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ABSTRACT

Although large vision-language-action (VLA) models pretrained on extensive robot
datasets offer promising generalist policies for robotic learning, they still struggle
with spatial-temporal dynamics in interactive robotics, making them less effective
in handling complex tasks, such as manipulation. In this work, we introduce visual
trace prompting, a simple yet effective approach to facilitate VLA models’ spatial-
temporal awareness for action prediction by encoding state-action trajectories
visually. We develop a new TraceVLA model by finetuning OpenVLA on our
own collected dataset of 150K robot manipulation trajectories using visual trace
prompting. Evaluations of TraceVLA across 137 configurations in SimplerEnv
and 4 tasks on a physical WidowX robot demonstrate state-of-the-art performance,
outperforming OpenVLA by 10% on SimplerEnv and 3.5x on real-robot tasks
and exhibiting robust generalization across diverse embodiments and scenarios.
To further validate the effectiveness and generality of our method, we present
a compact VLA model based on 4B Phi-3-Vision, pretrained on the Open-X-
Embodiment and finetuned on our dataset, rivals the 7B OpenVLA baseline while
significantly improving inference efficiency.

1 INTRODUCTION

Robotic manipulation policies, typically trained on specific task demonstrations, often struggle to
generalize beyond their training data, particularly when faced with novel objects, environments,
instructions, and embodiments. In contrast, foundation models for vision and language—such as
CLIP (Radford et al., 2021), LLaVA (Liu et al., 2024b), Phi-3-Vision (Abdin et al., 2024b), and
GPT-4V (Achiam et al., 2023)—have demonstrated impressive generalization across diverse vision-
language tasks. However, these models are not equipped to handle the challenges unique to robot
manipulation, such as understanding kinematics, adapting to different embodiment configurations,
and executing reliable physical actions. Vision-Language-Action models (VLAs) (Brohan et al.,
2022; Kim et al., 2024) seek to address this gap by fine-tuning vision-language models to generate
robot control actions using large-scale robotic datasets (e.g., Collaboration et al., 2023b), combining
the generalization power of foundation models with task-specific robotic expertise. The approach has
yielded promising results in developing generalist robot policies capable of adapting to a wide range
of manipulation tasks.

However, VLA-powered robots often struggle to maintain awareness of their past movements, leading
to decisions that are more reactive to current inputs rather than informed by spatial history. We posit
that this limitation arises because simply mapping image inputs as current states to control actions
is insufficient. To address this, we propose explicitly computing multi-point temporal trajectories
and overlaying them directly onto the image inputs for VLA models. We hypothesize that this will
effectively provide spatial and temporal relations necessary for improving manipulation tasks (Wen
et al., 2023; Yuan et al., 2024).

Our approach introduces an additional multi-point visual input during VLA training that tracks the
robot’s past movement trajectory (Karaev et al., 2023). We refer to these multi-point trajectories as
visual traces, and show that even with only 2D images as inputs (which allows for better scalability and
integration with existing VLM models), VLA models enhanced with visual traces exhibit improved
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Original Image Image with visual trace

TraceVLA
... <SEP>

Separator Token
(Learnable)

... ...

Text TokenizerImage Tokenizer

Action Tokens

Prompting with 
Task Language Instructions

You are given two images: one with the original robot observation, and another one marked 
with historical traces of the robot end effector and moving objects, separated by a special 
separator token. What action should the robot take to move sponge near blue plastic bottle?

Visual Trace Embodiment Data 

150k 
Trajectories

Downstream 
Manipulation

SimplerEnv: Google Robot Real Robot: WidowX Robot

Figure 1: An illustration of our method. The first image shows the original robot’s observation, while the second
contains the same image with overlaid visual traces. A separator token is then inserted between the visual tokens
of these two images, then concatenating with text tokens and feeding into the underlying vision language model
backbone to output action tokens.

spatial-temporal awareness. This visual trace prompting technique enables better adaptation to
variations in manipulation tasks and improves overall generalization.

We introduce TraceVLA, a 7B-parameter VLA model fine-tuned from OpenVLA using our novel
visual trace prompting dataset, which includes 150K robot manipulation trajectories as shown in
Figure 1. In additional, we finetuned a more compact VLA model, TraceVLA-Phi3, using the
4B-parameter Phi-3-Vision as a backbone on the Open X-Embodiments dataset, which comprises
970K trajectories across diverse robot embodiments, tasks, and scenes. TraceVLA-Phi3 offers
improved inference efficiency and reduced computational requirements while maintaining robust
performance.

To assess the generalization capabilities of our models, we conducted evaluations across 131 diverse
environment settings on Google Robots in the SimplerEnv simulator, which closely mimics real-robot
scenarios. Additionally, we design diverse manipulation experiments on a physical WidowX robot to
evaluate performance in real-world settings. Notably, our models consistently outperform existing
VLA models across all embodiments and environments, demonstrating exceptional generalization
under environmental variations.

Our key contributions are summarized as follows.

• Method. We introduce visual trace prompting, a novel technique that significantly enhances VLA
models’ spatial-temporal reasoning in manipulation tasks.

• Dataset & models. We provide a visual trace prompting dataset and present state-of-the-art 7B
and 4B VLA models fine-tuned using our proposed visual trace prompting, offering an efficient
method to boost VLA model performance.

• Validation. Our approach is rigorously validated through extensive evaluations in both simulated
and real-world robot tasks across diverse embodiments, demonstrating superior generalization
capabilities by leveraging spatial-temporal information.

2 PRELIMINARIES

Visual-Language-Action Models. Vision-language-action models (VLAs) extend vision-language
models (VLMs) to predict discretized robot actions. Their architecture comprises: (1) a visual
encoder (Zhai et al., 2023; Oquab et al., 2023) that converts input images into patch embeddings, (2)
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a projector that maps these embeddings to the language model’s input space, and (3) a large language
model backbone (Touvron et al., 2023). Action discretization, a crucial feature of VLAs, involves
mapping continuous robot actions to discrete tokens. This process typically divides each action
dimension into 256 bins based on data quantiles. These discrete actions are then incorporated into the
language model’s vocabulary, often replacing the least frequently used tokens. VLA training builds
upon the foundation established during VLM training. During VLM training, the model is trained
end-to-end with a next text token prediction objective on paired or interleaved vision and language
data curated from various Internet sources. VLA training then extends this approach, encompassing
fine-tuning of the pretrained VLM. The cross-entropy loss focuses specifically on the predicted action
tokens. This approach allows VLAs to leverage the capabilities of VLMs for complex robot control
tasks while operating within the constraints of tokenized language models.
Generalist Control Policies. Robotic policy learning typically relies on task-specific demonstrations
D = {τ1, τ2, ..., τn}, where each τi = {(ot, st, at)}Tt=1 represents an expert-level trajectory. The
learning architecture comprises a visual encoder Fϕ, mapping image observations oi to features
zi = Fϕ(oi), and a policy network πθ outputting action distributions â ∼ πθ(·|z, s). Training
minimizes the error between predicted â and optimal a actions. To overcome task-specificity
limitations, generalist policies are being developed, aiming to handle diverse sensors, action spaces,
and robotic platforms in various scenarios. Vision-Language-Action (VLA) models, leveraging
VLM’s visual understanding and multimodal reasoning capabilities, show promise in creating more
adaptable generalist policies. These models offer improved generalization across tasks, enhanced
semantic understanding of environments, and the ability to follow natural language instructions,
paving the way for more flexible and intuitive robotic control in broader applications.

3 TRACEVLA

Our ultimate goal is to equip the Vision-Language-Action (VLA) model with the necessary context
to better understand both temporal and spatial dynamics. In this section, we describe the details
of our method, TraceVLA, to achieve this objective. First, we introduce visual trace prompting
in Section 3.1. Next, we explain the model architecture of TraceVLA in Section 3.2. Finally, we
provide the implementation details in Section 3.3.

3.1 VISUAL TRACE PROMPTING

Multi-Point Tracking

Initial State Final State 

Visual Trace
Prompting

Visual Trace Generation

Original Image

🧑💻 User: [Prompting for visual inputs] 
– [Language instruction]

🤖 TraceVLA: [∆𝑥, ∆𝜃, ∆𝐺rip]

CoTracker

🦾

Visual Trace Prompting

Actions

Closed-loop Robot Control

Figure 2: An illustration of visual trace generation. Given a sequence of historical image observations, we first
use Co-tracker to extract dense point trajectories and keep active point trajectories with significant movement.
We then overlay active point trajectories on the robot’s initial observation frame as visual trace prompting. We
feed both the image overlaid with visual traces and the original image into VLA as model input.

A straightforward way to have VLMs understand temporal history information is to concatenate
historical frames and feed them into the VLA model. However, this approach can often distract the
model, as the frames are typically highly visually similar and redundant, making it difficult for the
model to focus on the control-relevant information.
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In this work, we introduce visual trace prompting to address this challenge. Instead of naively
concatenating history frames, we employ an off-the-shelf point tracking algorithm to generate traces
of key points. These visual traces are then visually overlaid on the robot’s original observations,
serving as visual prompts that provide the model with a spatial memory of its historical actions.

At any given timestep t and a time window budget N , we first extract a set of dense point trajectories,
P , from a sequence of historical image observations, ht = (ot−N , . . . , ot), using a dense point
tracking model. Specifically, a point trajectory represents the trace of a moving point over time. Thus,
a set of dense point trajectories captures the traces of multiple critical moving points. The specific
dense point tracking model we employ is Co-Tracker (Karaev et al., 2023), chosen for its efficiency
and simplicity. Co-Tracker partitions the starting frame ot into a K ×K grid and tracks each grid
cell across N frames to construct point trajectories. Consequently, we generate a total of K ×K
dense point trajectories, with each trajectory representing the location of a single point from timestep
t−N to timestep t.

While Co-Tracker provides a K ×K grid of dense point trajectories, it does not inherently identify
“active points.” To address this, we identify active point trajectories in P by analyzing changes in
pixel locations, focusing on those with significant movement and distinguishing them from static
background points. For each point trajectory p ∈ P , we first compute the absolute movement ∆pt′

between two adjacent frames at timestep t′ and t′ + 1, as ∆pt′ =
∣∣pt′+1 − pt′

∣∣
1
. We then identify

active point trajectories P̂ by computing the total movement over N timesteps, keeping those whose
movement exceeds a threshold κ. In other words, P̂ =

{
p ∈ P |

∑t−1
t′=t−N ∆pt′ > κ

}
. From P̂ ,

we randomly sample M active point trajectories, denoted as P̃ , for use in visual prompting.

Finally, we generate the visual trace by overlaying the sampled active point trajectories P̃ onto the
robot’s original observation frame ot, as shown in Figure 2. This overlaid frame serves as a visual
prompt, providing the model with spatial information about its historical states and actions.

3.2 MODEL ARCHITECTURE DESIGN

In Figure 1, we outline the design of TraceVLA using visual trace prompting. While the overlaid
visual trace provides valuable spatial-temporal information about the robot’s historical movements,
it may obstruct the robot’s end-effector or key objects, potentially hindering the model’s ability to
generate the correct action. To address this, we also include the original image observation in the
model input, inserting a special separator token between the two images. As shown in Figure 1, we
adjust the text prompt to inform the VLA model of this additional visual input before requesting the
appropriate action output.

Additionally, since visual traces may not be available in all test-time scenarios—such as when the
Co-Tracker model fails under pool lightning conditions—we implement a dropout mechanism during
training. For each training example, with probability α, we replace the visual trace prompt image with
the original image and remove the corresponding hint from the text prompt. This dropout strategy
introduces variability into the inputs, encouraging the model to effectively utilize both the original
image and the visual trace. As a result, at test time, even if the Co-Tracker model is unable to extract
the visual trace, our model can still function correctly.

3.3 IMPLEMENTATION DETAILS

In this section, we describe the implementation details of the dataset and models used in this work.

For the visual trace generation pipeline in training, we use a grid size of K=40, sample M=5 active
point trajectories, and employ a time window N=6. To reduce computational overhead, we run dense
point tracking every N step for the future 2N frames, rather than at every timestep. We divide demo
trajectories into overlapping 2N-sized segments (e.g., [0, 2N), [N, 3N), etc.) and run Co-Tracker once
per segment. This approach ensures that for each timestep t > N, at least N steps of historical context
are available, while significantly reducing computational costs.

To create our dataset with visual trace annotations, we applied our visual trace generation pipeline to
the following training datasets: BridgeData-v2 (Walke et al., 2023), Google RT1 Robot datasets (Bro-
han et al., 2022), as well as to 120 demonstrations collected from 4 manipulation tasks on our WidowX-
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Models
Visual Matching Variant Aggregation

Overall Performance
Move Near Pick Coke Can Open/Close

Drawer
Move Near Pick Coke Can Open/Close

Drawer

OpenVLA-Phi3 46.1% 46.7% 22.5% 51.9% 49.7% 22.2% 39.9%

TraceVLA-Phi3 50.4%
(↑ 4.3%)

52.2%
(↑ 5.5%)

31.0%
(↑ 8.5%)

55.0%
(↑ 3.1%)

52.4%
(↑ 2.7%)

23.2%
(↑ 1.0%)

44.0%
(↑ 4.1%)

OpenVLA 47.1% 15.3% 49.5% 54.0% 52.8% 22.5% 40.2%

TraceVLA 53.7%
(↑ 6.6%)

28.0%
(↑ 12.7%)

57.0%
(↑ 7.5%)

56.4%
(↑ 2.4%)

60.0%
(↑ 7.2%)

31.0%
(↑ 8.5%)

47.7%
(↑ 7.5%)

Octo-Base 3.0% 1.3% 1.0% 4.2% 17.0% 22.0% 8.2%

RT1-X 55.0% 52.8% 22.5% 34.2% 54.0% 56.0% 45.8%

Table 1: Performance results on three SimplerEnv Google robot tasks under two evaluation metrics: visual
matching and variant aggregation. Overall performance is calculated as the average over all the results.

250 Robot setup for downstream evaluation. In total, we gathered approximately 150,000 robot
trajectories annotated with visual trace prompting, forming our fine-tuning dataset for TraceVLA.

To obtain real-time visual traces during inference, we reduce the computational overhead of densely
querying the Co-tracker at every timestep by tracking M active points and sparsely querying Co-
tracker. Specifically, at timestep t=0, we perform dense K×K point tracking to identify these active
points (see Sec. 3.1 for details). For every timestep t>0, we query Co-tracker only for these active
points to generate M corresponding traces, and update the tracked active points from the traces. For
further details and pseudocode of our TraceVLA inference pipeline, please refer to Appendix F.

For the VLA models, we started with OpenVLA (Kim et al., 2024), a 7B VLA model based on the
Prismatic vision-language model (Karamcheti et al., 2024), trained on the Open X-Embodiment
dataset (Collaboration et al., 2023a). Additionally, we pretrained a 4B VLA model with Phi3-Vision
as its backbone VLM (Abdin et al., 2024a), on the Open X-Embodiment dataset using a batch size of
4096 for 30 epochs with 32 H100 GPUs, following the same recipe as OpenVLA. This lightweight
4B model allows us to test the flexibility of our visual trace prompting across different VLM model
architectures. Additionally, the 4B Phi3V-based VLA model will also provide the community with
a more compact VLA model for finetuning compared to the larger 7B Prismatic model, while the
reduced memory cost allows fine-tuning to be performed on smaller GPUs such as RTX4090 or
RTX A5000’s. For both TraceVLA and TraceVLA-Phi3, we finetune the base VLA model for an
additional five epochs.

4 EXPERIMENT

To comprehensively evaluate our model’s performance, we conducted experiments across a wide
range of environmental setups, including 3 tasks with 137 different configurations in simulation and
4 tasks on real robots.
Baseline. We benchmark our approach against the following generalist policies, including state-of-
the-art open-sourced models:

OpenVLA (Kim et al., 2024): A 7B parameter VLA trained on the Open-X-Embodiment (Collabora-
tion et al., 2023a) Dataset, representing large-scale generalist policies.

OpenVLA-Phi3: A 4.5B parameter VLA pretrained model using Phi-3-Vision as backbone.

Octo-Base (Team et al., 2024): A 93M parameter transformer-based policy trained on 800k trajecto-
ries from the Open-X-Embodiment Dataset.

RT1-X (Collaboration et al., 2023a): A compact 35M parameter model trained on the same dataset
as Octo-Base, exemplifying efficient architectures.

TraceVLA and TraceVLA-Phi3: Finetuned from OpenVLA and OpenVLA-Phi3 with visual trace
prompting.

4.1 SIMULATION EVALUATION

SimplerEnv. Our simulation evaluation utilizes SimplerEnv, which incorporates two distinct settings:
visual matching and variant aggregation. The visual matching setting aims to minimize the
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visual appearance gap between real environments and raw simulation, significantly enhancing the
correlation between policy performance in simulation and real-world scenarios. Complementing
this, the variant aggregation setting covers a wide range of environmental variations as shown in
Figure 4, including backgrounds from different rooms, lighter and darker lighting conditions, varying
numbers of distractors, solid color and complex table textures, and different robot camera poses. This
comprehensive set of variations allows us to assess the robustness and adaptability of our approach in
handling diverse manipulation scenarios, particularly evaluating the spatial and temporal awareness
brought by visual trace prompting.

Overall Performance. As shown in Table 1, TraceVLA consistently outperforms OpenVLA across
various tasks and evaluation metrics in the SimplerEnv Google robot tasks. The improvements are
evident in both the full-scale 7B models (TraceVLA vs OpenVLA) and their 4B versions (TraceVLA-
Phi3 vs OpenVLA-Phi3). TraceVLA shows significant performance gains, with improvements
ranging from 2.4% to 12.7% in all three tasks across different metrics. When compared to other
baselines like Octo-Base and RT1-X, both TraceVLA and TraceVLA-Phi3 generally perform better,
with a few exceptions where RT1-X, shows competitive performance in specific tasks. These results
suggest that the visual trace prompting technique employed in TraceVLA enhances the model’s
ability to generalize across different robotic manipulation tasks and environmental conditions, leading
to improved performance in both visual matching and variant aggregation scenarios.

20% 25% 30% 35% 40% 45% 50% 55% 60%
Success Rate (%)

Move Near

Pick Coke

 Drawer
            Open/Close

50.6%

34.1%

36.0%

55.0%

44.0%

44.0%

OpenVLA - SimplerEnv
OpenVLA
(Ours) TraceVLA

20% 25% 30% 35% 40% 45% 50% 55% 60%
Success Rate (%)

Move Near

Pick Coke

 Drawer
            Open/Close

49.0%

48.2%

22.4%

52.7%

52.3%

27.1%

Phi3 - SimplerEnv
OpenVLA-Phi3
(Ours) TraceVLA-Phi3

Figure 3: (Left): 7B TraceVLA vs. 7B OpenVLA. (Right): 4B TraceVLA-Phi3 vs. 4B OpenVLA-Phi3.
Numbers are averaged across the visual matching and variant aggregation metrics.

Camera 
orientations

Lighting
darker

Background
change Distractor Table

texture

Success Rate (%)
OpenVLA

TraceVLA
Camera

Lighting

Background

Distractor

TraceVLA

OpenVLA

TraceVLA

OpenVLA

TraceVLA

Table 
Texture

OpenVLA

OpenVLA

TraceVLA

32.8%

38.3%

41.7%

50.8%

41.2%

52.3%

54.3%

66.7%

60.9%

63.7%

Figure 4: Comparison of OpenVLA and TraceVLA performance across various environmental variations:
camera orientations, lighting, background, distractors, and table texture.

Environmental Variant Aggregation. Figure 4 demonstrates significant performance improvements
of TraceVLA over OpenVLA across various environmental conditions. Notably, TraceVLA shows
substantial enhancements under camera orientation changes, distractor presence, and background
alterations, with an average improvement exceeding 20% in these categories. The use of visual trace
prompting proves particularly effective when camera angles shift, as the trace provides valuable spatial
trajectory information. This helps the model maintain performance despite changes in perspective.
Similarly, when faced with background changes, varying table textures, or lighting alterations, the
visual trace allows the model to remain more stable and less influenced by environmental backgrounds.
In scenarios with added distractors, the visual trace effectively reminds the policy of past trajectory
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interferences, evidenced by noticeable arm diversions. These varied environmental conditions
collectively validate the spatial and temporal understanding provided by visual trace prompting.

4.2 REAL ROBOT EXPERIMENTS

Gripper

3rd Person
Camera

WidowX 250 
Robot Arm

Fold Cloth Pick Up KnifePickplace Corn PotSwipe Corn Sink

Figure 5: Real robot setup. We design 4 real-world robot tasks with different manipulation skills and objects.

0 2 4 6 8 10
Number of Successful Trials

Pickplace Corn

Pickplace Knife

Swipe Corn Sink

Fold Cloth

1

4

0

2

8

8

5

7

Real Robot Performance

OpenVLA
TraceVLA

Figure 6: Performance evaluation of
TraceVLA on real-world WidowX-250 robot
manipulation tasks

We design 4 tabletop manipulation tasks on our physical
WidowX-250 robot setup. Similar to BridgeData-v2, a
fixed-mounted third-person view is used to capture the
robot’s RGB image observations at a resolution of 256×
256. Although it shares the same robot embodiment as
BridgeData-v2, differences in setup, backgrounds, camera
angles, lighting conditions, etc., make it infeasible to use a
pretrained VLA model in a zero-shot manner in our setup.
Therefore, we collect 30 robot demonstration trajectories
for each task for our finetuning dataset. Our experimental
design includes classic soft object manipulation, pick-and-
place operations, and object movement tasks. TraceVLA
consistently outperforms the baseline across these diverse
tasks as presented in Figure 6, demonstrating improved
generalization and adaptation to real-world robotic manipulation scenarios.

Note that the primary goal of the last pick-place corn task is to assess the model’s generalization
capability, as this task is not part of the training dataset. Instead, the training data includes a task that
involves picking up an eggplant and placing it in a pot. Although the model encounters corn in the
swipe corn sink task and only learns to pick up an eggplant and place it into a pot during training,
we observed that TraceVLA successfully completed the pick-place corn task in 8 out of 10 trials,
whereas the baseline OpenVLA model succeeded only once. This demonstrates TraceVLA’s strong
generalization capability to unseen task instructions.

4.3 ABLATION STUDIES

To analyze the performance gain from visual trace prompting, we further study the following
questions.
Is performance gain of TraceVLA coming from further finetuning on a smaller subset of Open
X-embodiment dataset? To answer this, we also tested the performance of the 7B OpenVLA and
4B OpenVLA-Phi3 models finetuned on the exact same dataset as ours, but without using visual trace
prompting. The results, as shown in Figure 7 (Left), indicate that the performance gain observed
in TraceVLA is unlikely due to finetuning the pretrained VLA model on a smaller subset. While
finetuning the pretrained OpenVLA model brings a 1.1% gain, finetuning OpenVLA-Phi3 model
even degrades the performance by 0.3%. However, when visual trace prompting is incorporated, the
success rate of OpenVLA model increases to 47.7%, highlighting the significant impact of visual
traces on model performance.

Will appending historical image observations also give similar performance gain as TraceVLA?
Instead of using visual trace prompting, the most straightforward way to integrate the model’s
historical movement knowledge is to provide it with multiple past image observations. To test this
method, we input N frames into the VLA model, separated by a learnable separator token, similar
to our approach in TraceVLA. We also include a sentence in the text prompt to inform the model
of this change in observation. Here, N = 6, which matches the length of the visual trace used in
TraceVLA. In theory, the model should receive more information from these 6 complete frames

7
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Figure 7: (Left): Comparison of average success rates between the base OpenVLA and OpenVLA-Phi3 models
and their finetuned versions, with and without visual trace prompting. (Right): Comparison of average success
rates between the base OpenVLA,TraceVLA, and OpenVLA finetuned with a sequence of 6 images.

compared to visual trace prompting. However, as shown in 7 (Right), finetuning OpenVLA with
historical information not only fails to improve overall performance but also reduces it by 6%. This
performance drop is likely due to redundant information between visual tokens at different timesteps,
which may distract the model from focusing on the most relevant information for deciding next
actions. In contrast, visual trace prompting offers useful hints that enhance the context for the
vision-language model.

Is visual trace prompting better than text trace prompting for grounding VLA with temporal-
spatial understanding? In addition to guiding the model with point tracking by overlaying the visual
trace on the original image, we can also describe the movement of the points using 2D coordinates
in text. To assess whether visual prompting is the most effective method for improving the VLA
model’s spatial-temporal understanding, we implemented an alternative approach that describes the
points’ movement verbally, treating the trace as text tokens, as shown in Figure 8 (Right).

Interestingly, using this text-based trace yields a 2.4% average performance gain over the baseline
VLA model, suggesting that point tracking information is indeed useful for the robot model. However,
compared to our approach (TraceVLA), the additional 6.4% gain indicates that leveraging the
vision encoder’s ability to process visual prompts is much more effective than describing the points’
location and movement in text. While text descriptions can precisely convey the location and
movement of each point, they also increase token count (by ∼150 tokens) compared with visual
trace prompting, leading to substantially higher GPU costs. Moreover, relying solely on text fails to
fully leverage the multimodal grounding capabilities of current vision-language models. Our visual
trace prompting approach strikes an optimal balance between efficiency and efficacy, demonstrating
superior performance gains (an additional 6.4% improvement) over text-based alternatives while
maintaining computational efficiency.

You are given an image of robot's observation. Additionally, you 
are given the movement information of 5 points in the image. Over 
the last 6 frames, the 5 points moved as follows:

Point 1 moved through positions: [244,80], [200,115], [177,31], ...
Point 2 moved through positions: [218,96], [200,122], [185,10], ... 
Point 3 moved through positions: [237,118], [208,42], [161,79], ... 
Point 4 moved through positions: [225,49], [200,127], [171,72], ... 
Point 5 moved through positions: [251,93], [200,103], [181,91], ...

Now what the robot should do to pick up the coke can?

Figure 8: (Left): Comparing visual trace prompting and text trace prompting. (Right) Text trace prompts
example.

How does TraceVLA perform under different lengths of visual trace? An important hy-
perparameter of TraceVLA is the length of visual trace prompting N , which determines
the length of the historical information provided in the visual prompt. While a longer
N includes more past observations, it can clutter the visual context and potentially ob-
scure key objects or the robot end-effector, while a shorter N has less risk of covering
the key information but contains less historical information. As shown in Figure 9, us-
ing a smaller number of steps (N = 3) results in a 3.2% performance improvement.
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Figure 9: TraceVLA under differ-
ent length of visual traces.

However, since a visual trace of only three steps is often too brief,
the performance gain is not as substantial compared to larger val-
ues of N . Conversely, setting N too large, such as N = 12,
may lead to a less informative trace that obscures key scene ele-
ments and overlaps partially with previous motion traces of robots
in the overlaid images, potentially distracting the VLM model,
thereby slightly reducing overall performance. In practice, tuning
N should be straightforward, and might be dataset-specific. It
involves sampling a few episodes and visually inspecting the gen-
erated trace to ensure that the selected N provides an appropriate
balance between historical context and the clarity of the scene.

5 LIMITATION ANALYSIS:
TRAINING MEMORY COST AND INFERENCE SPEED

Since TraceVLA introduces an additional image input into the model and uses CoTracker to obtain
the visual trace during testing, we examine both the training memory cost and inference speed of
TraceVLA. For evaluating memory cost, we launch a single-node multi-gpu training job with 8 H100
graphics cards under varying batch sizes, and we measure the maximum GPU memory usage across
8 H100s. All tests are conducted with flash attention and torch.bfloat16 as the datatype of model
weights and inputs. As shown in Figure 10 (left), when the batch size is 32, the memory difference
between TraceVLA and models without visual trace prompting (for both Phi3 and OpenVLA) is less
than 10GB. Notably, this difference becomes even smaller with a reduced batch size, indicating that
while TraceVLA incurs some extra GPU memory cost, this additional GPU memory cost remains
manageable and not significantly impactful.

For testing inference speed, we evaluate the time cost using a single H100 GPU. In addition, we
also analyze the time cost of each additional component introduced in TraceVLA compared to the
original OpenVLA model. During inference time, the extra computation introduced by TraceVLA
consists of approximately 300 additional image and text tokens for the transformer model at each
timestep, 5-point CoTracker point tracking for every timestep, and K ×K (where K = 40) dense
point tracking every 20 steps. For the 40× 40 dense point tracking, as it requires recalculation only
every 20 steps, the average time cost per timestep is computed by evenly distributing the total cost
over each timestep. As shown in Figure 10 (right), we observe that the additional text and image
tokens result in a negligible inference cost (around 0.002 seconds), likely due to GPU optimization
for attention. Using M points (M = 5) for CoTracker per timestep adds an extra 0.03 seconds per
step, while the dense 40× 40 point tracking has an amortized cost of 0.004 seconds per step.

Figure 10: (Left):Comparison of GPU memory cost of 7B TraceVLA, OpenVLA and 4B TraceVLA-Phi3,
OpenVLA-Phi3. (Right): Comparison of inference time across different models.

6 RELATED WORK

Generalist Robot Policies. Recent advancements in robotics have seen a shift towards developing
multi-task “generalist” robot policies capable of performing a wide range of tasks, rather than
specializing in a single task (Brohan et al., 2022; Walke et al., 2023; Kalashnikov et al., 2018; 2021;
Ebert et al., 2021; Ehsani et al., 2023; Bharadhwaj et al., 2024). Existing work utilized pretrained
model components and finetuned them on large, diverse robot datasets that encompass various
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scenarios and tasks for better generalization (Ebert et al., 2021; Brohan et al., 2022; Collaboration
et al., 2023b; Khazatsky et al., 2024). For instance, Octo trained a generalist robot policy by
building on pretrained language embeddings and visual encoders, incorporating additional model
components initialized from scratch and learning to compose them during training (Team et al., 2024).
OpenVLA enhanced this architecture by adopting an end-to-end approach that directly fine-tunes
Vision-Language Models (VLMs) to generate robot actions, treating these actions as tokens within
the language model vocabulary (Kim et al., 2024). In contrast, our method integrates historical
visual traces into the VLM and employs these traces as visual prompting, enabling a more nuanced
understanding of the robot’s history state, and offering a more comprehensive VLM framework for
generalist policies.
Vision Language Action Models. Several studies have investigated the application of vision-
language models (VLMs) in robotics (Karamcheti et al., 2023; Gadre et al., 2022; Driess et al., 2023;
Du et al., 2023). Among them, Robopoint (Yuan et al., 2024) and RepKep (Huang et al., 2024b)
leverages VLM for explicit key point coordinates prediction, which is then converted to low-level
actions through an off-the-shelf motion planner. Meanwhile, many recent works have explored
fine-tuning large pretrained VLMs to directly predict robot actions as VLA models, treating these
actions as tokens within the language model vocabulary (Brohan et al., 2023; Niu et al., 2024; Zhu
et al., 2024; Li et al., 2024; Kim et al., 2024). Among them, RT-2 (Brohan et al., 2023) fine-tuned
VLMs on both robotic trajectory data and Internet-scale vision-language data. LLARVA (Niu et al.,
2024) generated both 2D visual traces in image coordinates and corresponding textual actions as
outputs, with the former functioning as an auxiliary task. LLaRA (Li et al., 2024) generates multiple
auxiliary datasets with complementary training objectives to provide additional supervision. RT-
2-X (Collaboration et al., 2023a) trains a 55B-parameter VLA policy on the Open X-Embodiment
dataset. OpenVLA (Kim et al., 2024) combines a open VLM backbone with a richer robot pertaining
dataset. We build on top of OpenVLA, but distinctively address the challenge of maintaining
awareness of past spatial trajectories in VLA.
Visual Trace for Robotics. Visual traces of moving objects are vital for improving robotic action
prediction, as they convey essential information about object dynamics. Various approaches have
been developed to utilize visual traces in robotics, including using hand-drawn sketches for goal
specifications (Gu et al., 2023), predicting future traces and learning a trace-guided policy (Wen
et al., 2023; Bharadhwaj et al.), identifying active points for motion planning (Vecerik et al., 2024),
and localizing active regions of robot observations for video generation (Huang et al., 2024a). More
recently, the vision language action model LLARVA (Niu et al., 2024) predicts future 2D traces in text
format as intermediate outputs alongside action tokens. In contrast, our approach integrates historical
visual traces directly into VLA models as visual prompts. This novel method enhances VLMs’
contextual understanding of the spatial and temporal dynamics, addressing an aspect previously
underexplored in VLA models.

7 CONCLUSION AND DISCUSSION

Our work advances vision-language-action (VLA) models for robotic manipulation by introducing
a novel visual trace prompting technique and providing a dataset enriched with spatial-temporal
information across diverse embodiments. With state-of-the-art 7B and 4B VLA models, we push
the boundaries of VLA performance, demonstrating their effectiveness in both extensive simulated
environments and real-world robotic tasks. By bridging the gap between visual perception, temporal
awareness, and physical embodiment, we significantly enhance the generalization and adaptability of
VLA models.

Looking ahead, promising directions for future research include incorporating multi-point spatial
trajectory prediction, allowing models not only to react but also to anticipate and plan actions with
greater foresight. Additionally, leveraging 3D point cloud data for training could further enrich
spatial representations, capturing fine-grained details in complex scenes and objects, thus improving
manipulation accuracy and robustness across diverse and dynamic scenarios. These advancements
will continue to enhance the generalization capabilities of VLA models, driving further progress in
robotic manipulation.
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A REAL ROBOT TASKS SETUP

Here we provide the detailed language instruction for each task that we designed. For each trial, we
randomize the intial location of the target object, and for each trial except for folding cloth, we have
also added 2-3 random distracting objects into the scene, including toy pepper, eggplant, ketchup,
carrot, and donut.

• Task 1: fold cloth: Fold the cloth from right to left. The trial is counted as a success only
when the robot succeesfully grasp the right edge of the cloth and fold it to the left

• Task 2: swipe corn sink: Pick up the brush and then use the brush to sweep the corn into
the sink, while avoiding collision with other objects. The trial is counted as success only
when robot successfully swipe the corn into the sink without colliding into existing objects
on the table.

• Task 3: pickplace corn pot: Pick up the corn and then put it into the pot. The trial is
counted as success only when the robot correctly picks up the corn and place into the pot.
Note that the primary goal of the this task is to assess the model’s generalization capability,
as this task is not part of the training dataset. Instead, the training data includes a task that
involves picking up an eggplant and placing it in a pot.

• Task 4: pickup knife: Pick up the knife first, and then place it on the plate. The trial is
counted as success only when the robot correctly picks up the knife and place into the target
plate.

B ADDITIONAL REAL ROBOT EXPERIMENTS

Pick Banana to the 
Right of Plate 

Pick Eggphant
on Plate Lift AAA Battery Push Cloth 

Left to Right

Figure 11: Four additional tasks for testing generalization in real robot settings.

In this section, we present additional real robot experiments to further evaluate the generalization
capability of TraceVLA. We designed four unseen tasks to test the model’s ability to handle novel
objects, goals, language instructions, and motion scenarios. Additionally, for each trial except for
pushing cloth, we have also added 2-3 random distracting objects into the scene.

• Task 1: pickplace banana: Pick up the banana and place it to the right of the plate. The
trial is counted as a success only when the robot correctly picks up the banana and places it
to the right of the plate. This task is particularly challenging because the banana object is
unseen in our real-robot finetuning dataset. Additionally, solving this task requires the model
to leverage its language understanding capability to ground spatial knowledge, rather than
relying on spurious correlations, as the instructions in our finetuning dataset only involve
placing objects on the plate.

• Task 2: pickplace eggplant: Pick up the eggplant and place it on the plate. The trial is
counted as a success only when the robot correctly places the eggplant on the plate. This
task tests the model’s capability for handling unseen goals, as the finetuning dataset only
includes placing the eggplant into a pot. Additionally, the eggplant is difficult to grasp, as
incorrect placement of the end-effector could easily cause the eggplant to rotate and miss
the target.
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• Task 3: lift battery: Lift the AAA battery. The trial is counted as a success only when the
robot correctly picks up the battery and lifts it without dropping or damaging it. This task
tests the model’s capability to handle unseen objects, as the battery is not included in our
finetuning dataset.

• Task 4: push cloth: Push the cloth from the left to the right of the table. The trial is counted
as a success only when the robot successfully pushes the cloth to within 1 inch of the right
edge of the table. This task evaluates the model’s motion generalization capability, as the
finetuning dataset only includes tasks involving folding cloth.

0 1 2 3 4 5
Number of Successful Trials

Push Cloth

Lift Battery

Pickplace Eggplant

Pickplace Banana

1

2

0

0

5

4

3

3

Additional Real Robot Generalization Tasks

OpenVLA
TraceVLA

Figure 12: Number of succesful trials for TraceVLA against OpenVLA on four additional real robot experiments

As shown in Figure 12, TraceVLA demonstrates substantially improved generalization to unseen
objects, language instructions, and motions compared to OpenVLA, further highlighting the effec-
tiveness of our visual trace prompting technique. Notably, qualitative differences between the two
models are observed, which will be discussed in the next section. Interestingly, for the pickplace
banana task, both failure cases for TraceVLA are due to the end-effector failing to grasp the banana
correctly. In contrast, for the OpenVLA model, while it successfully picks up the banana in two
trials, it places the banana directly onto the plate instead of following the given language instruction
to place it to the right of the plate. This demonstrates that with visual trace prompting, TraceVLA
exhibits stronger language grounding capability and generalizes beyond spurious correlations. For
more qualitative visualizations, we refer the reader to the next section.
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C SOME QUALITATIVE RESULTS ON REAL ROBOT ROLLOUTS

In this section, we present real robot manipulation rollouts for both the OpenVLA and TraceVLA
models. As discussed earlier, our TraceVLA model demonstrates significantly better generalization
ability across various real robot manipulation tasks, unseen objects, and unseen language instructions.
In Figures 13, 14, and 15, we qualitatively illustrate how the two models handle three tasks: “Pickplace
Banana, Folding Cloth, and Pickplace Eggplant.” For the TraceVLA model, we also visualize the
visual trace prompt that the model uses during evaluation.

Due to the proposed visual trace prompting, our TraceVLA model not only accurately picks up the
banana and eggplant, grasps the edge of the folding cloth, and completes these tasks smoothly, but
also demonstrates superior spatial understanding and reasoning capability compared to OpenVLA.
In contrast, the OpenVLA model shows limited generalization capability, often overfitting to the
finetuning distribution. For example, it places the banana directly onto the plate instead of following
the instruction to place it to the right of the plate. These results further highlight the benefits of our
visual trace prompting technique.

Figure 13: Pickplace Banana task. (Above): OpenVLA rollout. (Below): TraceVLA rollout with visual trace
prompting.

Figure 14: Fold Cloth task. (Above): OpenVLA rollout. (Below): TraceVLA rollout with visual trace
prompting.

Figure 15: Pickplace Eggplant task. (Above): OpenVLA rollout. (Below): TraceVLA rollout with visual trace
prompting.
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D ADDITIONAL ABLATION STUDIES

D.1 THICKNESS, TRANSPARENCY, AND COLOR OF VISUAL PROMPTING

To further investigate the impact of visualization parameters, we conducted additional ablation studies.
Specifically, we fine-tuned the TraceVLA model on datasets with variations in trace visualization
settings, including different line thicknesses, transparency levels, and color schemes. Our findings
indicate that performance variations across these parameters are minimal within a reasonable range.
Below, we provide detailed experimental results for each parameter setting.

Thickness: The effect of varying the line thickness of visual traces on the SimplerEnv Average
Success Rate is shown in Table 2. We observe only minor differences in performance when adjusting
this parameter.

Thickness SimplerEnv Average Success Rate
linewidth=1 47.2%
linewidth=2 (TraceVLA) 47.7%
linewidth=3 47.8%

Table 2: Impact of line thickness on performance.

Transparency: We varied the transparency of the visual traces by adjusting the α parameter. Lower
α values result in more transparent traces. Table 3 summarizes the findings, demonstrating the
robustness of TraceVLA’s performance to these adjustments.

Transparency (α) SimplerEnv Average Success Rate
α = 1 (TraceVLA) 47.7%
α = 0.8 47.3%

Table 3: Impact of transparency on performance.

Color: The choice of color scheme was also tested. The default TraceVLA color scheme uses RYPBG
(Red, Yellow, Purple, Blue, Green), while an alternative scheme POBGG (Pink, Orange, Blue, Grey,
Green) was evaluated. Results are presented in Table 4, showing negligible differences in success
rates.

Color Scheme SimplerEnv Average Success Rate
RYPBG (TraceVLA) 47.7%
POBGG 47.3%

Table 4: Impact of color scheme on performance.

Takeaway: Our experiments reveal that the choice of visualization parameters, including thickness,
transparency, and color, has a negligible impact on TraceVLA’s performance when chosen within
reasonable ranges. These results suggest that such parameters do not require extensive hyperparameter
tuning, simplifying their selection process. This robustness underscores TraceVLA’s reliability across
different visualization settings.

D.2 BASELINE WITH DIFFERENT STEPS OF HISTORICAL OBSERVATIONS

In Figure 7, we compared TraceVLA with OpenVLA using 6 steps of observation history to ensure
both models had access to the same amount of historical information. Here, in Figure 16, we
further compare TraceVLA with OpenVLA fine-tuned using 2 and 3 steps of observation history on
SimplerEnv. While a slight performance improvement is observed with 2-step history for OpenVLA,
TraceVLA consistently and significantly outperforms the baseline in success rates, highlighting the
effectiveness of visual trace prompting.
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Figure 16: Comparison of TraceVLA against OpenVLA with different steps of observation history.

E ADDITIONAL RELATED WORK

In this section, we discuss some additional works that apply visual prompting technique of VLM
and their applications in robotics. In particular, visual prompting methods have emerged as a new
paradigm for VLM, complementing textual prompting and enabling more fine-grained and pixel-level
instructions on multimodal input for VLMs (Yang et al., 2023a;b), and has been widely used in
robotics (Yan et al., 2023; Liu et al., 2024a; Nasiriany et al., 2024). MOKA (Liu et al., 2024a)
annotates key points as visual marks on images, converting affordance reasoning into a series of
visual question-answering problems that are solvable by the VLM. PIVOT (Nasiriany et al., 2024)
cast robotic control tasks as visual question-answering problems and iteratively refined visual prompts
and action selection. Unlike existing work, our approach introduces visual trace prompting during
fine-tuning of VLMs, overlaying key point traces on robot observations. Our novel visual trace
prompting directly incorporates temporal information into the visual input, enhancing VLA models’
spatial-temporal awareness for more effective action prediction in robotic tasks.
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F MORE IMPLEMENTATION DETAILS

During inference, we aim to make our visual trace prompting as efficient as possible, adding minimal
computation to the original VLA model. Extracting the visual trace by querying Co-Tracker for a
K ×K grid at each timestep is not feasible due to efficiency constraints. Instead, if we know the
active points from the previous timestep, we can query Co-Tracker for only M active points, which is
faster and more cost-effective.

Ideally, similar to KV caching in LLM inference, we only run Co-Tracker with the K ×K grid once
at the start of the trajectory to find the M active points. After that, we query Co-Tracker only for
these M active points throughout the trajectory. However, in practice, we observe that Co-Tracker
might lose track after some steps (around 30 to 40, depending on the actions’ magnitude). To address
this, TraceVLA periodically re-queries Co-Tracker to recalibrate after a long interval. This ensures
that the need for dense K ×K point tracking is infrequent within an episode. As a result, the total
number of dense queries during a trajectory is minimized, while tracking a few active points incurs
little additional cost, adding minimal computational overhead to the model.

We refer the readers to Algorithm 1 for the pseudocode of TraceVLA model inference.

Algorithm 1 Python-style pseudocode for TraceVLA Inference.

# K: Co-Tracker Grid Size (e.g., 40 x 40)
# M: Number of Points to Track (e.g., 5)
# N: Trace Length for Co-Tracker (e.g., 6)
# T: Maximum timesteps for inference (e.g., 500)
# redraw_steps: Number of steps for Recomputing the KxK dense point tracking

# Initialization
image = env.reset()
historical_observations_queue = Queue(max_length=N)
tracked_points = None

for t in range(0, T):
if t >= N:

# KxK dense point tracking at timestep N or every redraw_steps for avoiding losing tracks
if t == N or (t % redraw_steps == 0 and t > 0):

# Recalculate K x K dense CoTracker point tracking
grid_points = generate_grid_points(K, image.shape) # Get K x K grid points
trace = cotracker(historical_observations_queue, grid_points)
trace = sample(trace, M) # Samplpe M visual traces (2 x N x M)
# Update tracked points by using active points on the latest frame
tracked_points = trace[:, -1, :]

else:
# Continue tracking with existing points
trace = cotracker(historical_observations_queue, tracked_points) # (2 x N x M)
# Update tracked points by using active points on the latest frame
tracked_points = trace[:, -1, :]

# Overlay trace on image and compute action using visual language model
image_overlaid = overlay_trace(image, trace)
action = traceVLA([image, image_overlaid], trace_prompt)

else:
# Use the prompt without trace hint for initial timesteps
action = traceVLA([image, image], prompt)

image = env.step(action)
historical_observations_queue.append(image)
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G ADDITIONAL EXPERIMENTAL RESULTS ON LIBERO SIMULATION
BENCHMARKS

(a) LIBERO-Spatial (b) LIBERO-Object (c) LIBERO-Goal (d) LIBERO-Long

Figure 17: Four test suites of LIBERO simulation benchmark.

Method LIBERO-Spatial LIBERO-Object LIBERO-Goal LIBERO-Long Average
TraceVLA finetuned 84.6% 85.2% 75.1% 54.1% 74.8%
OpenVLA finetuned 82.6% 83.8% 70.4% 45.7% 70.6%

Table 5: Multitask success rates on LIBERO simulation benchmarks.

In addition to SimplerEnv and WIDOWX-250 real robot experiments, in this section, we conduct
an additional experiment on LIBERO simulation benchmarks. In particular, we take the four suites
from LIBERO: LIBERO-long, LIBERO-Spatial, LIBERO-Object, LIBERO-Goal in LIBERO,
each with 10 tasks and 50 human teleoperated demonstrations per task. We evaluate the multitask
performance of the pretrained VLA policy on these four suites.
Specifically:

• LIBERO-Spatial: Contains the same set of objects but in varying layouts, testing the
model’s ability to understand spatial relationships. Example language instruction: pick up
the black bowl between the plate and the ramekin and place it on the plate.

• LIBERO-Object: Features consistent scene layouts but introduces different objects, evalu-
ating the model’s understanding of object types. Example language instruction: pick up the
alphabet soup and place it in the basket.

• LIBERO-Goal: Maintains the same objects and layouts while varying task goals, assessing
the model’s knowledge of diverse task-oriented behaviors. Example language instruction:
put both the alphabet soup and the tomato sauce in the basket.

• LIBERO-Long (also referred to as LIBERO-10): Comprises long-horizon tasks involving
diverse objects, layouts, and task goals, challenging the model’s ability to handle extended
planning and execution. Example language instruction: open the middle drawer of the
cabinet.

Following OpenVLA, we preprocess the data by filtering out non-successful trajectories and removing
all steps with actions that have near-zero norms and do not change the gripper’s status. For TraceVLA,
we also annotate visual trace following the exact same procedure as what we described earlier, Bridge
and Google Robot dataset. Then we finetune both the OpenVLA model and the TraceVLA-7B model
on the combined dataset from these four suites and report their multitask success rates on each suite
in table 5. (Note that compared to the numbers reported in the OpenVLA paper, here we finetune a
single model on the mixture of all four suites altogether instead of finetuning on each suite separately
and report the numbers.) As shown with table 5, compared with OpenVLA, the superior performance
of TraceVLA across each benchmark suite further demonstrates benefits of our visual trace prompting.
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