
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TRACEVLA: VISUAL TRACE PROMPTING ENHANCES
SPATIAL-TEMPORAL AWARENESS FOR GENERALIST

ROBOTIC POLICIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Although large vision-language-action (VLA) models pretrained on extensive robot
datasets offer promising generalist policies for robotic learning, they still struggle
with spatial-temporal dynamics in interactive robotics, making them less effective
in handling complex tasks, such as manipulation. In this work, we introduce visual
trace prompting, a simple yet effective approach to facilitate VLA models’ spatial-
temporal awareness for action prediction by encoding state-action trajectories
visually. We develop a new TraceVLA model by finetuning OpenVLA on our
own collected dataset of 150K robot manipulation trajectories using visual trace
prompting. Evaluations of TraceVLA across 137 configurations in SimplerEnv
and 4 tasks on a physical WidowX robot demonstrate state-of-the-art performance,
outperforming OpenVLA by 10% on SimplerEnv and 3.5x on real-robot tasks
and exhibiting robust generalization across diverse embodiments and scenarios.
To further validate the effectiveness and generality of our method, we present
a compact VLA model based on 4B Phi-3-Vision, pretrained on the Open-X-
Embodiment and finetuned on our dataset, rivals the 7B OpenVLA baseline while
significantly improving inference efficiency.

1 INTRODUCTION

Robotic manipulation policies, typically trained on specific task demonstrations, often struggle to
generalize beyond their training data, particularly when faced with novel objects, environments,
instructions, and embodiments. In contrast, foundation models for vision and language—such as
CLIP (Radford et al., 2021), LLaVA (Liu et al., 2024b), Phi-3-Vision (Abdin et al., 2024b), and
GPT-4V (Achiam et al., 2023)—have demonstrated impressive generalization across diverse vision-
language tasks. However, these models are not equipped to handle the challenges unique to robot
manipulation, such as understanding kinematics, adapting to different embodiment configurations,
and executing reliable physical actions. Vision-Language-Action models (VLAs) (Brohan et al.,
2022; Kim et al., 2024) seek to address this gap by fine-tuning vision-language models to generate
robot control actions using large-scale robotic datasets (e.g., Collaboration et al., 2023b), combining
the generalization power of foundation models with task-specific robotic expertise. The approach has
yielded promising results in developing generalist robot policies capable of adapting to a wide range
of manipulation tasks.

However, VLA-powered robots often struggle to maintain awareness of their past movements, leading
to decisions that are more reactive to current inputs rather than informed by spatial history. We posit
that this limitation arises because simply mapping image inputs as current states to control actions
is insufficient. To address this, we propose explicitly computing multi-point temporal trajectories
and overlaying them directly onto the image inputs for VLA models. We hypothesize that this will
effectively provide spatial and temporal relations necessary for improving manipulation tasks (Wen
et al., 2023; Yuan et al., 2024).

Our approach introduces an additional multi-point visual input during VLA training that tracks the
robot’s past movement trajectory (Karaev et al., 2023). We refer to these multi-point trajectories as
visual traces, and show that even with only 2D images as inputs (which allows for better scalability and
integration with existing VLM models), VLA models enhanced with visual traces exhibit improved

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Original Image Image with visual trace

TraceVLA
... <SEP>

Separator Token
(Learnable)

... ...

Text TokenizerImage Tokenizer

Action Tokens

Prompting with
Task Language Instructions

You are given two images: one with the original robot observation, and another one marked
with historical traces of the robot end effector and moving objects, separated by a special
separator token. What action should the robot take to move sponge near blue plastic bottle?

Visual Trace Embodiment Data

150k
Trajectories

Downstream
Manipulation

SimplerEnv: Google Robot Real Robot: WidowX Robot

Figure 1: An illustration of our method. The first image shows the original robot’s observation, while the second
contains the same image with overlaid visual traces. A separator token is then inserted between the visual tokens
of these two images, then concatenating with text tokens and feeding into the underlying vision language model
backbone to output action tokens.

spatial-temporal awareness. This visual trace prompting technique enables better adaptation to
variations in manipulation tasks and improves overall generalization.

We introduce TraceVLA, a 7B-parameter VLA model fine-tuned from OpenVLA using our novel
visual trace prompting dataset, which includes 150K robot manipulation trajectories as shown in
Figure 1. In additional, we finetuned a more compact VLA model, TraceVLA-Phi3, using the
4B-parameter Phi-3-Vision as a backbone on the Open X-Embodiments dataset, which comprises
970K trajectories across diverse robot embodiments, tasks, and scenes. TraceVLA-Phi3 offers
improved inference efficiency and reduced computational requirements while maintaining robust
performance.

To assess the generalization capabilities of our models, we conducted evaluations across 131 diverse
environment settings on Google Robots in the SimplerEnv simulator, which closely mimics real-robot
scenarios. Additionally, we design diverse manipulation experiments on a physical WidowX robot to
evaluate performance in real-world settings. Notably, our models consistently outperform existing
VLA models across all embodiments and environments, demonstrating exceptional generalization
under environmental variations.

Our key contributions are summarized as follows.

• Method. We introduce visual trace prompting, a novel technique that significantly enhances VLA
models’ spatial-temporal reasoning in manipulation tasks.

• Dataset & models. We provide a visual trace prompting dataset and present state-of-the-art 7B
and 4B VLA models fine-tuned using our proposed visual trace prompting, offering an efficient
method to boost VLA model performance.

• Validation. Our approach is rigorously validated through extensive evaluations in both simulated
and real-world robot tasks across diverse embodiments, demonstrating superior generalization
capabilities by leveraging spatial-temporal information.

2 PRELIMINARIES

Visual-Language-Action Models. Vision-language-action models (VLAs) extend vision-language
models (VLMs) to predict discretized robot actions. Their architecture comprises: (1) a visual
encoder (Zhai et al., 2023; Oquab et al., 2023) that converts input images into patch embeddings, (2)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

a projector that maps these embeddings to the language model’s input space, and (3) a large language
model backbone (Touvron et al., 2023). Action discretization, a crucial feature of VLAs, involves
mapping continuous robot actions to discrete tokens. This process typically divides each action
dimension into 256 bins based on data quantiles. These discrete actions are then incorporated into the
language model’s vocabulary, often replacing the least frequently used tokens. VLA training builds
upon the foundation established during VLM training. During VLM training, the model is trained
end-to-end with a next text token prediction objective on paired or interleaved vision and language
data curated from various Internet sources. VLA training then extends this approach, encompassing
fine-tuning of the pretrained VLM. The cross-entropy loss focuses specifically on the predicted action
tokens. This approach allows VLAs to leverage the capabilities of VLMs for complex robot control
tasks while operating within the constraints of tokenized language models.
Generalist Control Policies. Robotic policy learning typically relies on task-specific demonstrations
D = {τ1, τ2, ..., τn}, where each τi = {(ot, st, at)}Tt=1 represents an expert-level trajectory. The
learning architecture comprises a visual encoder Fϕ, mapping image observations oi to features
zi = Fϕ(oi), and a policy network πθ outputting action distributions â ∼ πθ(·|z, s). Training
minimizes the error between predicted â and optimal a actions. To overcome task-specificity
limitations, generalist policies are being developed, aiming to handle diverse sensors, action spaces,
and robotic platforms in various scenarios. Vision-Language-Action (VLA) models, leveraging
VLM’s visual understanding and multimodal reasoning capabilities, show promise in creating more
adaptable generalist policies. These models offer improved generalization across tasks, enhanced
semantic understanding of environments, and the ability to follow natural language instructions,
paving the way for more flexible and intuitive robotic control in broader applications.

3 TRACEVLA

Our ultimate goal is to equip the Vision-Language-Action (VLA) model with the necessary context
to better understand both temporal and spatial dynamics. In this section, we describe the details
of our method, TraceVLA, to achieve this objective. First, we introduce visual trace prompting
in Section 3.1. Next, we explain the model architecture of TraceVLA in Section 3.2. Finally, we
provide the implementation details in Section 3.3.

3.1 VISUAL TRACE PROMPTING

Multi-Point Tracking

Initial State Final State

Visual Trace
Prompting

Visual Trace Generation

Original Image

🧑💻 User: [Prompting for visual inputs]
– [Language instruction]

🤖 TraceVLA: [∆𝑥, ∆𝜃, ∆𝐺rip]

CoTracker

🦾

Visual Trace Prompting

Actions

Closed-loop Robot Control

Figure 2: An illustration of visual trace generation. Given a sequence of historical image observations, we first
use Co-tracker to extract dense point trajectories and keep active point trajectories with significant movement.
We then overlay active point trajectories on the robot’s initial observation frame as visual trace prompting. We
feed both the image overlaid with visual traces and the original image into VLA as model input.

A straightforward way to have VLMs understand temporal history information is to concatenate
historical frames and feed them into the VLA model. However, this approach can often distract the
model, as the frames are typically highly visually similar and redundant, making it difficult for the
model to focus on the control-relevant information.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

In this work, we introduce visual trace prompting to address this challenge. Instead of naively
concatenating history frames, we employ an off-the-shelf point tracking algorithm to generate traces
of key points. These visual traces are then visually overlaid on the robot’s original observations,
serving as visual prompts that provide the model with a spatial memory of its historical actions.

At any given timestep t and a time window budget N , we first extract a set of dense point trajectories,
P , from a sequence of historical image observations, ht = (ot−N , . . . , ot), using a dense point
tracking model. Specifically, a point trajectory represents the trace of a moving point over time. Thus,
a set of dense point trajectories captures the traces of multiple critical moving points. The specific
dense point tracking model we employ is Co-Tracker (Karaev et al., 2023), chosen for its efficiency
and simplicity. Co-Tracker partitions the starting frame ot into a K ×K grid and tracks each grid
cell across N frames to construct point trajectories. Consequently, we generate a total of K ×K
dense point trajectories, with each trajectory representing the location of a single point from timestep
t−N to timestep t.

While Co-Tracker provides a K ×K grid of dense point trajectories, it does not inherently identify
“active points.” To address this, we identify active point trajectories in P by analyzing changes in
pixel locations, focusing on those with significant movement and distinguishing them from static
background points. For each point trajectory p ∈ P , we first compute the absolute movement ∆pt′

between two adjacent frames at timestep t′ and t′ + 1, as ∆pt′ =
∣∣pt′+1 − pt′

∣∣
1
. We then identify

active point trajectories P̂ by computing the total movement over N timesteps, keeping those whose
movement exceeds a threshold κ. In other words, P̂ =

{
p ∈ P |

∑t−1
t′=t−N ∆pt′ > κ

}
. From P̂ ,

we randomly sample M active point trajectories, denoted as P̃ , for use in visual prompting.

Finally, we generate the visual trace by overlaying the sampled active point trajectories P̃ onto the
robot’s original observation frame ot, as shown in Figure 2. This overlaid frame serves as a visual
prompt, providing the model with spatial information about its historical states and actions.

3.2 MODEL ARCHITECTURE DESIGN

In Figure 1, we outline the design of TraceVLA using visual trace prompting. While the overlaid
visual trace provides valuable spatial-temporal information about the robot’s historical movements,
it may obstruct the robot’s end-effector or key objects, potentially hindering the model’s ability to
generate the correct action. To address this, we also include the original image observation in the
model input, inserting a special separator token between the two images. As shown in Figure 1, we
adjust the text prompt to inform the VLA model of this additional visual input before requesting the
appropriate action output.

Additionally, since visual traces may not be available in all test-time scenarios—such as when the
Co-Tracker model fails under pool lightning conditions—we implement a dropout mechanism during
training. For each training example, with probability α, we replace the visual trace prompt image with
the original image and remove the corresponding hint from the text prompt. This dropout strategy
introduces variability into the inputs, encouraging the model to effectively utilize both the original
image and the visual trace. As a result, at test time, even if the Co-Tracker model is unable to extract
the visual trace, our model can still function correctly.

3.3 IMPLEMENTATION DETAILS

In this section, we describe the implementation details of the dataset and models used in this work.

For the visual trace generation pipeline in training, we use a grid size of K=40, sample M=5 active
point trajectories, and employ a time window N=6. To reduce computational overhead, we run dense
point tracking every N step for the future 2N frames, rather than at every timestep. We divide demo
trajectories into overlapping 2N-sized segments (e.g., [0, 2N), [N, 3N), etc.) and run Co-Tracker once
per segment. This approach ensures that for each timestep t > N, at least N steps of historical context
are available, while significantly reducing computational costs.

To create our dataset with visual trace annotations, we applied our visual trace generation pipeline to
the following training datasets: BridgeData-v2 (Walke et al., 2023), Google RT1 Robot datasets (Bro-
han et al., 2022), as well as to 120 demonstrations collected from 4 manipulation tasks on our WidowX-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Models
Visual Matching Variant Aggregation

Overall Performance
Move Near Pick Coke Can Open/Close

Drawer
Move Near Pick Coke Can Open/Close

Drawer

OpenVLA-Phi3 46.1% 46.7% 22.5% 51.9% 49.7% 22.2% 39.9%

TraceVLA-Phi3 50.4%
(↑ 4.3%)

52.2%
(↑ 5.5%)

31.0%
(↑ 8.5%)

55.0%
(↑ 3.1%)

52.4%
(↑ 2.7%)

23.2%
(↑ 1.0%)

44.0%
(↑ 4.1%)

OpenVLA 47.1% 15.3% 49.5% 54.0% 52.8% 22.5% 40.2%

TraceVLA 53.7%
(↑ 6.6%)

28.0%
(↑ 12.7%)

57.0%
(↑ 7.5%)

56.4%
(↑ 2.4%)

60.0%
(↑ 7.2%)

31.0%
(↑ 8.5%)

47.7%
(↑ 7.5%)

Octo-Base 3.0% 1.3% 1.0% 4.2% 17.0% 22.0% 8.2%

RT1-X 55.0% 52.8% 22.5% 34.2% 54.0% 56.0% 45.8%

Table 1: Performance results on three SimplerEnv Google robot tasks under two evaluation metrics: visual
matching and variant aggregation. Overall performance is calculated as the average over all the results.

250 Robot setup for downstream evaluation. In total, we gathered approximately 150,000 robot
trajectories annotated with visual trace prompting, forming our fine-tuning dataset for TraceVLA.

To obtain real-time visual traces during inference, we reduce the computational overhead of densely
querying the Co-tracker at every timestep by tracking M active points and sparsely querying Co-
tracker. Specifically, at timestep t=0, we perform dense K×K point tracking to identify these active
points (see Sec. 3.1 for details). For every timestep t>0, we query Co-tracker only for these active
points to generate M corresponding traces, and update the tracked active points from the traces. For
further details and pseudocode of our TraceVLA inference pipeline, please refer to Appendix F.

For the VLA models, we started with OpenVLA (Kim et al., 2024), a 7B VLA model based on the
Prismatic vision-language model (Karamcheti et al., 2024), trained on the Open X-Embodiment
dataset (Collaboration et al., 2023a). Additionally, we pretrained a 4B VLA model with Phi3-Vision
as its backbone VLM (Abdin et al., 2024a), on the Open X-Embodiment dataset using a batch size of
4096 for 30 epochs with 32 H100 GPUs, following the same recipe as OpenVLA. This lightweight
4B model allows us to test the flexibility of our visual trace prompting across different VLM model
architectures. Additionally, the 4B Phi3V-based VLA model will also provide the community with
a more compact VLA model for finetuning compared to the larger 7B Prismatic model, while the
reduced memory cost allows fine-tuning to be performed on smaller GPUs such as RTX4090 or
RTX A5000’s. For both TraceVLA and TraceVLA-Phi3, we finetune the base VLA model for an
additional five epochs.

4 EXPERIMENT

To comprehensively evaluate our model’s performance, we conducted experiments across a wide
range of environmental setups, including 3 tasks with 137 different configurations in simulation and
4 tasks on real robots.
Baseline. We benchmark our approach against the following generalist policies, including state-of-
the-art open-sourced models:

OpenVLA (Kim et al., 2024): A 7B parameter VLA trained on the Open-X-Embodiment (Collabora-
tion et al., 2023a) Dataset, representing large-scale generalist policies.

OpenVLA-Phi3: A 4.5B parameter VLA pretrained model using Phi-3-Vision as backbone.

Octo-Base (Team et al., 2024): A 93M parameter transformer-based policy trained on 800k trajecto-
ries from the Open-X-Embodiment Dataset.

RT1-X (Collaboration et al., 2023a): A compact 35M parameter model trained on the same dataset
as Octo-Base, exemplifying efficient architectures.

TraceVLA and TraceVLA-Phi3: Finetuned from OpenVLA and OpenVLA-Phi3 with visual trace
prompting.

4.1 SIMULATION EVALUATION

SimplerEnv. Our simulation evaluation utilizes SimplerEnv, which incorporates two distinct settings:
visual matching and variant aggregation. The visual matching setting aims to minimize the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

visual appearance gap between real environments and raw simulation, significantly enhancing the
correlation between policy performance in simulation and real-world scenarios. Complementing
this, the variant aggregation setting covers a wide range of environmental variations as shown in
Figure 4, including backgrounds from different rooms, lighter and darker lighting conditions, varying
numbers of distractors, solid color and complex table textures, and different robot camera poses. This
comprehensive set of variations allows us to assess the robustness and adaptability of our approach in
handling diverse manipulation scenarios, particularly evaluating the spatial and temporal awareness
brought by visual trace prompting.

Overall Performance. As shown in Table 1, TraceVLA consistently outperforms OpenVLA across
various tasks and evaluation metrics in the SimplerEnv Google robot tasks. The improvements are
evident in both the full-scale 7B models (TraceVLA vs OpenVLA) and their 4B versions (TraceVLA-
Phi3 vs OpenVLA-Phi3). TraceVLA shows significant performance gains, with improvements
ranging from 2.4% to 12.7% in all three tasks across different metrics. When compared to other
baselines like Octo-Base and RT1-X, both TraceVLA and TraceVLA-Phi3 generally perform better,
with a few exceptions where RT1-X, shows competitive performance in specific tasks. These results
suggest that the visual trace prompting technique employed in TraceVLA enhances the model’s
ability to generalize across different robotic manipulation tasks and environmental conditions, leading
to improved performance in both visual matching and variant aggregation scenarios.

20% 25% 30% 35% 40% 45% 50% 55% 60%
Success Rate (%)

Move Near

Pick Coke

 Drawer
 Open/Close

50.6%

34.1%

36.0%

55.0%

44.0%

44.0%

OpenVLA - SimplerEnv
OpenVLA
(Ours) TraceVLA

20% 25% 30% 35% 40% 45% 50% 55% 60%
Success Rate (%)

Move Near

Pick Coke

 Drawer
 Open/Close

49.0%

48.2%

22.4%

52.7%

52.3%

27.1%

Phi3 - SimplerEnv
OpenVLA-Phi3
(Ours) TraceVLA-Phi3

Figure 3: (Left): 7B TraceVLA vs. 7B OpenVLA. (Right): 4B TraceVLA-Phi3 vs. 4B OpenVLA-Phi3.
Numbers are averaged across the visual matching and variant aggregation metrics.

Camera
orientations

Lighting
darker

Background
change Distractor Table

texture

Success Rate (%)
OpenVLA

TraceVLA
Camera

Lighting

Background

Distractor

TraceVLA

OpenVLA

TraceVLA

OpenVLA

TraceVLA

Table
Texture

OpenVLA

OpenVLA

TraceVLA

32.8%

38.3%

41.7%

50.8%

41.2%

52.3%

54.3%

66.7%

60.9%

63.7%

Figure 4: Comparison of OpenVLA and TraceVLA performance across various environmental variations:
camera orientations, lighting, background, distractors, and table texture.

Environmental Variant Aggregation. Figure 4 demonstrates significant performance improvements
of TraceVLA over OpenVLA across various environmental conditions. Notably, TraceVLA shows
substantial enhancements under camera orientation changes, distractor presence, and background
alterations, with an average improvement exceeding 20% in these categories. The use of visual trace
prompting proves particularly effective when camera angles shift, as the trace provides valuable spatial
trajectory information. This helps the model maintain performance despite changes in perspective.
Similarly, when faced with background changes, varying table textures, or lighting alterations, the
visual trace allows the model to remain more stable and less influenced by environmental backgrounds.
In scenarios with added distractors, the visual trace effectively reminds the policy of past trajectory

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

interferences, evidenced by noticeable arm diversions. These varied environmental conditions
collectively validate the spatial and temporal understanding provided by visual trace prompting.

4.2 REAL ROBOT EXPERIMENTS

Gripper

3rd Person
Camera

WidowX 250
Robot Arm

Fold Cloth Pick Up KnifePickplace Corn PotSwipe Corn Sink

Figure 5: Real robot setup. We design 4 real-world robot tasks with different manipulation skills and objects.

0 2 4 6 8 10
Number of Successful Trials

Pickplace Corn

Pickplace Knife

Swipe Corn Sink

Fold Cloth

1

4

0

2

8

8

5

7

Real Robot Performance

OpenVLA
TraceVLA

Figure 6: Performance evaluation of
TraceVLA on real-world WidowX-250 robot
manipulation tasks

We design 4 tabletop manipulation tasks on our physical
WidowX-250 robot setup. Similar to BridgeData-v2, a
fixed-mounted third-person view is used to capture the
robot’s RGB image observations at a resolution of 256×
256. Although it shares the same robot embodiment as
BridgeData-v2, differences in setup, backgrounds, camera
angles, lighting conditions, etc., make it infeasible to use a
pretrained VLA model in a zero-shot manner in our setup.
Therefore, we collect 30 robot demonstration trajectories
for each task for our finetuning dataset. Our experimental
design includes classic soft object manipulation, pick-and-
place operations, and object movement tasks. TraceVLA
consistently outperforms the baseline across these diverse
tasks as presented in Figure 6, demonstrating improved
generalization and adaptation to real-world robotic manipulation scenarios.

Note that the primary goal of the last pick-place corn task is to assess the model’s generalization
capability, as this task is not part of the training dataset. Instead, the training data includes a task that
involves picking up an eggplant and placing it in a pot. Although the model encounters corn in the
swipe corn sink task and only learns to pick up an eggplant and place it into a pot during training,
we observed that TraceVLA successfully completed the pick-place corn task in 8 out of 10 trials,
whereas the baseline OpenVLA model succeeded only once. This demonstrates TraceVLA’s strong
generalization capability to unseen task instructions.

4.3 ABLATION STUDIES

To analyze the performance gain from visual trace prompting, we further study the following
questions.
Is performance gain of TraceVLA coming from further finetuning on a smaller subset of Open
X-embodiment dataset? To answer this, we also tested the performance of the 7B OpenVLA and
4B OpenVLA-Phi3 models finetuned on the exact same dataset as ours, but without using visual trace
prompting. The results, as shown in Figure 7 (Left), indicate that the performance gain observed
in TraceVLA is unlikely due to finetuning the pretrained VLA model on a smaller subset. While
finetuning the pretrained OpenVLA model brings a 1.1% gain, finetuning OpenVLA-Phi3 model
even degrades the performance by 0.3%. However, when visual trace prompting is incorporated, the
success rate of OpenVLA model increases to 47.7%, highlighting the significant impact of visual
traces on model performance.

Will appending historical image observations also give similar performance gain as TraceVLA?
Instead of using visual trace prompting, the most straightforward way to integrate the model’s
historical movement knowledge is to provide it with multiple past image observations. To test this
method, we input N frames into the VLA model, separated by a learnable separator token, similar
to our approach in TraceVLA. We also include a sentence in the text prompt to inform the model
of this change in observation. Here, N = 6, which matches the length of the visual trace used in
TraceVLA. In theory, the model should receive more information from these 6 complete frames

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 7: (Left): Comparison of average success rates between the base OpenVLA and OpenVLA-Phi3 models
and their finetuned versions, with and without visual trace prompting. (Right): Comparison of average success
rates between the base OpenVLA,TraceVLA, and OpenVLA finetuned with a sequence of 6 images.

compared to visual trace prompting. However, as shown in 7 (Right), finetuning OpenVLA with
historical information not only fails to improve overall performance but also reduces it by 6%. This
performance drop is likely due to redundant information between visual tokens at different timesteps,
which may distract the model from focusing on the most relevant information for deciding next
actions. In contrast, visual trace prompting offers useful hints that enhance the context for the
vision-language model.

Is visual trace prompting better than text trace prompting for grounding VLA with temporal-
spatial understanding? In addition to guiding the model with point tracking by overlaying the visual
trace on the original image, we can also describe the movement of the points using 2D coordinates
in text. To assess whether visual prompting is the most effective method for improving the VLA
model’s spatial-temporal understanding, we implemented an alternative approach that describes the
points’ movement verbally, treating the trace as text tokens, as shown in Figure 8 (Right).

Interestingly, using this text-based trace yields a 2.4% average performance gain over the baseline
VLA model, suggesting that point tracking information is indeed useful for the robot model. However,
compared to our approach (TraceVLA), the additional 6.4% gain indicates that leveraging the
vision encoder’s ability to process visual prompts is much more effective than describing the points’
location and movement in text. While text descriptions can precisely convey the location and
movement of each point, they also increase token count (by ∼150 tokens) compared with visual
trace prompting, leading to substantially higher GPU costs. Moreover, relying solely on text fails to
fully leverage the multimodal grounding capabilities of current vision-language models. Our visual
trace prompting approach strikes an optimal balance between efficiency and efficacy, demonstrating
superior performance gains (an additional 6.4% improvement) over text-based alternatives while
maintaining computational efficiency.

You are given an image of robot's observation. Additionally, you
are given the movement information of 5 points in the image. Over
the last 6 frames, the 5 points moved as follows:

Point 1 moved through positions: [244,80], [200,115], [177,31], ...
Point 2 moved through positions: [218,96], [200,122], [185,10], ...
Point 3 moved through positions: [237,118], [208,42], [161,79], ...
Point 4 moved through positions: [225,49], [200,127], [171,72], ...
Point 5 moved through positions: [251,93], [200,103], [181,91], ...

Now what the robot should do to pick up the coke can?

Figure 8: (Left): Comparing visual trace prompting and text trace prompting. (Right) Text trace prompts
example.

How does TraceVLA perform under different lengths of visual trace? An important hy-
perparameter of TraceVLA is the length of visual trace prompting N , which determines
the length of the historical information provided in the visual prompt. While a longer
N includes more past observations, it can clutter the visual context and potentially ob-
scure key objects or the robot end-effector, while a shorter N has less risk of covering
the key information but contains less historical information. As shown in Figure 9, us-
ing a smaller number of steps (N = 3) results in a 3.2% performance improvement.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

3 6 9 12
Steps of Visual Trace

35%

40%

45%

50%

Av
er

ag
e

Su
cc

es
s R

at
e

43.5%

47.7% 47.5%
46.6%

OpenVLA Success Rate: 40.2%

Figure 9: TraceVLA under differ-
ent length of visual traces.

However, since a visual trace of only three steps is often too brief,
the performance gain is not as substantial compared to larger val-
ues of N . Conversely, setting N too large, such as N = 12,
may lead to a less informative trace that obscures key scene ele-
ments and overlaps partially with previous motion traces of robots
in the overlaid images, potentially distracting the VLM model,
thereby slightly reducing overall performance. In practice, tuning
N should be straightforward, and might be dataset-specific. It
involves sampling a few episodes and visually inspecting the gen-
erated trace to ensure that the selected N provides an appropriate
balance between historical context and the clarity of the scene.

5 LIMITATION ANALYSIS:
TRAINING MEMORY COST AND INFERENCE SPEED

Since TraceVLA introduces an additional image input into the model and uses CoTracker to obtain
the visual trace during testing, we examine both the training memory cost and inference speed of
TraceVLA. For evaluating memory cost, we launch a single-node multi-gpu training job with 8 H100
graphics cards under varying batch sizes, and we measure the maximum GPU memory usage across
8 H100s. All tests are conducted with flash attention and torch.bfloat16 as the datatype of model
weights and inputs. As shown in Figure 10 (left), when the batch size is 32, the memory difference
between TraceVLA and models without visual trace prompting (for both Phi3 and OpenVLA) is less
than 10GB. Notably, this difference becomes even smaller with a reduced batch size, indicating that
while TraceVLA incurs some extra GPU memory cost, this additional GPU memory cost remains
manageable and not significantly impactful.

For testing inference speed, we evaluate the time cost using a single H100 GPU. In addition, we
also analyze the time cost of each additional component introduced in TraceVLA compared to the
original OpenVLA model. During inference time, the extra computation introduced by TraceVLA
consists of approximately 300 additional image and text tokens for the transformer model at each
timestep, 5-point CoTracker point tracking for every timestep, and K ×K (where K = 40) dense
point tracking every 20 steps. For the 40× 40 dense point tracking, as it requires recalculation only
every 20 steps, the average time cost per timestep is computed by evenly distributing the total cost
over each timestep. As shown in Figure 10 (right), we observe that the additional text and image
tokens result in a negligible inference cost (around 0.002 seconds), likely due to GPU optimization
for attention. Using M points (M = 5) for CoTracker per timestep adds an extra 0.03 seconds per
step, while the dense 40× 40 point tracking has an amortized cost of 0.004 seconds per step.

Figure 10: (Left):Comparison of GPU memory cost of 7B TraceVLA, OpenVLA and 4B TraceVLA-Phi3,
OpenVLA-Phi3. (Right): Comparison of inference time across different models.

6 RELATED WORK

Generalist Robot Policies. Recent advancements in robotics have seen a shift towards developing
multi-task “generalist” robot policies capable of performing a wide range of tasks, rather than
specializing in a single task (Brohan et al., 2022; Walke et al., 2023; Kalashnikov et al., 2018; 2021;
Ebert et al., 2021; Ehsani et al., 2023; Bharadhwaj et al., 2024). Existing work utilized pretrained
model components and finetuned them on large, diverse robot datasets that encompass various

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

scenarios and tasks for better generalization (Ebert et al., 2021; Brohan et al., 2022; Collaboration
et al., 2023b; Khazatsky et al., 2024). For instance, Octo trained a generalist robot policy by
building on pretrained language embeddings and visual encoders, incorporating additional model
components initialized from scratch and learning to compose them during training (Team et al., 2024).
OpenVLA enhanced this architecture by adopting an end-to-end approach that directly fine-tunes
Vision-Language Models (VLMs) to generate robot actions, treating these actions as tokens within
the language model vocabulary (Kim et al., 2024). In contrast, our method integrates historical
visual traces into the VLM and employs these traces as visual prompting, enabling a more nuanced
understanding of the robot’s history state, and offering a more comprehensive VLM framework for
generalist policies.
Vision Language Action Models. Several studies have investigated the application of vision-
language models (VLMs) in robotics (Karamcheti et al., 2023; Gadre et al., 2022; Driess et al., 2023;
Du et al., 2023). Among them, Robopoint (Yuan et al., 2024) and RepKep (Huang et al., 2024b)
leverages VLM for explicit key point coordinates prediction, which is then converted to low-level
actions through an off-the-shelf motion planner. Meanwhile, many recent works have explored
fine-tuning large pretrained VLMs to directly predict robot actions as VLA models, treating these
actions as tokens within the language model vocabulary (Brohan et al., 2023; Niu et al., 2024; Zhu
et al., 2024; Li et al., 2024; Kim et al., 2024). Among them, RT-2 (Brohan et al., 2023) fine-tuned
VLMs on both robotic trajectory data and Internet-scale vision-language data. LLARVA (Niu et al.,
2024) generated both 2D visual traces in image coordinates and corresponding textual actions as
outputs, with the former functioning as an auxiliary task. LLaRA (Li et al., 2024) generates multiple
auxiliary datasets with complementary training objectives to provide additional supervision. RT-
2-X (Collaboration et al., 2023a) trains a 55B-parameter VLA policy on the Open X-Embodiment
dataset. OpenVLA (Kim et al., 2024) combines a open VLM backbone with a richer robot pertaining
dataset. We build on top of OpenVLA, but distinctively address the challenge of maintaining
awareness of past spatial trajectories in VLA.
Visual Trace for Robotics. Visual traces of moving objects are vital for improving robotic action
prediction, as they convey essential information about object dynamics. Various approaches have
been developed to utilize visual traces in robotics, including using hand-drawn sketches for goal
specifications (Gu et al., 2023), predicting future traces and learning a trace-guided policy (Wen
et al., 2023; Bharadhwaj et al.), identifying active points for motion planning (Vecerik et al., 2024),
and localizing active regions of robot observations for video generation (Huang et al., 2024a). More
recently, the vision language action model LLARVA (Niu et al., 2024) predicts future 2D traces in text
format as intermediate outputs alongside action tokens. In contrast, our approach integrates historical
visual traces directly into VLA models as visual prompts. This novel method enhances VLMs’
contextual understanding of the spatial and temporal dynamics, addressing an aspect previously
underexplored in VLA models.

7 CONCLUSION AND DISCUSSION

Our work advances vision-language-action (VLA) models for robotic manipulation by introducing
a novel visual trace prompting technique and providing a dataset enriched with spatial-temporal
information across diverse embodiments. With state-of-the-art 7B and 4B VLA models, we push
the boundaries of VLA performance, demonstrating their effectiveness in both extensive simulated
environments and real-world robotic tasks. By bridging the gap between visual perception, temporal
awareness, and physical embodiment, we significantly enhance the generalization and adaptability of
VLA models.

Looking ahead, promising directions for future research include incorporating multi-point spatial
trajectory prediction, allowing models not only to react but also to anticipate and plan actions with
greater foresight. Additionally, leveraging 3D point cloud data for training could further enrich
spatial representations, capturing fine-grained details in complex scenes and objects, thus improving
manipulation accuracy and robustness across diverse and dynamic scenarios. These advancements
will continue to enhance the generalization capabilities of VLA models, driving further progress in
robotic manipulation.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen
Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, Alon Benhaim, Misha Bilenko,
Johan Bjorck, Sébastien Bubeck, Martin Cai, Qin Cai, Vishrav Chaudhary, Dong Chen, Dongdong
Chen, Weizhu Chen, Yen-Chun Chen, Yi-Ling Chen, Hao Cheng, Parul Chopra, Xiyang Dai,
Matthew Dixon, Ronen Eldan, Victor Fragoso, Jianfeng Gao, Mei Gao, Min Gao, Amit Garg,
Allie Del Giorno, Abhishek Goswami, Suriya Gunasekar, Emman Haider, Junheng Hao, Russell J.
Hewett, Wenxiang Hu, Jamie Huynh, Dan Iter, Sam Ade Jacobs, Mojan Javaheripi, Xin Jin,
Nikos Karampatziakis, Piero Kauffmann, Mahoud Khademi, Dongwoo Kim, Young Jin Kim, Lev
Kurilenko, James R. Lee, Yin Tat Lee, Yuanzhi Li, Yunsheng Li, Chen Liang, Lars Liden, Xihui
Lin, Zeqi Lin, Ce Liu, Liyuan Liu, Mengchen Liu, Weishung Liu, Xiaodong Liu, Chong Luo,
Piyush Madan, Ali Mahmoudzadeh, David Majercak, Matt Mazzola, Caio César Teodoro Mendes,
Arindam Mitra, Hardik Modi, Anh Nguyen, Brandon Norick, Barun Patra, Daniel Perez-Becker,
Thomas Portet, Reid Pryzant, Heyang Qin, Marko Radmilac, Liliang Ren, Gustavo de Rosa,
Corby Rosset, Sambudha Roy, Olatunji Ruwase, Olli Saarikivi, Amin Saied, Adil Salim, Michael
Santacroce, Shital Shah, Ning Shang, Hiteshi Sharma, Yelong Shen, Swadheen Shukla, Xia Song,
Masahiro Tanaka, Andrea Tupini, Praneetha Vaddamanu, Chunyu Wang, Guanhua Wang, Lijuan
Wang, Shuohang Wang, Xin Wang, Yu Wang, Rachel Ward, Wen Wen, Philipp Witte, Haiping Wu,
Xiaoxia Wu, Michael Wyatt, Bin Xiao, Can Xu, Jiahang Xu, Weijian Xu, Jilong Xue, Sonali Yadav,
Fan Yang, Jianwei Yang, Yifan Yang, Ziyi Yang, Donghan Yu, Lu Yuan, Chenruidong Zhang, Cyril
Zhang, Jianwen Zhang, Li Lyna Zhang, Yi Zhang, Yue Zhang, Yunan Zhang, and Xiren Zhou.
Phi-3 technical report: A highly capable language model locally on your phone, 2024a. URL
https://arxiv.org/abs/2404.14219. 5

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, et al. Phi-3 technical report:
A highly capable language model locally on your phone. arXiv preprint arXiv:2404.14219, 2024b.
1

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023. 1

Homanga Bharadhwaj, Roozbeh Mottaghi, Abhinav Gupta, and Shubham Tulsiani. Track2act:
Predicting point tracks from internet videos enables generalizable robot manipulation. 10

Homanga Bharadhwaj, Jay Vakil, Mohit Sharma, Abhinav Gupta, Shubham Tulsiani, and Vikash Ku-
mar. Roboagent: Generalization and efficiency in robot manipulation via semantic augmentations
and action chunking. In 2024 IEEE International Conference on Robotics and Automation (ICRA),
pp. 4788–4795. IEEE, 2024. 9

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022. 1, 4, 9, 10

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choromanski,
Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-action
models transfer web knowledge to robotic control. arXiv preprint arXiv:2307.15818, 2023. 10

Open X-Embodiment Collaboration, Abby O’Neill, Abdul Rehman, Abhinav Gupta, Abhiram
Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abraham Lee, Acorn Pooley, Agrim Gupta,
Ajay Mandlekar, Ajinkya Jain, Albert Tung, Alex Bewley, Alex Herzog, Alex Irpan, Alexander
Khazatsky, Anant Rai, Anchit Gupta, Andrew Wang, Andrey Kolobov, Anikait Singh, Animesh
Garg, Aniruddha Kembhavi, Annie Xie, Anthony Brohan, Antonin Raffin, Archit Sharma, Arefeh
Yavary, Arhan Jain, Ashwin Balakrishna, Ayzaan Wahid, Ben Burgess-Limerick, Beomjoon Kim,
Bernhard Schölkopf, Blake Wulfe, Brian Ichter, Cewu Lu, Charles Xu, Charlotte Le, Chelsea
Finn, Chen Wang, Chenfeng Xu, Cheng Chi, Chenguang Huang, Christine Chan, Christopher
Agia, Chuer Pan, Chuyuan Fu, Coline Devin, Danfei Xu, Daniel Morton, Danny Driess, Daphne
Chen, Deepak Pathak, Dhruv Shah, Dieter Büchler, Dinesh Jayaraman, Dmitry Kalashnikov,
Dorsa Sadigh, Edward Johns, Ethan Foster, Fangchen Liu, Federico Ceola, Fei Xia, Feiyu Zhao,

11

https://arxiv.org/abs/2404.14219

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Felipe Vieira Frujeri, Freek Stulp, Gaoyue Zhou, Gaurav S. Sukhatme, Gautam Salhotra, Ge Yan,
Gilbert Feng, Giulio Schiavi, Glen Berseth, Gregory Kahn, Guangwen Yang, Guanzhi Wang,
Hao Su, Hao-Shu Fang, Haochen Shi, Henghui Bao, Heni Ben Amor, Henrik I Christensen,
Hiroki Furuta, Homanga Bharadhwaj, Homer Walke, Hongjie Fang, Huy Ha, Igor Mordatch,
Ilija Radosavovic, Isabel Leal, Jacky Liang, Jad Abou-Chakra, Jaehyung Kim, Jaimyn Drake,
Jan Peters, Jan Schneider, Jasmine Hsu, Jay Vakil, Jeannette Bohg, Jeffrey Bingham, Jeffrey
Wu, Jensen Gao, Jiaheng Hu, Jiajun Wu, Jialin Wu, Jiankai Sun, Jianlan Luo, Jiayuan Gu, Jie
Tan, Jihoon Oh, Jimmy Wu, Jingpei Lu, Jingyun Yang, Jitendra Malik, João Silvério, Joey
Hejna, Jonathan Booher, Jonathan Tompson, Jonathan Yang, Jordi Salvador, Joseph J. Lim,
Junhyek Han, Kaiyuan Wang, Kanishka Rao, Karl Pertsch, Karol Hausman, Keegan Go, Keerthana
Gopalakrishnan, Ken Goldberg, Kendra Byrne, Kenneth Oslund, Kento Kawaharazuka, Kevin
Black, Kevin Lin, Kevin Zhang, Kiana Ehsani, Kiran Lekkala, Kirsty Ellis, Krishan Rana, Krishnan
Srinivasan, Kuan Fang, Kunal Pratap Singh, Kuo-Hao Zeng, Kyle Hatch, Kyle Hsu, Laurent Itti,
Lawrence Yunliang Chen, Lerrel Pinto, Li Fei-Fei, Liam Tan, Linxi ”Jim” Fan, Lionel Ott,
Lisa Lee, Luca Weihs, Magnum Chen, Marion Lepert, Marius Memmel, Masayoshi Tomizuka,
Masha Itkina, Mateo Guaman Castro, Max Spero, Maximilian Du, Michael Ahn, Michael C. Yip,
Mingtong Zhang, Mingyu Ding, Minho Heo, Mohan Kumar Srirama, Mohit Sharma, Moo Jin Kim,
Naoaki Kanazawa, Nicklas Hansen, Nicolas Heess, Nikhil J Joshi, Niko Suenderhauf, Ning Liu,
Norman Di Palo, Nur Muhammad Mahi Shafiullah, Oier Mees, Oliver Kroemer, Osbert Bastani,
Pannag R Sanketi, Patrick ”Tree” Miller, Patrick Yin, Paul Wohlhart, Peng Xu, Peter David
Fagan, Peter Mitrano, Pierre Sermanet, Pieter Abbeel, Priya Sundaresan, Qiuyu Chen, Quan
Vuong, Rafael Rafailov, Ran Tian, Ria Doshi, Roberto Mart’in-Mart’in, Rohan Baijal, Rosario
Scalise, Rose Hendrix, Roy Lin, Runjia Qian, Ruohan Zhang, Russell Mendonca, Rutav Shah,
Ryan Hoque, Ryan Julian, Samuel Bustamante, Sean Kirmani, Sergey Levine, Shan Lin, Sherry
Moore, Shikhar Bahl, Shivin Dass, Shubham Sonawani, Shubham Tulsiani, Shuran Song, Sichun
Xu, Siddhant Haldar, Siddharth Karamcheti, Simeon Adebola, Simon Guist, Soroush Nasiriany,
Stefan Schaal, Stefan Welker, Stephen Tian, Subramanian Ramamoorthy, Sudeep Dasari, Suneel
Belkhale, Sungjae Park, Suraj Nair, Suvir Mirchandani, Takayuki Osa, Tanmay Gupta, Tatsuya
Harada, Tatsuya Matsushima, Ted Xiao, Thomas Kollar, Tianhe Yu, Tianli Ding, Todor Davchev,
Tony Z. Zhao, Travis Armstrong, Trevor Darrell, Trinity Chung, Vidhi Jain, Vikash Kumar, Vincent
Vanhoucke, Wei Zhan, Wenxuan Zhou, Wolfram Burgard, Xi Chen, Xiangyu Chen, Xiaolong
Wang, Xinghao Zhu, Xinyang Geng, Xiyuan Liu, Xu Liangwei, Xuanlin Li, Yansong Pang, Yao
Lu, Yecheng Jason Ma, Yejin Kim, Yevgen Chebotar, Yifan Zhou, Yifeng Zhu, Yilin Wu, Ying
Xu, Yixuan Wang, Yonatan Bisk, Yongqiang Dou, Yoonyoung Cho, Youngwoon Lee, Yuchen
Cui, Yue Cao, Yueh-Hua Wu, Yujin Tang, Yuke Zhu, Yunchu Zhang, Yunfan Jiang, Yunshuang Li,
Yunzhu Li, Yusuke Iwasawa, Yutaka Matsuo, Zehan Ma, Zhuo Xu, Zichen Jeff Cui, Zichen Zhang,
Zipeng Fu, and Zipeng Lin. Open X-Embodiment: Robotic learning datasets and RT-X models.
https://arxiv.org/abs/2310.08864, 2023a. 5, 10

Open-X Embodiment Collaboration, A Padalkar, A Pooley, A Jain, A Bewley, A Herzog, A Irpan,
A Khazatsky, A Rai, A Singh, et al. Open x-embodiment: Robotic learning datasets and rt-x
models. arXiv preprint arXiv:2310.08864, 2023b. 1, 10

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter, Ayzaan
Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied multimodal
language model. arXiv preprint arXiv:2303.03378, 2023. 10

Yuqing Du, Ksenia Konyushkova, Misha Denil, Akhil Raju, Jessica Landon, Felix Hill, Nando
de Freitas, and Serkan Cabi. Vision-language models as success detectors. arXiv preprint
arXiv:2303.07280, 2023. 10

Frederik Ebert, Yanlai Yang, Karl Schmeckpeper, Bernadette Bucher, Georgios Georgakis, Kostas
Daniilidis, Chelsea Finn, and Sergey Levine. Bridge data: Boosting generalization of robotic skills
with cross-domain datasets. arXiv preprint arXiv:2109.13396, 2021. 9, 10

Kiana Ehsani, Tanmay Gupta, Rose Hendrix, Jordi Salvador, Luca Weihs, Kuo-Hao Zeng, Ku-
nal Pratap Singh, Yejin Kim, Winson Han, Alvaro Herrasti, et al. Imitating shortest paths
in simulation enables effective navigation and manipulation in the real world. arXiv preprint
arXiv:2312.02976, 2023. 9

12

https://arxiv.org/abs/2310.08864

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Samir Yitzhak Gadre, Mitchell Wortsman, Gabriel Ilharco, Ludwig Schmidt, and Shuran Song. Clip
on wheels: Zero-shot object navigation as object localization and exploration. arXiv preprint
arXiv:2203.10421, 3(4):7, 2022. 10

Jiayuan Gu, Sean Kirmani, Paul Wohlhart, Yao Lu, Montserrat Gonzalez Arenas, Kanishka Rao,
Wenhao Yu, Chuyuan Fu, Keerthana Gopalakrishnan, Zhuo Xu, et al. Rt-trajectory: Robotic task
generalization via hindsight trajectory sketches. arXiv preprint arXiv:2311.01977, 2023. 10

Shuaiyi Huang, Mara Levy, Zhenyu Jiang, Anima Anandkumar, Yuke Zhu, Linxi Fan, De-An Huang,
and Abhinav Shrivastava. Ardup: Active region video diffusion for universal policies. arXiv
preprint arXiv:2406.13301, 2024a. 10

Wenlong Huang, Chen Wang, Yunzhu Li, Ruohan Zhang, and Li Fei-Fei. Rekep: Spatio-temporal
reasoning of relational keypoint constraints for robotic manipulation. In 8th Annual Conference on
Robot Learning, 2024b. URL https://openreview.net/forum?id=9iG3SEbMnL. 10

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Scalable deep reinforcement
learning for vision-based robotic manipulation. In Conference on robot learning, pp. 651–673.
PMLR, 2018. 9

Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar, Benjamin Swanson, Rico Jonschkowski,
Chelsea Finn, Sergey Levine, and Karol Hausman. Mt-opt: Continuous multi-task robotic rein-
forcement learning at scale. arXiv preprint arXiv:2104.08212, 2021. 9

Nikita Karaev, Ignacio Rocco, Benjamin Graham, Natalia Neverova, Andrea Vedaldi, and Christian
Rupprecht. Cotracker: It is better to track together. arXiv:2307.07635, 2023. 1, 4

Siddharth Karamcheti, Suraj Nair, Annie S Chen, Thomas Kollar, Chelsea Finn, Dorsa Sadigh,
and Percy Liang. Language-driven representation learning for robotics. arXiv preprint
arXiv:2302.12766, 2023. 10

Siddharth Karamcheti, Suraj Nair, Ashwin Balakrishna, Percy Liang, Thomas Kollar, and Dorsa
Sadigh. Prismatic vlms: Investigating the design space of visually-conditioned language models.
In International Conference on Machine Learning (ICML), 2024. 5

Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ashwin Balakrishna, Sudeep Dasari, Siddharth
Karamcheti, Soroush Nasiriany, Mohan Kumar Srirama, Lawrence Yunliang Chen, Kirsty Ellis,
et al. Droid: A large-scale in-the-wild robot manipulation dataset. arXiv preprint arXiv:2403.12945,
2024. 10

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024. 1, 5, 10

Xiang Li, Cristina Mata, Jongwoo Park, Kumara Kahatapitiya, Yoo Sung Jang, Jinghuan Shang,
Kanchana Ranasinghe, Ryan Burgert, Mu Cai, Yong Jae Lee, et al. Llara: Supercharging robot
learning data for vision-language policy. arXiv preprint arXiv:2406.20095, 2024. 10

Fangchen Liu, Kuan Fang, Pieter Abbeel, and Sergey Levine. Moka: Open-vocabulary robotic
manipulation through mark-based visual prompting. arXiv preprint arXiv:2403.03174, 2024a. 19

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances in
neural information processing systems, 36, 2024b. 1

Soroush Nasiriany, Fei Xia, Wenhao Yu, Ted Xiao, Jacky Liang, Ishita Dasgupta, Annie Xie,
Danny Driess, Ayzaan Wahid, Zhuo Xu, et al. Pivot: Iterative visual prompting elicits actionable
knowledge for vlms. arXiv preprint arXiv:2402.07872, 2024. 19

Dantong Niu, Yuvan Sharma, Giscard Biamby, Jerome Quenum, Yutong Bai, Baifeng Shi, Trevor
Darrell, and Roei Herzig. Llarva: Vision-action instruction tuning enhances robot learning. arXiv
preprint arXiv:2406.11815, 2024. 10

13

https://openreview.net/forum?id=9iG3SEbMnL

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023. 2

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021. 1

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot
policy. arXiv preprint arXiv:2405.12213, 2024. 5, 10

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023. 3

Mel Vecerik, Carl Doersch, Yi Yang, Todor Davchev, Yusuf Aytar, Guangyao Zhou, Raia Hadsell,
Lourdes Agapito, and Jon Scholz. Robotap: Tracking arbitrary points for few-shot visual imitation.
In 2024 IEEE International Conference on Robotics and Automation (ICRA), pp. 5397–5403.
IEEE, 2024. 10

Homer Rich Walke, Kevin Black, Tony Z Zhao, Quan Vuong, Chongyi Zheng, Philippe Hansen-
Estruch, Andre Wang He, Vivek Myers, Moo Jin Kim, Max Du, et al. Bridgedata v2: A dataset for
robot learning at scale. In Conference on Robot Learning, pp. 1723–1736. PMLR, 2023. 4, 9

Chuan Wen, Xingyu Lin, John So, Kai Chen, Qi Dou, Yang Gao, and Pieter Abbeel. Any-point
trajectory modeling for policy learning. arXiv preprint arXiv:2401.00025, 2023. 1, 10

An Yan, Zhengyuan Yang, Wanrong Zhu, Kevin Lin, Linjie Li, Jianfeng Wang, Jianwei Yang, Yiwu
Zhong, Julian McAuley, Jianfeng Gao, et al. Gpt-4v in wonderland: Large multimodal models for
zero-shot smartphone gui navigation. arXiv preprint arXiv:2311.07562, 2023. 19

Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao. Set-of-mark
prompting unleashes extraordinary visual grounding in gpt-4v. arXiv preprint arXiv:2310.11441,
2023a. 19

Zhengyuan Yang, Linjie Li, Kevin Lin, Jianfeng Wang, Chung-Ching Lin, Zicheng Liu, and Li-
juan Wang. The dawn of lmms: Preliminary explorations with gpt-4v (ision). arXiv preprint
arXiv:2309.17421, 9(1):1, 2023b. 19

Wentao Yuan, Jiafei Duan, Valts Blukis, Wilbert Pumacay, Ranjay Krishna, Adithyavairavan Murali,
Arsalan Mousavian, and Dieter Fox. Robopoint: A vision-language model for spatial affordance
prediction in robotics. In 8th Annual Conference on Robot Learning, 2024. URL https:
//openreview.net/forum?id=GVX6jpZOhU. 1, 10

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
image pre-training. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 11975–11986, 2023. 2

Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang. Vision
mamba: Efficient visual representation learning with bidirectional state space model. arXiv preprint
arXiv:2401.09417, 2024. 10

14

https://openreview.net/forum?id=GVX6jpZOhU
https://openreview.net/forum?id=GVX6jpZOhU

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A REAL ROBOT TASKS SETUP

Here we provide the detailed language instruction for each task that we designed. For each trial, we
randomize the intial location of the target object, and for each trial except for folding cloth, we have
also added 2-3 random distracting objects into the scene, including toy pepper, eggplant, ketchup,
carrot, and donut.

• Task 1: fold cloth: Fold the cloth from right to left. The trial is counted as a success only
when the robot succeesfully grasp the right edge of the cloth and fold it to the left

• Task 2: swipe corn sink: Pick up the brush and then use the brush to sweep the corn into
the sink, while avoiding collision with other objects. The trial is counted as success only
when robot successfully swipe the corn into the sink without colliding into existing objects
on the table.

• Task 3: pickplace corn pot: Pick up the corn and then put it into the pot. The trial is
counted as success only when the robot correctly picks up the corn and place into the pot.
Note that the primary goal of the this task is to assess the model’s generalization capability,
as this task is not part of the training dataset. Instead, the training data includes a task that
involves picking up an eggplant and placing it in a pot.

• Task 4: pickup knife: Pick up the knife first, and then place it on the plate. The trial is
counted as success only when the robot correctly picks up the knife and place into the target
plate.

B ADDITIONAL REAL ROBOT EXPERIMENTS

Pick Banana to the
Right of Plate

Pick Eggphant
on Plate Lift AAA Battery Push Cloth

Left to Right

Figure 11: Four additional tasks for testing generalization in real robot settings.

In this section, we present additional real robot experiments to further evaluate the generalization
capability of TraceVLA. We designed four unseen tasks to test the model’s ability to handle novel
objects, goals, language instructions, and motion scenarios. Additionally, for each trial except for
pushing cloth, we have also added 2-3 random distracting objects into the scene.

• Task 1: pickplace banana: Pick up the banana and place it to the right of the plate. The
trial is counted as a success only when the robot correctly picks up the banana and places it
to the right of the plate. This task is particularly challenging because the banana object is
unseen in our real-robot finetuning dataset. Additionally, solving this task requires the model
to leverage its language understanding capability to ground spatial knowledge, rather than
relying on spurious correlations, as the instructions in our finetuning dataset only involve
placing objects on the plate.

• Task 2: pickplace eggplant: Pick up the eggplant and place it on the plate. The trial is
counted as a success only when the robot correctly places the eggplant on the plate. This
task tests the model’s capability for handling unseen goals, as the finetuning dataset only
includes placing the eggplant into a pot. Additionally, the eggplant is difficult to grasp, as
incorrect placement of the end-effector could easily cause the eggplant to rotate and miss
the target.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

• Task 3: lift battery: Lift the AAA battery. The trial is counted as a success only when the
robot correctly picks up the battery and lifts it without dropping or damaging it. This task
tests the model’s capability to handle unseen objects, as the battery is not included in our
finetuning dataset.

• Task 4: push cloth: Push the cloth from the left to the right of the table. The trial is counted
as a success only when the robot successfully pushes the cloth to within 1 inch of the right
edge of the table. This task evaluates the model’s motion generalization capability, as the
finetuning dataset only includes tasks involving folding cloth.

0 1 2 3 4 5
Number of Successful Trials

Push Cloth

Lift Battery

Pickplace Eggplant

Pickplace Banana

1

2

0

0

5

4

3

3

Additional Real Robot Generalization Tasks

OpenVLA
TraceVLA

Figure 12: Number of succesful trials for TraceVLA against OpenVLA on four additional real robot experiments

As shown in Figure 12, TraceVLA demonstrates substantially improved generalization to unseen
objects, language instructions, and motions compared to OpenVLA, further highlighting the effec-
tiveness of our visual trace prompting technique. Notably, qualitative differences between the two
models are observed, which will be discussed in the next section. Interestingly, for the pickplace
banana task, both failure cases for TraceVLA are due to the end-effector failing to grasp the banana
correctly. In contrast, for the OpenVLA model, while it successfully picks up the banana in two
trials, it places the banana directly onto the plate instead of following the given language instruction
to place it to the right of the plate. This demonstrates that with visual trace prompting, TraceVLA
exhibits stronger language grounding capability and generalizes beyond spurious correlations. For
more qualitative visualizations, we refer the reader to the next section.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C SOME QUALITATIVE RESULTS ON REAL ROBOT ROLLOUTS

In this section, we present real robot manipulation rollouts for both the OpenVLA and TraceVLA
models. As discussed earlier, our TraceVLA model demonstrates significantly better generalization
ability across various real robot manipulation tasks, unseen objects, and unseen language instructions.
In Figures 13, 14, and 15, we qualitatively illustrate how the two models handle three tasks: “Pickplace
Banana, Folding Cloth, and Pickplace Eggplant.” For the TraceVLA model, we also visualize the
visual trace prompt that the model uses during evaluation.

Due to the proposed visual trace prompting, our TraceVLA model not only accurately picks up the
banana and eggplant, grasps the edge of the folding cloth, and completes these tasks smoothly, but
also demonstrates superior spatial understanding and reasoning capability compared to OpenVLA.
In contrast, the OpenVLA model shows limited generalization capability, often overfitting to the
finetuning distribution. For example, it places the banana directly onto the plate instead of following
the instruction to place it to the right of the plate. These results further highlight the benefits of our
visual trace prompting technique.

Figure 13: Pickplace Banana task. (Above): OpenVLA rollout. (Below): TraceVLA rollout with visual trace
prompting.

Figure 14: Fold Cloth task. (Above): OpenVLA rollout. (Below): TraceVLA rollout with visual trace
prompting.

Figure 15: Pickplace Eggplant task. (Above): OpenVLA rollout. (Below): TraceVLA rollout with visual trace
prompting.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

D ADDITIONAL ABLATION STUDIES

D.1 THICKNESS, TRANSPARENCY, AND COLOR OF VISUAL PROMPTING

To further investigate the impact of visualization parameters, we conducted additional ablation studies.
Specifically, we fine-tuned the TraceVLA model on datasets with variations in trace visualization
settings, including different line thicknesses, transparency levels, and color schemes. Our findings
indicate that performance variations across these parameters are minimal within a reasonable range.
Below, we provide detailed experimental results for each parameter setting.

Thickness: The effect of varying the line thickness of visual traces on the SimplerEnv Average
Success Rate is shown in Table 2. We observe only minor differences in performance when adjusting
this parameter.

Thickness SimplerEnv Average Success Rate
linewidth=1 47.2%
linewidth=2 (TraceVLA) 47.7%
linewidth=3 47.8%

Table 2: Impact of line thickness on performance.

Transparency: We varied the transparency of the visual traces by adjusting the α parameter. Lower
α values result in more transparent traces. Table 3 summarizes the findings, demonstrating the
robustness of TraceVLA’s performance to these adjustments.

Transparency (α) SimplerEnv Average Success Rate
α = 1 (TraceVLA) 47.7%
α = 0.8 47.3%

Table 3: Impact of transparency on performance.

Color: The choice of color scheme was also tested. The default TraceVLA color scheme uses RYPBG
(Red, Yellow, Purple, Blue, Green), while an alternative scheme POBGG (Pink, Orange, Blue, Grey,
Green) was evaluated. Results are presented in Table 4, showing negligible differences in success
rates.

Color Scheme SimplerEnv Average Success Rate
RYPBG (TraceVLA) 47.7%
POBGG 47.3%

Table 4: Impact of color scheme on performance.

Takeaway: Our experiments reveal that the choice of visualization parameters, including thickness,
transparency, and color, has a negligible impact on TraceVLA’s performance when chosen within
reasonable ranges. These results suggest that such parameters do not require extensive hyperparameter
tuning, simplifying their selection process. This robustness underscores TraceVLA’s reliability across
different visualization settings.

D.2 BASELINE WITH DIFFERENT STEPS OF HISTORICAL OBSERVATIONS

In Figure 7, we compared TraceVLA with OpenVLA using 6 steps of observation history to ensure
both models had access to the same amount of historical information. Here, in Figure 16, we
further compare TraceVLA with OpenVLA fine-tuned using 2 and 3 steps of observation history on
SimplerEnv. While a slight performance improvement is observed with 2-step history for OpenVLA,
TraceVLA consistently and significantly outperforms the baseline in success rates, highlighting the
effectiveness of visual trace prompting.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

1 2 3 6
Number of historical observation steps

30%

35%

40%

45%

50%

Av
er

ag
e

Su
cc

es
s R

at
e

40.2%
41.0%

39.5%

34.2%

TraceVLA Success Rate: 47.7%

Figure 16: Comparison of TraceVLA against OpenVLA with different steps of observation history.

E ADDITIONAL RELATED WORK

In this section, we discuss some additional works that apply visual prompting technique of VLM
and their applications in robotics. In particular, visual prompting methods have emerged as a new
paradigm for VLM, complementing textual prompting and enabling more fine-grained and pixel-level
instructions on multimodal input for VLMs (Yang et al., 2023a;b), and has been widely used in
robotics (Yan et al., 2023; Liu et al., 2024a; Nasiriany et al., 2024). MOKA (Liu et al., 2024a)
annotates key points as visual marks on images, converting affordance reasoning into a series of
visual question-answering problems that are solvable by the VLM. PIVOT (Nasiriany et al., 2024)
cast robotic control tasks as visual question-answering problems and iteratively refined visual prompts
and action selection. Unlike existing work, our approach introduces visual trace prompting during
fine-tuning of VLMs, overlaying key point traces on robot observations. Our novel visual trace
prompting directly incorporates temporal information into the visual input, enhancing VLA models’
spatial-temporal awareness for more effective action prediction in robotic tasks.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

F MORE IMPLEMENTATION DETAILS

During inference, we aim to make our visual trace prompting as efficient as possible, adding minimal
computation to the original VLA model. Extracting the visual trace by querying Co-Tracker for a
K ×K grid at each timestep is not feasible due to efficiency constraints. Instead, if we know the
active points from the previous timestep, we can query Co-Tracker for only M active points, which is
faster and more cost-effective.

Ideally, similar to KV caching in LLM inference, we only run Co-Tracker with the K ×K grid once
at the start of the trajectory to find the M active points. After that, we query Co-Tracker only for
these M active points throughout the trajectory. However, in practice, we observe that Co-Tracker
might lose track after some steps (around 30 to 40, depending on the actions’ magnitude). To address
this, TraceVLA periodically re-queries Co-Tracker to recalibrate after a long interval. This ensures
that the need for dense K ×K point tracking is infrequent within an episode. As a result, the total
number of dense queries during a trajectory is minimized, while tracking a few active points incurs
little additional cost, adding minimal computational overhead to the model.

We refer the readers to Algorithm 1 for the pseudocode of TraceVLA model inference.

Algorithm 1 Python-style pseudocode for TraceVLA Inference.

K: Co-Tracker Grid Size (e.g., 40 x 40)
M: Number of Points to Track (e.g., 5)
N: Trace Length for Co-Tracker (e.g., 6)
T: Maximum timesteps for inference (e.g., 500)
redraw_steps: Number of steps for Recomputing the KxK dense point tracking

Initialization
image = env.reset()
historical_observations_queue = Queue(max_length=N)
tracked_points = None

for t in range(0, T):
if t >= N:

KxK dense point tracking at timestep N or every redraw_steps for avoiding losing tracks
if t == N or (t % redraw_steps == 0 and t > 0):

Recalculate K x K dense CoTracker point tracking
grid_points = generate_grid_points(K, image.shape) # Get K x K grid points
trace = cotracker(historical_observations_queue, grid_points)
trace = sample(trace, M) # Samplpe M visual traces (2 x N x M)
Update tracked points by using active points on the latest frame
tracked_points = trace[:, -1, :]

else:
Continue tracking with existing points
trace = cotracker(historical_observations_queue, tracked_points) # (2 x N x M)
Update tracked points by using active points on the latest frame
tracked_points = trace[:, -1, :]

Overlay trace on image and compute action using visual language model
image_overlaid = overlay_trace(image, trace)
action = traceVLA([image, image_overlaid], trace_prompt)

else:
Use the prompt without trace hint for initial timesteps
action = traceVLA([image, image], prompt)

image = env.step(action)
historical_observations_queue.append(image)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

G ADDITIONAL EXPERIMENTAL RESULTS ON LIBERO SIMULATION
BENCHMARKS

(a) LIBERO-Spatial (b) LIBERO-Object (c) LIBERO-Goal (d) LIBERO-Long

Figure 17: Four test suites of LIBERO simulation benchmark.

Method LIBERO-Spatial LIBERO-Object LIBERO-Goal LIBERO-Long Average
TraceVLA finetuned 84.6% 85.2% 75.1% 54.1% 74.8%
OpenVLA finetuned 82.6% 83.8% 70.4% 45.7% 70.6%

Table 5: Multitask success rates on LIBERO simulation benchmarks.

In addition to SimplerEnv and WIDOWX-250 real robot experiments, in this section, we conduct
an additional experiment on LIBERO simulation benchmarks. In particular, we take the four suites
from LIBERO: LIBERO-long, LIBERO-Spatial, LIBERO-Object, LIBERO-Goal in LIBERO,
each with 10 tasks and 50 human teleoperated demonstrations per task. We evaluate the multitask
performance of the pretrained VLA policy on these four suites.
Specifically:

• LIBERO-Spatial: Contains the same set of objects but in varying layouts, testing the
model’s ability to understand spatial relationships. Example language instruction: pick up
the black bowl between the plate and the ramekin and place it on the plate.

• LIBERO-Object: Features consistent scene layouts but introduces different objects, evalu-
ating the model’s understanding of object types. Example language instruction: pick up the
alphabet soup and place it in the basket.

• LIBERO-Goal: Maintains the same objects and layouts while varying task goals, assessing
the model’s knowledge of diverse task-oriented behaviors. Example language instruction:
put both the alphabet soup and the tomato sauce in the basket.

• LIBERO-Long (also referred to as LIBERO-10): Comprises long-horizon tasks involving
diverse objects, layouts, and task goals, challenging the model’s ability to handle extended
planning and execution. Example language instruction: open the middle drawer of the
cabinet.

Following OpenVLA, we preprocess the data by filtering out non-successful trajectories and removing
all steps with actions that have near-zero norms and do not change the gripper’s status. For TraceVLA,
we also annotate visual trace following the exact same procedure as what we described earlier, Bridge
and Google Robot dataset. Then we finetune both the OpenVLA model and the TraceVLA-7B model
on the combined dataset from these four suites and report their multitask success rates on each suite
in table 5. (Note that compared to the numbers reported in the OpenVLA paper, here we finetune a
single model on the mixture of all four suites altogether instead of finetuning on each suite separately
and report the numbers.) As shown with table 5, compared with OpenVLA, the superior performance
of TraceVLA across each benchmark suite further demonstrates benefits of our visual trace prompting.

21

	Introduction
	Preliminaries
	TraceVLA
	Visual Trace Prompting
	Model Architecture Design
	Implementation Details

	Experiment
	Simulation Evaluation
	Real Robot Experiments
	Ablation Studies

	Limitation Analysis: Training Memory Cost and Inference Speed
	Related Work
	Conclusion and discussion
	Real Robot Tasks Setup
	Additional Real Robot Experiments
	Some Qualitative results on real robot rollouts
	Additional Ablation Studies
	Thickness, Transparency, and Color of Visual Prompting
	Baseline with Different Steps of Historical Observations

	Additional Related Work
	More Implementation Details
	Additional Experimental Results on LIBERO simulation benchmarks

