
Under review as a conference paper at ICLR 2022

MCXAI: LOCAL MODEL-AGNOSTIC EXPLANATION
AS TWO GAMES

Anonymous authors
Paper under double-blind review

ABSTRACT

To this day, a variety of approaches for providing local interpretability of black-
box machine learning models have been introduced. Unfortunately, all of these
methods suffer from one or more of the following deficiencies: They are either
difficult to understand themselves, they work on a per-feature basis and ignore the
dependencies between features and/or they only focus on those features asserting
the decision made by the model. To address these points, this work introduces
a reinforcement learning-based approach called Monte Carlo tree search for eX-
plainable Artificial Intelligent (McXai) to explain the decisions of any black-box
classification model (classifier). Our method leverages Monte Carlo tree search
and models the process of generating explanations as two games. In one game,
the reward is maximized by finding feature sets that support the decision of the
classifier, while in the second game, finding feature sets leading to alternative de-
cisions maximizes the reward. The result is a human friendly representation as a
tree structure, in which each node represents a set of features to be studied with
smaller explanations at the top of the tree. Our experiments show, that the features
found by our method are more informative with respect to classifications than
those found by classical approaches like LIME and SHAP. Furthermore, by also
identifying misleading features, our approach is able to guide towards improved
robustness of the black-box model in many situations.

1 INTRODUCTION

With the successful application of machine learning-based classification in a growing number of
domains, there is an increasingly high demand for understanding the predictive decisions of machine
learning models. One concrete motivation for this is the proliferation of machine learning in the
natural sciences, where interpretability is a prerequisite to ensure the scientific value of the results.
Another is the use of AI in high-risk situations, as dealt with in the draft for an AI act recently
proposed by the European Commission (pre).

Feature importance is the most common explanation for classification (Bhatt et al., 2020). In recent
years, many importance-based approaches such as LIME (Ribeiro et al., 2016) or SHAP (Lundberg
& Lee, 2017) have been proposed. However, most of these approaches study each feature separately,
ignoring the relationship between them. In addition to that, features that may lead to misclassifica-
tion are hardly studied individually. We are therefore searching for a model-agnostic explanation
algorithm that can answer the following four questions for a given black-box classifier: (1) The
importance of each feature (e.g., pixel of an image) or feature set (e.g., pattern like a logo) for
the prediction; (2) The relationship between each feature or feature set according to the black-box
model; (3) Based on which feature or feature set is the decision made; (4) Which feature or feature
set has a negative influence of the prediction 1?

To address these challenges, we present a novel post-hoc explainability (Tjoa & Guan, 2020) ap-
proach based on reinforcement learning called Monte Carlo tree search for eXplainable artificial
intelligent (McXai). It involves modeling the interpretation process as two games.

1It is different from adversarial attack, which would not change the distribution of the input instance. The
negative features found by McXai are different from the negative features found by LIME, which present the
features that have a negative correlation with the prediction

1

Under review as a conference paper at ICLR 2022

In a first ”classification game”, the agent is tasked with finding features essential to support the cor-
rect decision of the classifier, while in a ”misclassification game”, the agent seeks to identify features
to which the classifier is sensitive, i.e., features whose perturbations may lead to misclassifications.

The agents develop their policies based on a search tree representation, which is constructed using
Monte Carlo Tree Search (MCTS) (Chaslot et al., 2008). The tree structure represents the dependen-
cies between different feature subsets of the input instance. Hence, through playing these games, the
agents generate explanations for reward-maximizing strategies, i.e., sequentially selecting features
relevant for the specific decisions.

The contributions of this work can be summarized as follows: (1) To the best of our knowledge, we
are the first to generate interpretations of black-box models through reinforcement learning applied
to decision games; (2) Given an input instance, we interpret the prediction of the black-box model
in terms of tree structures that humans can naturally grasp; (3) Not only the individual features, we
can determine the importance of a random feature set and analyze the dependencies between these
features; (4) We can find features or feature sets that are insignificant to the target class, however
essential to the other classes and optimize the black box model with these findings.

The rest of this work is organized as follows. Section 2 reviews previous works on post-hoc ex-
plainability and introduces the MCTS algorithm. A detailed description of the proposed McXai
approach is given in Section 3. We demonstrate the performance of the proposed approach through
two experiments in Section 4 and draw conclusions in Section 5.

2 RELATED WORK

In this section we give an overview of previous work on technologies for interpreting black-box
model and briefly introduce the basic Monte Carlo tree search algorithm as a preliminary.

2.1 EXPLAINABLE ARTIFICIAL INTELLIGENCE

Many approaches have been proposed to explain the model using a way that is easily perceived by
humans. Permutation Feature Importance (Ruder, 2016) analyzes the prediction change by randomly
permuting features in the instance. Class Activation Map (CAM) (Zhou et al., 2016) decompose
signals propagated within its algorithm and processes them with the help of the global average pool
to provide an analysis of the prediction. Similarly, Layer-wise Relevance Propagation (LRP) (Bach
et al., 2015) identifies important pixels by running a backward propagation in the neural network.
All these methods show the contribution of pixels to the prediction through a heat map.

In contrast, CLUE (Antorán et al., 2020) generates explaination with the help of variational au-
toencoder. MUSE (Lakkaraju et al., 2019) produces an explanation in form of a decision tree. It
approximates the black-box model with an interpretable model and optimizes against a number of
metrics. The Bayesian Rule Lists (Yang et al., 2017) method discretize the feature space into par-
titions and defines a decision logic within each partition using IF-THEN rules.SHAP (Lundberg &
Lee, 2017) scores the feature importance with the help of subset. Anchors (Ruder, 2016) creates
an explanation based on the perturbation of the features of the input instance. This explanation is
presented as IF-THEN rules instead of a surrogate model.

Some other approaches use mathematical structure to reveal the mechanisms of machine learning
algorithms. TCAV (Kim et al., 2018) is a technique to interpret the low-level representation of
neural network layers. However, instead of single features in the instance, TCAV analyzes the ad-
vanced concept (feature set), for example ’striped’, with concept activation vector. Another famous
method is LIME (Ribeiro et al., 2016), which is developed by the same researchers that proposed
Anchors (Ruder, 2016). It explains any black-box model with local linear approximation around a
given prediction.

All of the aforementioned methods focus on finding evidence to support the prediction of the black-
box model. However, they ignore possible causes of the erroneous prediction. In addition to this,
CAM requires the black-box model to have a global average pooling layer and the explanation
itself is hard to understand. LIME analyze each feature individually, TCAV analyzes the advanced
concept, but requires manual assistance.

2

Under review as a conference paper at ICLR 2022

2.2 MONTE CARLO TREE SEARCH

MCTS (Chaslot et al., 2008) is a popular heuristic-based reinforcement learning (Minsky, 1954)
algorithm that is commonly used to predict moves in board games such as chess and Go. It constructs
a tree of the search space to estimate the favorability of actions in a given state. Each edge of the
tree thereby represents a move/action and each node represents a state of the game. In order to
win a game, the agent performs multiple episodes consisting of four phases: selection, expansion,
simulation and back propagation. In the selection process, the agent selects child nodes based on
a selection policy until a leaf node is reached. In the expansion process, the agent adds one or
multiple child nodes to this leaf node and selects one of them according to an expansion policy. This
is followed by the roll-out process, where the game is completed by random moves from the selected
node until the game reaches a terminal state (win, lose or draw). Based on the end state, a reward
r is returned. During back propagation, every node from the selected new child to the root node is
updated. The algorithm ends when the pre-defined number of episodes has been reached.

3 METHODOLOGY

Given a classification data set D with n different features and c different classes, a black-box clas-
sifier g trained with D is a system without any internal working knowledge. It takes an instance
x ∈ Rn from D as input and outputs the distribution of the classes as a vector g(x) ∈ [0,1]c, where
g(x)[i] is the probability that the input instance predicted as class i and

∑c
i=0 g(x)[i] = 1. The

prediction of the black-box model is correct, if the output with the maximum value (probability), i.e.
argmax
i∈{0,··· ,c}

g(x)[i], equals the ground-truth class y ∈ N.

McXai determines the importance of a feature by observing the change of the prediction probability
after removing the target feature from the input instance x. To keep the shape of the input dimen-
sion 2, instead of removing the feature, we mask the value of the target feature as a given constant τ ,
where τ should not give away any information about the input instance x. In the case of image data,
it is set to zero or the average value of all the features (pixels) in the images. The specific analysis
method is further described in the next subsection.

3.1 GENERATING EXPLANATIONS THROUGH GAMES

Given a black-box model g, McXai models the interpretation as the classification and misclasifica-
tion games, where agents are given the possibility to mask a feature, e.g., pixel region in an image
in each step of the game by changing its value as a given constant τ . Formally, let x ∈ Rn, the
action a ∈ {0, 1}n, with

∑n
i=0 i = 1. When an action a is chosen by an agent, it is applied to x

element-wise, which results in the new state x′ = x � ā + τ · a, where ā is the logical not of the
action a. Hence, a masks the value of the target feature as τ . For example, given x = {1, 2, 3},
a = {0, 1, 0} and τ = 10, new state x′ = {1, 10, 3}.
The classification game starts, when the given data instance x correctly classified, i.e.,
argmax
i∈{0,··· ,c}

g(x)[i] = y. In each step, the agent successively masks value of features, i.e. dimen-

sions, of x as τ through its actions a, trying to achieve a misclassification. When a misclassification
is achieved, i.e., argmax

i∈{0,··· ,c}
g(x)[i] 6= y, the game is terminated. The reward is given based on the

number of steps required to terminate the game. This can be understood as trying to find the shortest
and most concise description in terms of feature relevance.

The misclassification game, contrary to the classification game, is played for misclassified in-
stances, and it can either be played directly for wrongly labeled instances, or, as a continuation of
the classification game (from the final state). In the misclassification game, the goal of the agent is
to find the least number of actions (maskings) required to achieve a correct classification. Hence,
the game encourages masking features that lead to misclassification. As for classification game,
the reward is designed to encourage a fast termination of the game. Figure 1a shows two examples
of the games. The input instance x contains three features. At the beginning of the classification

2Most black box models have a fix input dimension (number of features).

3

Under review as a conference paper at ICLR 2022

(a)
(b)

Figure 1: (a) Two examples about classification game and misclassification game. x and x′ are two
instances from the data set that used to train the black-box model, where x is predicted correctly
and x′ is predicted incorrectly. τ is set to zero. (b) Example of top three important features for the
classification (blue) and misclassification (red) game.

game, the prediction of the black-box model is correct. Action a1 is applied to x, masks the first
feature in x and produces a new state x1. Similarly, the state x2 is generated by masking the second
feature of x1 with the action a2. The prediction of the black-box model for the x2 is incorrect, thus
the classification game ends. The misclassification game starts at the end node of the classification
game. At each decision step, an action is selected from the action space and applied to the current
state to generate a new state. This operation is repeated until the black-box model’s prediction of
the new state is correct and the game is declared as over. For the instance x′, since the prediction of
the black-box model is wrong, we can analyze the instance directly with the misclassification game.

In the following, we first introduce the Monte Carlo tree representation of the explanation result for
a given data instance x and the information hidden in the tree. Then we present the selection and
expansion policies used to construct the tree. After that, we summarise the McXai algorithms in the
last subsection.

3.2 TREE REPRESENTATION

The explanation of a given instance x ∈ D, is presented as a Monte Carlo tree in McXai. Each edge
in the tree represents an action a ∈ {0, 1}n (bit mask), that corresponds to an individual feature.
It contains two attributes: How many times the edge has been explored (number of visits); The
expected reward for taking the action in the parent node (win rate). The nodes in the tree represent
the states of the game and are divided into three categories: (1) start (root) node x0 represents the
initial state of the game; (2) derived nodes xi with i > 0 are the masked instance with only one
parent node xj with i > j ≥ 0. The edge connecting these two nodes corresponds to the action a
applied to the parent node, i.e., xi = xj � ā + τ · a; (3) terminal node xt represents the end state
of the game. Each path in the tree corresponds to a feature set, and their importance are presented
by the win rate of the last edge in the path. A complete path is a path that connects root node and
terminal node.

From the generated tree structure of the classification game, the following information can be ex-
tracted:

• The importance of each individual feature or feature set to the correct prediction
Here, each feature is considered to be independent of the other features. This information
is shown in terms of the win rate of initial state’s edges.

• The importance of any feature set for the correct prediction The importance of one
feature may depend on the other features in the same set. As with the phenomenon of
multicollinearity, the contribution of two features to the prediction is the same. If the two
features are considered separately, they have the same importance. However, if they are

4

Under review as a conference paper at ICLR 2022

considered together, one of them is sufficient to make a prediction. Their importance is
expressed in terms of the win rate of the corresponding path in the tree.

• The relationship between different features Since each path in the tree corresponds to a
feature set, the relationship between features is presented as a change in the win rate of the
edge in the corresponding path.

• The most important set of features that proves the correct prediction The most impor-
tant feature set is reflected by the complete path with the largest win rate.

Similar information can be extracted from the tree of the misclassification game. However, the found
features are not the key to supporting the prediction, but for rejecting it.

Figure 1b shows an example of the top three features found by McXai for both games 3. The
black-box model predicts that the instance is a cat, based primarily on the features marked in blue:
the eye and whisker of the cat. However, we see that, although the whisker serve as an important
evaluation criterion, the whiskers on both sides are not equally evaluated, as multiple features are
considered together. This differentiation is black-box determined, and many explanation methods
fail to detect this. We demonstrate this in section 4. The black-box model predicts the original
instance of a cat with a 93%, which dropped to 71% after removing the blue features. This reflects
the important role played by these features in correct prediction. Human skin (the features marked as
red) is considered to have a negative effect on the correct prediction. The removal of these attributes
restore the probability of the prediction to 80%. It is also worth noting that the excessive focus on a
small amount of useful features e.g., eye of the cat, can be the reason that limits the performance of
the black-box model. If we can reduce the attention on these ’important’ features during the training
process and thus enhance the model’s focus on other patterns, the performance of the black-box may
be improved. This hypothesis will be explored in Experiment 4.

3.3 EXPLORATION POLICIES

McXai applies MCTS to construct the tree representation. Two policies are defined in the MCTS
algorithm, namely selection policy πs and expansion policy πe, which, as their names suggest, are
applied to the selection and expansion phases of the MCTS algorithm, respectively.

Similar to general MCTS algorithm, we apply the Upper Confidence Bound for Tree (UCT) as
selection policy 4:

πs(x) = argmax
a∈A

{
µx,a + λ ·

√
log n(x)

n(x, a)

}
(1)

where A is the action space, µx,a is the win rate of the edge: taking action a at parent state x.
Furthermore, n(x) =

∑
a∈A n(x, a) denotes the number of visits to state x and n(x, a) signifies the

number of visits to the edge. The parameter λ is used to adjust the trade-off between the number of
visits and the win rate. It is set to

√
2 to ensure the asymptotic optimum for the MCTS algorithm,

since the reward range of both games is in [0, 1] (Kocsis & Szepesvári, 2006).

Unlike the selection policy πs(x), which directly applies the explored information to guide deci-
sions, an exploration policy first approximates the win rate of unexplored states by training a surro-
gate model Q with explored information. The action a with the maximal predicted win rate is then
selected. The surrogate model Q takes a state x and an action a as input and predicts the win rate of
taking action a at the state x. The expansion strategy can therefore be summarised as:

πe(x) = argmax
a∈A

Q(x, a) (2)

The choice of the surrogate model depends on the type of the data set. For image data we apply a
network applied by the policy network of AlphaGo (Longo et al., 2020).

The surrogate model is trained with the ’win rate’ attribute stored in each edge of the tree, which is
updated in each episode after the back propagation as proposed by Chaslot et al. (2008).

3Image comes from the dog-cats open source data set. The black-box model is an 18-layer ResNet (He
et al., 2016). For the sake of clarity, we have shown only the three most important features.

4The feasibility of this approach is theoretical demonstrated in Coquelin & Munos (2007).

5

Under review as a conference paper at ICLR 2022

3.4 TREE CONSTRUCTION FOR GAMES

For classification game, the black-box model predicts the initial state correctly. The importance
of a feature can be observed by comparing the change in the prediction probability of the target
class before and after the corresponding feature is masked in the input instance. If the feature is
important to the prediction, removing it should significantly reduce the prediction probability. Con-
versely, removing unimportant features should have little impact. Naturally, if the chosen features
are important, fewer actions are required to terminate the game. A similar situation also exists for
misclassification game. However, if a chosen feature is important (for the misclassification), remov-
ing it will, conversely, increase the prediction probability of the target class.

The algorithm of the tree construction follows the general MCTS scheme (Chaslot et al., 2008),
where the termination and reward function are modified. Given a black-box model g, an initial node
x0 with target y and a terminal node xt, the reward function r(·) is defined as:

r(xt) =

[
(1− η) ·

(
1− l(xt)

L

)
+ η · q

]
· 1{l(xt)≤L} (3)

with
p = argmax

i∈{0,··· ,c}
g(x0)[i]

q =
(
2 · 1{p=y} − 1

)
· (g(x0)[y]− g(xt)[y])

1 is the indicator function, which is used to identify the type of the game. p is the predicted class of
the black-box model g given x0. If it is the classification game, p should be the same as the target y,
otherwise, it is the misclassification game. In the case of misclassification game, the probability of
the initial node (of the target category) is smaller than the probability of the target node. (g(x0)[y]−
g(xt)[y]) leads to a negative value. With the help of indicator function, we can turn it into a positive
value. l(·) returns the depth of the given node (the number of actions taken to reach the given
state.) and L is the maximal depth of the tree, which is used to limit the size of the tree. Also, the
maximum depth L increases the value represented by the number of actions. The smaller the value
L, the greater the reward for the same depth l. Thereby, small step differences will appear more
pronounced. q denotes the difference between the prediction probability of the target class before
and after removing the selected features. η ∈ [0, 1] is a parameter, that is used to weight the path
length and the probability change. We can see that when the depth of the terminal node is less than
L, the reward is a weighted sum of the depth and the probability change. When the depth is larger
then L, which means that the number of actions required to end the game exceeds a threshold, we
set the reward to zero to reduce the likelihood of these actions (actions taken to reach the terminal
node) being selected again.

MCTS constructs the tree iteratively. Each iteration involves following four phases:

• Selection MCTS traverses the tree from the root node according to equation 1, until reach-
ing a leaf node.

• Expansion A new child node is selected according to equation 2 and added to the tree.
• Roll-out A new action is selected randomly and applied to the current node until reaching

a terminal node or the maximal depth of the tree. Then associated reward is computed
according to equation 3.

• Back propagation The reward is back-propagated along the current path, incrementing
’number of visits’ and adding reward to ’win rate’ of all visited edges.

Because of the tree structure, the time complexity of our algorithm is in O(|A|I log |A|) where I is
the number of performed episodes. The space complexity is in O(|A| log |A|).

4 EXPERIMENTS

In this section, we experimentally demonstrate the capabilities of our proposed approach in inter-
preting a black-box model in two ways: comparing the importance of positive features found by
classification game with classical post-hoc explainability methods; measuring the improvement of
the black box model after retraining with the features found in misclassification game.

6

Under review as a conference paper at ICLR 2022

4.1 CLASSIFICATION GAME: COMPARING FEATURES WITH POSITIVE IMPACT

We hypothesize that considering the individual dependencies between features in an explanation
increases the quality of this explanation. In the first experiment, we want to validate this assump-
tion. To this end, we designed a task on the open source MNIST dataset and all the sklearn real
world classification dataset: covertype, kddcup, newsgroup, face5. We compared the performance
of LIME (Ribeiro et al., 2016), SHAP (Lundberg & Lee, 2017)6 and the proposed McXai model
on this task. To demonstrate the generality of the method, different kinds of models are trained for
these data set. For the McXai, the hyperparameter τ is set to zero and η is set to 0.5, so that the
probability and the path length are treated equally. Besides, the maximal depth L of the constructed
tree is set to 10 to limit the size of the built tree, except for newsgroup dataset, which maximal depth
is set to 30 since it has a significant larger number of features. Totally 50 instances are randomly
selected from each data set and used as input of the task.

The task design is inspired by the experiment in (Lundberg & Lee, 2017). Taking MNIST data set
for example, the task can be described as follows: given an instance from the MNIST data set with
target class y = 7, features of the instance are continuously removed from the instance according
to the proposal of the XAI model, so that the prediction of the instance (of the black-box model) is
converted to any other class. The post-hoc explanation approach contributes to the task by analyzing
the input instance and extracting a list of features ranked according to their importance.To compare
the importance of the found features by each algorithm, we measure the number of steps (NoS) that
are required to change the predicted class according to the feature list of each method. The idea
is that the fewer steps are needed, the more important are the features found by the corresponding
explainability approach.

The result of the experiment is summarized in Table 2. On all data sets except newsgroup, the pro-
posed McXai algorithm achieves optimal results. SHAP has the best results on the news data set.
However, for each instance in this data set, SHAP takes on average five minutes to analyze, three
minutes for McXai. LIME is the fastest, yet with the worst result. The runtime of the McXai is
influenced by following three factors of the data set: 1) Number of features, the more features the
data set contains, the longer the run time. It takes on average 30 seconds to analyse an instance of
’covertype’ data set, while three minutes for instance in newsgroup. 2) Complexity of the relation-
ship between features and prediction. It is measured by the number of modified features needed to
change the model prediction. The lower the number, the lower the corresponding complexity and
therefore the shorter the running time. In contrast to the ’newsgroup’ data set, McXai takes an av-
erage of five minutes to analyze one instance in the dog-cat data set, which contains 16384 features,
since the data set is more complicated. 3) Complexity of the black-box model. The more complex
the black box model, the more time takes McXai.

Table 1: Comparing average number of steps (NoS) needed to take to change the prediction of
black-box model according to the suggestion of the LIME, SHAP and McXai methods.

Dataset Type No. features NoS-Lime NoS-SHAP NoS-McXai
MNIST image 784 7.23 ± 5.65 6.23 ± 5.34 4.82 ± 2.65

covertype relational 54 10.32 ± 3.36 1.72 ± 0.82 1.59 ± 0.88
kddcup relational 41 1.0 ± 0 2.2 ± 2.0 1.0 ± 0

newsgroup text 15698 46.26 ± 36.8 6.69 ± 7.78 8.2 ± 3.72
face image 4096 24.94 ± 7.76 17.62 ± 6.67 5.62 ± 0.82

Figure 2a shows a MNIST example of the features found by the XAI models. In this example, we
can see that the feature found by LIME are scattered throughout the number. However, this does not
mean that the black-box model makes predictions based on the skeleton of the number, as illustrated
by the properties found by SHAP and McXai. This suggests that LIME ignored the competiting (e.g.,
Feature b is less important when feature a is present.) and conditional (e.g., Feature b is important
only when feature a is present.) relationships between features, thus misjudging the importance of

5RCV1 dataset is no included because it is multi label classification task.
6We select two most famous general post-hoc methods, since the data sets used here are not limited to image

and some black-box models do not provide gradient information.

7

Under review as a conference paper at ICLR 2022

LIME

SHAP

McXai

(A) (B) (C)

(a)
(b)

Figure 2: (a) Ranks and masked image for each method. (A) Shows the input instance. (B) Shows
the explanation created by each algorithm. The features colored in blue have a positive feature
importance according to each method. (C) Shows the masked image which is no longer predicted as
7. (b) Shows the tree created by McXai from the example of (a). The state x is the input instance.
The state x1 is created by applying the action a1 on x. The state x4 is created by applying the
action a4 on x1 and so on. The win rate of each action in the considered state is written beside the
corresponding edge. The left path is the best path containing the actions with the highest win rate of
the considered states.

some features. Another interesting point is that SHAP and McXai found almost the same features,
except for the difference in the ranking. It reflects another attribute of McXai, which ranks the
importance of the already explored attributes during the operation of the algorithm (reflected by
the selection policy) and prioritizes the exploration of the attributes with higher importance. The
corresponding tree is partly shown in Figure 2b. From this experiment, we can conclude that the
positive effect of the features found by McXai is more significant than the other two methods.

4.2 MISCLASSIFICATION GAME: TESTING THE IMPROVEMENT OF BLACK BOX MODEL
THROUGH RETAINING

The misclassification game identifies features that are insignificant to the target class, but sensitive
to other classes. In practice it manifests itself as the reduction in the probability of an instance being
correctly predicted by adding corresponding features to it. We hypothesize that, if the misclassifica-
tion game can find these features with negative impact, by counteracting the effect of these features,
the performance of black-box model will be improved. To this end, we designed the following
experiment on the open source dog-cats data set from Kaggle:

Firstly, we split the dog-cats data set into training set Dtrain and testing set Dtest, train a black-box
model with Dtrain and record the accuracy of the black-box model. Secondly, we analyze each
instance in the training set with the proposed approach, where parameters η is set 0.5, constant L
is 20 and τ is zero. Thirdly, for each instance in the training set, we remove the features found
by misclassification game to form a new data set Dmis. Fourthly, for each instance in the training
set, we remove the features found by both games to form a new data set Dboth. Then, we retrain
the black-box model with Dtrain and Dmis and record the accuracy of the black-box model and
retrain the black-box model with Dtrain and Dboth and record the accuracy of the black-box model.
Finally, we compare the performance of the three above trained models on Dtest.

We run the above experiment on the following five torchvision pretrained models: (1) MnasNet (Tan
et al., 2019) with depth multiplier of 0.5 (mnasnet0 5); (2) MnasNet with depth multiplier of 1.0
(mnasnet1 0); (3) DenseNet121 (Huang et al., 2017) (4) WideResNet (Zagoruyko & Komodakis,

8

Under review as a conference paper at ICLR 2022

2016); (5) GoogleNet (He et al., 2016). Since all these models are pretrained with the ImageNet
data set and therefore converge quickly in the experiment7.

For each model we train with 20 epochs and repeat this 5 times to record the mean and standard of
the performance. The dog-cats data set consists of 2500 training images and 500 test images, where
the images of cats and dogs are equally represented in the training and the test set. For this reason,
we use the accuracy to measure the performance of the models.

The results of the experiment are summarised in Table 2. Overall, removing the features found by
misclassification game leads to an improvement in accuracy or stability of the model. This shows
that misclassification game can indeed find factors that lead to incorrect predictions and counteract-
ing their effect can improve the performance of the black-box model. In addition, we can derive
other interesting information from the results of this experiment. The accuracy improvement caused
by removing the negative features is different from model to model. When the original accuracy
of the model is low, this improvement is more pronounced. In the case of a model like GoogleNet,
which original accuracy is high, the improvement in accuracy is almost untraceable (less than 1%),
however the improvement in stability is significant. Also, as shown in the result, removing the fea-
tures found by both classification game and misclassification game wins twice in the experiment,
which proves the hypothesis we discussed in Section 3. As classification game finds the features
that are considered most important for the correct prediction of the black-box model, removing
these features from the training set exacerbates the influence of other features in the input, thereby
increasing the generality of the black-box model.

Table 2: Comparing performance of black-box model: mnasnet0 5, mnasnet1 0, DenseNet121,
WideResNet and GoogleNet in these three different situations: (1) trained with training set Dtrain

(base score) (2) trained with training set Dtrain and Dboth (score both) (3) trained with training set
Dtrain and Dmis (score mis)

base score (%) score both (%) score mis (%)
mnasnet0 5 87.78 ± 3.31 87.98 ± 1.71 89.16 ± 3.25
mnasnet1 0 88.65 ± 3.17 92.83 ± 1.15 91.03 ± 3.06

DenseNet121 91.23 ± 1.46 93.7 ± 2.63 92.98 ± 2.51
WideResNet 83.35 ± 2.25 79.49 ± 4.42 87.58 ± 4.66
GoogleNet 93.97 ± 3.96 94.52 ± 1.33 94.58 ± 1.33

5 CONCLUSION

In this paper, we propose a novel approach called McXai to improve the reliability of black-box
models through explaining the principle behind the decision. This method can be used to analyze
the classification decision of a black-box model by considering a single feature or a feature set in
an input instance in a way that can be easily understood by humans and to find the factors that are
positive and negative for the model prediction.

The cornerstone of this approach is to formalize the XAI problem in a reasonable way as two games
and to make each game focus on finding specific properties. This simulation allows us to deal with
the XAI problem in a way as classic game and learn an agent that handles this problem. Inspired by
AlphaGo (Longo et al., 2020), MCTS algorithm is adapted and applied to our task, which enables to
present the analysis of the prediction of an input instance in a tree structure while learning the agent.
This greatly increases the interpretability.

In our experiments we compare the found positive features of different XAI approaches and test
the found negative features of the proposed approach in different black-box models. Through these
experiments we demonstrate the ability of the proposed approach in explaining the prediction of
black-box models. Moreover, we found that with the identified features, we can further improve the
performance of black-box models.

7All models converged after two to three episodes, except for mnasnet1 0 which took seven episodes in
average. The size of the data therefore has little impact on the results.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Europa fit for the digital age: commission proposes new rules and actions for excellence and trust
in artificial intelligence. URL https://ec.europa.eu/commission/presscorner/
detail/en/IP_21_1682.

Javier Antorán, Umang Bhatt, Tameem Adel, Adrian Weller, and José Miguel Hernández-Lobato.
Getting a clue: A method for explaining uncertainty estimates. arXiv preprint arXiv:2006.06848,
2020.

Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Müller,
and Wojciech Samek. On pixel-wise explanations for non-linear classifier decisions by layer-wise
relevance propagation. PloS one, 10(7):e0130140, 2015.

Umang Bhatt, Alice Xiang, Shubham Sharma, Adrian Weller, Ankur Taly, Yunhan Jia, Joydeep
Ghosh, Ruchir Puri, José MF Moura, and Peter Eckersley. Explainable machine learning in de-
ployment. In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency,
pp. 648–657, 2020.

Guillaume Chaslot, Sander Bakkes, Istvan Szita, and Pieter Spronck. Monte-carlo tree search: A
new framework for game ai. AIIDE, 8:216–217, 2008.

Pierre-Arnaud Coquelin and Rémi Munos. Bandit algorithms for tree search. arXiv preprint
cs/0703062, 2007.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, et al.
Interpretability beyond feature attribution: Quantitative testing with concept activation vectors
(tcav). In International conference on machine learning, pp. 2668–2677. PMLR, 2018.

Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In European conference
on machine learning, pp. 282–293. Springer, 2006.

Himabindu Lakkaraju, Ece Kamar, Rich Caruana, and Jure Leskovec. Faithful and customizable
explanations of black box models. In Proceedings of the 2019 AAAI/ACM Conference on AI,
Ethics, and Society, pp. 131–138, 2019.

Luca Longo, Randy Goebel, Freddy Lecue, Peter Kieseberg, and Andreas Holzinger. Explainable
artificial intelligence: Concepts, applications, research challenges and visions. In International
Cross-Domain Conference for Machine Learning and Knowledge Extraction, pp. 1–16. Springer,
2020.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In Proceed-
ings of the 31st international conference on neural information processing systems, pp. 4768–
4777, 2017.

Marvin Lee Minsky. Theory of neural-analog reinforcement systems and its application to the
brain-model problem. Princeton University, 1954.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ” why should i trust you?” explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining, pp. 1135–1144, 2016.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

10

https://ec.europa.eu/commission/presscorner/detail/en/IP_21_1682
https://ec.europa.eu/commission/presscorner/detail/en/IP_21_1682

Under review as a conference paper at ICLR 2022

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2820–2828, 2019.

Erico Tjoa and Cuntai Guan. A survey on explainable artificial intelligence (xai): Toward medical
xai. IEEE Transactions on Neural Networks and Learning Systems, 2020.

Hongyu Yang, Cynthia Rudin, and Margo Seltzer. Scalable bayesian rule lists. In International
Conference on Machine Learning, pp. 3921–3930. PMLR, 2017.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep
features for discriminative localization. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2921–2929, 2016.

A APPENDIX

11

	Introduction
	Related Work
	Explainable artificial intelligence
	Monte Carlo tree search

	Methodology
	Generating explanations through games
	Tree representation
	Exploration policies
	Tree construction for games

	Experiments
	Classification game: Comparing features with positive impact
	Misclassification game: Testing the improvement of black box model through retaining

	Conclusion
	Appendix

