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Abstract

With breakthroughs in deep learning algorithms, the
practice of manipulating audio to produce believable fakes
is expanding rapidly. This survey paper provides a com-
prehensive overview of the current state of deepfake audio
research, encompassing generation methods, online plat-
forms to generate fake audio, the latest detection tech-
niques, human perception of fake audio, and the underly-
ing security concerns. We examine different methods for
speech synthesis, audio splicing, and voice cloning, point-
ing out their advantages and disadvantages. Furthermore,
we investigate various detection algorithms, encompass-
ing supervised, unsupervised, and hybrid techniques, and
assess their effectiveness in detecting audio manipulation.
We review deepfake audio’s impacts, including possible ad-
verse effects on reputation, fraud, and misinformation. We
present a concise analysis of AI versus human detection of
deepfake audio, drawing insights from existing literature
and validating them through our experiments. Finally, we
highlight future research directions and recommendations
for mitigating the societal risks associated with this power-
ful technology.

1. Introduction
Audio is extensively utilized for Automatic Speaker Ver-

ification Systems (ASVs) and Personal Voice Assistants
(PVAs). For instance, HSBC uses ASV, implementing
“Voice ID” in 2019, allowing customers to access certain
banking services such as account balances and transfers
through phone banking simply by using their voice [10].
PVAs such as Google Home, Alexa, and Cortana have be-
come helpful companions in our homes, streamlining daily
tasks with simple voice commands. The global voice bio-
metrics market was valued at 1467.4 US million dollars in
2022 and is projected to reach 4985.8 US million dollars by
2030, at a CAGR of 19.1% during the forecast period [49].
The above statistics reflect the growth and importance of the
voice/speech/audio modality and its presence in our day-to-
day lives. However, studies show that voice-based systems

Figure 1. Showcasing possible attacks on automatic speaker veri-
fication systems [23].

are susceptible to various attacks, including voice cloning
and deepfakes, as shown in Figure 1. These attacks span the
entire pipeline: from injecting fake audio signals at the mi-
crophone, tampering during signal preprocessing and fea-
ture extraction, to manipulating the matcher and decision
modules, ultimately enabling unauthorized access even with
minimal authentic input.

Audio deepfakes involve modifying the original voice
recordings to impersonate someone or using someone’s
voice to create new utterances. Significant progress has
been made in deepfake generation techniques, including
text-to-speech, voice encoders, voice conversion, and voice
cloning. Due to these advancements, fooling machines and
humans is an easy task; several real-world cases are proof
of that. For example, a 73-year-old man from Kerala, In-
dia, received a call in July for 9, 2023, from an anonymous
caller impersonating his former colleague and asking for
money. The victim transferred a sum of 40,000 rupees
before realizing he had been tricked [48]. Large Language
Models (LLMs) are also vulnerable to adversarial audio at-
tacks [63]. Further, the strength and advancement of such
artificial intelligence (AI) deepfake can be seen from the
political incidents, which are seen as a potential attempt to
interfere with the US national election1. These incidents

1https://www.resemble.ai/deepfake-incident-joe-biden-election-



highlight the growing concern about fake technology being
used maliciously. Interestingly, the technology has reached
the level that performing a voice deepfake or cloning is now
available at a click of a button that does not involve any
technical knowledge for a novice user2.

The escalating threat of fake voice attacks has triggered
a surge in research. In 2024 alone, a staggering 4248 pa-
pers were published on audio deepfakes, compared to only
one paper published in 2017. This survey primarily focuses
on audio attacks, audio deepfake generation, and detection
capabilities of various deep learning models, ChatGPT4.0,
and humans, which are ignored in the majority of previ-
ous surveys [23, 27], in addition to assessing their current
state and how to lessen their negative consequences. In the
end, we have also performed extensive experimental analy-
sis demonstrating the strength of human, AI, and large foun-
dation models in detecting audio deepfakes. We assert that
the knowledge of the literature and the experimental valida-
tions make this research a unique contribution compared to
generic surveys.

2. Audio Synthesis Attacks: Taxonomy and
Techniques

This section provides a taxonomy of the attacks and de-
scribes popular techniques for fake audio generation.

2.1. Attacks Taxonomy

In the context of audio, attacks encompass misinforma-
tion, privacy breaches, and security threats. Manipulated
audio can spread false information, erode trust, and influ-
ence public opinion. Privacy concerns arise from voice
cloning and unauthorized eavesdropping, while security im-
plications include identity theft, fraud, and disruption of
communication channels. Addressing these challenges re-
quires a comprehensive approach involving technological
advancements, legal frameworks, and heightened public
awareness.

In the pursuit of practical audio attacks, four key ideal
properties emerge. (i) Firstly, attacks should be “Over-
the-Air”, involving the transmission of adversarial exam-
ples through loudspeakers, presenting a real-world chal-
lenge due to distortions introduced by device characteris-
tics, channel effects, and ambient noise. (ii) Secondly, at-
tacks should be adaptable to “Black Box Systems”, con-
sidering the limited knowledge of commercial voice as-
sistants. Query-based optimization methods, transferabil-
ity between models, and substitute models contribute to
attacking black-box systems effectively. (iii) Thirdly, at-
tacks should maintain “Imperceptible Adversarial Per-
turbations” by optimizing amplitude, frequency, tempo-

interference/
2https://speechify.com/voice-cloning/

ral alignment, and noise features. These optimizations aim
to reduce noticeability and improve the stealthiness of ad-
versarial examples. (iv) Lastly, attacks should be capable
of “Real-Time Execution”, requiring on-site generation or
adjustment. The presence of these four properties signifies
a greater practical threat in real-world audio security sce-
narios.

Further, fake audio attacks can be classified into three
categories: logical attacks, which include speech synthe-
sis and voice conversion; physical attacks, such as replay
and impersonation; and adversarial attacks, which involve
manipulating audio signals to deceive or mislead audio pro-
cessing systems by introducing imperceptible perturbations
into the audio data, leading to misinterpretations by the tar-
geted system [45].

2.2. Fake Audio Generation Methods

Creating compelling deepfake audio relies on various
techniques utilizing deep learning models. Here are some
prominent approaches:
Voice conversion: Voice cloning encompasses various
methods such as autoencoders, generative adversarial net-
works (GANs), transfer learning, and Mel Spectrogram In-
version. Recent developments in voice cloning have fo-
cused on improving the expressiveness and naturalness of
synthesized speech [2], mainly when limited training data
is available. Voice conversion can be further improved by
combining a speaker’s voice with the mimicking of prosody,
achieving high quality and similarity to the original voice
and prosody [34]. Nowadays, several online services offer
AI-enabled voice cloning, as mentioned in Table 1.
Text-to-speech (TTS) Synthesis: TTS has evolved sig-
nificantly over the years, focusing on creating natural-
sounding and expressive speech. This noteworthy devel-
opment opens up new possibilities for voice assistants and
audiobooks, making immersive audio experiences easier.
Several end-to-end models, such as FastDiff-TTS and Vari-
ational Inference with adversarial learning for end-to-end
Text-to-Speech (VITS), have been presented to produce
high-quality speech.

Beyond replication, the scope of TTS extends to the do-
main of expressiveness. GAN-based models such as GAN-
TTS and MelGAN [26] provide unprecedented control over
pitch, intonation, and emotional subtleties. Still, the com-
plexities of human emotion, with all of its subtle pauses
and turns, present a constant difficulty. Researchers are
currently delving into the intricacies of prosody and style
transfer to smoothly incorporate language and emotion into
synthetic speech and provide an authentic impact that ap-
peals to listeners. Style tokens and reference encoders have
been used to improve expressive TTS, while prosody pre-
diction techniques, including duration and pitch modeling,
further enhance the naturalness of speech. The concept of



Online-toolbox Description
Amphion [69] Supports generation tasks such as Text to Speech, Text to Audio, and Singing Voice Conversion.
VALL-E [53] Neural codec language-model for generating speech.
SpeechSplit 2.0 [1] Unsupervised voice conversion by speech disentanglement using multiple autoencoders.
Descript Overdub Descript’s TTS generator transforms any text into natural-sounding speech in minutes.
Resemble AI Popular AI voice generator and robust deepfake audio detection tool
iSpeech Offers both TTS and voice recognition capabilities.
Tacotron2 and WaveNet Speech synthesis by generating waveforms that closely match natural human speech.

Table 1. Popular online toolbox for audio deepfake generation.

personalized voice generation in TTS using speaker embed-
dings helps create voices that match specific visual stim-
uli [52]. Additionally, an emotion-vector-based synthesis
method enables computationally efficient manipulation of
primary emotions, polarity, and intensity levels while en-
suring high naturalness and transferability across unseen
speakers [19]. Also, pre-trained text embeddings, such as
BERT, have been proposed to improve the naturalness of
synthesized speech [17]. Recent advancements continue
to redefine the boundaries of TTS. F5-TTS [68] introduces
a fully non-autoregressive framework using flow matching
with a Diffusion Transformer (DiT), achieving high natu-
ralness, zero-shot expressiveness, and code-switching ef-
ficiency without requiring duration modeling or phoneme
alignment. Llasa [66] brings the scalability of large lan-
guage models (LLMs), particularly LLaMA, to speech syn-
thesis, demonstrating how scaling train-time and inference-
time compute enhances prosody and naturalness through a
simplified architecture using a single VQ codec and Trans-
former. Similarly, MaskGCT [56] adopts a masked pre-
diction approach across two stages—semantic and acoustic
token generation—allowing fully non-autoregressive zero-
shot TTS without alignment or duration supervision, thus
simplifying the synthesis pipeline while improving flexibil-
ity and performance.

Replay Attack: A replay attack involves recording a tar-
get speaker’s voice and replaying it to impersonate them,
often to bypass voice authentication systems. Techniques
associated with replay attacks include far-field detection,
where the attacker plays back a recording through a phone
or speaker, and audio splicing (cut-and-paste), where a fake
utterance is constructed by splicing together short record-
ings. A key example of replay attacks is the ASVspoof
challenge, held annually since 2015, focusing on automatic
speaker verification spoofing and countermeasures. In the
latest 2024 challenge, the authors have presented a com-
bined logical access and deepfake task comprising challeng-
ing crowd-sourced data while also incorporating adversarial
attacks [55].

Apart from the attacks mentioned above, a range of stud-
ies have explored the vulnerability of audio systems to ad-
versarial attacks. The overall framework of the generation

of deepfake audio involves a meticulously crafted pipeline,
which can be summarised as below:

1. Data Acquisition and Preprocessing: (i) Gather au-
dio recordings of the individual whose voice will be
mimicked. (ii) Remove noise, unwanted segments, and
silence from the recordings. Segment the remaining
audio into smaller units, such as phonemes or sen-
tences, for easier processing. (iii) Extract relevant
acoustic features from the audio data. This can include
Mel-Frequency Cepstral Coefficients (MFCCs), spec-
tral features, and pitch information.

2. Model Training: (i) For text-to-speech (TTS) sys-
tems, the model is trained with paired text and audio
data. The model learns to generate speech audio from
the input text by predicting the corresponding acous-
tic features of the target speaker’s voice. (ii) For voice
conversion, the model is trained to map the acoustic
features of the source speaker’s voice to those of the
target speaker, effectively transforming the voice while
maintaining the linguistic content.

3. Deepfake Generation:

• Text Input: Provide the desired text as input to
the trained model for text-to-speech deepfakes.

• Speaker Embedding: Generate a compressed
representation of the target speaker’s voice, cap-
turing their unique vocal characteristics. This of-
ten involves passing the preprocessed audio data
through an encoder network.

• Mel Spectrogram Synthesis: Combine the
speaker embedding with text input to generate
a Mel Spectrogram, representing the harmonic
structure and rhythm of the desired speech using
models such as Tacotron 2.

• Waveform Generation: Convert the Mel Spec-
trogram into the actual audio waveform using
a vocoder model such as WaveNet. This final
stage transforms the abstract representation into
a realistic-sounding voice.

4. Post-processing and Refinement:



• Smoothing and Polishing: Apply denoising and
smoothing techniques to remove artifacts and en-
hance the naturalness of the generated audio.

• Background Noise Addition: Add background
noise if required to match the intended context
of the deepfake audio.

5. Output and Deployment: The final deepfake audio is
ready for use. It can be integrated into videos, used for
voice manipulation, or incorporated into various cre-
ative applications.

3. Fake Voice Detection

The sense of relief comes from the fact that while
tremendous effort has been put into generating fake audio,
a separate school of thought is actively working on detect-
ing it. However, before developing a unified and effective
fake audio detector, it is necessary to have a dataset that can
reflect a variety of phony audio. A comprehensive list of
existing fake voice detection datasets and some multimodal
datasets, such as HAV-DF and DefakeAVMiT, is reported
in Table 2. The Table highlights the lack of freely available
datasets encompassing diverse languages, ethnicities, and
real-world scenarios.

Utilizing the strength of existing datasets, several re-
search efforts have started to develop an effective and ac-
curate fake voice detection architecture. For example, Uti-
lization of a pre-trained wav2vec2 feature extractor and a
downstream classifier [35] as well as employing a 34-layer
ResNet with multi-head attention pooling and neural stitch-
ing [61] for effective detection of audio deepfakes. Further,
we comprehensively survey the existing voice/audio deep-
fake detection algorithms by categorizing them into multi-
ple classes based on the ML concepts they used, such as
traditional feature-based to advanced deep network archi-
tecture.

3.1. Handcrafted Feature-Based Algorithms

Perceptual features such as Perceptual Linear Predic-
tion (PLP) and Constant-Q Cepstral Coefficients (CQCC)
are highly significant, showing promising results in the Au-
dio Deep Synthesis Detection (ADD) Challenge [28]. Ap-
proaches using Fundamental Frequency Variation (FFV)
and spectral features [6, 15, 29] also play a key role. In
place of classifiers utilizing single discriminating informa-
tion, several research efforts have also been proposed uti-
lizing multimodal information. The frequency character-
istics of the audio signal can be analyzed to identify un-
natural patterns or inconsistencies that may indicate spoof-
ing. These methods are built end-to-end, proposing a dis-
criminative frequency information SincNet for speech anti-
spoofing [32]. Further, a multimodal approach of integrat-

ing audiovisual features for deepfake detection enhances
intra- and cross-domain testing performance [41, 64].

3.2. End-to-end Deep Learning-Based Models

While the handcrafted feature-based techniques are prac-
tical and cost-efficient, their resilience to unseen voice
deep-fakes is a critical drawback. Therefore, by looking
at the generalization capacity of deep networks, a shift in
voice deepfake detection algorithms has been noticed that
primarily utilize deep learning architectures. For example,
Convolutional Neural Networks (CNNs) can be used for au-
dio deepfake detection by focusing on audio recapture de-
tection [25]. The study demonstrates the effectiveness of
CNNs in capturing subtle patterns and inconsistencies in
deepfakes. A fully automated system combines a modified
version of Differentiable Architecture Search (DARTS) and
a pre-trained model to achieve superior performance [54].
A vision transformer network can also classify spectrogram
images and detect deepfake audio [51]. These studies col-
lectively demonstrate the effectiveness of deep learning in
detecting fake audio. The above review shows that combin-
ing techniques of different domains, exploring new features
and representations, and addressing challenges such as real-
time detection are key areas for future advancements.

In addition to these efforts, recent deep learning-based
models, such as AVA-CL [70], demonstrate excellent cross-
manipulation detection performance, achieving an AUC
of 97.89%. However, AVA-CL faces audio inconsisten-
cies when fake videos include facial flickering. ResNet-
101SV also highlights the importance of fine-tuning diverse
datasets, achieving impressive EER scores on ASVspoof
and wild datasets. However, the absence of advanced
augmentation techniques limits its robustness [4]. Mod-
els such as ASDG [57] and SLIM have made significant
achievements in domain generalization but are still limited
by dataset constraints and potential misclassification risks
[72]. The major limitation observed is the generalizability
of these algorithms, as illustrated in Figure 2. Figure 2 in-
dicates that the performance of models trained for a partic-
ular dataset fails miserably for out-of-distribution datasets.
For example, popular models such as Transformer, WavLM,
and Whisper show an EER of 7.50%, 7.24%, and 5.59%,
respectively, on the ASVSpoof dataset. Still, the EER rises
significantly to 43.78%, 30.50%, and 42.73%, respectively,
on the in-the-wild dataset. This performance drop is even
more drastic in traditional detectors such as LCNN, which
exhibit huge increases in EER when evaluated on out-of-
distribution sets such as LibriSeVoc and In-the-Wild, com-
pared to their in-domain performance. In contrast, foun-
dation models such as Hubert and Whisper demonstrate
greater resilience. This robustness stems from their large-
scale pretraining. Larger model capacities and rich feature
abstractions allow these architectures to capture nuanced ar-



Dataset Language Samples (S)/
Hours (H)

Key Features Limitations Availability

InDeepFake [5] 7 languages 5069 Multimodal Indian deepfake
video dataset covering mul-
tiple age and gender groups.

Lacks robustness under
adversarial attack sce-
narios.

Public

JMAD [36] 17 languages 412,021 Covers TTS, vocoder, voice-
conversion, and adversarial
attacks.

Exhibit wide MOS vari-
ability, introducing in-
consistencies that can af-
fect training and bench-
marking.

Private

ASVspoof5 [55] English 1,500,713 Encompass 32 spoofing
algorithms—including TTS,
VC, and novel adversarial
attacks.

Focuses solely on the
English subset of MLS.

Public

EMILIA [18] 6 languages 101000 H Captures diverse acoustic
and semantic speaking
styles of real, spontaneous
human speech.

Lack precise alignment
between text and audio
or fine-grained emotion
annotations.

Public

MLAAD [39] 38 languages 378 H Synthetic audio generated
using 82 TTS models com-
prising 33 different architec-
tures.

Lacks coverage of voice
conversion attacks and
real-world noise condi-
tions.

Public

MSTF [3] Caucasian, Black, South
Asian, and East Asian

143754 Multi-scenario talking face
dataset, featuring 22 au-
dio and video forgery tech-
niques.

Lacks robustness to
compression artifacts of
social media platforms.

Private

HAV-DF [20] Hindi 500 Hindi multimodal dataset
encompassing face-
swapping, lip-syncing,
and voice-cloning manipu-
lations.

Small dataset with lim-
ited manipulation tech-
niques.

Private

DeepFakeVox-HQ
[71]

English 1300000 Large voice dataset cover-
ing various AI voice synthe-
sis models and social media
platforms.

Limited to particular
types of corruption and
adversarial attacks.

Private

FakeSound [59] English 3798 Identifying manipulated au-
dio and locating deepfake
segments using grounding,
masking, and inpainting.

Struggles with domain
adaptation, limiting its
generalizability to un-
seen domains.

Public

LlamaPartialSpoof
[33]

English 130 H Full and partial fake speech,
using LLM and voice
cloning to evaluate the
robustness of countermea-
sures.

Does not address real-
world conditions such as
noisy or reverberant en-
vironments.

Public

VoiceWukong [62] English, Chinese 413400 Generated using 19 com-
mercial and 15 open-source
tools encompassing 38 vari-
ants of six manipulation
types.

Lacks representation of
other widely spoken lan-
guages.

Public

Codecfake [58] English, Mandarin 1000000 Designed to detect novel
Audio Language Model
(ALM)-based deepfake
audio.

The Dataset is limited to
speech alone.

Public

Cross-Domain [31] English 300 H To detect advanced zero-
shot text-to-speech models
that can clone voices from a
single utterance.

Neural codec compres-
sors pose accuracy chal-
lenges.

Public

TIMIT-TTS [46] English 80000 Created using TTS and
Dynamic Time Warping
(DTW) for multimodal
synthetic media detection.

Detection accuracy
degrades due to post-
processing operations,
and for single-speaker
systems.

Private

DefakeAVMiT [64] English 7020 Multimodal dataset where
both audio and visual
modalities can be indepen-
dently forged using eight
different techniques.

Lip-syncing techniques
reduce explicit forgery
traces.

Private

Table 2. Latest existing datasets for deepfake audio detection.



Figure 2. Showcasing how well the existing algorithms trained
on ASVSpoof19 perform when applied to an in-the-wild dataset
[38, 65]. The high error rate reflects the current limitation. The
results of the best-performing network-feature combination are
taken from [65].

tifacts that handcrafted features and shallow models often
miss [30]. Not only generalization but also the adversarial
robustness of the existing algorithms is a serious issue that
has not been adequately addressed for audio compared to
images [9, 22, 67]. These further emphasize the importance
of improving model robustness, data diversity, and scalabil-
ity for efficient detection of audio deepfakes.

4. Human vs. ChatGPT4.0 vs Audio Spectro-
gram Transformer (AST) in Audio Deep-
fake Detection

To complement the survey of existing deepfake detec-
tion techniques, this section presents a concise experimental
analysis comparing the detection capabilities of humans, the
Audio Spectrogram Transformer (AST), and ChatGPT4.0.
This empirical exploration is further supported by relevant
literature, offering practical insights into how well current
systems and humans can detect synthetic audio. We curate
a balanced subset of 200 audio samples (100 real and 100
fake) from the FakeAVCeleb multimodal dataset, ensur-
ing balanced representation across all ethnicities and gen-
ders. By integrating human perceptual judgments, advanced
transformer-based models, and language-model-based rea-
soning, this analysis bridges theory with real-world de-
tection performance, revealing nuanced differences across
evaluators.

4.1. Human Examiners

We survey multiple participants encompassing diverse
educational backgrounds, domain expertise, and gender
through Google Forms. Initially, participants are randomly
asked to identify the audio provided as “real” or “fake”,
and this performance is recorded as “Without Knowledge
Score”. Then, they are asked to listen to real and fake audio
samples (precisely five samples of each class randomly se-
lected with enough class representation) provided with ap-
propriate labels as a training phase. After training, they are

Figure 3. Performance analysis based on a human survey of audio
deepfake detection.

again asked to detect the same audio as “real” or “fake”,
which is reported as “With Knowledge Score”. However, it
is observed that this training process doesn’t necessarily im-
prove performance. Lack of emotion, unnatural breathing,
and poor audio quality are commonly reported by partici-
pants as reasons to identify audio as fake. Generally, hu-
mans tend to show above-average performance in the given
dataset, as illustrated in Figure 3, indicating the need for
a better deepfake audio dataset. The figure also illustrates
that gender and domain expertise play little role in audio
deepfake detection.

Research on human perception of audio deepfakes has
revealed various factors affecting detection accuracy and
performance. Evidence [40] indicates that AI-based mod-
els can outperform human participants in detecting audio
deepfakes, particularly under unrealistic conditions where
models overfit the training dataset. However, in more real-
istic scenarios (where shortcuts, such as the length of au-
dio silence, are removed), humans and AI models perform
similarly, sharing common strengths and weaknesses. This
highlights that while AI can exploit dataset-specific arti-
facts, its real-world performance converges with human ca-
pabilities when tested in more dynamic environments.

There are findings [16] that second this by showing that
human observers consistently perform worse than SOTA AI
models when identifying audiovisual deepfakes. Interest-
ingly, the study also finds that after placing a deepfake, par-
ticipants often struggle to pinpoint the exact manipulation
(audio or video or both), particularly mistaking changes in
the audio for changes in the visuals. Furthermore, being
alerted about the presence of deepfakes or increasing fa-
miliarity with them had little effect on detection accuracy,
suggesting that training alone has a limited impact on im-
proving human detection skills. In another study [14], re-
searchers find that humans rely more on audiovisual cues
than the content itself when detecting deepfake political
speeches. Specifically, TTS-based deepfakes are much
more challenging for humans to detect than voice conver-
sion or waveform concatenation systems. Similarly, a cross-
country analysis [11] reveals that across all countries (USA,
Germany, and China) and media types (image, audio, and
text), participants struggle to distinguish between real and



AI-generated media. Participants often rate artificially gen-
erated media as human-made, performing worse than ran-
dom guessing in some cases. The study emphasizes that
machine-generated media are becoming virtually indistin-
guishable from real media and that human participants tend
to rely on irrelevant or misleading cues, further complicat-
ing the detection process. In addition, proficiency in native
language, age, and exposure are key factors that affect hu-
man performance in detecting audio deepfakes, while tech-
nical experience shows little influence [14, 16, 40]. All of
these factors pave the way for future research.

4.2. AI-based Experimental Analysis

We extend our study on audio deepfake detection by per-
forming experiments using AST and ChatGPT’s audio an-
alyzer on the same set of 200 audios used in our human
survey.

• ChatGPT Audio Analyzer: The 200 audios are tested
with ChatGPT’s audio analyzer using the prompt, ‘An-
alyze the given audio and comment if it is real or
fake based on your analysis.’ The accuracy is found
to be 49%, with ChatGPT failing to recognize most
of the fake audio. ChatGPT detects fake audio based
on attributes such as frequency and amplitude range.
An intriguing study on deepfake detection using Chat-
GPT [47] concludes that ChatGPT can detect multi-
modal deepfakes comparable to humans given suit-
able prompts and context. However, multimodal Chat-
GPT’s performance is quite poor compared to other AI
models trained exclusively for deepfakes [47]. Without
specialized multimodal models, its performance lags
behind state-of-the-art deep learning models optimized
for audio and audiovisual forgery detection.

• AST: The pre-trained AST is fine-tuned with the same
200 audios used for detection by humans and Chat-
GPT using a 50:50 train-test split as well as 3-fold
cross-validation, and every time, the accuracy is found
to be 100%. AST outperforms ChatGPT and humans
in audio deepfake detection, as illustrated in Figure 4.
While the above analysis showcases promising results
through AST and humans, their collaboration can be
explored in the future, where a website plugin can be
developed, using human understanding and AI knowl-
edge to counter audio deepfakes effectively.

5. Prevention and Future Directions
Detecting audio deepfakes can significantly contribute to

rebuilding trust in society in digital data. In this section, we
provide possible research directions that can be used to pre-
vent audio deepfakes. Addressing these limitations in future
defenses could pave the way for a robust and unified system

Figure 4. Comparison of human, ChatGPT, and AST performance
in audio deepfake detection. Note: the high performance of AST
must not be treated as a complete solution to the problem due to
the limited sample size.

against audio deepfakes, offering significant real-world ap-
plications.

5.1. Prevention
• Liveness Detection: In a replay attack, voices are gen-

erated by a live person but replayed on some electronic
media. One preventive measure to avoid an attack is
identifying whether a living human generates the voice
sample. For example, pop noise caused by human
breath can be used as a liveness indicator [50]. An-
other way to prevent replay of the recorded media is to
pose real-time questions. If the media is not a living
person, it would be challenging for an attacker to solve
such real-time questions.

• Behavioral Analysis: The behavioral patterns of users
can be monitored during audio interactions that could
suggest fraudulent activity. Audio and visual modal-
ities can be simultaneously analyzed along with per-
ceived emotions, achieving high accuracy in deepfake
detection [37].

• Use of Multiple Cues: Multiple authentication meth-
ods or cues, such as voice and facial recognition, can
be combined to create a robust system. Combining dif-
ferent biometric modalities, such as face and speaker
identification, can significantly improve fake detection
accuracy [8].

• Blockchain Technology: Blockchain can secure both
deep learning models (used for fake audio genera-
tion) and audio content against tampering and mis-
use. Approaches such as Deepring store model param-
eters and metadata immutably, enabling integrity ver-
ification and controlled access [12, 13]. This prevents
unauthorized audio synthesis and ensures traceability
of genuine content. Deploying detection in high-stakes
workflows requires balancing on-chain transparency
with off-chain scalability and privacy, especially under
GDPR and deepfake-labeling laws [44].



• Regulatory Measures: Advocate for and comply with
regulatory measures that address deepfake creation and
distribution, promoting legal consequences for mali-
cious use [7].

• Others: There are several ways to prevent the spread
of fake content. Educating users, particularly those un-
aware of the technology’s ability to generate human-
like content, is crucial [43]. Verifying unreliable con-
tent through digital signatures or watermarking can
help trace creators. Additionally, developing diverse
datasets across languages and demographics can aid in
building automated detection algorithms. These solu-
tions, if refined, could be made accessible as browser
extensions or mobile apps.

5.2. Open Challenges: Future Directions

This section focuses on the existing challenges and re-
search gaps in audio deepfake detection.

• Data Availability and Diversity: Limited access to
diverse datasets of real and fake audio, encompass-
ing various speaker demographics, languages, and at-
tack techniques, hinders the development of robust and
generalizable detection algorithms. As listed in Table
2, the existing fake audio datasets target limited lan-
guages or are highly biased toward English and Cau-
casian ethnicity.

• Generalization Robustness: Audio deepfakes use
techniques such as voice cloning, voice conversion, or
synthesis from scratch. Limited evaluation of detec-
tion algorithms in real-world scenarios, including un-
seen attacks, creates false security. Developing models
that generalize across attack types and ensuring robust
assessment are crucial for effective defense [21].

• Privacy Concerns: Deploying large-scale audio mon-
itoring systems for spoofing detection raises privacy
concerns regarding data collection and usage. Balanc-
ing security with individual privacy is crucial.

• Performance on Limited Data and Zero-Shot Sce-
narios: Existing challenges persist in achieving ro-
bust deepfake audio detection, particularly when con-
fronted with limited training data and encountering en-
tirely new voices (zero-shot scenarios) [24]. While
many current algorithms demonstrate high accuracy in
controlled datasets, their effectiveness falters under a
broad spectrum of voices with minimal labeled data,
as clearly evident from Figure 2.

• Interpretability and Explainability: Current deep
learning models for deepfake detection often lack in-
terpretability, making it difficult to understand why
specific audios are classified as real or fake. This hin-
ders building trust and confidence in the system.

• Computational Cost: Implementing complex deep
models for real-time detection on resource-constrained
devices such as smartphones remains computationally
expensive. Noteworthy is that these smartphones are
one of the primary victims of fake content.

• Language Barrier: Current speaker verification sys-
tems, used for authentication in various languages, are
vulnerable to deepfakes. Each language requires a sep-
arate model, which is impractical and expensive due to
the time and computational resources needed for train-
ing and deployment. Therefore, developing language-
independent models would be a breakthrough, signif-
icantly improving the efficiency and effectiveness of
deepfake detection systems.

• Multimodal Detection: Deepfake content often in-
volves multimodal manipulation; hence, integrating
multimodal detection techniques can better help detect
fake content [42].

• Unintended Bias: Deepfake detection systems may
unintentionally exhibit biases, leading to false posi-
tives or false negatives. Ensuring fairness and mini-
mizing unintended bias in detection models, especially
across diverse demographic groups, is an important
ethical consideration [38, 60].

6. Conclusion
The rapid evolution of deepfake audio generation meth-

ods poses a significant challenge to the integrity of audio
content, with potential consequences for various applica-
tions, from voice cloning to voice authentication systems.
Researchers have made commendable progress in develop-
ing detection methodologies in response to the escalating
threat of audio deepfakes. However, despite these advance-
ments, several challenges persist. We discuss the unmet
research needs and unresolved issues that require careful
consideration and ongoing investigation. Building reliable
audio spoofing detection systems requires resolving or of-
fering answers to these open research issues. Collaboration
between academia, industry, and regulatory bodies, along
with continuous education and awareness initiatives, will
be essential to stay ahead of the evolving landscape of au-
dio deepfakes and safeguard the integrity of audio content in
various domains. In contrast to the existing survey papers,
this paper has provided an in-depth exploration of the di-
verse landscape surrounding deepfake audio, covering gen-
eration, detection, human perception, prevention strategies,
and the effectiveness of various stakeholders such as hu-
mans, AI, and foundational models.
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