

k ; j = s
1
k ; j = t

0; otherwise
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Note that, Λ(J) and Λ(J) + D(i)(J) has k values (k + 1)/k and p − k values 1. Observe that,
Σ(i)(J) = Λ(J) + D(i)(J) (B.11)

It follows that, |Σ(i)(J)| =
(

k+1
k

)k. Let X
(i)
j (J) ∼ N(0, Σ(i)(J)). Observe that the KL divergence between

two multivariate Gaussian random variables of dimension p can be written as

KL(N(0, Σ1)||N(0, Σ2)) = 1
2

(
log |Σ1|

|Σ2|
+ tr(Σ−1

2 Σ1) − p

)
Substituting, Σ(i)(J) in place of Σ1 and Σ(i)(J ′) in place of Σ2, and assume that nature chose J ∈ J (1) and
J ′ ∈ J (2). It follows that

KL
(

N(0, Σ(i)(J))||N(0, Σ(i)(J ′))
)

= 1
2

(
log Λ(J ′) + D(i)(J ′)|

|R(i)(J)|2||Λ(J) + D(i)(J)|

+ tr
((

Λ(J ′) + D(i)(J ′)
)−1 (

R(i)(J)
(

Λ(J) + D(i)
)

(J)R(i)(J)
))

− p

)
Observe that |Λ(J ′) + D(i)(J ′)| = |Λ(J) + D(i)(J)| =

(
k+1

k

)k. Thus,

log |R(i)(J ′)|2|Λ(J ′) + D(i)(J ′)|
|Λ(J) + D(i)(J)|

= log |R(i)(J)2| = log
∣∣∣R(i)(J ′)

∣∣∣2
Furthermore, observe that

(
Λ(J ′) + D(i)(J ′)

)
is a diagonal matrix with entries at least 1. Therefore,

tr
((

Λ(J ′) + D(i)(J ′)
)−1 (

R(i)(J)
(
Λ(J) + D(i)(J)

)
R(i)(J)

))
≤ tr

((
R(i)(J)R(i)(J)

) (
Λ(J) + D(i)(J)

))
Lemma B.1 implies that

(
R(i)(J)

)2 is an upper triangular matrix with diagonal entries 1. Since(
Λ(J) + D(i)(J)

)
is a diagonal matrix, it now follows that,

tr
((

R(i)(J)
)2 (

Λ(J) + D(i)(J)
))

= tr
(

Λ(J) + D(i)(J)
)

.

We now evaluate the right hand side of the previous expression to get

tr
(

Λ(J) + D(i)(J)
)

= k

(
k + 1

k

)
+ p − k.

Therefore,

KL
(

N(0, Σ(i)(J))||N(0, Σ(i)(J ′))
)

≤ log
∣∣∣R(i)(J)

∣∣∣−2
+ k

(
k + 1

k

)
+ p − k − p = 1

where the inequality follows from the fact that k many of Λ(J) + D(i)(J)’s entries were (k + 1)/k and the rest
were 1. It follows from the explicit expression of

[
R(i)(J ′)

]2 in Equation (B.10) that
∣∣[R(i)(J ′)

]∣∣2 = (p−1).
We now have that,

KL
(

N(0, Σ(i)(J))||N(0, Σ(i)(J ′))
)

≤ log
(
p−1)+ 1 ≤ p−1,

where the final inequality follows from the fact that log(x) ≤ x − 1 for all positive x Using Fano’s inequality
combined with data processing inequality (Fano, 1949) that,

P
(

Ĵ ̸= J∗

)
≥ 1 − 1

2
1(
p
k

)2

∑
J,J ′

∑
m,n

KL
(
N(0, Σ(i)(J))||N(0, Σ(i)(J ′))

)
log
(

p
k

) − 1
2

log 2
log
(

p
k

)
≥ 1 − 1

2
1(
p
k

)2

∑
J∈J(1)

J′∈J(2)

∑
m,n

KL
(
N(0, Σ(i)(J))||N(0, Σ(i)(J ′))

)
log
(

p
k

) − 1
2

log 2
log
(

p
k

)
≥ 1 − 1

4
mn

p log
(

p
k

) − 1
2

log 2
log
(

p
k

)
≥ 1 − 1

4
mn

pk log p − k log k
− 1

2
log 2

k log p − k log k
,
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where the last inequality follows since (p/k)k ≤
(

p
k

)
. Let p be large enough such that

1
2

log 2
k log p − k log k

≤ 1
2 .

Then,

P
(

Ĵ ̸= J∗

)
≥ 1

4
whenever,

n ≤ pk log p − k log k

m
.

Recall that gp was set to be 2p. This implies that,

P
(

Ĵ ̸= J∗

)
≥ 1

4
whenever,

n ≤ gpk log p − k log k

2m
.

This completes the proof.

B.4 Proof of Proposition 4.1

Proof. Let Π(m+1) be the k-component PC matrix corresponding to Σ(m+1). Hence,

Π(m+1) =
k∑

i=1
U

(m+1)
∗,i

(
U

(m+1)
∗,i

)T

.

We also know from the recovered support union that Π(m+1)
i,i = 0 whenever i /∈ J . However,

Π(m+1)
i,i =

k∑
j=1

(
U

(m+1)
j,i

)2
.

Hence, ∀j ∈ Jc, u
(m+1)
i,j = 0. Therefore,

U
(m+1)
i =

(
U

(m+1)
J,i

0

)
.

Moreover, we also know that

Σ(m+1)U
(m+1)
i = λiU

(m+1)
i .

In other words, [
Σ(m+1)

J,J Σ(m+1)
J,Jc

Σ(m+1)
Jc,J Σ(m+1)

Jc,Jc

](
U

(m+1)
J,i

0

)
= λi

(
U

(m+1)
J,i

0

)
.

Which in turn implies,

Σ(m+1)
J,J U

(m+1)
J,i = λiU

(m+1)
J,i .

This completes the proof.
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B.5 Proof of Theorem 4.2

Proof. As given, Σ(m+1) is the novel covariance matrix with the following block structure,

Σ(m+1) =
[

Σ(m+1)
J,J Σ(m+1)

J,Jc

Σ(m+1)
Jc,J Σ(m+1)

Jc,Jc

]
.

For 1 ≤ i ≤ k, let U
(m+1)
i be the eigenvectors corresponding to Σ(m+1), and λ

(m+1)
i be the corresponding

eigenvalues. Let J be the recovered support union. U
(m+1)
J,i denotes those coordinates of U

(m+1)
i that belong

to set J . Similarly to the proof of Theorem 3.2, if the penalty parameter ρ satisfies,

ρ−1∥S
(m+1)
J,J − Σ(m+1)

J,J ∥∞,∞ + 8|J |(m+1)

λ
(m+1)
k − λ

(m+1)
k+1

∥Σ(J(m+1)cJ(m+1)∥2,∞ ≤ 1 and

4ρ|J (m+1)|
(

1 + 8λ
(m+1)
1

λ
(m+1)
k − λ

(m+1)
k+1

)
< λ

(m+1)
k − λ

(m+1)
k+1 ,

then the solution Ĥ(m+1) of Equation (4.2) is unique and satisfies
supp(Ĥ(m+1)) ⊆ J (m+1). It is noteworthy that if for each j ∈ [n(m+1)], X

(m+1)
j is a p-dimensional

multivariate sub-Gaussian distribution with covariance matrix Σ and parameter σ, then for any set of
sub-indices J , X

(m+1)
j,J is a |J |-dimensional multivariate sub-Gaussian distribution with covariance matrix

ΣJ,J and parameter σ. Following from Equation (4.1), we can also see that by construction

S
(m+1)
J,J = 1

n(m+1)

n(m+1)∑
l=1

X
(m+1)
l,J

(
X

(m+1)
l,J

)T

.

By using Lemma 3.1, we know that as long as ε ≤ 32λ1
(
Σ(m+1))σ2,

P
(∥∥∥(S(m+1) − Σ(m+1)

)∥∥∥
∞,∞

≥ ε

)
≤ |J |(|J | + 1)

2 e
− nε2

512σ4λ1(Σ(m+1)) .

As before, let α(m+1) = 1 − 8|J|(m+1)

λ
(m+1)
k

−λ
(m+1)
k+1

∥Σ(J(m+1)cJ(m+1)∥2,∞. By Assumption 5, α(m+1) ∈ (0, 1). Therefore,
as long as,

n
1
3 > max


1

32λ1
(
Σ(m+1)σ2

) ,

 λ
(m+1)
k − λ

(m+1)
k+1

4|J (m+1)|
(

1 + 8λ
(m+1)
1

λ
(m+1)
k

−λ
(m+1)
k+1

)


−1 and,

1
n1/3α(m+1) < ρ <

λ
(m+1)
k − λ

(m+1)
k+1

4|J (m+1)|
(

1 + 8λ
(m+1)
1

λ
(m+1)
k

−λ
(m+1)
k+1

) ,

with probability 1 − |J|(|J|+1)
2 e

− n
1
3

512σ4λ1(Σ(m+1)) , we have supp(Π(m+1)) = J (m+1).

C Additional Experiments

C.1 Synthetic Experiments with Other Distributions

To validate our results, we first generate random matrices Σ(i) for each i ∈ [m] and then generate X
(i)
j for each

j ∈ [n]. We now describe the generative procedure for Σ(i). We first produce a random orthogonal matrix U
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where Ul,∗ is supported on [J ] for each l ∈ [k]. We then produce a random diagonal matrix with each entry
produced uniformly from [0, 1] and add 500 to the first k many diagonal entries to produce Λ. Σ = UΛ(U)T .

For each i ∈ [m], we generate randomised uniform white noise matrices A(i) A(i)
l,j

iid∼ Uniform(0, 1). R(i)

is produced by adding scaled A(i)’s to Ip; i.e., R(i) = A(i)/p2 + Ip. We generate D(i)’s, as white noise
matrices where for each l, j ∈ [p]; l > j, D

(i)
l,j is generated uniformly from (0, 1). This ensures Assumption 3 is

satisfied. Σi is then generated as, Σ(i) = R(i)U(Λ + D(i))UT
(
R(i))T

. We compute the empirical probability
of successful support recovery P(Ĵ = J) as the number of times we obtain the exact support recovery
among 100 repetitions, divided by 100. We compute the standard deviation as (P(Ĵ = J)(1 − P(Ĵ = J)))/100.
Performance is measured by the empirical probability of correct classification P(Ĵ = J) and maximal
estimation error ∥Π̂ − Π∥∞,∞. To create error bars we use a empirical 95% confidence interval around the
estimate.

Uniform Distribution. For all the experiments in this sub-section, we let p = 80, k = 6 and |J | = 6 and
perform 100 repetitions of each setting. We now consider the setting of different dimensions. We choose
n ∈ {3, 5, 7, 9} and use ρ =

√
log(p+1)

mn for all pairs of (m, n). T is defined as above. For each j ∈ [n],
X

(i)
j ∼ 0.5N (0, Σ(i)) + 0.5∆i, where ∆i is a p × 1 vector of independent Uniform(0, 1) random variables.

Figure 2 depicts the outcome of our experiments. For different choices of n, the graphs overlap each other
perfectly (both P(Ĵ = J) and

∥∥∥Π̂ − Π
∥∥∥

∞,∞
). Then, we took the recovered support and derived the probability

of support recovery for a novel task. We perform the experiments when there are 2, 3, or 4 extra zeros and in
all of those experiments we have found greater than 95% probability of accurately identifying the extra zeros.
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(c) Novel Task

Figure 2: (a), (b): Simulations for Theorem 3.2 on the probability of support union recovery and maximal
error under various settings of n. Let ρ =

√
log(p+1)

mn . The x-axis is set by T := mn
log(p+1) varying from

{1, . . . , 15} for support recovery. (c): Probability of support recovery for novel task. We let ρ =
√

log(|J|+1)
n .

The x-axis is set by T := n
log(|J|+1) varying from {10, . . . , 25}

Sub-Gaussian Distribution. For all the experiments in this sub-section, we let n = 5, k = 6 and |J | = 6
and perform 100 repetitions of each setting. We now consider the setting of different dimensions. We choose
p ∈ {40, 45, 50, 55}. T and ρ are defined as above. For each j ∈ [n], X

(i)
j ∼ 0.5N (0, Σ(i)) + 0.5∆i, where

∆i is a p × 1 vector of independent Exponential(0, 1) random variables. Figure 3 depicts the outcome of
our experiments. For different choices of p, the graphs overlap each other perfectly (both P(Ĵ = J) and∥∥∥Π̂ − Π

∥∥∥
∞,∞

). Then, we took the recovered support union and derived the probability of support recovery for
a novel task. We perform the experiments when there are 2, 3, or 4 extra zeros and in all of those experiments
we have found greater than 90% probability of accurately identifying the extra zeros.
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(Ĵ

=
J)

p

40

45

50

55

(a) Support Recovery

0.0

0.2

0.4

0 5 10 15
T

(Ĥ
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Figure 3: (a), (b): Simulations for Theorem 3.2 on the probability of support union recovery and maximal error
under various settings of p. We let ρ =

√
log(p+1)

mn . The x-axis is set by T := mn
log(p+1) varying from {1, . . . , 15}

for support union recovery. (c): Probability of support recovery for novel task. We take ρ =
√

log(|J|+1)
n . The

x-axis is set by T := n
log(|J|+1) varying from {10, . . . , 25}

C.2 Comparison With Multi-Task Sparse PCA

In this section, we compare the meta-learning method against a multi-task learning method when applied to
support union recovery under a Gaussian distribution setting. The method of generating the dataset and
meta-learning is as described in Section 5. As before, we let p = 30, |J | = 5, and fix n = 3. The values
we choose for m are chosen from the set M ∈ {2, 3, 4, 5, 6, 7, 9, 10}. We perform 24 replications and report
the mean probability and the 95% confidence interval as the error bars around the mean. The results are
plotted in Figure 4 (a). The penalty ρ is always applied to be

√
log(p + 1)/mn. As previously noted, as the

number of tasks increase, meta-learning achieves a perfect support recovery, while multi-task learning gets
progressively worse.
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(a) Meta vs. Multitask Learning
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(b) Meta vs. Single Task Learning

Figure 4: (a) Comparison showing the difference in the probability of recovering the correct support union
of meta-learning versus multi-task learning. (b) Comparison showing the difference in the probability of
recovering the correct support union of meta-learning versus single task sparse PCA. Y-axis : Probability of
support union recovery. X-axis : Number of auxiliary tasks.
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Multi-Task Learning. For the multi-task learning method, we maximise the following objective function:
m∑

i=1
⟨S(i), H(i)⟩ − ρ∥H(1), . . . , H(m)∥1 subject to H(i) ∈ Fk, ∀i ∈ [m],

where S(i) is the covariance matrix corresponding to task i and ∥H(1), . . . , H(m)∥1 =
∑

j,k supi∈[m] |H(i)
j,k|.

We apply
√

log(p+1)
mn as the penalty for the tasks. We recover the support union by taking the union of the

recovered support.

Meta-Learning. For the meta-learning setup, we proceed according to Section 5 and recover the support
union from the pooled covariance estimator. We apply

√
log(p+1)

mn as the penalty when m is the total number
of tasks.

As we can see, meta-learning outperforms multi-task learning with 100% accuracy for large values of m.

C.3 Comparison with Single Task Sparse PCA

In this section, we compare the meta-learning method against a single task learning method when applied to
support union recovery under a Gaussian distribution setting. The method of generating the dataset and
meta-learning is as described in Section 5. We let p = 30, |J | = 5, and fix n = 3. The values we choose
for m are chosen from the set M ∈ {2, 3, 4, 5, 6, 7, 9, 10}. We perform 24 replications and report the mean
probability and the 95% confidence interval as the error bars around the mean. The results are plotted in
Figure 4 (b).

Single Task Learning. For the single task learning setup there are m many objective functions being
maximised simultaneously. Let S(i) be the covariance matrix associated with the task i. Then the i-th
objective is to maximise,

⟨S(i), H⟩ − ρ∥H∥1,1 subject to H ∈ Fk. (C.1)

Let Ĥ(i) be the maximiser of this objective function. Let Ĵ (i) = supp(H(i)) and take Ĵ =
⋃

i∈M Ĵ (i) to be

the natural estimator for the support union. We apply
√

log(p+1)
n as the penalty for each of the m tasks.

Meta-Learning. For the meta-learning setup, we proceed according to Section 5 and recover the support
union from the pooled covariance estimator. We apply

√
log(p+1)

mn as the penalty when m is the total number
of tasks.

Single task learning of sparse PCA can be seen to be completely useless whenever the number of tasks get
large and fails to recover the correct support union after a while. On the other hand, meta-learning improves
steadily with the increasing number of tasks and the results coincide with our experiments in Section 5.

C.4 Real World Datasets

Brain Imaging Data. The 1000 functional connectomes dataset is from nitrc.org and contains resting-state
functional magnetic resonance signals from 1128 subjects, 41 sites around the world, and 157 brain regions.
This dataset consists of labs around the world that collected MRI from different subsets of subjects/persons.
Each task is a different research lab with different magnetic resonance imaging scanner/equipment with
different physical properties, and each brain region forms a covariate. Exploratory research like PCA is often
performed to unveil important brain regions, which is the support. Although different labs might not have
the same important brain regions (support) it is reasonable to believe that there are some similarities across
labs. This dataset is therefore a prime candidate for meta-learning. We use a set of independent samples
to construct the true covariance matrix, and thus the true support union. We then constructed the pooled
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estimator using m auxiliary tasks, where m ∈ {1, 2, 3, 5, 8, 10, 12, 15, 18, 20, 25, 30, 35, 41}. Then we compared
the recovered support with the true support to calculate the mean percentage and standard deviation of error
in the recovered support. The error bars were obtained by creating a 95% confidence interval around the
mean. As we clearly see in Figure 5 the probability of incurring an error decreases as we increase the number
of tasks.
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Figure 5: Probability of error of support recovery for brain imaging dataset. We took an increasing number
of auxiliary tasks m ∈ {1, 2, 3, 5, 8, . . . , 30, 35, 41}. The probability of error decreases.

Recovered Broadmann areas in the support union. At a penalty of ρ = 10
√

log(p+1)
mn , the recovered

significant brain regions were: Broadmann areas 6, 17, and 44. Interestingly, these are widely reported in
other fMRI studies, as shown in Table 2.

Area Found significant in
6 Rubia et al. (2000); Shuster & Lemieux (2005); Sylvester et al. (2003); Fincham et al. (2002)
17 Yan et al. (2005); Fulford et al. (2018); Wohlschläger et al. (2005); Tan et al. (2001)
44 Baron-Cohen et al. (2006); Friederici et al. (2000); Fincham et al. (2002); Binkofski et al. (1999)

Table 2: Recovered Broadmann areas in the support union

Cancer Genetics Data. The cancer genome atlas program dataset is available at gdc.cancer.gov and
contains the genetic sequencing of 1576 patients. In cancer research, exploratory research is often performed
to discover the important genes, which forms the support of PCA studies. In this dataset, we have 11 types of
cancer, each one being an auxiliary task, and each gene is a covariate. Different cancer types might not elicit
the same important genes (support) but it is reasonable to believe that there are some similarities across
cancer types. Therefore, this dataset is a prime candidate for meta-learning. We use a set of independent
samples to construct the true covariance matrix and the true support union. We then constructed the pooled
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estimator using m auxiliary tasks where m ∈ {1, . . . 10}. Then we compared the recovered support with the
true support to calculate the mean percentage and the standard deviation of the error in recovered support.
The error bars were obtained by empirically calculating the 95% confidence interval around the mean. As we
can see in Figure 6 the probability of incurring an error decreases as we increase the number of tasks.
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Figure 6: Probability of error of support recovery for cancer genetics dataset. We took an increasing number
of auxiliary tasks m ∈ {1, 2, . . . , 10}. The probability of error can be seen to be decreasing.

Recovered genes in the support union. At a penalty of ρ = 10
√

log(p+1)
mn , the recovered significant

genes were: PTP4A3, CLEC3B, E2F3, PSMA7. Interestingly, these genes are widely reported in other studies
of cancer research, as shown in Table 3.

Gene Found significant in
PTP4A3 Huang et al. (2014); Den Hollander et al. (2016); Wang et al. (2019); Zimmerman et al. (2013)
CLEC3B Sun et al. (2020); Zhu et al. (2019); Dai et al. (2019); Zhang et al. (2017)

E2F3 Feber et al. (2004); Cooper et al. (2006); Gao et al. (2017); Olsson et al. (2007)
PSMA7 Hu et al. (2009; 2008b;a); Du et al. (2009)

Table 3: Recovered genes in the support union
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