
Toward Dynamic Non-Line-of-Sight Imaging
with Mamba Enforced Temporal Consistency

Yue Li Yi Sun Shida Sun Juntian Ye Yueyi Zhang Feihu Xu Zhiwei Xiong∗
University of Science and Technology of China

{yueli65,sunyi2017,jt141884,sdsun}@mail.ustc.edu.cn
{zhyuey,feihuxu,zwxiong}@ustc.edu.cn

Abstract

Dynamic reconstruction in confocal non-line-of-sight imaging encounters great
challenges since the dense raster-scanning manner limits the practical frame rate. A
fewer pioneer works reconstruct high-resolution volumes from the under-scanning
transient measurements but overlook temporal consistency among transient frames.
To fully exploit multi-frame information, we propose the first spatial-temporal
Mamba (ST-Mamba) based method tailored for dynamic reconstruction of transient
videos. Our method capitalizes on neighbouring transient frames to aggregate
the target 3D hidden volume. Specifically, the interleaved features extracted
from the input transient frames are fed to the proposed ST-Mamba blocks, which
leverage the time-resolving causality in transient measurement. The cross ST-
Mamba blocks are then devised to integrate the adjacent transient features. The
target high-resolution transient frame is subsequently recovered by the transient
spreading module. After transient fusion and recovery, a physical-based network is
employed to reconstruct the hidden volume. To tackle the substantial noise inherent
in transient videos, we propose a wave-based loss function to impose constraints
within the phasor field. Besides, we introduce a new dataset, comprising synthetic
videos for training and real-world videos for evaluation. Extensive experiments
showcase the superior performance of our method on both synthetic data and real-
world data captured by different imaging setups. The code and data are available at
https://github.com/Depth2World/Dynamic_NLOS.

1 Introduction

Non-Line-of-Sight (NLOS) imaging revolutionizes our comprehension of the environment by reveal-
ing hidden information. Different from conventional cameras, the NLOS system captures indirect
light reflections or signals that interact with the hidden object, subsequently rebounding off the relay
wall that is visible to the imaging system. By analyzing these reflections, NLOS can reveal critical
properties like albedo and surface normal of the hidden objects, unlocking valuable insights. A typical
active NLOS imaging setup is illustrated in Fig. 1. The pulsed laser emits periodic pulses directed
towards a relay wall, serving the dual purpose of illumination and synchronization for the imaging
system. The Single Photon Avalanche Diode (SPAD) captures photons reflected from the relay wall,
while the Time-Correlated Single Photon Counting sensor (TCSPC) records their arrival times within
each pulse period. The temporal distribution of each scanning point accumulates over successive pulse
periods, termed exposure time. Consequently, the total acquisition time for a transient measurement
scales proportionally with the exposure time and the density of the scanning grid. Notably, achieving
high-quality reconstructions necessitates dense scanning grids, at the expense of longer acquisition
times, typically ranging from minutes to hours.
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Figure 1: Left: Active NLOS Imaging Setup. Right: Dynamic NLOS Imaging.

The compromise between acquisition time and data quality poses a formidable obstacle to the
advancement of fast imaging techniques, making them impractical for real-world applications. Recent
endeavors [1, 2, 3, 4] addressed this challenge by initiating from under-scanning measurements and
striving to reconstruct high-resolution volumes comparable to those derived from sufficient scanning
measurements. These methods can significantly accelerate data acquisition by orders of magnitude.
Recent research [4] has further demonstrated that employing a low-density scanning grid can balance
reconstruction quality and total acquisition time, without sacrificing too much information. The
sparse scanning points and rapid exposure time offer the potential for dynamic NLOS imaging, a field
yet to be fully explored. However, the pursuit of dynamic NLOS reconstruction faces two primary
challenges: 1) Insufficient information fusion across adjacent transient frames: Existing methods,
whether traditional or deep-based, typically concentrate on individual transient frames, overlooking
the temporal consistency between them. 2) Lack of NLOS video datasets, including synthetic data
for training and real-world data for evaluation: The rapid exposure time results in a diminished
signal-to-noise ratio (SNR) of transient measurement, highlighting the critical need for simulation
datasets that accurately emulate real-world conditions. Besides, dynamic imaging imposes extremely
high requirements on the synchronization accuracy and acquisition efficiency of the hardware system.

Based on these observations, we exploit temporal consistency in transient videos by extracting
information from the multiple frames to compensate for the unrecoverable areas for the reference
frame, leading to improved quality. Our proposed method consists of two main stages: firstly,
integrating the transient frames and expanding the target transient measurement across the spatial
dimension, and secondly, reconstructing hidden volume. Specifically, in the first stage, after extracting
the features from the input, we introduce the elaborate spatial-temporal Mamba (ST-Mamba) to
sequentially exploit the causality in transient measurement and dig into the inherent long-ranging
features along the spatial and temporal dimensions. Subsequently, we devise the cross ST-Mamba
to blend complementary features among transient frames towards the target frame. After that, the
high-resolution transient frame is recovered by the transient spreading module. For the second
stage, we embed the physical prior into the feature transformation module, i.e., transforming the
spatial-temporal data into the Fourier domain, element-wise multiplying with the inverse point spread
function (PSF) of the imaging system, and then reverting the features into the spatial domain. The
final refinement module subsequently enhances the target hidden volume, as well as the derived
intensity image and depth map. During the training process, we introduce a novel virtual wave-based
loss function to accentuate effective information in low SNR data, by employing a Gaussian-shaped
illumination function to constrain transient measurement within the phasor field [5].

To bridge the training and testing phases, we present a new dataset for NLOS dynamic imaging.
The synthetic data comprises the dynamic objects with 32 frames in each sequence with varying
quantum efficiency. The real-world NLOS videos are captured at 4 frames per second (FPS) by our
imaging prototype. The dataset is publicly available to propel research in dynamic imaging within
this field. Comparative evaluation against existing traditional and deep-learning-based solutions
demonstrates that our method achieves superior reconstruction performance and generalization
capability to real-world scenarios. Our contribution can be summarised as follows:

• For the first time, we introduce a Mamba-based method tailed for dynamic NLOS imaging.
The proposed spatial-temporal Mamba mechanisms successfully exploit the inherent long-
ranging causal features and integrate the temporal consistency across the transient frames.
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• We build a new dynamic NLOS dataset crafted for learning from synthetic data and evaluat-
ing models on real-world data for dynamic NLOS reconstruction, which could help advance
faster NLOS imaging techniques.

• Our proposed method exhibits superior performance on both synthetic and real-world
datasets, as evidenced by extensive experimental results.

2 Related Work

NLOS Imaging Systems. Active NLOS imaging systems can be divided into two categories:
confocal and non-confocal imaging systems. For the confocal system, the illumination points from
the laser and the scanning points collected by the time-resolved sensor coincide. The total acquisition
time for a transient measurement is proportional to the exposure time per scanning point and the
density of the scanning grid, typically ranging from minutes to hours. Different from confocal
systems, the detector in non-confocal systems [5, 6, 7, 8] is in array form, such as 16×1 or 32×32.
The laser illuminates a fixed point on the relay wall and the spad array captures the indirect photon
simultaneously. The non-confocal system has the potential for real-time imaging but still faces the
following challenges. Accuracy is still traded for speed [7, 8, 9]. Due to the unsatisfactory parameters
(low quantum efficiency and fill factor, high dark count and cross-talk effect), non-confocal systems
also require relatively long exposure times to achieve reconstruction, e.g., 0.3 FPS in [6], 5 FPS in
[8, 9], 20 FPS in [7]. More importantly, the price of the SPAD array is quite expensive. There are
also some special imaging setups using dynamic cues, e.g., key-hole imaging [10] and light field
tomography [11]. In this paper, we continue to focus on the confocal system and strive to advance
the development of dynamic NLOS imaging in terms of imaging compromise and cost expenditure.

Reconstruction Algorithms. The NLOS reconstruction algorithms have made significant progress,
encompassing the back-projection [12, 13, 14], linear optimization [15, 16, 17, 18], non-linear
optimization [19, 20], wave propagation [5, 21], and deep-learning-based methods [22, 23, 24, 25, 26,
27, 28, 29, 30]. These methods reconstruct promising hidden volumes, contingent upon high-quality
transient measurements. The other studies [1, 2, 3, 4, 31] attempt to achieve faster system acquisition
speeds by using fewer scanning points while still recovering high-quality results. CSA [1] and
FSN [2] explored iterative algorithms with regularization, albeit at the cost of computation time.
The deep methods [3, 4] address this issue by leveraging the deep-learning technology for a single
forward inference. Unfortunately, these methods always neglect the temporal consistency between
the neighbouring frames. As an incremental yet crucial advancement, we focus on dynamic NLOS
reconstruction and aim to leverage the multi-frame information to enhance reconstruction quality. A
concurrent work [32] employs the dynamic scanning grid and then fuses the multi-frame information,
while the scanning grid in this paper is fixed.

3 Preliminary

3.1 Observation Model

The transient measurement, denoted as τ , comprises a set of temporal histograms, acquired from the
raster-scanning points on the relay wall. We follow the common assumptions of no inter-reflections,
no occlusions, and isotropic light scattering within the hidden scene. As depicted in Fig. 1, given the
illuminated point pl, the continuous transient measurement at the scanning point ps can be expressed
as follows:

τ(ps, t) =

∫∫∫
Ω

1

r2l · r2s
· ρ(pt) · δ(rl + rs − t · c)dΩ, (1)

where ρ denotes the hidden albedo volume, pt is the target point of the hidden scene Ω, rl is the
distance between the illuminated and the target points, and rs is the distance between the scanning
and the target points. δ models the light propagation from the relay wall to the hidden object and back
to the wall. After being captured by the detector within N pulses, the discrete transient measurement
τ̂ can be accumulated as:

τ̂(ps, t̂) ∼ Poisson(ε ·N · [τ + b](ps, t
J) +N · d), (2)

where ε denotes the quantum efficiency of the detector. b and d represent the background ambient
noise and the dark count of the detector [33], respectively. tJ indicates that the temporal bin t̂ is
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(a) Synthetic Sequence (b) Capture Setup (c) System Setup
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Figure 2: (a) Top: Intensity images of a synthetic sequence. Bottom: Transient slices (x-y) of the
transient frames. (b) and (c) presents the capture setup and our self-built imaging system.

sampled from a Gaussian-shaped jitter. By modelling efficiency and jitter, the observation model
is brought closer to the real-world process. For further details about the detection model, refer
to [34, 23].

3.2 Datasets

Synthetic Dataset. Considering that there are currently no dynamic simulation datasets available
for training and evaluation, we modify the time-resolved rendering tool [23] and then simulate the
dynamic synthetic dataset. The dataset comprises 265 sequences, which consist of 1 to 3 static objects
and 1 dynamic object following a 3D helical motion trajectory. Each sequence has 32 frames of
transient measurements, with a bin width of 33 ps. The toy example is shown in Fig. 2(a). Note that
the color is for visualization, the data is in gray-scale. The spatial-temporal resolution of the transient
measurement is 128×128×512. To enhance the generalization capability of the synthetic data, we
incorporate a detector jitter provided by [34], during the synthetic sampling process. Additionally,
to introduce variability, we randomly assign quantum efficiencies ranging from 1% to 30% for the
sequences. To prepare the training data, we execute the interval sampling along the spatial dimension
for the raw transient to obtain the under-scanning measurement of size 16×16×512.

Real-world Dataset. 1) System Setup: For the evaluation on real-world data, we develop an active
confocal NLOS imaging system. The prototype is illustrated in Fig. 2(c). The system utilizes a 532
nm laser (VisUV-532) to generate pulses with a width of 85 picoseconds and a repetition frequency
of 20 MHz, delivering an average power of 750 mW. These pulses are directed through a two-axis
raster-scanning Galvo mirror (Thorlabs GVS212) towards the relay wall. Subsequently, both direct
and indirect diffuse photons are gathered by another two-axis Galvo mirror, coupled into a multimode
optical fiber, and then channelled into a SPAD detector (PD-100-CTE-FC) with a detection efficiency
of approximately 45%. The movement of both Galvo mirrors is synchronized and controlled by a
National Instruments acquisition device (NI-DAQ USB-6343). The TCSPC (Time Tagger Ultra)
captures the pixel trigger signals from DAQ, the synchronization signals from the laser, and photon
detection signals from the SPAD. The temporal resolution of the overall system is approximately 95
ps. 2) Collection Details: During data collection, the illuminated and sampling points maintain a
consistent direction but are intentionally offset slightly to prevent interference from directly reflected
photons during scanning. We perform a raster scan across a 16×16 square grid of points on the relay
wall. Each scanning point is allotted 800 µs for exposure, and the histogram is with a length of 512
bins and a bin width of 32 ps. Accumulation occurs during the switching process of points in [21],
leading to aliasing in transient measurements. We employ the point-by-point accumulation method,
where data during the jump between scanning points is disregarded. As such setting, we capture 4
video sequences of dynamic NLOS scenes, with each sequence containing approximately 64 frames,
and a capture rate of 4 FPS.

3.3 State Space Model (SSM)

The State Space Model (SSM) is employed to describe the linear time-invariant systems. The system
processes the 1D input sequence x(t) ∈ R by propagating them through the intermediate hidden
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Figure 3: The pipeline of our proposed method. Given three frames of the transient measurements,
the target hidden volume, intensity image and depth map, of the reference frame are reconstructed.

states h(t) ∈ RN , ultimately generating output sequences y(t) ∈ R. Typically, SSM can be expressed
as the linear ordinary differential equation:

h
′
(t) = Ah(t) +Bx(t), y(t) = Ch(t), (3)

where A ∈ RN×N is the state matrix, B,C ∈ RN×1 are the projection parameters. After discretiza-
tion via the timescale parameter ∆ [35], Eq 3 is formulated as:

ht = Āht−1 + B̄xt, yt = Cht, (4)

where Ā = exp(∆A), B̄ = (∆A)−1(exp(∆A − I) · ∆B. Besides, Eq. 4 can be transformed
into a convolutional operation which is suitable for hardware. Recently, Mamba [36] employ the
data-dependent mechanisms, including the learnable parameters B, C, and ∆, as well as the parallel
scanning. Mamba has rapidly become popular in various tasks[37, 38, 39, 40] due to its linear
computational complexity and global modelling capability.

4 Method

4.1 Overview

We present a groundbreaking approach to dynamic NLOS reconstruction. Our method leverages
Mamba to capture long-range dependencies within transient data to achieve high-fidelity recon-
structions. To begin, we formalize the dynamic NLOS reconstruction problem. Given a sequence
τ̂ = [τt]0≤t≤i ∈ Rh×w×T , where i represents the total number of the transient frames, h and w
denote the spatial dimensions (height and width) of the t-th transient frame, and T signifies the
number of discretized histogram bins along the temporal dimension. The objective is to reconstruct
the target hidden volume V̂ = [Vt]1≤t≤i−1 ∈ RH×W×Z , where H , W , and Z represent the 3D
spatial dimensions of the reconstructed volume. Due to the low spatial resolution of input transient
frames, we propose a unified framework that merges transient measurement super-resolution and
volume reconstruction. We strategically enhance each transient frame individually and subsequently
integrate them before spreading to a high spatial resolution, thereby significantly reducing the com-
putational burden. Specifically, our method utilizes three adjacent frames as input and predicts the
high-resolution hidden volume for the reference frame.

Our proposed method leverages a multi-stage architecture to achieve high-fidelity dynamic NLOS
reconstruction. In the initial stage, the interleaved extraction module utilizes 3D interlaced and
dilated convolutions to effectively downsample the temporal dimension of the input transient frames.
Next, the spatial-temporal Mamba (ST-Mamba) blocks extract informative features ( Ft+a where
a ∈ {−1, 0, 1}) by exploiting long-range dependencies within the transient data. Subsequently, the
cross ST-Mamba blocks capitalize on the inherent temporal consistency between frames and integrate
the multi-frame features to obtain the aligned features Fa

t . The target features Ft and the aligned
features are added together for the enhanced features Fe

t . Finally, the transient spreading module
employs 3D transposed convolution layers with traditional interpolation to generate a high-resolution
reference transient frame τ↑t . Notably, our method recovers data along the spatial dimension as well
as performs temporal upsampling, resulting in a temporal size that matches the input. This recovered
temporal information, as highlighted in prior work [27], strengthens the constraints between the
predicted and ground-truth reference transient frames during training loss construction, ultimately
leading to improved reconstruction quality.
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Figure 4: The overview of the proposed ST-Mamba (a) and cross ST-Mamba (b).

After processing transient information, our method proceeds towards volume reconstruction. Given
the specific target transient frame τ↑t , we employ a feature extraction module that combines convolu-
tional operations with traditional interpolation techniques, ensuring the capture of relevant features
while preserving crucial temporal details. Inspired by existing physics-based methods [23, 41, 26, 28],
we then utilize a physical prior [42] within a feature transformation module. This module trans-
forms the extracted features from a spatio-temporal domain into a purely spatial domain. Finally, a
refinement module refines the transformed features and generates the hidden albedo volume. The
intensity image and depth map are then derived from the volume. The details of the ST-Mamba,
Cross ST-Mamba, and hidden volume reconstruction will be explored in the following sections.

4.2 Spatial-Temporal Mamba

The Mamba architecture, while powerful for 1D sequential data [36], presents challenges for NLOS
imaging due to its unidirectional processing mode. The 3D NLOS transient measurements are
inherently partially causal and high-dimensional. Specifically, the histogram of each scanning point
along the temporal axis exhibits causality, but the scanning points themselves along the spatial axis
are non-causal. The non-causality and high dimensionality hinder Mamba from effectively capturing
the underlying features. To overcome these limitations, we propose the ST-Mamba and the cross
ST-Mamba mechanisms, which are specifically designed to exploit and integrate the deep features
within under-scanning transient measurements for NLOS imaging tasks.

ST-Mamba. The overview of ST-Mamba is presented in Fig. 4(a). Given the initial extracted features
F in

t ∈ RC×T×h×w, the ST-Mamba block first conducts the temporal SSM. The normalized input
features are reshaped to Rhw×T×C and then undergo linear projection and 1D causal convolution
thanks to the histogram of the temporal axis being unidirectional. Then, the output features are
reshaped to RT×hw×C for the next spatial-SSM. Due to the non-causality, we adopt the bidirectional
SSM [38] to capture spatial awareness. Finally, the output features are multiplied with gating features
from the activation operator and fed to the last linear projection, yielding Ft. By incorporating
mechanisms to handle both causal and non-causal data components, ST-Mamba offers a more
comprehensive approach for modelling the long-range correlations in transient measurement.

Cross ST-Mamba. As discussed above, the deep features from different transient frames are
exploited. To integrate the information from adjacent frames, we further introduce the cross ST-
Mamba mechanism to align the features for the target frame. As shown in Fig. 4(b), the cross
ST-Mamba possesses a reference branch and an adjacent branch. These two branches share the same
gating factor from the reference input. Different from the query mechanism of cross-attention, the
complementary information between transient frames is integrated by the gating mechanism. Given
the reference features Ft and neighbouring features Ft±1, the cross ST-Mamba block conducts the
temporal and spatial SSM for the inputs successively. Then the output reference features and the
neighbouring features are modulated by the same gating parameter derived from the reference input.
Finally, the modulated features are added together for the aligned features. The output features Fa

t is
generated after a linear projection and a shortcut.

4.3 Hidden Volume Reconstruction

According to Eq. 1, the forward model can be simplified into a 3D convolution form through
resampling along the temporal axis for transient data and resampling along the depth axis for
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hidden volume. The solution to NLOS reconstruction is an inverse problem, involving the PSF
of the imaging system [15]. Without additional computation, PSF can be expressed explicitly
under the specific imaging setup, which is commonly introduced to learning-based reconstruction
methods [23, 41, 26, 28]. In this study, we also incorporate the physical-prior [42], illustrated in
the bottom right part of Fig. 3. For the hidden volume reconstruction, the feature extraction module
comprises three 3D residual blocks for extracting shallow features and downsampling along the
temporal axis. The volume refinement module is composed of three 3D convolutions and three
interlaced 3D residual blocks. Each residual block comprises two 3D convolutions followed by a
ReLU activation and a residual connection. The extracted features from the target high-resolution
transient frame are convolved by the illumination function to access the phasor field. After resampling,
the spatial-temporal features perform the Fourier transform, element-wise multiply the inverse PSF
in the frequency domain, and then perform the inverse Fourier transform to exhibit the 3D spatial
features. Due to the large domain gap between the synthetic and real-world data, this methodology
trades the Fourier computational burden for generalizability, which has been widely utilized in deep
methods.

4.4 Loss Function

The total loss function Ltotal is composed of three components: the measurement recovery loss Lm,
the volume reconstruction loss Lv , and the regularized loss Lr:

Ltotal = Lm + βLv + γLr,

Lm = Lpf + α1Lt, Lv = Lint + α2Ldep, Lr = Lls + α3Ltv,
(5)

where the parameters β, γ and α contribute the corresponding loss. Among these loss items, the
phasor field loss Lpf , the transient loss Lt, the intensity loss Lint, and the depth loss Ldep are
formulated as follows:

Lpf = ||τ ↑
t

t∗ P (t, σ)− τ gt
t

t∗ P (t, σ)||2, Lt = ||τ ↑
t − τ gt

t ||2,
Lint = ||I − Igt||2, Ldep = ||D −Dgt||2,

(6)

where τ , I , and D denote the transient measurement, intensity image and depth map of the hidden
volume. gt denotes ground truth. P (t, σ) represents the illumination function [42] P (t, σ) =

ejΩCt · e−
t2

2σ2 , ΩC is the central frequency depended on the wavelength, σ is the standard deviation

of the Gaussian function.
t∗ denotes the convolution along the temporal dimension, leading to the

highlight of useful information in the frequency domain. Inspired by [4], we utilize the local similarity
loss Lls and the total variation loss Ltv for constructing the last regularized loss Lr. For more details
about the loss items, see the supplementary.

5 Experiments

5.1 Experimental Details

Implementation. Our method is implemented using PyTorch, trained on the synthetic data, and then
directly tested on the real-world data. During training, we employ the AdamW [43] as the optimizer
with a learning rate of 10−4 and a weight decay of 0.95. To enhance visual clarity, the final output
spatial resolution is set to 128×128, based on the input size of 16×16. All the experiments are
conducted on the NVIDIA A100 GPUs, with a batch size of 4. We utilize 150 sequences for training
and 17 sequences for synthetic testing. Besides, we utilize 4 sequences for real-world evaluation. The
hyper-parameter β and γ are set to 1 and 10−5. α1, α2, α3 are set to 0.5, 1, and 0.1, respectively.

Baselines. We compare our method with existing baselines, including the traditional methods
LCT [15], FK [21], and RSD [42], the iterative method CSA [1] as well as the deep-learning-based
methods including LFE [23], I-K [28], and USM [4]. The baseline methods are implemented
following their publicly available codes. Apart from the multi-frame version, we also provide the
single-frame version Ours-S (excluding cross ST-Mamba) for a comprehensive comparison. Note
that only CSA, USM, and our method are specifically designed for reconstruction from the under-
scanning measurement. For the other baselines, the inputs are interpolated to the target resolution
128×128×512 for the final comparison.

7



Table 1: Quantitative comparison of the existing methods on the synthetic test data. The spatial
resolution of the input and output is 16×16 and 128×128, respectively. The best in bold. The second
with underline. Note that only methods with gray annotation are designed for reconstruction from
under-scanning measurements.

Methods Architecture Intensity Depth
PSNR↑ SSIM↑ RMSE↓ MAD↓

LCT [15] Linear Optimation 17.25 8.81 0.4355 0.4103
RSD [42] Phasor Field Waves 19.00 13.48 0.4043 0.3844
FK [21] F-k Migration 20.90 49.84 0.3930 0.3756

LFE [23] Physical-based 23.20 78.02 0.0993 0.0526
I-K [28] Physical-based 23.22 79.79 0.1011 0.0468
CSA [1] Linear Optimation 20.70 71.13 0.2647 0.1090
USM [4] Physical-based 23.80 80.85 0.0945 0.0432
Ours-S Physical-based 23.97 81.35 0.0939 0.0400
Ours Physical-based 24.46 84.08 0.0880 0.0397

# 12

# 13

# 14

RSD FKLCT USMI-KLFE Ours GTOurs-SCSA

# 15

# 16

# 17

Figure 5: Qualitative results of two synthetic sequences. The symbol ‘#’ denotes the frame. The
input spatial resolution is 16×16, and the output spatial resolution is 128×128.

Evaluation Metrics. The synthetic quantitative evaluation comprises two categories. For intensity
images, we compute the peak signal-to-noise ratio (PSNR) and structural similarity metrics (SSIM),
averaged across the corresponding test samples. For depth maps, we calculate the root mean square
error (RMSE) and mean absolute distance (MAD).

5.2 Synthetic Results

Our method demonstrates superior performance against existing approaches, as shown by the quanti-
tative results in Tab. 1. Notably, our method excels in both intensity and depth estimation, achieving
significantly better results than the baseline methods. The single-frame version of our method, Ours-S,
which leverages the core ST-Mamba architecture, also outperforms other methods, demonstrating
the effectiveness of ST-Mamba in exploiting long-ranging causal data. Furthermore, the multi-frame
model surpasses the single-frame model across all metrics, showcasing the strength of the proposed
cross ST-Mamba in integrating information from multiple transient frames. The qualitative results
are presented in Fig. 5. Except for the dynamic motorbikes, the synthetic sequences contain the
background static objects such as cars, buckets, helmets, and bottles. Due to the various quantum

8



Table 2: Ablation results on the loss items and spatial-temporal Mamba mechanism.
ST-Mamba Loss Items Intensity Depth

Spatial Temporal Lint,dep Lt Lpf Lls,tv PSNR↑ SSIM↑ RMSE↓ MAD↓
S-Mamba T-Mamba ✓ ✓ × × 24.19 82.75 0.0946 0.0409
S-Mamba T-Mamba ✓ ✓ × ✓ 24.18 83.10 0.0914 0.0409
S-Mamba T-Mamba ✓ ✓ ✓ × 24.47 83.07 0.0905 0.0404
S-Mamba T-Mamba ✓ ✓ ✓ ✓ 24.46 84.08 0.0880 0.0397
T-Mamba T-Mamba ✓ ✓ ✓ ✓ 24.32 83.68 0.0898 0.0398

- T-Mamba ✓ ✓ ✓ ✓ 24.38 82.49 0.0921 0.0478
S-Mamba S-Mamba ✓ ✓ ✓ ✓ 24.31 83.08 0.0911 0.0496
S-Mamba - ✓ ✓ ✓ ✓ 24.36 82.82 0.0938 0.0440

# 80

# 68

# 50

# 27

# 2

# 52

SceneRSD FKLCT USMI-KLFE OursOurs-SCSA

Figure 6: Reconstructed results from real-world measurements captured by our imaging system. The
spatial scanning grid is 16×16, and the output spatial resolution of the hidden volume is 128×128.

efficiencies of sequences, the traditional methods reconstruct the blurry results lacking in details. The
deep-based method LFE [23] and I-K [28] recover the main structure but still miss details. CSA [1]
generates artifacts around the hidden objects, while USM [4] performs better in reducing background
noise but struggles with fine structure. In contrast, our method performs the best in both static
and dynamic scenarios, with higher fidelity and more details. The promising reconstruction results
underscore the ability of the proposed method to capture the dynamic nature effectively.

5.3 Ablation Studies

To assess the effectiveness of the proposed loss functions and the spatial-temporal Mamba mechanism,
we conduct the ablation studies with Tab. 2 listing the quantitative results.

Loss Items. It can be concluded that incorporating the regularized loss generally improves metrics,
with a minor trade-off in PSNR suggesting resistance to overfitting. This phenomenon has also
been verified in USM [4]. A significant performance boost is observed when the phasor field loss
is included, which indicates that enforcing constraints within the phasor field highlights valuable
information in the transient measurements, leading to more accurate reconstructions.

Spatial-Temporal Mamba. To investigate the efficiency of individual spatial Mamba (S-Mamba)
and temporal Mamba (T-Mamba) components for NLOS reconstruction, we operate the Mamba
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along the spatial and temporal dimensions, respectively. The temporal Mamba-based model might
outperform the spatial Mamba-based model on single scanning points. However, it lacks spatial
awareness, hindering its ability to capture the overall structure. When both spatial and temporal
Mamba are employed, the model achieves the best performance across all metrics, demonstrating the
advantage of capturing information from both spatial and temporal domains.

5.4 Real-world Results

To evaluate the generalizability of our method, we test the models on real-world transient videos
captured by our imaging system. The quantitative results are shown in Fig. 6, where the top
three rows exhibit three sequences of planar objects in rigid motion, while the bottom three rows
depict a sequence with non-rigid motion. Traditional methods reconstruct the single object with
considerable noise but struggle to recover the distant moving letter in multi-object scenes. Deep
learning approaches, while achieving cleaner backgrounds, often lead to incomplete or overly
simplified reconstructions of the hidden scene. Although CSA [1] and USM [4] are designed
specifically for under-scanning measurements, they lose the adaptability and generalization ability
under low SNR conditions. In contrast, our method demonstrates superior performance, capturing
finer geometric structures and richer details. Furthermore, our methods deliver robustness in non-
rigid scenarios, as exemplified by the clear recovery of arm movements. Besides, our multi-frame
model outperforms the single-frame model on more detailed information and less noise, showcasing
the effectiveness of cross ST-Mamba. These promising results highlight the strong representation
capability and generalization ability of our proposed method to real-world scenarios. More real-world
qualitative results can be seen in the supplementary material.

6 Conclusion and Discussion

Conclusion. This work presents a novel learning-based framework for dynamic reconstruction
in confocal NLOS imaging. By leveraging the powerful ST-Mamba and cross ST-Mamba, the
proposed method effectively captures both long-ranging causal information while exploiting the
natural consistency within transient video sequences. Extensive evaluations on a newly created
dataset, encompassing both synthetic and real-world scenarios, demonstrate the superiority of our
method in achieving high-quality reconstructions compared to existing approaches. We believe the
proposed method presents a significant step forward in dynamic NLOS reconstruction, unlocking the
possibilities for a wide range of real-world applications in various fields.

Limitation. The temporal consistency has shown significant potential in dynamic NLOS reconstruc-
tion. Fusing information in the spatial-temporal domain and purely spatial domain may be a more
effective approach. The feature transformation module relies on Fourier operation to utilize the PSF
of the specific imaging system, which consumes a computational burden. It is essential to develop a
lightweight transformation to reduce this burden and allow for more network design.
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A Supplemental material

A.1 Ablation studies on causality and different modules

Table 3: Ablation studies on causality and different modules. * denotes that the method possesses the
same number of SSMs as our final method.

ID Methods Intensity Depth
Encoder Fusion Causality PNSR↑ SSIM↑ RMSE↓ MAD↓

0 Mamba Mamba × 23.94 80.59 0.0964 0.0572
1 VIT Mamba ✓ 23.77 80.13 0.0983 0.0490
2 Mamba* - ✓ 23.97 81.35 0.0939 0.0400
3 Mamba VIT ✓ 24.32 82.47 0.0886 0.0456
4 Mamba Mamba ✓ 24.46 84.08 0.0880 0.0397

As shown in Tab.3, disabling the causal operation in our method results in a significant drop in
performance metrics, demonstrating the effectiveness of our approach in exploring causality. For
more comprehensive ablation studies on ST-Mamba and Cross ST-Mamba, we individually replaced
the ST-Mamba (blue blocks in Fig.3 and Cross ST-Mamba (orange blocks in Fig.3) with a plain
attention block and a cross attention block. By comparing IDs 1, 3, and 4, it is evident that our method
performs best when both ST-Mamba and Cross ST-Mamba are employed. This does not imply that
the cross-attention mechanism is unsuitable for maintaining spatio-temporal consistency; rather,
it indicates that using Cross ST-Mamba is more effective for transient data with partial causality.
Additionally, we excluded only the Cross ST-Mamba while maintaining the same number of SSMs
as in our final method (ID 2). This further demonstrates the effectiveness of the proposed Cross
ST-Mamba.

A.2 Comparison of the SR module separately with USM [4]

U
S

M
-S

R
+

R
S

D
O

u
rs

-S
R

+
R

S
D

G
T

Figure 7: The reconstruction results via the traditional method (RSD) for the high-resolution transient
measurements, which are recovered by the SR networks of USM and Ours.

The capabilities of the transient super-resolution networks of USM [4] and our method are further
compared. To obtain quantitative results, we first generate the recovered high-resolution transient
measurements and then conduct the reconstruction using the traditional method RSD[5], instead of the
deep neural network. For USM, the metrics PSNR/SSIM/RMSE/MAD are 19.25/18.93/0.2206/0.1000.
For our method, the metrics PSNR/SSIM/RMSE/MAD are 21.48/17.08/0.2120/0.0917. Except
for SSIM, our method surpasses USM. The decrease in SSIM may originate from the artifacts
interference.

To provide a more comprehensive evaluation, we introduce another metric ACC, from [1], which
indicates the foreground recovery degree. The ACC for USM is 10.49, while for our method, it is
31.22, demonstrating that our method generates cleaner and higher-quality transient measurements.
Qualitative results are provided in Fig. 7, further demonstrating our superiority comprehensively.
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A.3 More real-world results

More reconstructed intensity images from the real-world data are shown in Fig. 8 and Fig. 9. Our
method achieves excellent reconstruction results in simple planar scenes, such as the clear letter
structures in Fig. 8 and Fig. 9. It also delivers outstanding reconstruction performance in complex
scenes as shown in Fig. 6.
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# 29

# 25

# 39

# 29

# 21

RSD FKLCT USMI-KLFE OursOurs-SCSA Scene

Figure 8: Reconstructed intensity images from the real-world transient videos captured by our
imaging system.
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Figure 9: Reconstructed intensity images from the real-world transient videos captured by our
imaging system.
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A.4 Loss Function

As discussed in Sec. 4.4, The local similarity loss Lls and the total variation loss Ltv is formulated
as [4]:

Lls =
∑

x

∑
y

∑
z||ρ(x, y, z)− ρ̂(x, y, z, k) ·W ||1,

Ltv =
∑

x

∑
y

∑
z(||ρ(x+ 1, y, z)− ρ(x, y, z)||1 + ||ρ(x, y + 1, z)− ρ(x, y, z)||1
+ ||ρ(x, y, z + 1)− ρ(x, y, z)||1).

(7)

where ρ(x, y, z) indicates the volume at position (x, y, z), ρ̂(x, y, z, k) represents the volume block
centered at (x, y, z) with size k, W refers to the Gaussian window with size k.

A.5 Computational Memory and Inference Time

Table 4: The inference time and memory of different models. Note that only methods with gray
annotation are specifically designed for NLOS imaging from under-scanning measurement.

Method LCT [15] FK [21] RSD [42] LFE [23] I-K [28] CSA [1] USM [4] Ours-S Ours
Time (s) 0.034 0.061 0.038 0.031 0.032 20 0.149 0.198 0.359

Memory (M) 6016 8056 10344 4646 4934 5306 8362 16684 17162

The inference memory and inference time of the models are listed in Tab. 4. It is indeed that using
multi-frame information will significantly increase the inference time, but the inference memory
usage is still within the range of consumer-grade GPU, making it suitable for real-world applications.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See the abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Sec. 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: No theoretical result.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Sec. 5.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: https://github.com/Depth2World/Dynamic_NLOS.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Sec. 5.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: See Tab. 1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Tab. 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Follow the ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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