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ABSTRACT

Cancer subtype classification is crucial for personalized treatment and prognos-
tic assessment. However, effectively integrating multi-omic data remains chal-
lenging due to the heterogeneous nature of genomic, epigenomic, and transcrip-
tomic features. In this work, we propose Modality-Aware Cross-Attention MoX-
GATE, a novel deep-learning framework that leverages cross-attention and learn-
able modality weights to enhance feature fusion across multiple omics sources.
Our approach effectively captures inter-modality dependencies, ensuring robust
and interpretable integration. Through experiments on Gastrointestinal Adenocar-
cinoma (GIAC) and Breast Cancer (BRCA) datasets from TCGA, we demonstrate
that MoXGATE outperforms existing methods, achieving 95% classification ac-
curacy. Ablation studies validate the effectiveness of cross-attention over simple
concatenation and highlight the importance of different omics modalities. More-
over, our model generalizes well to unseen cancer types e.g., breast cancer, un-
derscoring its adaptability. Key contributions include (1) a cross-attention-based
multi-omic integration framework, (2) modality-weighted fusion for enhanced in-
terpretability, (3) application of focal loss to mitigate data imbalance, and (4) val-
idation across multiple cancer subtypes. Our results indicate that MoXGATE is
a promising approach for multi-omic cancer subtype classification, offering im-
proved performance and biological generalizability.

1 INTRODUCTION

Cancer subtyping plays a pivotal role in precision oncology, guiding targeted therapy selection and
improving patient outcomes (Ahren, 2009). Gastrointestinal adenocarcinoma (GIAC), a heteroge-
neous group of malignancies, presents significant challenges in classification due to its high molecu-
lar complexity and overlapping subtypes. Traditional histopathological assessments and single-omic
biomarkers often fail to capture the full landscape of cancer heterogeneity, underscoring the need
for integrative, data-driven approaches.

Recent advances in next-generation sequencing (NGS) technologies have made multi-omic datasets
widely available, encompassing gene expression (mRNA), DNA methylation, and miRNA pro-
files (The Cancer Genome Atlas, 2013) (Weinstein et al., 2013). Multi-omic integration enables
a comprehensive characterization of tumor biology, improving the robustness of subtyping models.
However, effectively leveraging multi-omic data remains an open challenge, as existing approaches
struggle with modality heterogeneity, feature redundancy, and computational scalability.

Several recent models have made significant strides in multi-omic cancer subtyping by leveraging
advanced deep learning and statistical methodologies, enhancing the ability to integrate diverse bio-
logical data for more accurate and robust classification. moBRCAnet (Choi & Chae, 2023) employs
self-attention and simple concatenation, which limits its ability to model inter-modality dependen-
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cies, making it suboptimal for capturing feature interactions. DeepMolC (Wu et al., 2024) applies
Graph Convolutional Networks (GCNs) to pan-cancer classification but only identifies three sub-
types, making the task inherently easier. It also uses autoencoders for feature extraction, which
increases computational overhead. MOGONET (Wang et al., 2021) relies heavily on graph construc-
tion for each omics modality, and poorly defined graphs fail to capture biological relevance. While
it outperforms traditional machine learning models, it remains inferior to attention-based methods.
MoGCN (Li et al., 2022) utilizes graph-based similarity fusion, but its sensitivity to hyperparameters
can impact performance. The graph convolutional model also struggles with scalability and lacks
interpretability, despite visualization efforts.

In recent years, multimodal deep learning has emerged as a powerful approach for cancer subtype
classification, leveraging diverse multi-omic data such as gene expression, DNA methylation, and
miRNA profiles. Advanced models like self-attention encoders (Waswani et al., 2017) and cross-
attention mechanisms (Wei et al., 2020) have demonstrated superior feature integration by capturing
both within-modality and cross-modality interactions. MMCA (Wei et al., 2020) applies a cross-
attention based approach to integrate image and sentence matching. Our approach extends these
efforts by incorporating modality-weighted cross-attention (Golovanevsky et al., 2024), allowing
adaptive fusion of multi-omic features based on their relative importance. While cross-attention en-
hances feature alignment, existing limitations include computational complexity, potential modality
redundancy, and data imbalance challenges (). Addressing these issues with efficient fusion strate-
gies and domain adaptation techniques could further refine multi-omic classification performance.

In this work, we propose a novel attention-based framework for multi-omic integration in cancer
subtype classification, specifically focusing on GIAC cancer. These contributions collectively ad-
vance the state-of-the-art in cancer subtype classification by improving integration, interpretability,
and robustness in multi-omic predictive modeling. Our key contributions are as follows:

* Accurate GIAC Cancer Subtyping: To the best of our knowledge, this is the first study that
effectively applies attention mechanisms for subtype prediction in GIAC cancer, achieving
state-of-the-art performance.

 Attention and Cross-Attention for Multi-Omic Integration: We employ both self-attention
and cross-attention mechanisms to effectively integrate heterogeneous multi-omic data,
capturing complex interdependencies between different modalities.

* Modality-Aware Fusion with Learnable Weights: We introduce learnable modality weights
that dynamically adjust the contribution of each omic source, ensuring optimal feature
fusion and enhancing predictive performance.

* Focal Loss for Handling Class Imbalance: Given the high class imbalance in cancer sub-
typing datasets, we utilize focal loss (Ross & Dollar, 2017) to mitigate the dominance of
majority classes, improving classification performance for minority subtypes.

* Transferability to Other Cancers: Our method is designed to be adaptable to other cancer
types beyond GIAC, demonstrating strong generalizability and competitive performance
across diverse datasets.

2 METHODOLOGY

2.1 MODEL ARCHITECTURE

We introduce a novel multi-omics fusion framework that integrates self-attention (Waswani et al.,
2017), modality-weighted cross-attention (Wei et al., 2020), and focal loss (Ross & Dollar, 2017)
optimization. Our approach shown in 1 optimally encodes high-dimensional multi-omics data,
learns the interdependencies among different modalities, and enhances classification through adap-
tive weighting mechanisms.

2.1.1 SELF-ATTENTION ENCODING FOR MODALITY-SPECIFIC REPRESENTATIONS

Given an input feature matrix for modality m, defined as:

X = [Xl,Xg, ...,XN]—r c RV*dm 0
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Figure 1: Overview of the Proposed Multi-Omic Cancer Subtype Classification Model. The model
consists of three main components: (a) Modality-Specific Self-Attention Encoding, where gene
expression, DNA methylation, and miRNA expression undergo independent self-attention trans-
formations to capture high-level feature representations. (b) Modality-Weighted Cross-Attention
Fusion, which learns the interdependencies between omic features using learnable modality weights
(w1, ws, ws3) and a multi-head cross-attention mechanism to refine the feature integration. (c) Sub-
type Classification Module, where the fused representation is passed to a classifier optimized using
focal loss, addressing class imbalance in cancer subtyping.

where N is the number of samples, and d,,, is the feature dimension for modality m, we first apply
a linear transformation:

H,, = ¢(X,,W,, +b,,) € RV*d 2)

where W,,, € R%m*4 and b,,, € R? are trainable parameters, and ¢(-) denotes a non-linearity (e.g.,
ReLU).

For the Self-Attention Computation, we compute self-attention by defining:

QK )
A,, = softmax [ /-7 4
e
Z, =A,V,, +H,, )

where Wq, Wy, Wy € R%*? are trainable weight matrices.
2.1.2 MODALITY-WEIGHTED CROSS-ATTENTION FUSION

We integrate different omics sources via a modality-weighted cross-attention mechanism. Let
7,7, 7Zs be self-attention outputs for three modalities (Gene, Methylation, miRNA). We first con-
struct a stacked representation:

C = [Z1,2,,Z5] € RV ©)
For the Cross-Modality Attention, We compute the query, key, and value projections:
Q. =CW;, K.=CW%, V,=CWy @)

where W&, W¢,, W¢, € R%*? are trainable.
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The cross-attention weights are:

-
A, = softmax (Q\C/I;C ) (3

The fused representation is:
F=A.V, ©))

2.1.3 MODALITY IMPORTANCE LEARNING

To ensure balanced fusion, we introduce learnable modality weights w:
3
W = [wq, w2, w3] where Zwi =1 (10)
i=1

Initially, the modality weights w;, wa, w3 were uniformly set to 0.33 each, reflecting equal contri-
bution from all omics modalities at the start of training.

The final weighted fusion output is:

Final — ) Fy 4+ wyFy 4+ wsFs (11)

2.1.4 CLASSIFICATION WITH FOCAL LOSS

The fused representation is classified via:
y =0 (W;Fin 4 b,) (12)

where W € RY*K ig the weight matrix, and K is the number of classes.

To handle class imbalance, we employ Focal Loss:

K
Lioeal = = »_ i (1 —pi)" yilog p; (13)

i=1

where p; is the predicted probability for class i, «; is the class-specific weighting, v is the focusing
parameter. We set a; = 1 and v = 2 for all experiments.

2.1.5 OVERALL OPTIMIZATION AND TRAINING

The final optimization objective consists of:
AC:Acfocal+)\l||w71H2+A2HWCH%’ (14)

where A; ensures modality weights remain balanced and A, applies Frobenius norm regularization
to prevent overfitting.

2.1.6 EXPERIMENTAL SETUP

We used modality-specific multi-head self-attention encoders with 8 heads and a dropout rate of
0.1, without sharing weights across modalities. The outputs from each modality were concatenated
and passed through a cross-attention layer to model inter-modality interactions, with the combined
embedding dimension set to 256 and 32 attention heads. The classifier uses ReLU activation and
a dropout rate of 0.3. The final embedding layer has a dimensionality of 128, followed by a fully
connected layer mapping to the number of output classes. We trained the model using the AdamW
optimizer with a learning rate of 10~* and a weight decay of 1072,

This framework integrates multi-omics data through dedicated self-attention encoders, modality-
weighted cross-attention, and focal loss-based classification, enabling robust and effective multi-
omics feature fusion.
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3 RESULTS

3.1 PERFORMANCE COMPARISON ON GIAC SUBTYPE CLASSIFICATION

The results in Table 1 confirm that our model achieves the highest accuracy (0.95) and F1-score
(0.94), outperforming all baselines. AE + Cross Attn struggles with feature integration (accuracy
0.72, Fl-score 0.79), while Self Attn + Gated Attn improves feature extraction (accuracy 0.86) but
lacks cross-modal fusion. Self Attn + Mod Gated Attn and moBRCAnet (accuracy 0.93, Fl-score
0.92) perform competitively but fail to explicitly model inter-omic dependencies.

Our modality-aware cross-attention with weighted fusion effectively balances omic contributions,
surpassing simple concatenation and self-attention methods. The results highlight the importance of
learning cross-modal interactions for robust subtype classification, demonstrating the superiority of
our approach in integrating multi-omic data.

Table 1: Comparison of Model Performance

Model Accuracy Precision Recall F1-Score
AE + Cross Attn 0.72 0.93 0.72 0.79
Self Attn + Gated Attn 0.86 0.92 0.86 0.89
Self Attn + Mod Gated Attn 0.93 0.94 0.92 0.92
moBRCA-net 0.93 0.94 0.92 0.92
Ours 0.95 0.96 0.95 0.94

3.2 IMPORTANCE OF DIFFERENT OMICS FOR FINAL PREDICTION

The results in Table 2 illustrate the contribution of each omic modality to the final classification per-
formance. Among the individual omics, methylation data provides the highest accuracy (0.95) and
F1-score (0.94), indicating its strong discriminative power for cancer subtyping. Gene expression
data follows closely, achieving an accuracy of 0.91, suggesting that gene-level variations contribute
significantly to subtype differentiation. However, miRNA alone shows the lowest accuracy (0.87)
and F1-score (0.90), highlighting its limited capability to capture subtype-specific variations when
used in isolation.

When combining two modalities, Methylation + Gene achieves an accuracy of 0.94, demonstrating
a synergistic effect in feature fusion. Similarly, Methylation + miRNA also achieves 0.95 accuracy,
suggesting that methylation patterns enhance the discriminative power of miRNA features. In con-
trast, the combination of Gene + miRNA yields a lower accuracy of 0.85, reinforcing the idea that
without methylation data, the model struggles to generalize well.

Table 2: Performance Comparison Across Different Omics Modalities

Modality Accuracy Precision Recall F1 Score
Gene 0.91 0.95 0.91 0.92
Methylation 0.95 0.96 0.95 0.94
miRNA 0.87 0.95 0.87 0.90
Gene + Methylation 0.94 0.96 0.94 0.94
Gene + miRNA 0.85 0.95 0.85 0.88
Methylation + miRNA 0.95 0.96 0.95 0.94
All (Combined) 0.95 0.96 0.95 0.94

The best-performing model is the fully integrated multi-omic approach, which incorporates gene
expression, methylation, and miRNA. This results in an accuracy of 0.95 and an F1-score of 0.94,
confirming that a comprehensive multi-omic fusion is essential for optimal cancer subtype clas-
sification. The observed performance gains highlight the importance of cross-modal interactions
and justify our use of a modality-aware cross-attention framework to leverage the complementary
strengths of each omic type.
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3.3 PERFORMANCE ON OTHER CANCER DATA

Model Accuracy F1-Score
AE+Cross Attn 0.82 0.79
moBRCANet 0.87 0.86
Ours 0.89 0.88

Table 3: Performance comparison on breast cancer subtype classification. Our model achieves the
best performance, demonstrating strong generalization.

To further validate the generalizability of our method, we conducted experiments on the TCGA-
BRCA dataset shown in Table 3, which consists of 1,057 breast cancer samples. The dataset includes
five intrinsic subtypes from the PAMS0 classification: luminal A, luminal B, HER2 overexpression,
basal-like, and normal-like cancers. We followed the same preprocessing steps as applied to the
GIAC dataset, ensuring consistency across experiments. The dataset was split into 80% training and
20% testing, with 10% of the training data used for validation.

As shown in Table 3, our model achieves an accuracy of 0.89 and an F1-score of 0.88, outperforming
existing approaches such as AE+Cross Attention (0.82 accuracy) and moBRCANet (0.87 accuracy).
These results demonstrate that our modality-aware cross-attention approach effectively generalizes
across different cancer types, reinforcing its robustness in multi-omic cancer subtype classification.
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A APPENDIX

A.1 DATASET
A.2 GIAC CANCER AND SUBTYPES

Gastrointestinal Adenocarcinomas (GIACs) include four major cancer types: Colon Adenocar-
cinoma (COAD), Rectum Adenocarcinoma (READ), Stomach Adenocarcinoma (STAD), and
Esophageal Carcinoma (ESCA). These cancers exhibit distinct histopathological and molecular
characteristics:

* COAD (Colon Adenocarcinoma): A common gastrointestinal malignancy characterized
by chromosomal instability (CIN) and microsatellite instability (MSI), with additional clas-
sifications based on molecular features.

* READ (Rectum Adenocarcinoma): Similar to COAD but arises in the rectum, sharing
molecular features but influenced by distinct anatomic and treatment considerations.

* STAD (Stomach Adenocarcinoma): A highly heterogeneous cancer associated with mul-
tiple subtypes, including Epstein-Barr virus (EBV)-associated tumors, MSI-high tumors,
and genomically stable (GS) subtypes.

* ESCA (Esophageal Carcinoma): A rare but aggressive cancer exhibiting CIN and MSI
features, often linked to environmental and genetic risk factors.

A.3 DATASET STATISTICS

The dataset used in this study is sourced from The Cancer Genome Atlas (TCGA) (Weinstein et al.,
2013), containing multi-omic profiles for GIAC cancers. We specifically focus on molecular sub-
typing based on genetic and epigenetic alterations. The dataset includes the following samples:

Abbreviation Study Name Subtype

Classification Subtypes Samples
COAD Colon Adenocarcinoma Molecular CIN, GS, MSI, HM-SNV, EBV 341
ESCA Esophageal Carcinoma Molecular CIN, GS, MSI, HM-SNV, EBV 79
READ Rectum Adenocarcinoma Molecular CIN, GS, MSI, HM-SNV, EBV 118
STAD Stomach Adenocarcinoma Molecular CIN, GS, MSI, HM-SNV, EBV 383

Table 4: GIAC Cancer Subtypes and Sample Distribution from TCGA. The four studied cancers in-
clude Colon Adenocarcinoma (COAD), Esophageal Carcinoma (ESCA), Rectum Adenocarcinoma
(READ), and Stomach Adenocarcinoma (STAD), with five molecular subtypes.

A.4 MOLECULAR SUBTYPES IN GIACs

Molecular subtyping in GIACs has been extensively studied using gene expression, oncogenic path-
ways, and histopathological criteria. However, traditional clustering approaches often struggle with
the biological complexity inherent to these cancers. Our study leverages genomic, epigenomic, and
transcriptomic data to define robust molecular subtypes. (Liu et al., 2018)

Key Subtype Characteristics:

* EBV+ (Epstein-Barr Virus Positive): Predominantly found in stomach cancers, charac-
terized by extensive DNA hypermethylation.

* MSI (Microsatellite Instability): Associated with defective DNA mismatch repair, lead-
ing to a high mutation burden.

« HM-SNV (Hypermutated-Single Nucleotide Variants): Defined by an SNV-
predominant mutation profile, often linked to POLE mutations.



Accepted at the AI4NA workshop at ICLR 2025

* CIN (Chromosomal Instability): Characterized by large-scale chromosomal alterations,
frequently found in GIAC tumors.

* GS (Genome Stable): Lacks significant chromosomal aberrations, representing a smaller
but distinct subset of tumors.

The dataset integrates multiple molecular modalities, including mutation profiles, copy-number vari-
ations, and DNA methylation, ensuring a comprehensive framework for subtype classification.

B DATA PROCESSING PIPELINE

To ensure a robust and unbiased evaluation, we utilized three cancer datasets (COAD, READ, STAD)
for training and validation, while reserving the ESCA dataset exclusively for testing. Each cancer
type in our dataset is categorized into five molecular subtypes. We performed a 90-10 split on the
training dataset, where 90% of the samples were used for model training, and 10% for validation.

For feature preprocessing, we applied a two-step missing value handling strategy. First, we elimi-
nated features with more than 40% missing values to ensure data reliability. Second, for the remain-
ing missing values, we applied median imputation, filling in missing entries with the median value
of the respective feature.

To maintain biological consistency across datasets, we selected only features that were common
across all four cancer types. This yielded the following shared features:

¢ Common Gene Expression Features: 20,530
¢ Common DNA Methylation Features: 23,381
¢ Common miRNA Features: 746

Following this preprocessing, our final dataset consisted of:

* Training and validation set: 842 samples
* Test set (ESCA): 79 samples
¢ Final train-validation split: 757 training samples and 85 validation samples

This data processing pipeline ensures that the model is trained on a diverse set of cancers while
testing on a separate cancer type, providing a realistic evaluation of model generalizability across
GIAC subtypes.

C ABLATION STUDY

C.1 ABLATION STUDY OF ATTENTION HEAD

The number of heads in a multi-head cross-attention layer plays a critical role in capturing diverse
feature interactions across omics modalities. The ablation study, as presented in Table 5, evaluates
the performance of our model with 8, 16, and 32 attention heads. The results indicate that increasing
the number of heads from 8 to 16 does not significantly impact performance, maintaining an accu-
racy of 94%. However, when the number of heads is increased to 32, the model achieves a slight
improvement, reaching the highest accuracy of 95% along with a higher recall (0.95) and precision
(0.96).

This improvement suggests that with a greater number of heads, the model is able to attend to finer-
grained relationships among multi-omic features, thereby improving its ability to extract meaningful
subtype-specific patterns. However, while a larger number of heads provides marginal gains, fur-
ther increasing this number may introduce computational overhead without substantial performance
benefits. Thus, 32 heads was selected as the optimal configuration, balancing both accuracy and
computational efficiency.

C.2 ABLATION STUDY ON MODEL ARCHITECTURAL COMPONENTS

To further evaluate the impact of different architectural choices, we conducted an ablation study
by introducing Batch Normalization (BatchNorm), Skip Connections, and Feedforward Attention
separately and in combination. Table 6 summarizes the performance of these variations.
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Heads Accuracy Precision Recall F1-Score

8 0.94 0.96 0.94 0.94
16 0.94 0.96 0.94 0.94
32 0.95 0.96 0.95 0.94

Table 5: Ablation study on the effect of different numbers of heads in the cross-attention layer. The
best-performing setting is highlighted.

The model with BatchNorm achieved the lowest accuracy (0.89) and recall (0.90), indicating that
normalizing intermediate layers did not contribute positively to performance, possibly due to the
already normalized omics data. Adding Skip Connections improved the model accuracy to 0.92,
showing that residual connections help preserve gradient flow and avoid vanishing gradients. The
Feedforward Attention mechanism resulted in the highest accuracy (0.94) and F1-score (0.95), sug-
gesting that additional transformation layers improve feature extraction. However, combining both
Skip Connections and Feedforward Attention did not yield further improvements, stabilizing at an
accuracy of 0.92.

These findings indicate that while Feedforward Attention enhances feature interactions, BatchNorm
is not beneficial for this problem, and Skip Connections alone do not provide significant improve-
ments. As a result, we excluded BatchNorm and retained Feedforward Attention without additional
Skip Connections in our final model to achieve optimal performance.

Ablation Accuracy Precision Recall F1-Score
w/ BatchNorm 0.89 0.95 0.90 0.91
w/ Skip Connection 0.92 0.95 0.92 0.93
w/ Feedforward Attention 0.94 0.95 0.93 0.95
w/ Skip + Feedforward Attn 0.92 0.95 0.92 0.92

Table 6: Ablation study on different model components. The last row highlights the combination of
skip connection and feedforward attention, which did not provide additional performance gains.

D DISCUSSIONS

Our proposed Modality-Aware Cross-Attention model demonstrates state-of-the-art performance for
multi-omic cancer subtype classification, effectively integrating heterogeneous omics data sources.
The cross-attention mechanism, combined with learnable modality weights, enhances the fusion of
gene expression, DNA methylation, and miRNA data, capturing intricate inter-modality dependen-
cies. The ablation studies confirm that cross-attention outperforms simple concatenation, emphasiz-
ing its significance in multi-omic integration. Additionally, the results highlight the dominance of
methylation and gene expression data in driving classification performance, aligning with biological
insights into cancer heterogeneity. The strong generalization to breast cancer subtypes further un-
derscores the robustness and transferability of our approach beyond gastrointestinal adenocarcinoma
(GIAC).

Despite these advancements, certain limitations persist. First, while cross-attention improves modal-
ity fusion, it inherently increases computational complexity, making it less scalable for ultra-large
datasets. Additionally, although modality weights provide insight into the relative importance of
omics data, they do not explicitly model dynamic feature importance at the patient level, potentially
limiting interpretability for individualized cancer profiling. Future work should explore efficient
self-attention mechanisms to reduce complexity and incorporate patient-specific attention weighting
for improved personalization.
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