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ABSTRACT

Prevalent video compression methods follow a predictive coding architecture that
relies on a heavy encoder to exploit the statistical redundancy, which makes it
challenging to deploy them on resource-constrained devices. Meanwhile, as early
as the 1970s, distributed source coding theory, namely, Slepian-Wolf and Wyner-
Ziv theorems, has indicated that efficient compression of correlated sources can
be achieved by exploiting the source statistics at the decoder only, with the help
of effective side information (SI). This has inspired a distributed coding architec-
ture that is promising to reduce the encoder complexity. While there have been
some attempts to develop practical distributed video coding systems, traditional
methods suffer from a substantial performance gap to the predictive coding archi-
tecture. Inspired by the recent successes of deep learning in enhancing image and
video compression, we propose the first end-to-end distributed deep video com-
pression (Distributed DVC) framework with neural network-based modules that
can be optimized to improve the rate-distortion performance. A key ingredient is
an effective SI generation module at the decoder, which helps to effectively exploit
the inter-frame correlation without computation-intensive encoder-side motion es-
timation and compensation. Experiments show that Distributed DVC significantly
outperforms conventional distributed video coding methods and H.264. Mean-
while, it enjoys 6 ∼ 7 times encoding speedup against DVC (Lu et al., 2019) with
only 1.61% increase in the bitrate for 1080P test videos on the UVG dataset.

1 INTRODUCTION

Given the ubiquity and popularity of various video-based applications, deep learning (DL)-based
video compression approaches (Lu et al., 2019; Lin et al., 2020; Agustsson et al., 2020; Hu et al.,
2021; Li et al., 2021) have attracted increasing attention due to their superior performance over the
traditional video codecs represented by H.264 (Wiegand et al., 2003) and H.265 (Sullivan et al.,
2012). Most of these novel learning-based methods adopt a predictive coding architecture inher-
ited from popular standard video codecs. As illustrated in Figure 1(a), this paradigm applies a
computation-intensive motion compensation prediction loop at the encoder to explicitly reduce tem-
poral redundancy between frames and utilizes several techniques, including transform coding and
entropy coding, to lessen the spatial dependency within frames and the statistical correlation of
coded symbols. In particular, Table 1 shows that the motion-related operations (i.e., estimation,
compensation and compression) contributes about 90% and 65% computation complexity in DVC
(Lu et al., 2019) and DCVC (Li et al., 2021), two representative examples of DL-based video codecs.
Thus, these methods are characterized by a heavy encoder, while the decoder is relatively simple
since it does not need to estimate the motion information from adjacent frames. Such an asymmetry
codec architecture is suitable for broadcast-oriented applications such as video-on-demand (Ghose
& Kim, 2000), 3600 video streaming (Fan et al., 2019) and Blu-Ray discs (Miyagawa, 2014), where
the videos are encoded once and decoded many times.

Recently there is an upsurge in uplink-based video applications, such as video surveillance (Elhar-
rouss et al., 2021), mobile video chat (Jana et al., 2013), and multi-view image acquisition (Hussain
et al., 2021), where the video encoder is deployed on a resource-constrained device. Given the
limited onboard computing resources and power supply, such application scenarios demand low-
complexity and low-power video encoders, which makes it challenging to deploy existing learning-
based video codecs. This calls for a radical change in the video coding architecture. Inspired by
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Table 1: Complexity of key components for learning-based video encoders on HD 1080 videos
(UVG dataset) running on an Intel Xeon Gold 6230R processor with a base frequency 2.10GHz and
a single CPU core.

Latency/FLOPs Motion Residual/WZ Total
Estimation Compensation Compression Compression

DCVC 13.02s 12.74s 24.15s 29.28s 79.18s
1253.65G 732.83 G 1049.95G 1557.32G 4593.79G

DVC 13.53s 15.90s 12.60s 3.13s 45.16s
1253.65G 783.14G 635.04G 187.3G 2859.12 G

Proposed 0 0 0 6.68s 6.68s
0 0 0 500.45G 500.45G

two notable information theoretical results developed in the 1970s on distributed source coding,
i.e., Slepian-Wolf (SW) (Slepian & Wolf, 1973) and Wyner-Ziv (WZ) (Wyner & Ziv, 1976) the-
orems1, distributed video coding2, also known as WZ video coding, has emerged as a promising
solution to complement the existing video compression methods for advanced multimedia applica-
tions. Specifically, as shown in Figure 1(b), the WZ video codec3 shifts the computation-intensive
motion operations to the decoder and adopts the video interpolation technique to generate the side
information (SI) frame x̄. Then, an SW codec based on error correcting codes is used to correct bit
errors between the low frequency coefficients of the SI transform ȳ and that of the original transform
ŷ, while the high frequency components of SI are directly incorporated to the decode frame during
reconstruction. In this way, WZ video coding can effectively reduce the computational load of end
devices at the expense of a high-complexity decoder while maintaining the compression efficiency.

Nevertheless, it is non-trivial to apply WZ video coding techniques to build a high-efficient and
low-complexity practical video compression system. First, existing WZ video codecs only achieve
the rate-distortion (RD) performance similar with H.264-intra coding (Kodavalla & Mohan, 2011;
2012), but there is a large gap to popular video coding standards, which is predominantly caused
by the poor quality of SI at the decoder (Dufaux et al., 2010). It is unclear how to produce and
exploit SI at the decoder to implicitly reduce temporal correlations between frames for approaching
the performance of predictive coding. Second, as shown in Figure 1(b), there is a feedback channel
from the decoder to encoder in classical SW codecs (Aaron et al., 2002; Dash et al., 2018; 2019).
The decoder has to request additional parity bits repeatedly until the decoding is successful, result-
ing in a large decoding delay. Meanwhile, it demands an extra frame buffer to store the encoded
stream, which consumes high memory at the encoder and is undesirable for mobile devices and
cameras (Kodavalla & Mohan, 2010). Although some works explored the feedback channel-free
architecture, they typically sacrificed the coding efficiency (Puri & Ramchandran, 2002; Mallick &
Mukherjee, 2014; Zhou et al., 2019). To guarantee user experience for video applications, it is of
critical importance to develop resource-friendly methods that can efficiently compress videos.

In this paper, we design the first end-to-end distributed deep video coding (Distributed DVC) sys-
tem to boost the coding efficiency to match the ones with the predictive coding architecture by
exploiting the advantages of deep neural networks in nonlinear transform and end-to-end optimiza-
tion, while alleviating the high encoder complexities of learning-based video codecs by removing
the computation-intensive motion operations from the encoder side. Specifically, to improve the
RD performance, we first propose a lightweight WZ encoder network to effectively map frames
into their quantized latent representations, which can better capture intra-frame correlations com-
pared with the linear transform. At the decoder, an SI generation module is applied to estimate
the intermediate motion information and produce the current SI representation from two previous
decoded frames and a temporal encoding input, thereby implicitly exploiting the temporal correla-
tion between frames. Assisted by this SI representation, a WZ decoder network will reconstruct the
video frames based on the quantized representation passed from the encoder. Furthermore, as all

1More details about these two theorems are provided in Appendix A.1.
2Distributed video coding has been called as DVC in literatures, but as DVC is more often used to refer to

deep video compression recently, we call distributed video coding as WZ video coding in this paper.
3More details about the WZ video coding are provided in Appendix A.2.
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Figure 1: (a) The predictive coding paradigm used by standard video codecs. (b) The traditional WZ
video coding architecture. (c) The proposed distributed deep video coding architecture.

the major components are implemented by neural networks, leveraging end-to-end training helps to
further improve the RD performance. To resolve the problems brought by the feedback channel,
a channel-wise auto-regressive entropy model (Minnen & Singh, 2020) is used to provide accurate
probability modeling for entropy coding of the latent representations, which can effectively reduce
the statistical redundancy and avoid the usage of the SW codec. The main contributions of this paper
are as follows:

• We develop a deep learning-based distributed video coding architecture to enable low-
complexity encoders, which are desirable for uplink-based video applications with
resource-constrained devices. While distributed source coding theory has inspired such
an architecture decades ago, there is a lack of practical methods that can achieve RD per-
formance close to the predictive coding architecture, and our study fills the gap.

• We design neural network-based modules for key components, including a lightweight
WZ encoder for reducing intra-frame redundancy, and a powerful WZ decoder to capture
inter-frame correlation, assisted by an effective SI generation module consisting of a video
interpolation network and an SI encoder network, as illustrated in Figure 1(c). We also
propose a two-step end-to-end training strategy to optimize the RD trade-off.

• Our proposed framework provides up to 10 dB gains over traditional WZ video coding
in terms of peak signal-to-noise ratio (PSNR) and it outperforms H.264 on benchmark
datasets including UVG and MCL-JCV. Compared with H.265, our method achieves a
lower PSNR, but it achieves higher coding gains in multi-scale structural similarity index
(MS-SSIM) except for the very low-rate regime. Meanwhile, it reduces about 85% and
90% encoding latency against DVC and DCVC, respectively.

2 RELATED WORKS

Learning-based Compression. Recently, learning-based image and video compression methods
have achieved significant progresses in terms of RD performance compared with standard codecs,
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(a) (b)

Figure 2: (a) The hierarchical frame interpolation order. (b) The fast-decoding frame interpolation
order.

such as JPEG (Wallace, 1992), BPG (Bellard, 2014), H.264 (Wiegand et al., 2003) and H.265 (Sul-
livan et al., 2012). Most of the deep image compression methods employ an auto-encoder style
network with different types of entropy models for high compression efficiency by utilizing RD op-
timization techniques (Ballé et al., 2017; 2018b; Minnen et al., 2018; Minnen & Singh, 2020; Cheng
et al., 2020; He et al., 2021; Zou et al., 2022). Moreover, other techniques such as generalized di-
visive normalization (GDN) (Ballé et al., 2016), latent residual prediction and round-based training
(Minnen & Singh, 2020) have also been proposed to improve the coding efficiency. We consider
these existing works to be important building blocks for our framework.

Existing learning-based video compression methods (Lu et al., 2019; Lin et al., 2020; Agustsson
et al., 2020; Hu et al., 2021; Li et al., 2021) mainly follow the predictive coding architecture as
shown in Figure 1(a). Thus, they suffer from high complexity in the encoding process due to the
computation-intensive motion-related operations. By contrast, our method achieves a better trade-off
between the RD performance and encoding complexity, which complements the current learning-
based video compression approaches and is suitable for computing resource crunched situations. In
addition, different from orthogonal works that apply model quantization to reduce the complexity
of learning-based image codecs (Ballé et al., 2018a; Hong et al., 2020; Sun et al., 2021; Yu et al.,
2022; Jia et al., 2022), our work aims at reducing the encoder complexity by changing the coding
architecture.

Distributed Video Coding. In the past decades, various handcrafted approaches and tools have
been proposed to improve the efficiency of WZ video coding, including the application of different
transformation (Aaron et al., 2004; Mallick & Mukherjee, 2014), more accurate correlation noise
estimation (Brites et al., 2006; Brites & Pereira, 2008) and the refinement of SI (Artigas et al., 2007;
Ren et al., 2011). Recently, some works have introduced deep neural networks (DNNs) to boost
the performance. Specifically, Bhagath et al. (2016) exploited the learning-based super resolution
technique to reconstruct the full resolution frame from the encoded information of half pixels. Dash
et al. (2018; 2019) utilized the ensemble of multi-layer perceptron networks and Chebyshev poly-
nomial based functional link artificial neural networks to generate better SI frames. However, in
these works, all the modules except the neural network-based one are manually designed, and thus
cannot be end-to-end optimized. In contrast, all key components of our proposed framework are
implemented with DNNs and jointly optimized to largely improve the RD performance. Moreover,
instead of capturing the inter frame correlation by estimating SI at the encoder in Zhou et al. (2022),
our proposed method follows the traditional WZ video coding pipeline, which enjoys significant
encoding speedup than existing learning-based predictive codecs.

3 PROPOSED METHOD

Notations. Let X = {x1, x2, ...} denote the original video sequence. WZ video coding applies an
adaptive or fixed frame separator to split the video sequence into Key frames and WZ frames. For
simplicity, we assume a fixed size of group of pictures (GOP) as N . In this case, xkN+1 represents a
key frame of the video sequence, and the other frames xkN+i are WZ frames, where k = {0, 1, 2, ...}
and i = {2, 3, ..., N}. x̂kN+i denotes the reconstructed WZ frame. In order to reduce the temporal
redundancy, an SI frame x̄kN+i is generated using two previous decoded frames x̂v1 and x̂v2 at the
decoder, where v1 and v2 denote the index of the reference frames. Transform coding can be used
to improve the compression efficiency. In such case, the original frame xkN+i and SI frame x̄kN+i

are transformed to ykN+i and ȳkN+i, respectively. ŷkN+i is the quantized version of ykN+i.
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Figure 3: Proposed WZ encoder-decoder network. Convolution parameters are formatted as (the
number of filters, kernel size, stride). AE and AD denote ANS encoder and decoder, respectively.

3.1 OVERVIEW OF THE PROPOSED METHOD

Figure 1(c) presents a high-level overview of the proposed end-to-end Distributed DVC framework,
and the key differences from the classic WZ video codec are explained as follows:

Step 1. Transformation and quantization. We replace the linear transformation by a non-linear
encoder, i.e., a WZ encoder network, and the input WZ frame xkN+i is non-linearly mapped to the
representation ykN+i. Then ykN+i is quantized to ŷkN+i. To enable end-to-end training, we adopt
the quantization method in Minnen & Singh (2020). Details are presented in Section 3.2.

Step 2. Entropy encoding. Instead of using an SW codec to compress the quantized WZ frame, we
adopt an asymmetrical numeral systems (ANS) encoder (Duda, 2013) to encode the quantized WZ
representation ŷkN+i into bits at the inference stage. At the training stage, to estimate the number of
bits cost in our proposed approach, we use an entropy model to estimate the probability distribution
of each symbol in ŷkN+i. Details are given in Section 3.2.

Step 3. Side information generation. An optical flow-based video interpolation network in Huang
et al. (2020) is adopted to estimate the current SI frame x̄kN+i based on two previous decoded frames
x̂v1 and x̂v2 with the hierarchical/fast-decoding interpolation order shown in Figure 2. Furthermore,
an SI encoder is designed to produce the SI representation ȳkN+i. More information is provided in
Section 3.3.

Step 4. Entropy decoding. The decoder receives the bit stream from the encoder and performs ANS
decoding to reconstruct the quantized WZ representation ŷkN+i. Compared with SW decoding, the
entropy decoding is more efficient, and it helps to get rid of the feedback channel of the traditional
architecture.

Step 5. Inverse transformation. We concatenate the decoded WZ representation ŷkN+i and SI
representation ȳkN+i, and feed them into the decoder network to reconstruct the WZ frame x̂kN+i,
rather than using a predefined quantization table to perform the reconstruction process. Details are
provided in Section 3.2.

3.2 WZ ENCODER AND DECODER NETWORKS

To facilitate the compression of the WZ frame xkN+i, while assisting the generation of the SI at
the decoder to reconstruct the WZ frame x̂kN+i, we design a CNN-based WZ encoder-decoder
network, taking inspiration from deep image compression (Ballé et al., 2018b; Minnen et al., 2018).
As illustrated in Figure 3, given an input frame xkN+i, the WZ encoder generates the representation
ykN+i that is quantized to ŷkN+i. The WZ decoder receives the quantized representation from
the encoder and reconstructs the WZ information x̂kN+i with the aid of the SI representation ȳkN+i

from the SI generation module. We employ the channel-wise auto-regressive (ChAR) entropy model
(Minnen & Singh, 2020) to estimate the probability distribution of ykN+i. Specifically, a hyper prior
entropy model (Ballé et al., 2018b) generates the hyper representation ẑkN+i to capture the spatial
redundancies among the elements of ŷkN+i. Besides, a ChAR component is utilized to shrink the
correlations among the channels of ŷkN+i by exploiting the casual context. These two ingredients
generate the mean and scale parameters for a conditional Gaussian entropy model. In addition, since
the quantization operation is not differentiable, it renders gradient descent ineffective and hinders the
end-to-end network training. In order to allow optimization via stochastic gradient descent, we apply
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Figure 4: Side information generation network.

Figure 5: Visualization results from the videoSRC30 sequence in MCL-JCV dataset. The Fourier
transform is used to decompose the low frequency and high frequency content in xkN+i. We sepa-
rately select two low-frequency and high-frequency channels for visualization.

the mixed quantization method proposed in Minnen & Singh (2020). In particular, the quantizer is
replaced with an additive uniform noise for learning entropy model, and a rounded tensor with
straight-through gradient replaces the noise one to flow to the WZ decoder. Moreover, two variants
(lite/pro versions) of our WZ auto-encoder style networks are proposed for speed/efficiency priority,
with more details provided in Appendix B.

3.3 SIDE INFORMATION GENERATION NETWORK

The SI generation network is composed of two parts, i.e., an optical flow-based video interpolation
network and an SI encoder. The overall architecture of the proposed network is shown in Fig-
ure 4. We adopt the RIFE network (Huang et al., 2020) for video interpolation that allows arbitrary
time-step frame interpolation with two previous decoded frames x̂v1 and x̂v2 . Thus, the proposed
framework supports hierarchical and fast-decoding interpolation orders, as shown in Figure 2, which
can satisfy the needs of different applications. Specifically, the former achieves better coding effi-
ciency with higher SI frame quality, and the latter is parallelization-friendly so it can pursue the
fast decoding of WZ frames without relying on other frames except key frames. After obtaining
the current SI frame x̄kN+i, we utilize the SI encoder with the same network as the WZ encoder
described in Section 3.2 to produce the SI representation ȳkN+i. Thus, the SI encoder also has two
different variants, i.e., lite, and pro versions. More details of the network in Figure 4 are provided in
Appendix B.

To better understand the difference between SI and WZ representations, we provide the visualization
of feature maps in Appendix C.5, where some channel-wise activations are shown in Figure 5.
From the visualization results, we observe that when compared with the SI representation ȳkN+i,
there are more (fewer) channels in ŷkN+i, e.g., the 128-th (30-th) and 178-th (170-th) channels,
to represent low-frequency (high-frequency) information. Besides, only a few channels in ȳkN+i,
e.g., the 48-th and 123-th channels, emphasize the low-frequency content, while most of channels of
the SI representation, like the 151-th and 174-th channels, seem to pay more attention to the high-
frequency details of the birds’ edges and silhouettes in contrast with high frequency in xkN+i. This
matches the reconstruction operation of the traditional WZ video coding where the high frequency
DCT coefficients of the SI frame are directly used as that of the reconstructed WZ frame.

3.4 TRAINING STRATEGY

Loss Function. Our design objective is to minimize the number of encoded bits and reduce the
distortion between the original WZ frame xkN+i and the reconstructed WZ frame x̂kN+i. Thus, we
use the following loss function consisting of two metrics for training:

L = λD +R = λd(xkN+i, x̂kN+i) +R(ŷkN+i) +R(ẑkN+i) (1)

where d(xkN+i, x̂kN+i) is the distortion between xkN+i and x̂kN+i, which can be mean squared
error (MSE) or MS-SSIM (Wang et al., 2003) for different tasks. R(ŷkN+i) and R(ẑkN+i) denote
the bit rates used for encoding the quantized WZ representation ŷkN+i and the corresponding hyper
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representation ẑkN+i, respectively. λ is a Lagrange multiplier that controls the trade-off between
the bit rate cost R and distortion D.

Two-step Training. During training, we adopt a two-step procedure for MSE optimized models.
Firstly, we train the WZ encoder-decoder and SI encoder networks, while the RIFE network adopts
the pretrained model in Huang et al. (2020) with fixed parameters. After that, we jointly fine-tune
the whole model including the RIFE network. For MS-SSIM optimized models, we fine-tune all of
the modules based on MSE optimized networks.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Training Data. We use the training part of the Vimeo-90k dataset (Xue et al., 2019) to train the
proposed video compression framework, and randomly crop the videos into 256 × 256 patches.
During training, we set the mini-batch size as 16 (i.e., 16 video clips).

Test Settings. We evaluate the compression performance of our proposed method on two video
test datasets with diversified content, including the UVG dataset (Mercat et al., 2020) and MCL-
JCV dataset (Wang et al., 2016). The GOP size is set as 8 by default. We compare our method
using the hierarchical interpolation order with the traditional codecs, including WZ video coding
(Kodavalla & Mohan, 2012), H.264 (Wiegand et al., 2003) and H.265 (Sullivan et al., 2012), as well
as learning-based methods, such as DVC (Lu et al., 2019), DVC-Lite (Lu et al., 2020) and DCVC (Li
et al., 2021). For H.264 and H.265, we report the only-P mode and hierarchical-B mode. In addition,
two I-frame codecs Minnen & Singh (2020) and Ballé et al. (2018b) are evaluated to demonstrate
the effectiveness of the SI generation network. For details about H.264/H.265 settings, please refer
to Appendix C.1.

Evaluation Metrics. Both PSNR and MS-SSIM are used to measure the distortion of the recon-
structed frames, and bits per pixel (bpp) is used to measure the number of bits for encoding the WZ
representation. Additionally, the Bjøntegaard Delta bitrate (BDBR) (Bjøntegaard, 2001) is com-
puted to denote the average bitrate savings at the same reconstruction quality.

Implementation Details. In our experiments, we use the pretrained model mbt-2018 (Minnen et al.,
2018) provided by CompressAI (Bégaint et al., 2020) for key frame compression. For WZ frame
compression, we train five models with different λ values (MSE: 0.0018, 0.0035, 0.0067, 0.0130,
0.0250; MS-SSIM: 2.40, 4.58, 8.73, 16.64, 31.73) for multiple coding rates. In addition, Adam
(Kingma & Ba, 2014) is used with an initial learning rate as 0.001 that is reduced by a factor of 2
when the evaluation loss reaches a plateau. We use a patience of 10 epochs and 5 epochs for the first
and second stage, respectively. As for the total number of epochs, we set it as 100 and 50 for the
two stages respectively. The whole system is implemented by PyTorch and trained on an NVIDIA
RTX A5000 GPU.

4.2 EXPERIMENTAL RESULTS

RD Performance. Figure 6 presents the compression performance of different methods. The pro-
posed methods outperform the traditional WZ video coding by a large margin with 9.43 ∼ 10.29
dB and 6.75 ∼ 7.24dB gains in terms of PSNR and MS-SSIM, which implies that end-to-end op-
timization design can effectively improve the performance of the distributed coding architecture.
When compared with the I-frame codec Minnen2020 (Ballé2018), the proposed (lite) method im-
proves about 40% and 20% coding efficiency on the UVG dataset and MCL-JCV datasets in PSNR,
which indicates that using the SI at decoder can implicitly reduce the temporal redundancy be-
tween frames to some extent. Compared with H.264(P) and H.264(B), the proposed method saves
24.30% (22.63%) and 13.13% (13.03%) bits in terms of PSNR on the UVG (MCL-JCV) dataset,
respectively. Compaerd with H.265, our methods achieves a lower PSNR, but it achieves better per-
formance under MS-SSIM except for very low-rate regime. Moreover, the proposed method attains
better and similar coding gains than DVC-Lite and DVC on the UVG dataset, respectively. The
proposed methods underperform the current SOTA video codec DCVC, which is partly because the
temporal correlation is not exploited at the encoder. More experimental results for per video are
given in Appendix C.4.
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Figure 6: Rate-Distortion performance in terms of PSNR and MS-SSIM. Due to the inefficiency
of the serial implementation of the WZ video codec, we only report its performance on the UVG
dataset.

Table 2: Encoding complexity of learning-based codecs. Nc denotes the number of CPU cores used
to encode the videos of UVG dataset. H.264 (P) with encoding time as 0.043s under Nc=1 is set as
the anchor to measure BDBR.

Method FLOPs Latency UVG (BDBR)

Nc=1 Nc=2 Nc=4 Nc=8 GPU PSNR MS-SSIM

DCVC 4593.79G 79.18s 42.70s 26.71s 18.61s – -55.09% -63.18%
DVC 2859.12G 45.16s 24.40s 15.51s 9.38s 0.442s -25.91% -38.25%

DVC-Lite 1062.14G 20.69s 12.28s 7.82s 4.86s 0.306s -4.30% -22.46%
Proposed (pro) 1654.7G 19.48s 10.04s 5.70s 3.64s 0.344s -32.35% -41.90%

Proposed 500.45G 6.68s 3.98s 2.29s 1.34s 0.180s -24.30% -34.72%
Proposed (lite) 176.75G 3.06s 1.90s 1.09s 0.65s 0.127s 1.01% -27.48%

Encoder Complexity. We compare the encoding complexity of six video codecs on the 1080P test
videos of the UVG dataset on both CPU and GPU devices. The results are shown in Table 2, in-
cluding the number of FLOPs, the encoding time under different computing capability constraints,
and the BDBR performance. On CPU platforms with different computing powers (i.e., Nc=1,2,4,8),
the proposed method achieves 3 ∼ 3.6 times encoding speedup against DVC-Lite while saving 20%
(12.2%) bits measured by PSNR (MS-SSIM). When compared with DVC, our method achieves
6 ∼ 7 times speedup, only increasing 1.61% bits in PSNR. When the encoder is implemented on
a powerful GPU, the proposed method saves 60% inference time in the encoding period. Further-
more, the pro variant with the better coding efficiency is 2× faster than DVC. Although there is a
performance gap between the proposed method and DCVC, our methods can reduce about 90% of
the encoding latency. This set of results show our methods based on the distributed coding paradigm
have the potential to reach the encoding time of standard video codecs such as H.264. Details on de-
coding complexity and analysis of each component complexity are in Appendix C.2 and Appendix
C.3, respectively.

4.3 ABLATION STUDY

Frame Interpolation Order. As mentioned in Section 3.3, our method supports two different
interpolation orders. To investigate their effect, we report the SI and reconstructed frame gains
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Figure 7: Side information frame gain, reconstructed frame gain and bitrate savings at different GOP
settings. A GOP size of 2 is set as the benchmark.

Table 3: Ablation study on side information, where the proposed method is selected as the anchor.
RIFE network SI Encoder Joint Training Bitrate increase PSNR decrease

✓ ✓ ✓ 0% 0dB
✓ ✓ 9.71% 0.21dB

✓ ✓ 24.67% 0.75dB
✓ ✓ 48.98% 1.24dB

as well as average bitrate savings under different GOP sizes on the UVG dataset. From Figure 7(a),
we observe that a large GOP causes the RIFE network to generate low-quality SI frames. The
hierarchical interpolation order alleviates this phenomena by exploiting the information from the
near decoded frames to interpolate the small time-step SI frame to effectively reduce the warping
error. Therefore, the coding gain gap between the hierarchical order and the fast-decoding one
becomes larger as the GOP size increases, as shown in Figure 7(b) and 7(c).

Side Information. In our framework, we propose using the RIFE network and SI encoder with the
joint training strategy to generate the SI representation. To verify their effectiveness, we conduct the
ablation experiments on the UVG dataset. As shown in Table 3, fixing the RIFE network leads to
9.71% increase in bitrate and 0.21dB decrease in PSNR, which can be explained by the fact that the
pretrained RIFE network aims at only for estimating the intermediate frame more accurately, but not
for optimizing the rate-distortion performance. In addition, if we do not generate the intermediate
frame and concatenate two decoded frames following the hierarchical order as the SI, it requires
24.67% more bitrate and drops PSNR by 0.614dB, which verifies the benefit of video interpolation.
Moreover, the SI exploited in the pixel space brings up to 48.98% bitrate consumption and 1.24dB
gain decrease, supporting the necessity of processing SI in the feature space.

5 CONCLUSIONS AND DISCUSSIONS

In this paper, we proposed an end-to-end distributed deep video compression framework to enhance
the RD performance of the distributed video coding architecture. Our proposal combines the merits
of traditional distributed video coding in the low encoding complexity and learning-based compres-
sion in the powerful non-linear representation ability. Experimental results demonstrate the compe-
tence of the proposed framework in achieving a better coding efficiency than traditional distributed
video coding methods and H.264. In the meantime, compared with DVC, our proposed method
enjoys a much lower encoder complexity with a slight increase in the bitrate. Overall, the proposed
Distributed DVC framework is promising in enabling deep video compression systems with low-
complexity encoders. While there is still a performance gap to deep video compression with the
predictive coding architecture, we believe it can be narrowed by leveraging the latest advancements
in deep learning to further improve the coding efficiency. For example, scale flow (Agustsson et al.,
2020) and deformable compensation (Hu et al., 2021) can be applied to improve the generation of
SI. Moreover, Distributed DVC enjoys great potentials in application scenarios with multiple video
sources captured by different camera sensors, where only the decoder can exploit the statistical
redundancy. Thus, it deserves more research efforts.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Anne Aaron, Rui Zhang, and Bernd Girod. Wyner-ziv coding of motion video. In Conference Record
of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002., volume 1, pp.
240–244. IEEE, 2002.

Anne Aaron, Shantanu D Rane, Eric Setton, and Bernd Girod. Transform-domain wyner-ziv codec
for video. In Visual Communications and Image Processing 2004, volume 5308, pp. 520–528.
International Society for Optics and Photonics, 2004.

Eirikur Agustsson, David Minnen, Nick Johnston, Johannes Balle, Sung Jin Hwang, and George
Toderici. Scale-space flow for end-to-end optimized video compression. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8503–8512, 2020.

Xavi Artigas, Joao Ascenso, Marco Dalai, Sven Klomp, Denis Kubasov, and Mourad Ouaret. The
discover codec: architecture, techniques and evaluation. In picture coding symposium (PCS’07),
number CONF, 2007.
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Johannes Ballé, Valero Laparra, and Eero P Simoncelli. End-to-end optimized image compression.
In International Conference on Learning Representations, 2017.
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(a) (b)

Figure 8: (a): Distributed compression of two correlated sources A and B. The decoder jointly
decompress A and B to utilize their mutual dependence. (b): Lossy compression of a source A
using statistically related side information B.

A DISTRIBUTED CODING

A.1 FOUNDATION

As shown in Figure 8(a), distributed coding refers to separate encoding and joint decoding for two
(or more) statistically correlated but physically separated sources. The joint decoding procedure
aims at exploiting statistical correlations across different sources to achieve efficient compression.
Slepian and Wolf studied the distributed lossless coding problem in the basic two-source case in
1973. Wyner and Ziv then extended the Slepian and Wolf (SW) theorem to the lossy case, namely
the Wyner–Ziv (WZ) theorem, which presents the achievable lower bound for the bit rate at given
distortion, as shown in Figure 8(b). This architecture has been extended to the video coding area,
called as distributed video coding (Girod et al., 2005), which aims at independent encoding of each
frame and joint decoding with side information generated from previously decoded frames. The
formal statements of SW theorem and WZ theorem are as follows.

Theorem 1 (Slepian-Wolf) Consider two statistically dependent i.i.d. sources A and B, the achiev-
able rate region of compressing A and B without any distortion, is provided by:

RA ≥ H(A|B), RB ≥ H(B|A), RA +RB ≥ H(A) +H(B),

where RA and RB represent the rates for transmitting A and B, respectively.

Theorem 2 (Wyner-Ziv) Assume sources A and B are statisctially correlated. Given a certain
distortion level D, the minimum rate RWZ(D) for encoding A with side information B at the
decoder is larger than or equal to RA|B(D), where B is available at both the encoder and the
decoder. Denoting the output of decoder as Â, we have the following equivalence:

RWZ(D) ≥ RA|B(D) = min
E[d(A,Â)]≤D

I(A; Â|B),

where RWZ(D) = RA|B(D) when A and B are jointly Gaussian, and the distortion d(A, Â) be-
tween A and Â is measured by the mean-squared error.

The SW theorem proclaims that lossless compression of two correlated data sources with separate
encoders and a joint decoder can asymptotically achieve the same compression rate as the optimal
compression with a joint encoder and decoder. The WZ theorem extends this idea to lossy com-
pression and demonstrates that there is no RD performance loss without the side information at the
encoder. The SW and WZ theorems imply that it is possible to compress two statistically dependent
signals in a distributed way (separate encoding and joint decoding) while reaching the RD perfor-
mance of predictive coding methods (joint encoding and decoding). For more details on distributed
coding and its applications in video coding, please refer to Girod et al. (2005) and Dufaux et al.
(2010).

A.2 BRIEF INTRODUCTION OF CLASSIC WZ VIDEO CODING

Figure 1(b) illustrates the classic architecture of WZ video coding (Kodavalla & Mohan, 2012). The
encoding and decoding procedure of the WZ video compression is briefly summarized as follows,

Step 1. Transformation and quantization. The input WZ frame xkN+i is transformed to ykN+i by
applying a block-based transform, e.g., discrete cosine transform (DCT). Then ykN+i is uniformly
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Figure 9: Network structure of ChAR component, where µh and σh represent the estimated mean
and variance from the hyperprior entropy model. The S ChAR blocks are performed sequentially
since ŷj is decoded after µj and σj is obtained. We set S as 8 in the proposed model.

Figure 10: Proposed lite WZ encoder-decoder network.

quantized to ŷkN+i according to predefined quantization levels Q = {0, 2m|m = 1, ..., 7}. The
value 0 indicates that some transform bands are not encoded and will be replaced by the SI’s cor-
responding bands at the decoder, while the other bands are divided into multiple bit planes that are
processed by next module.

Step 2. Slepian-Wolf encoding. An LDPC accumulate encoder is used to encode the bit planes of
ŷkN+i separately and generate the corresponding parity information to be stored in a buffer and sent
in chunks upon the request from the decoder via the feedback channel.

Step 3. Side information generation. Based on two previous decoded frames x̂v1 , x̂v2 and the
hierarchical frame interpolation order shown in Figure 2(a), a motion compensated frame interpo-
lation algorithm is used to create an SI frame x̄kN+i that is transformed to ȳkN+i. The correlation
noise between ŷkN+i and ȳkN+i is modeled by a Laplacian distribution as a virtual channel model
(Brites & Pereira, 2008). Then the soft information (i.e., conditional bit probabilities Pcond) for each
bitplane is estimated by using the SI representation ȳkN+i, the correlation noise and the previous
decoded bit planes.

Step 4. Slepian-Wolf decoding. Given the soft information, each bit plane is decoded by requesting
the successive chunks of parity bits from the encoder buffer through the feedback channel until a
low bit error probability is achieved.

Step 5. Reconstruction and inverse transformation. The transform bands are firstly reconstructed
by grouping the SI’s high frequency bands and the decoded bands, followed by de-quantization and
inverse transform to obtain the reconstructed WZ frame x̂kN+i.

B NETWORK ARCHITECTURE

ChAR component. As shown in Figure 9, each ChAR block is composed of three modules, includ-
ing a mean transform module, a scale transform module, and a latent residual prediction module. It
is noted that the quantized slice Q(yj) = Round(yj − µj) + µj is concatenated with the current
slice’s mean µj and the previous decoded slices ŷ<j to obtain the predicted residual rj . Then the
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Figure 11: Proposed pro WZ encoder-decoder network.

(a) Network structure of IFNet, where each IFBlock has a resolution param-
eter, i.e., (K0,K1,K2) = (4, 2, 1).

(b) Network structure of RefineNet with a context extractor and an Unet refine net-
work.

Figure 12: Network structure of RIFE.

current decoded slice ŷj can be obtained by adding rj to Q(yj), hence reducing the quantization
error.

Lite WZ encoder-decoder network. Figure 10 illustrates the structures of the proposed lite variant.
Compared with the main model, the lite variant uses fewer channels in the convolution layers and
only employs the hyperprior entropy model (Ballé et al., 2018b) without the ChAR component.

Pro WZ encoder-decoder network. As shown in Figure 11, the pro variant adopts the same struc-
ture with the proposed model but uses more channels. In addition, the number of ChAR blocks is
set as 16 to better capture spatial redundancy.

RIFE network. As shown in Figure 12, the RIFE network is composed of an intermediate flow
estimation network (IFNet) and a RefineNet. Given two previous decoded frames x̂v1 , x̂v2 and the
corresponding time step t (0 ≤ t ≤ 1), the IFNet estimates the motion information and produces a
coarse interpolated frame. Then the RefineNet is used to refine the high-frequency area and reduce
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artifacts to create the current predicted frame x̄kN+i, which is expected to be as close to the current
frame xkN+i as possible. The IFNet adopts several stacked IFBlocks at different resolution to obtain
a rough interpolated frame with the following formula:

Ĩt = M ⊙ Ĩt←0 + (1−M)⊙ Ĩt←1

Ĩt←0 =
←−
W (I0, Ft→0) , Ĩt←1 =

←−
W (I1, Ft→1)

(2)

where M denotes the fusion map (0 ≤ M ≤ 1), the operation ⊙ is an element-wise multiplier,
and
←−
W represents the image backward warping. For each IFBlock, two input frames I0 and I1 are

first warped to the current frames Ĩt←0 and Ĩt←1 based on estimated flow F i−1 from the (i − 1)th

IFBlock. Then we concatenate the input frames I0, I1, warped frames Ĩi−1t←0, Ĩ
i−1
t←1, current timestep

t, previous flow F i−1 and fusion map M i−1 by channel dimension, and feed them into a series
of bilinear and convolution operations to approximate the residual of flow and fusion map. After
obtaining the the final flow F 2 and the fusion map M2, we use equation Equation 2 to get the
interpolated frame Ĩt.

To refine the high frequency area and reduce the artifacts of Ĩt, the RefineNet is employed to produce
a reconstruction residual ∆(−1 ≤ ∆ ≤ 1). Specifically, the context extractor first extracts the
multi-scale contextual features C0 and C1 from input frames I0 and I1, respectively. Based on
the intermediate flows F 2

t→0 and F 2
t→1, these features are warped to the aligned features Ct←0 and

Ct←1. At the same time, the input frames I0, I1, warped frames Ĩ2t←0, Ĩ
2
t←1, the estimated flows

F 2
t→0, F

2
t→1 and the fusion map M2 are concatenated and fed into the encoder of the Unet refine

network to produce a refined reconstructed frame Īt = Ĩt +∆ with the aid of Ct←0 and Ct←1.

C EXPERIMENTS

C.1 EXPERIMENTAL DETAILS

Key frame compression. In learning-based video codecs, the pretrained model mbt-2018 (Minnen
et al., 2018) with quality index 4 provided by CompressAI (Bégaint et al., 2020) is used to compress
key frames (i.e., the first frame of each GOP). For fair comparison, both DVC 4 (Lu et al., 2019) and
DCVC 5 (Li et al., 2021) with the above intra-coding method are retested by using their open source
codes. For traditional video codecs, H.264 and H.265 utilize their default intra-coding methods, and
WZ video coding (Kodavalla & Mohan, 2012) adopt H.265 intra coding method to compress key
frames.

H.264 and H.265 settings. We use the following commands to implement the H.264 and H.265
coding schemes with the only-P mode and the hierarchical-B mode. Specifically, given a sequence
Video.yuv with the resolution as W×H, the command lines for generating compressed video using
x264 and x265 codecs are as follows:

• H.264(P): ffmpeg -pix fmt yuv420p -s:v W×H -i Video.yuv -vframes Ne -c:v libx264 -preset
veryfast -tune zerolatency -x264-params “crf=CRF:keyint=GOP:bframes=0:scenecut=0”
output.mkv

• H.264(B): ffmpeg -pix fmt yuv420p -s:v W×H -i Video.yuv -vframes Ne -c:v libx264 -preset
veryfast -x264-params “crf=CRF:keyint=GOP:scenecut=0:b-adapt=0:bframes=BF:b-
pyramid=1” output.mkv

• H.265(P): ffmpeg -pix fmt yuv420p -s:v W×H -i Video.yuv -vframes Ne -c:v libx265 -preset
veryfast -tune zerolatency -x265-params “crf=CRF:keyint=GOP:bframes=0” output.mkv

• H.265(B): ffmpeg -pix fmt yuv420p -s:v W×H -i Video.yuv -vframes Ne -c:v libx265 -preset
veryfast -x265-params “crf=CRF:keyint=GOP:b-adapt=0:bframes=BF:b-pyramid=1”
output.mkv

where Ne, CRF,BF represent the number of encoded frames, quantization parameter, and the
number of B frames, respectively. Here we set BF as GOP-1 for the hierarchical-B mode.

4https://github.com/ZhihaoHu/PyTorchVideoCompression/tree/master/DVC
5https://github.com/DeepMC-DCVC/DCVC

17



Under review as a conference paper at ICLR 2023

Table 4: Decoding complexity of learning-based codecs. H.264 with decoding time as 0.00796s
under Nc=1 is set as the anchor to measure BDBR.

Method FLOPs Latency MCL-JCV (BDBR)

Nc=1 Nc=2 Nc=4 Nc=8 GPU PSNR MS-SSIM

DCVC 3030.68G 63.38s 45.50s 34.30s 27.81s – -54.01% -65.52%
DVC 1317.55G 23.78s 15.16s 10.07s 6.45s 0.226s -27.95% -40.45%

DVC-Lite 932.37G 18.31s 10.75s 6.82s 4.25s 0.205s -13.18% -35.38%
Proposed (pro) 5979.56G 42.13s 23.93s 15.39s 11.75s 0.306s -32.18% -50.15%

Proposed 2542.98G 22.43s 14.09s 9.36s 6.49s 0.190s -22.63% -43.04%
Proposed (lite) 1536.36G 16.12s 10.73s 7.03s 4.86s 0.139s 11.36% -28.34%

(a) (b)

Figure 13: The overall complexity of the proposed methods, including (a) the number of FLOPs and
(b) running time for each component on a single CPU core, where the running time of WZ encoder
and decoder includes the corresponding entropy coding time.

C.2 DECODER COMPLEXITY

Table 4 shows the decoding complexity of six learning-based video codecs on the 1080P test videos.
The decoding time is larger than the encoding time, since our proposed methods are based on the
distributed coding paradigm, where the decoder performs motion estimation and compensation. The
is different from the predictive coding architecture in DVC and DCVC. The results demonstrate that
the proposed method not only has lower encoding latency, but also outperforms DVC-Lite with
increasing about 22% ∼ 52% decoding time. Moreover, our method achieves the comparable com-
pression performance with similar decoding time to DVC. By adopting a heavier encoder-decoder
network, the pro version saves 4.23% (9.7%) bits against DVC in terms of PSNR and MS-SSIM on
the MCL-JCV dataset. In addition, although the decoder FLOPs of the pro variant are larger than
that of DCVC, the pro version has lower decoding latency. This is explained by the advantage of the
ChAR component that can be sped up by parallel computing.

C.3 COMPLEXITY ANALYSIS OF EACH COMPONENT

Figure 13 reports the complexity of each component in three different versions of the proposed
methods. We observe that the encoder has a lower complexity than the decoder part, which benefits
from the advantages brought by the distributed coding architecture. Although each component of
the decoder has a large latency on the CPU platform, our proposed method aims at the uplink-based
video applications, such as video surveillance and multi-view image acquisition. These applications
require a low-power encoder, while the receiver has powerful computation resources to decode the
video. As shown in Table 4, the proposed decoder, including the interpolation network, only takes
0.190s to decode a frame of size 1920x1024, which is sufficiently fast to satisfy the basic needs.
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C.4 PER-VIDEO LEVEL ANALYSIS

In Figure 14, H.264 with the only-P mode is set as the anchor to compute the BDBR for each video
on the UVG and MCL-JCV datasets. We then plot the file size for each compressed video relative
to H.264, e.g., a value of 30% in the BDBR represents the relative size as 70% (i.e., 100%-30%).

It is observed that our proposed methods generate smaller encoded files than H.264 and DVC-Lite on
most of videos. Compared to DVC, around half of the videos (19/37) compressed by the proposed
method have smaller or equal file sizes in terms of PSNR. Nonetheless, for a fraction of videos
with fast motion information (e.g., ReadySetGo, video 03, 08 and 12), it is challenging for the
proposed model to achieve the superior PSNR performance without utilizing temporal information
at the encoder. Moreover, due to the lack of animated videos in the training dataset, our methods
cannot generalize well to cartoon videos (i.e., video 18, 20, 24, 25) in the MCL-JCV dataset.

In addition, our methods have better compression efficiency in MS-SSIM than in PSNR, which is
partly caused by exploiting SI in the feature space rather than pixel space at the decoder. Thus, the
network inclines to focus on structure information instead of pixel information. While there is some
performance deficiency under the metric of PSNR in some videos, the proposed Distributed DVC
framework is still a feasible attempt to approach the performance of predictive coding.

C.5 FEATURE VISUALIZATIONS

We provide the visualizations of WZ and SI representations in Figure 15 and 16. The SI represen-
tation appears to focus on the high-frequency content when compared with the WZ representation.
This implies that it is worth exploring how to fully utilize the high-frequency information of SI
feature and remove unimportant high-frequency feature maps in the WZ feature to improve the rate-
distortion performance in the future.

C.6 SUBJECTIVE COMPARISON

In Figure 17, 18, 19 and 20, we show several examples to compare the quantitative results between
DVC and our proposed methods. The experimental results verify that our proposed methods achieve
better compression performance than DVC in the videos while maintaining plenty of low-motion
information. Similar as the results in Figure 14, for some videos with fast motion or cartoon videos,
i.e., Figure 19 and 20, our methods have slight performance loss compared with DVC. We believe
further performance improvement can be achieved, as discussed in Section 5.
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(a) (b)

(c)

(d)

Figure 14: Rate savings for each video on the UVG and MCL-JCV datasets. Values denote the
relative size compared to H.264(P) when measured by BDBR at the same reconstruction level, where
the H.264 relative size is always 100%.
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Figure 15: Visualizations of Wyner-Ziv representation from videoSRC30 sequence in the MCL-JCV
dataset.
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Figure 16: Visualizations of side information representation from videoSRC30 sequence in the
MCL-JCV dataset.
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(a) Ground Truth (b) DVC, 0.0894 bpp, 38.31 dB, 0.9745

(c) Proposed, 0.0826 bpp, 38.57 dB, 0.9773 (d) Proposed (pro), 0.0667 bpp, 38.44 dB, 0.9768

Figure 17: Visual comparison on the Bosphorus sequence in the UVG dataset. Our proposed meth-
ods save more bits at the same reconstruction quality level.

(a) Ground Truth (b) DVC, 0.0272 bpp, 38.99 dB, 0.9704

(c) Proposed, 0.0208 bpp, 38.98 dB, 0.9718 (d) Proposed (pro), 0.0175 bpp, 39.02 dB, 0.9720

Figure 18: Visual comparison on the videoSRC01 sequence in the MCL-JCV dataset. Our proposed
methods save more bits at the same reconstruction quality level.
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(a) Ground Truth (b) DVC, 0.1363 bpp, 36.58 dB, 0.9843

(c) Proposed, 0.1719 bpp, 36.57 dB, 0.9844 (d) Proposed (pro), 0.1405 bpp, 36.48 dB, 0.9843

Figure 19: Visual comparison on the ReadySetGo sequence in the UVG dataset. Our proposed
methods require more bits at the same reconstruction quality level.

(a) Ground Truth (b) DVC, 0.1470 bpp, 37.58 dB, 0.9799

(c) Proposed, 0.1213 bpp, 37.04 dB, 0.9783 (d) Proposed (pro), 0.1002 bpp, 36.89 dB, 0.9773

Figure 20: Visual comparison on the videoSRC18 sequence in the MCL-JCV dataset. Our proposed
methods require more bits at the same reconstruction quality level.
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