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Abstract
Accurately predicting 3D structures and dynam-
ics of physical systems is crucial in scientific
applications. Existing approaches that rely on
geometric Graph Neural Networks (GNNs) ef-
fectively enforce E(3)-equivariance, but they of-
ten fail in leveraging extensive broader informa-
tion. While direct application of Large Language
Models (LLMs) can incorporate external knowl-
edge, they lack the capability for spatial reasoning
with guaranteed equivariance. In this paper, we
propose EquiLLM, a novel framework for repre-
senting 3D physical systems that seamlessly inte-
grates E(3)-equivariance with LLM capabilities.
Specifically, EquiLLM comprises four key com-
ponents: geometry-aware prompting, an equivari-
ant encoder, an LLM, and an equivariant adapter.
Essentially, the LLM guided by the instructive
prompt serves as a sophisticated invariant feature
processor, while 3D directional information is ex-
clusively handled by the equivariant encoder and
adapter modules. Experimental results demon-
strate that EquiLLM delivers significant improve-
ments over previous methods across molecular
dynamics simulation, human motion simulation,
and antibody design, highlighting its promising
generalizability.

1 Introduction
Accurately predicting 3D structures/dynamics of physical
systems remains a fundamental challenge in physics and
biology. Typical tasks such as molecular dynamics sim-
ulation (Hollingsworth & Dror, 2018) and antibody de-

1Gaoling School of Artificial Intelligence, Renmin University
of China 2Beijing Key Laboratory of Research on Large Mod-
els and Intelligent Governance 3Engineering Research Center of
Next-Generation Intelligent Search and Recommendation, MOE
4DAMO Academy, Alibaba Group, Hangzhou, China 5Hupan Lab,
Hangzhou, China. Correspondence to: Wenbing Huang <hwen-
bing@126.com>, Yu Rong <yu.rong@hotmail.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

sign (Tiller & Tessier, 2015) require not only a deep un-
derstanding of complex spatial geometry but also the preser-
vation of E(3)-equivariance — ensuring predictions trans-
form correspondingly with input rotations, reflections and
translations (Batzner et al., 2022; Huang et al., 2022). From
the machine learning perspective, E(3)-equivariant models
are more powerful than their non-equivariant counterparts,
as they are inherently generalizable across arbitrary coordi-
nate systems when modeling physical systems. To achieve
equivariance, current approaches primarily rely on geomet-
ric Graph Neural Networks (GNNs) (Wu et al., 2024; Kong
et al., 2022; Li et al., 2025a). Despite their fruitful progress,
these models often lack the ability to leverage external do-
main knowledge and broader contextual information, such
as task-specific instructions and expert-curated guidance,
hindering further performance enhancement.

Recently, Large Language Models (LLMs) have demon-
strated remarkable success across a wide range of appli-
cations, owing to their large-scale pretraining on extensive
datasets and their substantial model size (Sun et al., 2025a;b;
Bian et al., 2025; Liu et al., 2025b; Li et al., 2025b). It is
well known that LLMs can not only understand and generate
text but also excel at integrating and leveraging scientific
knowledge (Liu et al., 2025a; Jablonka et al., 2024; Wang
et al., 2023b). For instance, LLMs can comprehend funda-
mental chemical concepts and molecular structural charac-
teristics (Guo et al., 2023). More significantly, based on our
results, we speculate that LLMs’ flexibility in prompt engi-
neering enables the development of tailored instructions that
better leverage their capabilities, producing outputs more
precisely suited to the task.

A natural idea is to directly employ LLMs for modeling
3D physical systems. However, this approach fails to yield
satisfactory results in practice. A key limitation is that
LLMs are trained to process ordered and discrete text tokens,
restricting their ability to directly comprehend unordered
and continuous data in 3D space. One possible solution is
to adapt existing multimodal LLM architectures, such as
LLaVA (Liu et al., 2024b), by treating 3D structures as a sep-
arate modality and simply replacing the image encoder with
a geometric GNN. However, this naive adaptation fails to
satisfy the E(3)-equivariance requirement. Since geometric
GNNs produce both invariant features and equivariant coor-
dinates, passing these outputs through an LLM inevitably
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compromises equivariance. Although the canonicalization
approach (Puny et al., 2022; Mondal et al., 2023) enables
the application of non-equivariant LLM to equivariant tasks,
our experiments empirically show that the resulting perfor-
mance is still suboptimal. Therefore, it is non-trivial to
integrate the strengths of both LLMs and geometric GNNs
while maintaining essential geometric properties and ensur-
ing strong performance.

To this end, this paper introduces EquiLLM, a novel frame-
work for representing 3D physical systems that seamlessly
integrates E(3)-equivariance with LLM capabilities. Equi-
LLM is carefully designed and comprises four core modules
(see Figure 1): geometry-aware prompting, an equivariant
encoder, an LLM, and an equivariant adapter. A key insight
of EquiLLM in maintaining equivariance lies in its inno-
vative design: the LLM guided by the instructive prompt
serves as a sophisticated invariant feature processor, while
3D directional information is exclusively handled by the
equivariant encoder and adapter modules. Specifically, to
fully activate the spatial reasoning capabilities of LLMs,
we introduce the geometry-aware prompts containing in-
variant geometric information, including task description,
input feature description and statistical information. Then,
EquiLLM employs a geometric GNN as a domain-specific
encoder to effectively model and extract 3D representa-
tions of input systems. Subsequently, to satisfy the equiv-
ariance constraint, the input to the LLM are strictly limited
to the prompt and invariant features derived from the equiv-
ariant encoder’s output. The LLM-generated outputs are
subsequently combined with the 3D equivariant vectors
produced by the equivariant encoder and fed into an equiv-
ariant adapter for information fusion. EquiLLM ultimately
produces both invariant labels and equivariant coordinates
required by downstream applications.

To sum up, our main contributions are threefold:

• To the best of our knowledge, we present the first inves-
tigation into modeling 3D physical systems by integrat-
ing LLMs with geometric GNNs, aiming to combine
the strengths of both approaches.

• We present EquiLLM, a novel framework that is metic-
ulously designed to permit E(3)-equivariance and in-
still 3D spatial reasoning into LLMs’ powerful capa-
bilities.

• We conduct extensive experiments on diverse tasks of
molecular dynamics simulation, human motion sim-
ulation and antibody design. The results show that
our method achieves superior performance, attaining
state-of-the-art results in nearly all metrics.

2 Related Work
Geometric GNNs. Geometric GNNs have achieved signif-
icant success across a wide range of scientific applications
by leveraging physical symmetries in 3D space (Han et al.,
2024; Xu et al., 2024; Wang et al., 2024a; Li et al., 2024c;d;
Wu et al., 2025; Lin et al., 2025; Han et al., 2025; Liu
et al., 2025c). Among them, tensor-product-based mod-
els (Thomas et al., 2018; Fuchs et al., 2020; Brandstetter
et al., 2021; Batatia et al., 2022; An et al., 2025) excel at
capturing interactions between steerable features of differ-
ent degrees but are computationally expensive. In contrast,
scalarization-based models (Satorras et al., 2021; Schütt
et al., 2021; Huang et al., 2022; Zhang et al., 2024) fo-
cus on constructing invariant scalars (e.g. norms and in-
ner products), which offer both efficiency and expressive-
ness. This approach has been further extended by spherical-
scalarization methods (Frank et al., 2024; Cen et al., 2024;
Aykent & Xia, 2025). Well-designed scalar features have
also proven effective in improving performance in applica-
tions (Zhou et al., 2023; Wang et al., 2023a; 2024b; Bat-
tiloro et al., 2024; Yue et al., 2024; 2025). For dynam-
ics simulations, ESTAG (Wu et al., 2024) enhances trajec-
tory prediction using frequency cross-correlations, while
SEGNO (Liu et al., 2024c) reduces roll-out errors by inte-
grating scalars into neural operator learning. In biological
modeling, MEAN (Kong et al., 2022) improves antibody
representation via a multi-channel scalar attention mecha-
nism, and GeoAB (Lin et al., 2024) generalizes this to cap-
ture higher-order atomic interactions. Motivated by these
successes, we investigate whether incorporating LLMs into
scalar design can further enhance geometric models.

LLM + GNN. LLMs with rich knowledge are being widely
transferred and applied across multiple domains to enhance
model capabilities (Singhal et al., 2023; 2025). Numerous
excellent works have emerged in combining GNNs with
LLMs for scientific applications. ChemLLMBench (Guo
et al., 2023) tests LLM’s understanding, reasoning, and
explaining capabilities on various chemical tasks using in-
context learning. Prot2Text (Abdine et al., 2024) integrates
protein sequence, structure, and textual annotations into an
encoder-decoder framework composed of GNN and LLM
to predict protein functions. MoleculeSTM (Liu et al.,
2023a) uses a contrastive learning paradigm to align molec-
ular graphs and textual descriptions in the semantic space,
thereby learning better feature representations. MolCA (Liu
et al., 2023b) employs Q-Former (Li et al., 2023) as a cross-
modal projector to align the feature spaces of graph encoder
and language encoder, enhancing performance in molecule
captioning tasks. The aforementioned methods enhance
interactions between GNNs and LLMs through various
paradigms and yield promising results. However, exploring
such LLM-GNN integration paradigms for 3D structural
data tasks, such as 3D structure generation and dynamic
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trajectory simulation, remains a relatively unexplored fron-
tier. The EquiLLM framework we propose in this paper
integrates LLMs with Geometric GNNs that embed spatial
symmetry constraints and has been effectively validated
across datasets from both physical and biological domains.

3D Structure Tokenization. As a critical step in methods
employing language models for structural tasks, the tok-
enization of 3D structures has become an actively advanc-
ing research frontier, with numerous studies demonstrating
its successful implementation. ESM3 (Hayes et al., 2025)
encodes 3D atomic structures into discrete tokens, enabling
seamless integration with sequences and functions that are
similarly tokenized. This unified representation allows for
coherent structural reasoning within a shared latent space.
ProSST (Li et al., 2024a) tokenizes 3D structures by first se-
rializing them into local structures at the residue level before
encoding them into dense vector space. BindGPT (Zholus
et al., 2025) employs an XYZ representation for structures,
where the 3D coordinates of each atom are expressed as tex-
tual entries per line. Geo2Seq (Li et al., 2024b) converts 3D
structures into 1D discrete sequences through canonical la-
beling and invariant spherical representations. CHEAP (Lu
et al., 2024) utilizes FSQ (Mentzer et al., 2024) to encode
3D structures into a quantized latent space. However, such
tokenization approaches may inherently carry risks of in-
formation loss. To address this, EquiLLM employs a dual-
pathway architecture where the Geometric GNN processes
3D structure while the LLM handles discrete textual tokens,
thereby preserving information integrity.

3 Method
In this section, we first introduce the preliminaries related
to geometric modeling in § 3.1. Next, in § 3.2, we present
the proposed framework EquiLLM. Finally, in § 3.3 and 3.4,
we describe how the EquiLLM framework is applied to two
representative tasks (e.g. dynamic simulation and antibody
design). The overview of our EquiLLM is illustrated in
Fig. 1.

3.1 Preliminaries, Notations and Definitions

Physical systems (such as molecules) can be naturally mod-
eled with geometric graphs. We represent each static system
as a geometric graph G = (V, E), where each node vi in V
is associated with an invariant feature hi ∈ Rc (e.g. atom
type) and an 3D equivariant vector x⃗i ∈ R3 (e.g. atom
coordinates); each edge (e.g. chemical bonds) denotes the
connectivity between nodes. Apart from modeling static
systems, we explore dynamic systems, focusing on con-
structing geometric graphs across different time steps. The
details will be thoroughly discussed in § 3.3 and 3.4. In
the following sections, we use the matrices X⃗ ∈ RN×3

and H ∈ RN×c to denote the sets of node coordinates and

invariant features of the geometric graph G.

Task Formulation. Here, we provide a general form of
our task and will elaborate specific applications including
dynamic simulation and antibody design in § 3.3 and 3.4.
Given the input geometric graph G in, our goal is to find a
function ϕ to predict the output Gout. This process can be
formally delineated as:

Gout = ϕ(G in). (1)

Meanwhile, since we introduce LLMs into our framework,
we will further construct task-specific prompts to guide
the extraction of relevant domain knowledge from LLMs,
recasting our task as:

Gout = ϕ(G in,P ), (2)

where P denotes the prompt.

Equivariance. It is crucial to emphasize that in the tasks
above, the function ϕ must satisfy E(3) symmetries of phys-
ical laws (Han et al., 2024). Specifically, if arbitrary trans-
lations, reflections, or rotations are applied to the input
coordinate matrix X⃗ in, the output coordinate matrix X⃗out

should undergo the corresponding transformation.

3.2 Large Language-Geometry Model

In this section, we provide a meticulous description of our
model EquiLLM, which consists of three main components:
Equivariant Encoder, LLM, and Equivariant Adapter. Un-
like existing works (Gruver et al., 2024) that applys an LLM
to predict the 3D coordinates directly, EquiLLM leverages
an LLM to acquire broader scientific domain knowledge
while employing geometric GNNs for precise modeling
of 3D structures. These two components are seamlessly
integrated through an equivariant adapter, achieving supe-
rior predictive performance without compromising E(3)-
equivariance.

Equivariant Encoder. The Equivariant Encoder is a
domain-specific equivariant model, which can be any suit-
able equivariant model from the relevant field. The model
takes the graph G in = (V in, E in) as input, performing ini-
tial encoding and embedding of geometric information, and
outputs a processed geometric graph G′ = (V ′, E ′), This
process can be formally defined as:

G′ = ϕe(G in), (3)

where ϕe can be any equivariant model, used to jointly
model the geometric relationships between X⃗ in and H in

features across different nodes, resulting in processed fea-
tures X⃗

′
and H

′
.

Since LLMs are not naturally equivariant, directly feed-
ing X⃗ ′ into an LLM would likely undermine the intrinsic
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Figure 1: The overall framework of EquiLLM. Given a geometric graph G = (V, E) as input, EquiLLM initially employs
an Equivariant Encoder to derive processed features X⃗

′
and H

′
. The features H

′
are first projected through a projector,

then concatenated with prompt features P in a task-specific manner. This concatenated vector is subsequently fed into an
LLM. The output features H llm from the LLM, alongside the previously obtained processed features X⃗

′
and H

′
, are then

passed into an Equivariant Adapter. The Equivariant Adapter then generates the final outputs, including the vector X⃗out for
equivariant tasks and the feature Hout for invariant tasks. The blue module means the invariant module, while the purple
module means the equivariant module.

equivariance of the overall architecture. Thus, in contrast to
existing works, we convey the invariant features H ′ to the
LLM, but pass the equivariant matrix X⃗ ′ to the subsequent
Equivariant Adapter via a skip connection. Before feeding
H ′ to the LLM, we first conduct a projector on H ′ to align
its dimension with the input space of the LLM. This process
can be formally characterized as:

Hproj = ϕproj(H
′), (4)

where ϕproj is implemented as a linear layer in EquiLLM.

Geometric-aware Prompt. One may directly input the
aligned features Hproj into the LLM to make the final
predictions. However, this approach overlooks the piv-
otal role of the prompt, as it does not utilize the linguis-
tic form of the prompt to effectively harness the LLM’s
comprehension and articulation of the specific task at hand.
Therefore, in the EquiLLM framework, we carefully design
task-specific prompts for different tasks to unleash domain-
specific knowledge.

The prompt content for all tasks can be broadly divided
into three key components: (1) task description, (2) object
feature description, and (3) object statistical information.

▷ Task description. The task description consists of two
parts: <Task> and <Requirement>. <Task> appears at the
beginning of the prompt, providing a succinct description of
the task to help the LLM quickly identify the task’s objective.
<Requirement> is located in the main body of the prompt
and elaborates on the input-output requirements and con-
straints of the task, ensuring a comprehensive understanding

of the task by the LLM.

▷ Object feature description. The feature description of
the input object begins with <Object> and primarily out-
lines the composition information as well as the structural
characteristics of the input object.

▷ Object statistical information. This components starts
with <Statistics>, encapsulating detailed metrics pertaining
to the distribution of the object’s coordinates in 3D space,
including the maximum, minimum, and mean values. It is
crucial to note that, unlike conventional tasks, directly incor-
porating absolute coordinate values into the prompt is not
recommended in 3D spatial modeling tasks. This is due to
the fact that transformations such as translation, reflection,
or rotation applied to the input object will invariably alter
the corresponding coordinate distribution, thereby violating
the principle that the prompting process must remain E(3)-
invariant. Consequently, we represent the coordinate distri-
bution of the input object indirectly by computing statistical
metrics related to distances. Several viable alternatives exist
(e.g. Principal Component Analysis (PCA) on the original
coordinates), as long as the computed statistical information
preserves E(3)-invariance. The specific contents of the task
prompts will be elucidated upon in § 3.3 and 3.4.

Large Language Model (LLM). After designing the
prompt, we employ the tokenizer and embedding layer of the
LLM to obtain the corresponding word embedding features,
denoted as P . Subsequently, depending on the specific task,
we concatenate P with the invariant features Hproj in an
appropriate way. The concatenation strategies for different
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tasks will be discussed in detail in § 3.3 and 3.4. Next, the
concatenated features are input into the LLM with the aim
of unlocking and leveraging the scientific knowledge embed-
ded within the LLM to enhance the model’s understanding
and reasoning capabilities for the relevant tasks. Unlike
previous works like CrystalLLM (Gruver et al., 2024) and
UniST (Yuan et al., 2024) that require fine-tuning some
layers within the LLM, resulting in significant computa-
tional costs and time expenditure, the EquiLLM framework
freezes all parameters of the LLM, eliminating the need for
additional training. This process can be roughly represented
as follows:

[H llm,P llm] = LLM(Concat(Hproj,P )), (5)

Equivariant Adapter. Upon obtaining the output from the
LLM, we extract the part corresponding to the invariant
features, denoted as H llm. While directly utilizing it for
final predictions may be viable for invariant tasks (e.g. pre-
dicting the energy of a molecular system), it is inadequate
for equivariant tasks, where the core objective is to predict
the 3D coordinates of objects. To address this challenge,
we propose the Equivariant Adapter, which leverages one-
layer EGNN (Satorras et al., 2021) to process H llm while
minimizing the introduction of excessive additional parame-
ters. We select EGNN for its simple architecture and robust
performance, as it has been widely adopted in prior works.
Specifically, we first employ a projection layer to re-project
H llm back into the space corresponding to the invariant fea-
tures H ′ and add it with H ′, yielding the refined feature
representation Hr. Then, both the equivariant coordinate
features X⃗ ′ from Equivariant Encoder and the refined in-
variant features Hr are transmitted to the EGNN, yielding
the output X⃗out and Hout. The whole process is formally
expressed as:

mij = φm

(
hr
i , h

r
j ,

∥∥x⃗′
i − x⃗′

j

∥∥) ,
hout
i = hr

i + φh

(
hr
i ,
∑

j∈N (i) mij

)
,

x⃗out
i = x⃗′

i +
1

|N (i)|
∑

j∈N (i) φx (mij) ·
(
x⃗′
i − x⃗′

j

)
,

(6)

where φm, φx, and φh denote Multi-Layer Perceptrons
(MLPs), and N (i) refers to the set of neighboring nodes
associated with the i-th node. Specifically, mij represents
an E(3)-invariant message transmitted from node j to node
i, which is utilized to aggregate and refine the feature vector
hr
i via the function φh. Regarding the update of x⃗′

i, the func-
tion φx is employed to compute a scalar φx(mij), which
is subsequently multiplied by the difference x⃗′

i − x⃗′
j to re-

tain directional information, while incorporating residual
connections to ensure translation equivariance.

Comparison with LLaVA. Our method does not simply
replace LLaVA’s encoder with an equivariant GNN encoder,
as that would compromise the framework’s overall equivari-
ance. Instead, EquiLLM introduces an innovative design, as

shown in Fig. 1. First, the equivariant GNN encoder extracts
both equivariant and invariant features, but only the invari-
ant features are fed into the LLM, unlike LLaVA where
the LLM receives all encoder outputs. Then, after LLM
processing, the output is concatenated with the encoder’s
equivariant features via a skip connection and passed to the
equivariant adapter module to generate both equivariant and
invariant predictions.

Our EquiLLM framework guarantees that the overall archi-
tecture preserves the critical property of E(3)-equivariance
in 3D space while also avoiding the introduction of lengthy
text context due to direct 3D coordinate input, which could
severely affect the efficiency of training and inference. The
rigorous mathematical proof of the framework’s equivari-
ance properties can be found in Appendix A. Moreover,
compared with domain-specific Equivariant Encoder, Equi-
LLM introduces only two projection layers and a one-layer
EGNN network, significantly reducing the additional train-
ing parameters in comparison to the existing literature (Jin
et al., 2024; Yuan et al., 2024). Finally, our EquiLLM
framework demonstrates exceptional flexibility and can be
applied to various geometric modeling tasks, showcasing its
robustness and generalizability.

3.3 Applications on Dynamic Simulation

In this section, we will present a detailed discussion on the
application of our EquiLLM in dynamic simulation.

While our model is applicable to the simulations of both
molecular dynamics and human motions, we only illustrate
molecular dynamics here and provide details on human
motions in Appendix D. Given 3D coordinate trajectory of
a physical system (e.g., molecules) over T frames X⃗ ∈
RT×N×3, along with the invariant features H ∈ RN×ca

encoded by atomic numbers, the model aims to infer future
trajectories X⃗ ∈ RF×N×3 for F subsequent frames.

Geometric-aware Prompt. Here, we will provide a general
overview of the contents encompassed within the prompt,
with a more thorough exposition available in Appendix E.1.

▷ Task description. The model is tasked with predicting the
3D coordinates (x, y, z) of heavy atoms for next F frames
based on the information from the previous T frames.

▷ Object feature description. For molecular systems, the
emphasis is on compositional information and structural
characteristics.

▷ Object statistical information. Given that the intrin-
sic properties of each element remain invariant throughout
temporal evolution, performing frame-wise computation of
coordinate statistics to construct the prompt and then con-
catenating prompt features with invariant features at the
node level would result in redundant information and in-
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troduce unnecessary computational complexity. Hence, we
aggregate statistics across all T frames for all N elements.
Specifically, we compute the centroid x̄ =

∑Na

i

∑T
t x⃗t,i

from T × N 3D coordinates, followed by calculating the
maximum, minimum, and mean distances from all T ×Na

coordinates to this central point. The final representation
concatenates P and Hproj along the temporal dimension.

Task Formulation and Training Objective. With
G1:T := {Gt = (X⃗t,Ht, E)}Tt=1 and GT+1:T+F := {Gt =

(X⃗t,Ht, E)}T+F
t=T+1, we provide the entire process as fol-

lows:
GT+1:T+F = ϕ(G1:T ,P ). (7)

Let X⃗gt
T+f denote the ground-truth 3D coordinates for the

time period from T + 1 to T + F , we define the object
function as L = 1

|F |
∑F

f=1 ℓmse(X⃗
out
T+f , X⃗

gt
T+f ) refers to

the mean squared error (MSE).

3.4 Applications on Antibody Design

In this section, we will present a detailed discussion on the
application of our EquiLLM in antibody design.

Antibodies are Y-shaped proteins primarily responsible for
recognizing and binding to specific antigens. Current re-
search predominantly focuses on the variable region. The
variable region is present in both the heavy and light chains
of the antibody and can be further subdivided into the frame-
work region and three Complementarity-Determining Re-
gions (CDRs). These six CDRs are critical in determin-
ing the affinity between the antibody and antigen, with the
CDR-H3 region on the heavy chain exhibiting the most
pronounced variability. Consequently, the primary objec-
tive of this paper is to predict the amino acid sequence
and the 3D coordinates of the CDR-H3 region, given the
antibody-antigen complexes excluding the CDR-H3 region.
In antibody design task, each node in V associates with a
trainable feature hi ∈ Rcr encoded by amino acid type
and a matrix of 3D coordinates Z⃗i ∈ R4×3. We choose 4
backbone atoms {N,Cα,C,O} to constitute Z⃗i.

Geometric-aware Prompt. Here, we will provide a general
overview of the contents encompassed within the prompt,
with a more thorough exposition to be presented in Ap-
pendix E.2.

▷ Task description. The model is tasked with predicting
both the 1D sequence and 3D coordinates of CDR-H3 re-
gion.

▷ Object feature description. The structural features of the
light chain, heavy chain, and antigen, which are described
individually.

▷ Object statistical information. In contrast to tasks in-
volving dynamic simulation, where each physical object
comprises only dozens of elements, the antibody-antigen

complex consists of three chains containing hundreds of
amino acids. Therefore, computing the statistical informa-
tion for each amino acid individually may exceed the input
token limit. To address this, we compute Cα atom statistics
at both the chain-level and residue-level. At the chain-level,
we first calculate the centroid coordinates for the light chain,
heavy chain, and antigen chain and compute the distances
between pairs of chains. Additionally, we calculate the
distance between the two most distant amino acids within
each chain, thereby constructing the corresponding prompt
Pc. At the residue-level, we calculate the distance from
each amino acid to the centroid of its respective chain and
compute the maximum, minimum, and mean distances, thus
constructing the prompt Pr. Finally, we concatenate Pc,
Pr, and Hproj along the amino acid sequence dimension.

Task Formulation and Training Objective. With G =
(X⃗,H, E), where (X⃗ , H) := {(Z⃗i,hi)}Ni=1, the entire
process is delineated as follows:

Hout, X⃗out = ϕr(G,Pr),

yout = Softmax(Hout),
(8)

where N denotes the number of residues in CDR-H3 re-
gion; yout and ygt denote the predicted distribution over all
amino acid categories and the ground truth amino acid type;
X⃗out and X⃗gt denote the predicted 3D structure and the
ground truth 3D structure of the CDR-H3 region, respec-
tively. The loss function is defined as L = Lseq + λLstruct,
where Lce =

1
N ℓce(y

out,ygt) denotes the cross entropy and
Lhuber

1
N ℓhuber(X⃗

out, X⃗gt) denotes the Huber loss (Huber,
1992); the λ is used to balance the two losses.

4 Experiments
We validate the effectiveness of the proposed EquiLLM
framework on two tasks from different domains: the dy-
namic simulation in physics (§ 4.1 and 4.2) and the antibody
design in biology (§ 4.3). Furthermore, in § 4.4, we conduct
ablation studies and explore the contribution of each mod-
ule. We also perform additional exploratory experiments in
§ 4.5.

Datasets. In the dynamic simulation task, to demon-
strate the broad applicability of our model across varying
scales, we conduct experiments on two distinct datasets: the
molecular-level MD17 (Chmiela et al., 2017) dataset and
the macro-level Human Motion Capture (De la Torre et al.,
2009) dataset. In order to expedite the dynamics simula-
tions, we implement a sampling strategy based on previous
research (Huang et al., 2022) to extract a subset of trajecto-
ries for the purposes of training, validation, and testing. This
approach involves randomly selecting an initial point and
then sampling 2 × T timestamps. The first T timestamps
are utilized as input for the models, while the remaining T
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(b) ESTAG (c) EquiLLM(a) GPT-4o-mini

Figure 2: The visualization of the predicted structures across
various methods on Toluene of the MD17 dataset, where the
pink represents the ground-truth structure.

timestamps represent the future states that the models need
to predict.

Baselines and metrics. We evaluate EquiLLM with
several baseline models, including traditional GNNs:
ST_GNN (Gilmer et al., 2017) and STGCN (Yu et al.,
2017), equivariant GNNs: ST_TFN (Thomas et al., 2018),
ST_SE(3)-Tr. (Fuchs et al., 2020), ST_EGNN (Satorras
et al., 2021), and ESTAG (Wu et al., 2024). We also
compare EquiLLM with existing LLMs, including GPT-4o-
mini (OpenAI, 2024), Gemini-1.5-flash-latest (Team et al.,
2024), and DeepSeek-V3 (Liu et al., 2024a). The models
marked with “ST” are those we modified to handle multi-
frame inputs by adding basic spatio-temporal aggregation,
as done in (Wu et al., 2024). For evaluation, we calcu-
late the Mean Squared Errors (MSEs) averaged across all
predicted frames as the metric.

4.1 Molecular Dynamics

Implementation details. MD17 consists of time-evolving
paths produced through molecular dynamics simulation for
eight different small compounds (such as aspirin, benzene,
and others). To ensure a fair comparison, all hyperparame-
ters (e.g. learning rate, number of training epochs) are kept
consistent across our model and all other baselines. Detailed
information can be found in Appendix B.1. We utilize the
ESTAG (Wu et al., 2024) as the Equivariant Encoder and
GPT-2 (Radford et al., 2019) 1 as the language model within
our EquiLLM framework. ESTAG utilizes Equivariant Dis-
crete Fourier Transform to extract periodic patterns, and
further employs alternating equivariant spatial and temporal
modules to enhance the modeling of physical dynamics. Un-
less otherwise specified, in all experiments presented in this
paper, the LLM module in EquiLLM remains frozen, while
all other modules are learnable and trained from scratch.

Results. Table 1 presents the performance of all models
on MD17 dataset under the setting of predicting 10 frames

1A more powerful LLM may lead to a superior performance.
Here we use GPT-2 for concept validation.

from an input of 10 frames. EquiLLM (DST) and Equi-
LLM (PCA) represent the utilization of distance-related
and principal component analysis-related information as
object statistical information, respectively. From the table,
the following conclusions can be drawn: 1. The proposed
EquiLLM framework achieves state-of-the-art (SOTA) per-
formance on all eight molecules, demonstrating its supe-
riority; 2. Compared to our Equivariant Encoder model
ESTAG, EquiLLM achieves a performance improvement
of 5.41% to 42.76% on six molecules, indicating that Equi-
LLM effectively leverages knowledge from LLMs to en-
hance the prediction of molecular dynamics trajectories; 3.
We also tested the prediction capability of several leading
LLMs, including GPT-4o-mini, Gemini-1.5-flash-latest, and
DeepSeek-V3. Using the same prompt as EquiLLM, we
provide the 3D coordinates of all atoms from the past 10
frames to these LLMs, allowing it to predict the coordinates
of all atoms in the following 10 frames. The result shows
that these LLMs significantly underperforms most baseline
methods in prediction accuracy, indicating its weaker capa-
bility in directly predicting 3D coordinates. In contrast, our
EquiLLM framework, by providing structured molecular
descriptions and statistical constraints, enables the LLM
to combine its pretrained knowledge with the specific task,
thus significantly reduce the predicted MSE; 4. We fur-
ther test pretrained models with canonicalization. On the
MD17 dataset, we first subtract the mean from coordinates
to ensure translational invariance, then perform SVD de-
composition for rotational invariance. We directly feed this
canonicalized data into GPT-4o-mini, with results shown in
Row 8 of Table 1. The results demonstrate that while canon-
icalization indeed improves model’s predictive capability,
there remains a remarkable performance gap compared to
our EquiLLM. This suggests that direct prediction of 3D
coordinates remains suboptimal for current LLMs.

4.2 Human Motion Simulation

Implementation details. The Human Motion Capture
dataset contains human motion trajectory data across multi-
ple scenes. We focus primarily on two sub-datasets: Subject
#35 (Walk) and Subject #102 (Basketball). To ensure
a fair comparison, all hyperparameters (e.g. learning rate,
number of training epochs) are kept consistent across our
model and all other baselines. Detailed information is pro-
vided in Appendix B.2. We utilize the ESTAG as the Equiv-
ariant Encoder and GPT-2 as the language model within our
EquiLLM framework.

Results. Table 2 presents a performance comparison of
all models on the Walk and Basketball datasets under
settings requiring the prediction of 10, 15, and 20 frames,
respectively. From the table, it is evident that EquiLLM
framework achieves SOTA performance across all six set-
tings, with a performance improvement ranging from 5.63%
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Table 1: Predicted MSE (×10−3) on MD17 dataset.

Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic Toluene Uracil

ST_GNN 7.180±0.003 1.359±0.001 2.108±0.001 5.620±0.018 2.397±0.017 2.646±0.003 2.233±0.011 1.913±0.012

ST_TFN 7.389±0.139 1.849±0.003 2.041±0.001 5.346±0.006 3.555±0.110 5.728±0.015 2.979±0.167 4.272±0.035

STGCN 21.08±0.001 654.7±0.001 7.102±0.001 32.87±0.001 5.421±0.001 3.501±0.001 3.679±0.001 7.142±0.001

ST_SE(3)-Tr. 6.234±0.019 1.835±0.001 1.765±0.001 5.277±0.070 3.256±0.018 4.737±0.016 2.104±0.011 3.900±0.006

ST_EGNN 6.682±0.380 1.482±0.161 2.145±0.001 4.729±0.029 4.034±0.028 6.296±0.157 2.881±0.002 3.394±0.267

Equiformer 10.130 2.000 1.880 8.050 3.430 5.790 2.090 4.380

GPT-4o-mini 13.070 9.581 5.011 9.910 35.155 10.627 8.132 9.762
GPT-4o-mini + canonicalization 11.783 3.055 4.512 8.916 8.263 9.751 6.364 8.989
Gemini-1.5-flash-latest 17.347 7.586 8.871 15.495 15.188 17.978 15.426 16.935
DeepSeek-V3 12.009 3.648 6.729 10.247 7.883 10.423 6.941 9.428

ESTAG 3.263±0.065 0.891±0.083 1.090±0.001 2.046±0.085 2.036±0.350 3.134±0.094 1.634±0.149 1.852±0.066

EquiLLM (DST) 2.391±0.233 0.732±0.058 1.031±0.001 1.671±0.025 1.453±0.071 2.162±0.137 1.178±0.186 1.060±0.194

EquiLLM (PCA) 1.931±0.084 0.552±0.075 1.044±0.001 1.634±0.024 1.454±0.141 1.852±0.079 1.049±0.126 0.940±0.082

Table 2: Predicted MSE (×10−2) on Motion dataset.

Method Walk Basketball

R=10 R=15 R=20 R=10 R=15 R=20

ST_GNN 1.150±0.001 2.544±0.814 2.765±0.032 34.536±0.747 133.731±11.677 278.246±2.225

ST_TFN 9.584±0.156 20.667±1.533 31.437±0.120 168.674±0.556 358.881±1.661 613.755±3.256

ST_GCN 18.737±1.351 19.467±0.577 20.498±2.232 275.744±13.322 516.462±91.545 662.488±21.859

ST_SE(3)-Tr. 5.248±0.132 10.869±0.596 20.999±0.156 178.677±4.022 390.518±3.260 621.004±12.186

ST_EGNN 2.867±0.011 4.189±0.172 8.644±1.620 30.813±0.122 72.963±1.295 152.551±1.466

ESTAG 0.709±0.052 1.877±0.211 3.464±1.127 10.507±0.073 33.636±0.425 76.548±0.916

EquiLLM 0.539±0.011 1.300±0.134 2.213±0.160 9.438±0.202 30.371±0.068 72.233±0.954

Table 3: Results on RAbD benchmark.

Method AAR ↑ TM-score ↑ RMSD ↓
RosettaAD 22.50% 0.9435 5.52
LSTM 22.36% - -
C-LSTM 22.18% - -
RefineGNN 29.79% 0.8303 7.55
C-RefineGNN 28.90% 0.8317 7.21
GeoAB 36.43% 0.9836 1.79

MEAN 36.77% 0.9812 1.81
EquiLLM 38.97 % 0.9830 1.73

Table 4: Ablation studies (×10−3) on MD17 dataset.

Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic Toluene Uracil

EE (ESTAG) 3.263 0.891 1.090 2.046 2.036 3.134 1.634 1.852
LLM (w/o Prompt) + EE 2.524 0.810 1.062 2.326 2.363 2.180 1.538 1.425
LLM + EE 3.083 0.773 1.128 2.100 2.899 2.581 1.756 1.418

w/o Prompt 3.671 0.860 1.092 2.479 2.837 2.193 1.941 1.542
w/o Object Feature 3.122 0.833 1.080 2.255 2.297 2.470 1.627 1.387
w/o Statistics 3.532 0.820 1.054 1.889 2.286 2.528 1.650 1.463

EquiLLM 2.391 0.732 1.031 1.671 1.453 2.162 1.178 1.060

to 36.11%. This demonstrates that EquiLLM effectively
handles predictions over varying prediction lengths, exhibit-
ing excellent robustness and generalization ability

4.3 Antibody Design

Following previous study MEAN (Kong et al., 2022), we
selected complete antibody-antigen complexes from the
SAbDab (Dunbar et al., 2014) dataset to construct the train-
ing and validation sets. First, we performed clustering based
on CDRs, grouping complexes with CDR sequence identity
above 40% into the same cluster. Then, the training and
validation sets were partitioned in the same manner as in

MEAN. For test set, we selected 60 diverse complexes from
the RAbD (Adolf-Bryfogle et al., 2018) dataset to evaluate
the performance of different methods. Before starting the
experiments, we remove samples from the training and val-
idation sets that belong to the same cluster as the test set
to prevent data leakage. More experimental results can be
found in Appendix C.3.

Baselines and metrics. We compared our EquiLLM with
seven methods, including RosettaAD (Adolf-Bryfogle et al.,
2018), LSTM (Saka et al., 2021; Akbar et al., 2022), Re-
fineGNN (Jin et al., 2022), MEAN (Kong et al., 2022),
GeoAB (Lin et al., 2024), and two variants of LSTM and
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RefineGNN, C-LSTM and C-RefineGNN, which utilize the
full contextual information. We use AAR and RMSD to
reflect the recovery ratio of the CDR-H3 amino acid se-
quence and the accuracy of the corresponding 3D structure
prediction. Additionally, we employ the TM-score (Zhang
& Skolnick, 2004; Xu & Zhang, 2010) to measure the global
similarity between two protein structures. We utilize the
MEAN (Kong et al., 2022) as the Equivariant Encoder and
GPT-2 as the language model within our framework. De-
tailed information can be found in Appendix B.3.

Results. Table 3 presents the performance of all models
on the RAbD dataset. It can be concluded from the ta-
ble: 1. The proposed EquiLLM framework achieves the
best performance in both AAR and RMSD metrics, with
comparable results in the TM-score metric. The SOTA
method GeoAB achieves superior performance in TM-score
by incorporating more detailed geometric constraints, such
as bond lengths, bond angles, and torsion angles, into the
model, which enhances its overall structural prediction ca-
pabilities; 2. Compared to the Equivariant Encoder model
MEAN, EquiLLM shows significant improvement across
all metrics, demonstrating that EquiLLM successfully lever-
ages LLM’s knowledge integration and constraint-handling
abilities while effectively utilizing LLM’s capacity for un-
derstanding and reasoning 1D sequences.

4.4 Ablation studies

In this section, we delve into the design of the EquiLLM
framework, analyzing the impact of different architectural
designs and prompt configurations on model performance.
The experimental results are shown in Table 4, where EE
represents the Equivariant Encoder. More ablation studies
can be found in Appendix C.2.

Architecture Design. 1. The results in the second row indi-
cate that processing raw features through the LLM before
feeding them into the Equivariant Encoder, while omitting
the Equivariant Adapter for a simpler architecture, yields a
performance improvement. This finding validates that the
LLM has a fundamental capability to process and integrate
structured information effectively. 2. However, to fully
exploit the potential of the LLM model, it is necessary to
leverage prompts to capitalize on its strengths in text under-
standing. Building upon the second-row model, we perform
experiments by adding prompts, as the results shown in the
third row. The results indicate a significant performance
drop. We speculate that this is due to the large semantic
space difference between the unprocessed raw feature H
and the text features, which hampers the model’s prediction
capabilities. This suggests that LLM requires an appropriate
interface to harness its advantages. This led to the design of
the current EquiLLM framework.

Prompt Design. 3. From Table 4, it is evident that either

completely removing prompt or reducing its content leads
to a decline in performance. This observation reinforces
our design philosophy: LLMs necessitate comprehensive
information, including molecular descriptions and statistical
constraints, to fully utilize their knowledge integration and
constraint reasoning capabilities. This, in turn, facilitates
more accurate predictive guidance.

4.5 Further Exploratory Investigations

In this section, we conduct additional exploratory experi-
ments to further investigate the EquiLLM framework. More
exploratory investigations can be found in Appendix C.1.

Following CrystalLLM, we finetune Llama-7b (Touvron
et al., 2023) on MD17. Due to token length limitations in
our prediction task (predicting 10 frames), we select the
smallest molecule, Ethanol (3 heavy atoms) for evaluation.
We conduct three settings: (1) 500 samples (original setup in
main experiments) trained for 10 epochs; (2) 30,000 samples
trained for 1 epoch; (3) 30,000 samples trained for 1 epoch
with canonicalization. The results in Table 5 reveal that
without canonicalization, 500-sample and 30,000-sample
fine-tuned models perform poorly, lagging behind EquiLLM
by two orders of magnitude. Remarkably, when we incorpo-
rate canonicalization, the model’s predictive performance
improved by a factor of 100, even surpassing GPT-4o-mini.
This compelling result demonstrates that the combination
of canonicalization with direct LLM fine-tuning is indeed
promising and warrants further investigation.

Table 5: Results of fine-tuning Llama on MD17.

Setting 1 Setting 2 Setting 3 EquiLLM

Ethanol 460 457 4.446 1.031

5 Conclusion
We present EquiLLM, a framework that synergizes the
strengths of LLMs and geometric GNNs to address the
dual challenges of E(3)-equivariance and knowledge inte-
gration in 3D physical system modeling. By introducing
geometry-aware prompting and a modular architecture that
isolates invariant and equivariant processing, EquiLLM cir-
cumvents inherent limitations of LLMs in spatial reasoning
while enabling the infusion of domain-specific knowledge
through flexible prompting strategies. The separation of
roles—LLMs as invariant feature processors and geomet-
ric GNNs as directional information handlers—provides a
principled approach to preserving symmetry constraints. In
future work, we plan to explore optimal prompting strate-
gies for better leveraging domain knowledge and extending
this framework to broader scientific tasks. We hope the
EquiLLM framework will serve as a valuable reference for
applying LLMs in scientific domains.
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A Proof of EquiLLM’s Equivariance
We now present the theoretical foundations for the symmetries exhibited by EquiLLM. Specifically, we analyze two key
properties: the invariance of the node representation hout

i and the equivariance of the node coordinate x⃗out
i . To establish

these properties, we break down the proof into two components, demonstrating the equivariance of both the encoder and the
adapter.

Proof. Consider the rotation/reflection matrix O ∈ R3×3 and the translation vector b ∈ R3×1.

Equivariance of the Encoder. The equivariance of the encoder can be expressed as:

g · G′ = ϕe(g · G in), (9)

where g is an element of the E(3) group. The proof of this property is detailed in the appendix of the original ESTAG
paper (Wu et al., 2024). In essence, this ensures that the output node features H ′ are invariant under transformations, while
the output coordinates X⃗ ′ are equivariant.

Equivariance of the Adapter. Next, we prove the equivariance of the adapter. Recall that the node features from the
encoder are first processed through a projector and then passed through a large language model, both of which are invariant
operations. Consequently, the resulting node features Hr remain invariant, while the coordinates X⃗ ′ remain equivariant.
These outputs serve as inputs to the adapter, and we analyze their transformation properties below:

(1) Invariance of pairwise interactions. The interaction term mij between nodes i and j is defined as:

m̃ij = φm

(
hr
i , h

r
j ,

∥∥(Ox⃗′
i + b)− (Ox⃗′

j + b)
∥∥)

= φm

(
hr
i , h

r
j ,

∥∥x⃗′
i − x⃗′

j

∥∥)
= mij ,

where, m̃ij denotes the transformed variable. Since the Euclidean distance is invariant under rotations and translations, mij

remains unchanged.

(2) Invariance of output node features hout
i . Its update rule is given by:

hout
i = hr

i + φh

(
hr
i ,
∑

j∈N (i) mij

)
.

Here, both hr
i and mij are invariant variables, and the multi-layer perceptron (MLP) ϕh and summation

∑
j∈N (i) are

invariant operations. Therefore, it follows that hout
i is also invariant.

(3) Equivariance of output coordinates x⃗out
i .The transformation is formulated as:

˜⃗xout
i = Ox⃗′

i + b+ 1
|N (i)|

∑
j∈N (i) φx (mij) ·

(
(Ox⃗′

i + b)− (Ox⃗′
j + b)

)
= Ox⃗′

i + b+ 1
|N (i)| ·O ·

∑
j∈N (i) φx (mij) ·

(
x⃗′
i − x⃗′

j

)
= O

(
x⃗′
i +

1
|N (i)|

∑
j∈N (i) φx (mij) ·

(
x⃗′
i − x⃗′

j

))
+ b

= O · x⃗out
i + b.

Thus, the output coordinates transform consistently with the input coordinates under rotations and translations, confirming
their equivariance.

Conclusion. In summary, we have rigorously demonstrated that the node representations hout
i are invariant, while the node

coordinates x⃗out
i are equivariant under E(3) transformations. These results align with our initial claims about the symmetries

of EquiLLM.
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B Dataset Details

B.1 Implementation Details on MD17 dataset

The first column in Table 6 delineates the standardized parameter configuration utilized throughout our experiments on the
MD17 dataset. This uniform parameterization scheme has been implemented across both our EquiLLM architecture and all
other baseline methodologies. All computational experiments, encompassing model training, validation and testing phases,
are executed on a single NVIDIA A100-80G GPU. The training, validation, and testing sets consist of 500, 2000, and 2000
samples, respectively.

The MD17 dataset exhibits a characteristic graph structure with a maximum cardinality of 13 nodes. Regarding graph
topology construction, we establish interatomic connectivity through a distance-based criterion, where atomic pairs separated
by less than the threshold parameter λ are classified as primary neighbors. The graph connectivity framework extends to
incorporate both primary and secondary neighboring relationships, thereby establishing a comprehensive edge structure to
support subsequent message passing.

Table 6: Hyper-parameters of EquiLLM and other methods. The previous length Tp denotes the length of input sequence,
the future length Tf denotes the length of output sequence, the time lag ∆t denotes the interval between two timestamps,
the hidden size denotes the size of hidden states in all Multi-Layer Perceptrons (MLPs) within the EquiLLM framework,
and the layer denotes the number of layers.

Hyper-parameter MD17 Motion Capture

Learning Rate 5e-3 5e-3
Epochs 500 500
Previous Length Tp 10 10
Future Length Tf 10 10, 15, 20
Time Lag ∆t 10 1
Hidden Size 16 16
Layer 2 2

B.2 Implementation Details on Motion Capture

The second column in Table 6 outlines the standardized configuration utilized for Human Motion Capture dataset evaluations.
This consistent parameterization is implemented across our EquiLLM architecture and all other baselines. All computational
experiments, encompassing model training, validation and testing phases, are executed on a single NVIDIA A100-80G GPU.
We maintain the experimental configurations and dataset partitions specified in (Wu et al., 2024). For subject #35 (Walk),
the dataset comprises 1100 training, 600 validation, and 600 testing trajectories, whereas subject #102 (Basketball)
includes 600 training, 300 validation, and 300 testing trajectories.

The Motion Capture dataset comprises graphs with a maximum of 31 nodes per instance. Graph connectivity is established
by defining directly adjacent joints as primary neighbors. Each joint forms edges with both primary and secondary adjacent
nodes to enable efficient subsequent message passing. All joints share identical invariant feature representations, initialized
as unit vectors.

B.3 Implementation Details on Antibody Design

We adhere to the experimental configurations established in MEAN (Kong et al., 2022) to ensure fair comparisons.
Specifically, EquiLLM maintains identical hyper-parameters with MEAN: a 64-dimensional trainable embedding for each
amino acid type, 128-dimensional hidden states, 3 network layers, a batch size of 16, and 20 training epochs. The Adam
optimizer is employed with an initial learning rate of 0.001, which decays by 5% per epoch. We utilize the same dataset splits
as MEAN, excluding one antigen-antibody complex from the training set due to missing light chain data. For GeoAB (Lin
et al., 2024), we reproduce the results using the official implementation on our datasets.

To ensure fair comparisons, we adopt the same settings as MEAN (Kong et al., 2022). Specifically, EquiLLLM shares the
same hyperparameters as MEAN: the trainable embedding size for each amino acid type is 64; the hidden state size is 128;
the number of layers is 3; the batch size is 16; and the number of training epochs is 20. We employ the Adam optimizer
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with a learning rate lr of 0.001, which is decayed by a factor of 0.95 after each epoch. Furthermore, we use the same
training, validation, and test datasets as those in MEAN, except for one antigen-antibody complex in the training set that
was excluded due to the absence of the light chain. For the GeoAB (Lin et al., 2024) method, we reproduce the results on
our datasets using the official implementation.

C More Experiment Results

C.1 More Exploratory Experiments

Fine-tuning the LLM Layers. We set the LLM’s parameters to be trainable and fine-tune the model on the SAbDab dataset.
However, the experimental results ( Table 7, first row) show performance degradation, suggesting that fine-tuning may
compromise the original information encoded in the LLM, particularly since the dataset used for fine-tuning is not large
enough.

Table 7: EquiLLM with different backbones.

Method AAR TM-score RMSD

Finetune LLM 38.57% 0.9819 1.77
Normal GNN encoder 32.32% 0.9308 4.14
Qwen2.5-3B 39.04% 0.9828 1.76
Original 38.97% 0.9830 1.73

Normal GNN Encoder. We additionally replace the original equivariant GNN encoder with a normal GNN encoder.
As shown in Row 2 of Table 7, the model exhibits significant performance degradation, demonstrating the importance
of maintaining E(3)-equivariance when modeling 3D structures. Furthermore, in our original equivariant GNN encoder,
equivariant and invariant features interact through message passing and feature updating, with 3D spatial distances explicitly
encoded. As established in Section 3.3 of PAINN (Schütt et al., 2021), incorporating distance information across stacked
layers implicitly models angular relationships, enabling the output invariant features to inherently capture spatial geometric
information.

Other LLM Backbone. We conduct additional evaluations using the Qwen2.5-3B model (see Table 7, Row 3). Although it
shows a marginal improvement in AAR, we observe slight decreases in RMSD and TM-score performance. We hypothesize
that the language model’s capability remains constrained by limited text-3D structure paired data; otherwise, upgrading the
LLM component could yield significant gains. We leave this exploration for future work.

C.2 More Ablation Studies

Table 8: Ablation studies on RAbD dataset.

Method AAR TM-score RMSD

w/o object feature 38.32% 0.9826 1.76
w/o LLM 37.58% 0.9818 1.79
w/o prompt1 37.84% 0.9820 1.76
w/o prompt2 38.57% 0.9823 1.77
w/o prompt3 38.52% 0.9827 1.74
EquiLLM 38.97% 0.9830 1.73

We further conduct more ablations on the RAbD dataset. The experimental results are shown in Table 8.

Role of External Knowledge and LLM. We indirectly demonstrate, through ablation experiments, that the model’s perfor-
mance suffers without properly designed prompts to activate the LLM’s knowledge. Specifically, when removing antigen,
light chain, and heavy chain feature descriptions from antibody design prompts (Table 8, Row 1), we observe performance
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degradation, highlighting how domain-specific knowledge enhances EquiLLM’s geometric modeling capabilities. Moreover,
We also remove the LLM module, with results presented in Row 2 of Table 8. The model exhibits significant performance
degradation, underscoring the critical role of LLM in our framework.

Impact of Prompt Components. We conduct more detailed prompt ablations on the RAbD dataset, to investigate the
impact of different prompt components on model performance. For antibody design task, the object statistical information
encompasses two hierarchical levels: 1. Chain-level features: Inter-chain centroid distances (prompt 1) and Maximum
residue-residue distances within each chain(prompt 2); 2. Residue-level features: Statistics (max/min/mean) of residue-to-
centroid distances per chain(prompt 3).

As shown in Rows 3-5 of Table 8, the results demonstrate that chain-level features contribute more significantly to
performance improvement compared to residue-level features. We hypothesize that this discrepancy arises because chain-
level features provide macroscopic structural information that better facilitates global 3D structure understanding and
modeling.

C.3 Inference Time

Table 9: The inference time on RAbD.

GeoAB MEAN EquiLLM

Time/s 0.0265 0.0139 0.0539

As shown in Table 9 on antibody desgin task, our comparative anal-
ysis of inference times reveals that EquiLLM requires slightly more
computation than state-of-the-art methods (MEAN and GeoAB), but
this modest overhead is justified by its substantial accuracy gains.

D Human Motion Simulation
Given the 3D coordinate trajectory of a physical system (e.g., human
bodies) over T frames, namely, X⃗ ∈ RT×N×3, along with the invariant features H of all the joints (all 1s), the model aims
to infer future trajectories X⃗ ∈ RF×N×3 for F subsequent frames.

Geometric-aware Prompt

▷ Task description.
Task: Predict human basketball-related motions in 3D space.

▷ Object feature description.
Action: Basketball movements, such as dribbling, shooting, passing, and defense.

Motions involve . . .

▷ Object statistical information.
Statistics for all joints in the human body over the past 10 frames:

Distance of each joint from the origin $(0, 0, 0)$:

"Minimum distance": min_value,

"Maximum distance": max_value,

"Mean distance": mean_value.

Task Formulation and Training Objective. With G1:T := {Gt = (X⃗t,Ht, E)}Tt=1 and GT+1:T+F := {Gt =

(X⃗t,Ht, E)}T+F
t=T+1, we provide the entire process as follows:

GT+1:T+F = ϕ(G1:T ,P ). (10)

Let X⃗gt
T+f denote the ground-truth 3D coordinates for the time period from T + 1 to T + F , we define the object function

as L = 1
|F |

∑F
f=1 ℓmse(X⃗

out
T+f , X⃗

gt
T+f ) refers to the mean squared error (MSE).
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E Detailed Geometric-aware Prompt

E.1 Molecular Dynamics Simulation

In EquiLLM (DST), we compute the distances from all atomic 3D coordinates to the origin (0, 0, 0) after coordinate
centering and derive their statistical properties. The corresponding prompt is as follows:

Geometric-aware Prompt

▷ Task description.
Task: Predict molecular 3D coordinates (x, y, z).

▷ Object feature description.
Molecule: Aspirin (C9H8O4) with 13 heavy atoms (9C, 4O). Structure includes

aromatic ring with acetyl . . .

▷ Object statistical information.
Statistics for all heavy atoms in one molecule over the past 10 frames:

Distance of each heavy atom from the origin (0, 0, 0):

"Minimum distance": min_value,

"Maximum distance": max_value,

"Mean distance": mean_value.

In EquiLLM (PCA), we employ Principal Component Analysis (PCA) to process coordinate data, project the data onto the
first two principal components, and subsequently compute statistical information from the projected data. The corresponding
prompt is as follows:

Geometric-aware Prompt

▷ Task description.
Task: Predict molecular 3D coordinates (x, y, z).

▷ Object feature description.
Molecule: Aspirin (C9H8O4) with 13 heavy atoms (9C, 4O). Structure includes

aromatic ring with acetyl . . .

▷ Object statistical information.
Statistics for all heavy atoms in one molecule over the past 10 frames:
- Shape of the original input tensor: original_shape
- After reshaping for PCA: new_shape

Statistics of the PCA projection of the reshaped 3D trajectory data:

- Eigenvalues of the PCA components:
- PC1: PC1_value
- PC2: PC2_value

- Dimension 1 (PC1):
- Minimum: min_value
- Maximum: max_value
- Mean: mean_value
- Median: median_value
- Standard Deviation: std_value

- Dimension 2 (PC2):
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- Minimum: min_value
- Maximum: max_value
- Mean: mean_value
- Median: median_value
- Standard Deviation: std_value

E.2 Antibody Design

Geometric-aware Prompt

▷ Task description.
Task: Predict the 3D structure and amino acid sequence of the CDR-H3 region in an

antibody-antigen complex.

▷ Object feature description.
<Module: Antigen>

Defines binding constraints for the CDR-H3 backbone prediction . . .

<Module: Heavy Chain>

Provides structural context for the CDR-H3 region . . .

<Module: Light Chain>

Offers spatial context to guide the CDR-H3 . . .

▷ Object statistical information.
Statistics of Global Features:

Distances between centroids of different chains . . .:

"Heavy-Light": heavy_light_value,

"Heavy-Antigen": heavy_antigen_value,

"Light-Antigen": light_antigen_value.

Distance between the two most distant amino acids on one chain . . .:

"Heavy": heavy_value,

"Light": light_value,

"Antigen": antigen_value.

Statistics of Chain-Level Features:

Distances of each amino acid's alpha carbon atom to the chain centroid's . . .:

"Minimum distance": min_value,

"Maximum distance": max_value,

"Mean distance": mean_value.
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