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ABSTRACT

Outside of transfer learning settings, reinforcement learning agents start their learn-
ing process from a clean slate. As a result, such agents have to go through a
slow process to learn even the most obvious skills required to solve a problem.
In this paper, we present INNATECODER, a system that leverages human knowl-
edge encoded in foundation models to provide programmatic policies that encode
“innate skills” in the form of temporally extended actions, or options. In contrast
to existing approaches to learning options, INNATECODER learns them from the
general human knowledge encoded in foundation models in a zero-shot setting, and
not from the knowledge the agent gains by interacting with the environment. Then,
INNATECODER searches for a programmatic policy by combining the programs en-
coding these options into larger and more complex programs. We hypothesized that
INNATECODER’s way of learning and using options could improve the sampling
efficiency of current methods for learning programmatic policies. We evaluated our
hypothesis in MicroRTS and Karel the Robot, two challenging domains. Empirical
results support our hypothesis, since they show that INNATECODER is more sample
efficient than versions of the system that do not use options or learn the options
from experience. The policies INNATECODER learns are competitive and often
outperform current state-of-the-art agents in both domains.

1 INTRODUCTION

Outside of transfer learning settings, deep reinforcement learning (DRL) agents begin their learning
process with randomly initialized neural networks. As a result, DRL agents must learn from scratch
even the most basic skills required to solve a problem. In this paper, we harness the general human
knowledge encoded in foundation models to endow agents with helpful skills before they even
start interacting with the environment. This is achieved by using programmatic representations of
policies (Trivedi et al., 2021)—programs written in a domain-specific language encoding policies—
and the foundation models’ ability to write computer programs. Depending on the language used,
programmatic policies were shown to generalize better to unseen scenarios (Inala et al., 2020) and to
be human-interpretable (Verma et al., 2018; Bastani et al., 2018). In addition to these advantages and
loosely inspired by the innate abilities of animals (Tinbergen, 1951), we show that programmatic
representations of policies allow us to harness helpful “innate skills” from foundation models.

Given a natural-language description of the problem that the agent needs to learn to solve, our system,
which we call INNATECODER, queries a foundation model for programs that encode policies to solve
the problem. Although the programs the model generates are unlikely to encode policies that solve
the problem, we hypothesize that the set of sub-programs we obtain from these programs can encode
helpful temporally extended actions, or options (Sutton et al., 1999). We consider options as functions
the agent can call and that will tell it how to act for a number of steps (Precup et al., 1998).

Options can ease the agent’s learning process in different ways. For example, options can allow
the agent to better explore the problem space (Machado et al., 2017; Bellemare et al., 2020) or can
transfer knowledge between different tasks (Konidaris & Barto, 2007). In this paper, we present
a novel way of learning options with foundation models. We also present a novel way of using
the learned options, which is inspired by recent work on learning semantic spaces of programming
languages (Moraes & Lelis, 2024). We leverage the compositional nature of the programmatic options
we harness from a foundation model to learn the underlying semantic space of the programming
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ρ := if h then a

h := frontIsClear | markersPresent

a := move | putMarker | pickMarker

ρ

if h

MP

then a

PM

Figure 1: Left: The context-free grammar specifying a simplified version of the domain-specific
language for Karel the Robot, a benchmark we use in our experiments. Right: the abstract syn-
tax tree for if markersPresent then pickMarker. In the tree, MP and PM stand for
markersPresent and pickMarker, respectively. Karel is a robot acting on a grid, where it
needs to accomplish tasks such as collecting and placing markers on different locations of the grid.
In this program, Karel will pick up a marker if one is present in its current location on the grid.

language that defines the agent’s hypothesis space. In the semantic space, neighbor programs encode
similar but different agent behavior, which is a desirable property when inducing spaces conducive
to algorithms searching for programmatic policies (Trivedi et al., 2021). The semantic space is
approximated by ensuring that neighboring policies differ in term of one sub-policy from the set of
options. Instead of searching in the space of programs induced by the syntax of the language (Koza,
1992), INNATECODER searches in the space of semantically different programs induced by options.
In contrast with previous methods that can benefit from up to hundreds of options (Eysenbach et al.,
2019), INNATECODER’s use of programmatic options allows it to benefit from thousands of them.

INNATECODER’s approach to harnessing options from foundation models contrasts with previous
approaches to automatically learning them, e.g., (Tessler et al., 2017; Bacon et al., 2017; Igl et al.,
2020; Klissarov & Machado, 2023). This is because options are harnessed from the general knowledge
encoded in a foundation model, as opposed to the knowledge the agent gains by interacting with the
environment. This zero-shot approach to learning options is enabled by the use of a domain-specific
language to bridge the gap between the high-level knowledge encoded in foundation models and the
low-level knowledge required at the sensorimotor control level of the agent (Klissarov et al., 2024).
For example, foundation models trained on Internet data likely encode the knowledge that, to win a
match of a real-time strategy game, the player must collect resources and build structures, which will
allow for the training of the units needed to win the game. However, the model cannot issue low-level
actions in real time to control dozens of units to accomplish this plan. INNATECODER bridges this
gap by distilling the knowledge of the model into options that can be executed in real time.

We evaluated our hypothesis that foundation models can generate helpful programmatic options in
the domains of MicroRTS, a challenging real-time strategy game (Ontañón, 2017), and Karel the
Robot (Pattis, 1994), which has been used as a benchmark for program synthesis and reinforcement
learning algorithms (Bunel et al., 2018; Chen et al., 2018; Shin et al., 2018; Trivedi et al., 2021). The
results in both domains support our hypothesis, since INNATECODER was more sample-efficient than
versions of the system that do not use options or learn options from experience. We also show that
the policies INNATECODER learns are competitive and often outperform the current state-of-the-art
algorithms. INNATECODER is inexpensive because it uses the foundation model a small number of
times as a pre-processing step, making it an accessible system to smaller labs and companies.

2 PROBLEM DEFINITION

We consider sequential decision-making problems that can be formulated as Markov decision pro-
cesses (MDPs) (S,A, p, r, µ, γ). Here, S represents the set of states and A is the set of actions.
The function p(st+1|st, at) is the transition model, which gives the probability of reaching state
st+1 given that the agent is in st and takes action at at time step t. The agent observes a reward
value of Rt+1 when transitioning from st to st+1. The reward value the agent observes is returned
by the function r. µ is the distribution of the initial states of the MDP; states sampled from µ are
denoted s0. γ in [0, 1] is the discount factor. A policy π is a function that receives a state s and
returns a probability distribution over actions available at s. The goal is to learn a policy π that
maximizes the expected sum of discounted rewards for π starting in an s0: Eπ,p,µ[

∑∞
k=0 γ

kRk+1].
V π(s) = Ep,π[

∑∞
k=0 γ

kRk+1|s0 = s] is the value function, which measures the expected return
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Figure 2: Schematic view of INNATECODER, with three parts. The “Learning Options” component
harnesses options from a foundation model from a natural language description of the MDP and
a Backus-Naur form description of the DSL. The model generates a set of programmatic policies
that are broken down into a set of options (Section 3.1). The “Semantic Space” component uses the
options to approximate the semantic space of the DSL (Section 3.2). The “Local Search” component
searches in a mixture of the syntax and semantic spaces for a programmatic policy n∗ (Section 3.3).

when the agent follows the policy π starting from the state s. In this work, we approximate the value
function of a policy π and state s with Monte Carlo roll-outs and denote the approximation as V̂ π(s).

We consider programmatic representations of policies, which are policies written in a domain-specific
language (DSL). The set of programs a DSL accepts is defined through a context-free grammar
(M,N,R, I), where M , N , R, and S are the sets of non-terminals, terminals, the production rules,
and the grammar’s initial symbol, respectively. Figure 1 shows a DSL for a simplified version
of the language we use in our experiments for Karel the Robot (the complete DSL is shown in
Appendix H.1). In this DSL, the set M is composed of symbols ρ, h, a, while the set N includes
the symbols if, frontIsClear, markersPresent, move, putMarker, pickMarker. R
are the production rules (e.g., h → frontIsClear), and ρ is the initial symbol. We denote
programmatic policies with letters p and n and their variations such as n′ and n∗.

We represent programs as abstract syntax trees (AST), where each node n and its children represent
a production rule if n represents a non-terminal symbol. For example, the root of the tree in
Figure 1, which represents the non-terminal ρ; node ρ and its children represent the production rule
ρ → if h then a. Leaf nodes in the AST represent terminal symbols. Figure 1 shows an example
of an AST for the program if markersPresent then pickMarker. A DSL D defines the
possibly infinite space of programs JDK, where in our case each program p in JDK represents a policy.

Given a domain-specific language D, our task is to find a programmatic policy p ∈ JDK that
maximizes the expected sum of discounted rewards for a given MDP.

3 INNATECODER

Figure 2 shows a schematic view of INNATECODER, which receives an MDP and a DSL and returns a
programmatic policy, denoted n∗. INNATECODER is composed of three components: one for learning
options, another that uses learned options to induce an approximation of the semantic space of the
DSL, and a component to search in such a space. In this section, we explain the three components.
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3.1 LEARNING OPTIONS

An option is a program encoding a policy that the agent can invoke at specific states. Once invoked,
the program tells the agent what to do for a number of steps. Once completed, the option “returns”
the control back to the agent. An option ω is defined with a tuple (Iω, πω, Tω), where Iω is the set of
states in which the option can be initiated; πω is the policy the agent follows once ω starts; Tω is a
function that returns the probability in which ω terminates at a given state st. INNATECODER uses a
foundation model to learn programs, written in a given DSL, encoding options. The programs receive
a state of the MDP and return the action the agent should take at that state, thus encoding πω .

We assume that the set Iω is the set S of all states of the MDP, which means that the program can be
invoked in any state. However, note that the program may not return any actions in a given state s,
which is equivalent to s not being in Iω. For example, “if b1 then c1” returns the action given in c1
only if condition b1 is satisfied in the state in which the option was queried; it returns no action for
states that do not satisfy b1. The option termination criterion Tω is also determined by the program;
the option terminates when the program terminates. This termination criterion means that, depending
on the DSL, options have an internal state, representing the line in the program in which the execution
will continue the next time the agent interacts with the environment. For example, if the option “c1 c2”
is invoked for state st and c1 returns an action, then the agent’s action in st+1 is determined by c2.

Programmatic options are harnessed from a foundation model as follows. We provide a natural
language description of the MDP and the Backus-Naur form of the DSL to the model. The model then
provides a set of m programs written in the DSL encoding policies for the MDP. While it is unlikely
that the model can provide policies that can maximize the expected return for any MDP of interest,
we hypothesize that these programmatic policies can be broken up into sub-programs that can encode
helpful agent behavior. Each program p is broken up into one sub-program for each sub-tree rooted
at a non-terminal symbol in the AST of p. For example, for the program “if b1 then c1 c2” we obtain
the sub-programs “if b1 then c1 c2”, “b1”, “c1”, “c2”, and “c1 c2”. These sub-programs form a set of
options O, which INNATECODER uses to approximate the semantic space of the DSL. Note that this
set of options is generated zero-shot, before the agent starts interacting with the environment.

3.2 APPROXIMATING THE SEMANTIC SPACE WITH OPTIONS

Methods for searching for programmatic policies traditionally search in the space of programs defined
by the context-free grammar of the DSL (Koza, 1992; Verma et al., 2018; Carvalho et al., 2024). We
refer to this type of space as the syntax space, since it is based on the syntax of the language.

Definition 1 (Syntax Space) The syntax space of a DSL D is defined by (D,N x
k , I, E). With JDK

defining the set of candidate programs, or solutions, N x
k (x is for “syntax”) is the syntax neighborhood

function that receives a candidate and returns k candidates from JDK. I is the distribution of initial
candidates. Finally, E is the evaluation function, which receives a candidate in JDK and returns a
value in R.

A common way of defining the distribution of initial candidates I is through a procedure that starts
with a string that is the initial symbol of the grammar and iteratively, and uniformly at random,
samples a production rule to replace a non-terminal symbol in the string. In the example of Figure 1,
we replace the initial symbol I with “if(B) then C” with probability 1.0, since this is the only rule
available; then, B is replaced with either “b1” or “b2” with probability 0.5 each. This iterative process
stops once the string contains only terminal symbols. If a probabilistic context-free grammar is
available, then the distribution I can be defined through the same process, but using the probabilities
from the grammar as opposed to a uniform distribution over production rules (Trivedi et al., 2021).

The syntax neighborhood function N x
k defines the structure of the search space, as it determines the

set of candidate solutions (programs that encode a policy) that the search procedure can evaluate from
a given candidate n. Given a candidate n, N x

k (n) returns a set of k neighbors of n. These candidates
are generated by selecting uniformly at random a node that represents a non-terminal symbol in the
AST of n. Then, the sub-tree rooted at the selected node is replaced by another sub-tree generated
using the process described for I, but starting at the non-terminal symbol the node represents. This
process of replacing a sub-tree in n is repeated k times, to generate k possibly different neighbors of
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n. Finally, E is an approximation of the value function of the policy encoded in n from a set of initial
states s0, V̂ n(s0); we obtain V̂ n(s0) by averaging the returns after rolling n out from states s0.

Moraes & Lelis (2024) showed that searching in the syntax space can be inefficient because often the
neighbors n′ of a candidate n encode policies that are semantically identical to n; the programs differ
in terms of syntax, but encode exactly the same agent behavior. As a result, the search process wastes
time evaluating the same agent behavior. Their solution is to approximate the underlying semantic
space of the language, where neighbor programs are similar in terms of syntax, but are likely to differ
in terms of behavior. In their setting, the agent learns programs for a set of tasks, which are used
to induce the semantic space, and the induced space is used in downstream tasks. INNATECODER
overcomes the requirement to operate on a stream of problems by using a foundation model to learn
the options in a zero-shot setting. A semantic space is defined as follows.

Definition 2 (Semantic Space) The semantic space of a DSL D is defined by (D,Nm
k , I, E), where

I and E are identical to the syntax space (Definition 1). The function Nm
k (m is for “semantics”) is

a semantic neighborhood function that also receives a candidate and returns k candidates from JDK.

We define the function Nm
k with a set of options Ω, where each option ω in Ω represents a different

agent behavior. A neighbor of candidate n is then obtained by selecting, uniformly at random, a node
c in the AST of n that represents a non-terminal symbol. Then, we replace the sub-tree rooted at c
with the AST of an option ω in Ω. The option ω is selected, uniformly at random, among those in Ω
whose AST root represents the same non-terminal symbol c represents. By matching the non-terminal
symbols when selecting ω, we match ω with the type of the sub-tree that is removed from n. Similarly
to N x

k , Nm
k generates k possibly different neighbors by repeating this process k times.

The intuition for requiring the options in Ω to encode different agent behaviors is to increase the
chance of seeing neighbors with different behaviors. For example, if many of the options in Ω
encoded exactly the same behavior, then the chances of all neighbors of a program also encoding the
same behavior would be higher, which is wasteful from a sample efficiency perspective. Next, we
describe how we obtain Ω from the set of options O we harnessed from a foundation model.

We filter the set of options O harnessed from the foundation model into a set Ω of behaviorally differ-
ent options by having the agent interact with the environment, as described in previous work (Moraes
& Lelis, 2024). Assuming an MDP with discrete actions, each option in O is evaluated in an ordered
set of states S of the MDP. This set S is obtained by rolling out all options o ∈ O once, from an
initial state s0 sampled from µ. The states s observed in this process form S. Then, every option is
invoked for each state in S, thus forming an action signature Ao for each o. An action signature is
a vector with one action for each state in S, where the i-th entry of Ao corresponds to the action o
returns to the i-th state in S. The set of options Ω is given by one option for each observed Ao. If
multiple options have the same signature, we arbitrarily select one of them.

The number of samples required to filter the set of options into a set of options with different behaviors
is negligible: it uses less than 1% of the computation in our experiments. Programs that cannot be
rolled out (e.g., Boolean expressions and do not issue actions) are not included in the set of options.

3.3 SEARCHING IN SEMANTIC SPACE

INNATECODER uses stochastic hill-climbing (SHC) to search in the semantic space of a given DSL
D for a policy that maximizes the agent’s return. SHC starts its search by sampling a candidate
program n from I. In every iteration, SHC evaluates all k neighbors of n in terms of their E-value.
The search then moves on to the best neighbor of n in terms of E , and this process is repeated from
there. SHC stops if none of the neighbors has an E-value that is better than the current candidate, that
is, it reaches a local optimum. SHC uses a restarting strategy: once SHC reaches a local optimum, if
SHC has not yet exhausted is search budget, it restarts from another initial candidate sampled from I .
SHC returns the best solution, denoted n∗, encountered in all restarts of the search.

INNATECODER does not search solely in the semantic space, but mixes both syntax and semantic
spaces in the search. This is because the set of options might cover only a part of the space of
programs the DSL induces. To guarantee that INNATECODER can access all programs in JDK, with
probability ϵ, SHC uses the syntax neighborhood function in the search, and with probability 1− ϵ, it
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uses the semantic one. We use ϵ = 0.4 in our experiments. We chose this value because it performed
better in preliminary experiments than the value of 0.2 used in previous work (Moraes & Lelis, 2024).

Although other local search algorithms could be used with INNATECODER, such as Simulated
Annealing (Kirkpatrick et al., 1983; Husien & Schewe, 2016), we use SHC because previous work
showed that it performs well in our test domains (Moraes et al., 2023; Carvalho et al., 2024).

4 EMPIRICAL EVALUATION

Although foundation models are unlikely to generate programs that encode policies for fully solving
MDPs, we hypothesize that the programs they generate can be broken up into smaller programs that
serve as helpful options. We evaluated the usefulness of these programmatic options by measuring
the sampling efficiency of search algorithms searching in the semantic spaces induced by them. We
evaluate INNATECODER on MicroRTS (Ontañón, 2017) and Karel the Robot (Pattis, 1994).

MicroRTS MicroRTS is a real-time strategy game that requires the agent to control dozens of
units in real-time, thus making it impractical to use foundation models to decide on agent actions
directly. We use the following maps from the MicroRTS repository,1 with the map size in brackets:
NoWhereToRun (9×8), basesWorkers (24×24), and BWDistantResources (32×32), and BloodBath
(64× 64). We use these maps because they differ in size and structure. Since MicroRTS is a multi-
agent problem, we use 2L, a self-play algorithm, to learn programmatic policies (Moraes et al., 2023).
MicroRTS is not a symmetric game and the outcome of the game depends on the starting location of
the players. To ensure fairness, each pair of policies plays two matches on each map, so that each
player can start at each of the two initial locations; the results are then averaged out of these two
runs. In the context of 2L, INNATECODER is required to solve an MDP in every iteration of self-play
(see Appendix M). We use a new version of the MicroLanguage as the DSL (Mariño et al., 2021).
The language offers specialized functions and an action-prioritization scheme through for-loops,
where nested for-loops allow for higher priority of actions. We provide a detailed explanation of the
MicroLanguage, as well as images of the maps used, in Appendices H.2 and K, respectively.

Karel Karel the Robot is an environment originally created for teaching people how to write
computer programs, which has later been used as a benchmark domain for reinforcement learning
algorithms (Trivedi et al., 2021). Karel is a robot interacting with a grid-world, where it can collect
markers and place markers. We use the following Karel problems, which were designed in previous
works (Trivedi et al., 2021; Liu et al., 2023b): StairClimber, FourCorners, TopOff, Maze, CleanHouse,
Harvester, DoorKey, OneStroke, Seeder, and Snake. The problems differ in terms of structure of the
grids (e.g., where walls are located) and in terms of the task that Karel needs to accomplish. For
example, in CleanHouse, Karel needs to collect all markers placed in the grid, while in TopOff it has
to place a marker on top of all existing markers. The problem are described in Appendix I. We use
the more difficult version of the environment known as “crashable” (Carvalho et al., 2024), where an
episode terminates with a negative reward if Karel bumps into a wall. We use the same DSL used in
previous work (Trivedi et al., 2021), which we describe in Appendix H.1.

Baselines The current state-of-the-art methods for both MicroRTS and Karel use programmatic rep-
resentations of policies, where the policies are written in the DSLs we use in our experiments (Moraes
et al., 2023; Trivedi et al., 2021). Therefore, we focus on methods that use programmatic representa-
tions as baselines. However, we provide comparisons of INNATECODER with deep reinforcement
learning baselines in Appendices B.1 (MicroRTS) and B.2 (Karel). For both MicroRTS and Karel we
use SHC searching in the syntax space as a baseline, as it represents state-of-the-art performance
in both domains (SHC). We also use two variants of INNATECODER where the options are learned
without the help of a foundation model. These variants can be seen as implementations of the
Library-Induced Semantic Spaces (LISS) (Moraes & Lelis, 2024) for a non-transfer learning setting.
In the first variant, LISS learns the options as it learns how to solve the problem. In terms of the
scheme shown in Figure 2, we skip the “Learning Options” step and build the set of options from the
programs returned in every complete search of SHC. That is, when we reach the box “Restart?”, we
use the sub-programs of the best program encountered in that search to augment the set of options.

1https://github.com/Farama-Foundation/MicroRTS/
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We call this baseline LISS-o, where “o” stands for “online”. In the second variant, we sample
programs from I and use their sub-programs to form the set of options. We call this baseline LISS-r,
where “r” stands for “random”. We also use the best program the foundation model generated out
of all programs used to create the set of options as a baseline, which we call FM, which stands for
“foundation model”. LISS-o and LISS-r allow us to evaluate the effectiveness of learning options
from a foundation model, while FM allows us to evaluate the foundation model as an alternative to
solve the problem directly. We also use the Cross Entropy Method (CEM) operating in a learned
latent space, which was shown to outperform DRL algorithms in all Karel tasks (Trivedi et al., 2021).

Foundation Models We use OpenAI’s API for GPT 4o, whose training cut-off date is October
2023. We also perform tests, for MicroRTS, using the LLama 3.1 model with 405 billion parameters,
whose training cut-off is December 2021. We used the GPT model in both MicroRTS and Karel
experiments, while the Llama model was used in MicroRTS experiments. There were no MicroRTS
programs available online prior to the Llama cut-off date, so the Llama evaluations on MicroRTS
did not suffer from data leakage. The GPT model might have trained on the MicroRTS and Karel
programs that were available online prior to its training cut-off date. We attempt to measure how
much a possible data leakage can influence our results by using the FM baseline. If the model can
simply retrieve the solutions seen in training, one would expect this baseline to perform well.

Other Specifications All experiments were run on 2.6 GHz CPUs with 12 GB of RAM. We use
k = 1, 000 in the neighborhood function. In MicroRTS, SHC is run with a restarting time limit of
2, 000 seconds for each self-play iteration. In Karel, since we are solving a single MDP, SHC restarts
as many times as possible within the computational budget. For MicroRTS, we query the foundation
models 120 times to generate the same number of programs; for Karel, we use 100 programs. We use
the same number of programs as the LISS-r baseline. We perform 30 independent runs (seeds) of
each system, including the generation of the programs by the foundation model.

Metrics of Performance For MicroRTS, performance is measured in terms of winning rate. The
winning rate of a policy is computed for a set of opponent policies and is computed as follows:
we sum the number of victories and half the number of draws and divide this sum by the total
number of matches played (Ontañón, 2017). For Karel, performance is measured in terms of episodic
return (Trivedi et al., 2021). We use prompts where we briefly describe each problem and provide
a formal description of the DSL used. The prompts used in our experiments are in Appendices L
(MicroRTS) and J (Karel). Both MicroRTS and Karel are deterministic, so the value of E for policies
can be computed with a single roll-out. We report average performance and 95% confidence intervals.

Efficiency Experiment We verify the sampling efficiency of INNATECODER, LISS-o, LISS-r, and
SHC. Similarly to previous work, we present learning curves, where for MicroRTS, we plot winning
rate by the number of games played (Figure 3), and for Karel, we plot episodic return by the number
of episodes (Figure 4). For MicroRTS, the winning rate is computed for a system by having the policy
the system generated, after a given number of games played, play against the policies each of the
other systems generated after the maximum number of games played (rightmost point of each plot).

Competition Experiment We evaluate INNATECODER against COAC, Mayari, and RAISocketAI,
the winners of the previous three MicroRTS competitions. We randomly select 9 from the 30 programs
generated in the “Efficiency Experiment” and evaluate them against the competition winners. We
report the average results of the 9 programs against each opponent in the four maps we use.

Size and Information Experiments We also evaluate the effect of the size of the set of options on
the sample efficiency of INNATECODER. We evaluated sets Ω with 300, 600, 1400, 5000, 7000 and
30000 options on the LetMeOut map (16 × 8); all options were generated with the Llama 3.1 model.
In Appendix C, we evaluate INNATECODER using prompts with more or less information and in
Appendix D with GPT 3.5, to verify if performance decreases by using a smaller foundation model.

4.1 LEARNING CURVE RESULTS

Figures 3 and 4 show the learning curves for MicroRTS and Karel, respectively, where INNATECODER
is denoted as IC-GPT or IC-Llama, depending on the model it uses to learn the programmatic options.
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Figure 3: Winning rate (maximum is 100) per number of games played. The winning rate of the
policies each system generates for a given number of games played is computed considering as
opponents the policies all systems generate at the end of the learning process. The plots show the
average winning rate of 30 independent runs (seeds) and the 95% confidence interval.
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Figure 4: Average episodic return (maximum is 1.0 for all tasks) per number of episodes. The plots
show average episodic return of 30 independent runs (seeds) and the 95% confidence interval.

INNATECODER is often much more sample-efficient than all baselines and, in many cases, by a large
margin. We did not observe significant differences between IC-GPT and IC-Llama. LISS-o and
LISS-r perform worse than INNATECODER and SHC in MicroRTS. However, LISS-o was competitive
with SHC in Karel and LISS-r could outperform SHC (DoorKey and Seeder). This result suggests
that the semantic space can be less conducive to search than the syntax space, depending on the
quality of the options used to induce it. LISS-r performs better in Karel than in MicroRTS, probably
because it uses a distribution I that uses a handcrafted probability distribution over the production
rules of the language (Trivedi et al., 2021). The resulting grammar allows for the generation of helpful
options. We do not have such a distribution for the MicroLanguage, which explains the results.

FM performs poorly in all experiments; the model is unable to generate effective policies in a
zero-shot setting. The results of FM and INNATECODER support our hypothesis that INNATECODER
can extract helpful options from foundation models even if the programs the model generates do
not encode strong policies. In MicroRTS, some of the options allowed the agent to allocate units
to collect resources and train other units. Other systems had to learn such skills from scratch,
while INNATECODER’s agent had them “innately available”. The FM results also suggest that data
contamination was not an issue in our experiments, as the model performed poorly on all tasks.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

INNATECODER COAC RAISocketAI Mayari Average

GPT-4o 53.75 36.25 71.25 53.75
Llama 3.1 43.79 70.00 58.17 57.32
Llama 3.1 + GPT-4o 70.14 72.92 46.39 63.15

Table 1: Winning rate of INNATECODER against winners of previous competitions, averaged across
all 4 maps used in our experiments.

4.2 COMPETITION RESULTS

Table 1 shows the results of INNATECODER against the winners of previous MicroRTS competitions.
The numbers are the average winning rate of INNATECODER against each system in the 4 maps used
in our experiments. COAC and Mayari are human-written programmatic policies, and RAISocketAI
is a DRL agent (Goodfriend, 2024). We used the RAISocketAI model submitted to the competition,
which was trained with a larger computational budget than what we used with INNATECODER, thus
giving RAISocketAI an advantage. We evaluated the models GPT-4o while generating 120 programs
from which options are extracted, as well as Llama 3.1 while generating the same number of programs.
Finally, we also evaluate INNATECODER when we take the union of the programs generated by both
GPT-4o and Llama (denoted Llama 3.1 + GPT-4o in the table). The larger number of programs
considered in the combination of GPT-4o and Llama 3.1 resulted in the best average winning rate.

The combination of programs written by Llama 3.1 and GPT-4o does not lead to “monotonic
improvements”, as evidenced by the drop in performance against Mayari. This happens because none
of the competition winners is constrained by the DSL we use in our experiments. As a result, the
optimization done in self-play might not be specific for the opponents evaluated in Table 1, but to
policies written in the DSL and encountered during the self-play process.

4.3 EVALUATING NUMBER OF OPTIONS

Figure 5: Average winning rate of INNATECODER poli-
cies for different sizes of the option set over 10 indepen-
dent runs (seeds) of each version. We also present the
95% confidence intervals.

Figure 5 presents the learning curves for
different versions INNATECODER, where
we vary the size of the set of options Ω. The
three lines with the highest winning rate
are for option sets of sizes 5000, 7000, and
30000. The versions of INNATECODER
with option sets of sizes 300, 600, and
1400 perform worse. These results demon-
strate that INNATECODER can benefit from
thousands of options. This is possible due
to INNATECODER’s way of using options
through the induction of the language’s un-
derlying semantic space.

These results also show that INNATE-
CODER’s sample efficiency plateaus at
5000 options, since the use of 7000 and
30000 options does not increase perfor-
mance. Interestingly, performance does not
degrade either as we increase the set size.
We conjecture that this occurs because, for
large sets, many of the options will encode
different and yet similar behaviors that do not affect the agent’s winning rate. For example, an agent
could use options ω1 or ω2 to achieve slightly different behaviors that lead to the same winning
rate. That is, although the set of distinct behaviors encoded in the set options grows with larger
sets, the relative number of options with behaviors that affect the winning rate remains roughly the
same. As a result, the neighborhood function Nm

k that uses option sets of sizes 5000, 7000, or 30000
induces spaces that are similarly conducive to search algorithms. In Appendix F, we explain that the
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difference in performance between INNATECODER with 1400 or fewer options and INNATECODER
with 5000 or more is due to an increased chance of sampling helpful options with larger sets.

5 RELATED WORK

Programmatic Policies One of the key challenges in generating programmatic policies is that the
search space is discontinuous and gradient-based optimization cannot be used. Some previous work
relied on imitation learning to guide the search for policies (Verma et al., 2018; 2019; Bastani et al.,
2018; Milani et al., 2022; Liu et al., 2023d). The issue of this imitation learning approach is known
as representation gap (Qiu & Zhu, 2022; Medeiros et al., 2022), where the space of programmatic
policies does not include the oracle policy that the system tries to imitate. As a result, the oracle
might guide the search to unpromising parts of the space. Previous work tried to learn latent spaces
of programming languages that are conducive to search (Trivedi et al., 2021; Liu et al., 2023b), which
was shown to be outperformed by the syntax space with SHC (Carvalho et al., 2024). Semantic
spaces were shown to be more conducive to search than syntax spaces, but required a sequence of
tasks, where the agent learns the space in one task and reuses it in others (Moraes & Lelis, 2024).
Our work does not require an oracle agent nor a sequence of tasks to learn the semantic space.

Options Options were shown to improve the sampling efficiency of learning agents through faster
credit assignment (Mann & Mannor, 2014; Solway et al., 2014), better exploration (Baranes &
Oudeyer, 2013; Bellemare et al., 2020), and transfer of knowledge across tasks (Konidaris & Barto,
2007; Alikhasi & Lelis, 2024). However, previous methods for learning options require the user to
design them before learning starts (Sutton et al., 1999) or to provide considerable information as
input to the process, such as the option duration (Frans et al., 2017; Tessler et al., 2017) or the number
of options learned (Bacon et al., 2017; Igl et al., 2020). Other methods rely on the agent interaction
with the current environment (Achiam et al., 2018; Machado et al., 2018; Jinnai et al., 2020) or with
other earlier environments, as in transfer learning approaches (Konidaris & Barto, 2007; Alikhasi &
Lelis, 2024). We present a novel way of learning options as they are not learned from the agent’s
experience nor designed by the user, but harnessed from foundation models. While we use options to
define a search space, future work will explore their use as functions neural policies can call.

We provide additional related works on “foundation models as policies”, “foundation models for
planning”, and “foundation models as search guidance” in Appendix A.

6 CONCLUSIONS

If given a single problem to solve, reinforcement learning agents start their learning process from
scratch. They have to learn by interacting with the environment even the most basic skills to solve
the problem. In this paper, we introduced INNATECODER, a system that equips learning agents with
skills, in the form of programmatic options, before the agent starts to interact with the environment.
This is achieved by extracting programmatic options from foundation models. We hypothesized that
even if the model is unable to write programs encoding strong policies for a problem, sub-programs
of the generated program could encode helpful options. We tested our hypothesis in MicroRTS and
Karel, two domains in which programmatic policies represent the current state of the art. The policies
INNATECODER generated outperformed, often by a large margin, a baseline that did not attempt to
learn options; a baseline that learned the options while learning how to solve the problem; a baseline
that learned the options from programs sampled directly from the domain-specific language; and the
foundation model that attempted to generate programmatic policies directly. We also showed that
some of the policies INNATECODER generated were competitive or outperformed the winners of
previous MicroRTS competitions, including programmatic policies written by human programmers
and a deep reinforcement learning agent that used a larger computational budget than we allowed
INNATECODER to use. These results place INNATECODER as the current state-of-the-art in both Karel
and MicroRTS. Our experiments also showed that INNATECODER’s scheme of using programmatic
options to induce semantic spaces allows it to benefit from thousands of options, while most previous
work can benefit only from dozens or at most hundreds of options (Eysenbach et al., 2019).
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A ADDITIONAL RELATED WORK

Foundation Models as Policies Foundation models have been used to perceive, plan, and act
(Park et al., 2023), often decomposing long-horizon goals into subtasks (Wang et al., 2023b), and/or
integrating additional agent features such as memory (Zhu et al., 2023) and/or automatic learning
curricula (Wang et al., 2023a). By contrast, INNATECODER uses the model as a pre-processing
step to generate programmatic options, which make it more accessible due to the limited number of
model calls. Foundation models have also been used to learn reward functions that are later used to

14

https://doi.org/10.1109/ICRA48891.2023.10161317
https://doi.org/10.48550/arXiv.2305.16291
https://doi.org/10.48550/arXiv.2305.16291
https://doi.org/10.48550/arXiv.2302.01560
https://doi.org/10.48550/arXiv.2302.01560
https://doi.org/10.48550/arXiv.2309.03409
https://doi.org/10.48550/arXiv.2305.14078
https://doi.org/10.48550/arXiv.2305.17144


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

train agents (Klissarov et al., 2024). Similarly to our work, the model is used in a pre-processing
step. However, in contrast with our work, it learns reward functions, while we learn programmatic
options. Moreover, it needs a “diverse” set of states, which are generated by existing and proficient
agents; INNATECODER learns in a zero-shot setting and only uses the generated options themselves
to generate a set of states used to filter out the options encoding non-novel behaviors.

Foundation Models for Planning Previous work has used foundation models for generating
programmatic policies in the context of planning. For example, in generalized planning (GP), the goal
is to synthesize programs that solve classical planning problems (Celorrio et al., 2019); foundation
models have shown promise for GP (Silver et al., 2023). Foundation models has also been used
successfully in the context of code generation for decision making in robotics (Liang et al., 2023;
Singh et al., 2023). In contrast to these works, we do not attempt to use the model’s generated
program as a policy, but we extract options from them and use these options to induce a search space.

Foundation Models as Search Guidance Foundation models have also been used to guide search
algorithms. This includes methods for solving optimization problems (Yang et al., 2023; Guo et al.,
2023) and to guide Monte Carlo tree search (Zhao et al., 2023). Foundation models were also used in
genetic operators (Lehman et al., 2022; Liu et al., 2023c; Meyerson et al., 2023; Chen et al., 2023),
including multi-objective (Liu et al., 2023a) and quality-diversity algorithms (Nasir et al., 2023).
These works are resource-intensive due to calling the model during the search (Liu et al., 2023a).
This contrasts with our work, which uses the model a small number of times in a pre-processing step.

B DEEP REINFORCEMENT LEARNING COMPARISON

B.1 MICRORTS

To compare INNATECODER with a Deep Reinforcement Learning algorithm, we used the Gym-µRTS
Huang et al. (2021). We evaluated INNATECODER with PPO Gridnet self-play using an encode-
decode model. We chose this model because is the closest one to ours, as they both learn through self
play. The DRL agents proposed by Huang et al. were specifically designed and tested for a map of
size 16 × 16. We used the Gym-µRTS with the same settings presented in the repository, changing
only the budget and the UnitTable used in the experiments. We trained both algorithms with a budget
of 300 million steps in the MicroRTS.

We trained 15 DRL models for the BasesWorkers map (16×16), using a Xeon 2.90GHz, 64GB of
memory, and a dedicated Nvidia A10. Also, we performed 15 individual runs for INNATECODERḞor
each pair (DRL-INNATECODER) we ran 10 matches of the policies using the same evaluation used by
Huang et al.. Each individual result is shown in Figure 6. Each run shows the number of losses, ties,
and wins that INNATECODERachieved against DRL. The best score obtained by DRL is 5 losses and
5 wins presented in the individual run number 5 of graphs. In contrast to the policies INNATECODER
generates, which can be used to play at any of the two locations of the map, the DRL-PPO agent is
trained for a fixed position. This provides an advantage to DRL-PPO, as INNATECODER does not
specialize in a given location of the map. Figure 7 shows the average results, where the whiskers show
the 95% confidence interval. INNATECODER wins more than 70% of the matches with the PPO agent.
Moreover, while the DRL agent needs around 3 days to train for 300 million steps, INNATECODER
can perform the same number of training in less than 36 hours of computation using a single CPU.

B.2 KAREL

For Karel the Robot, we compared INNATECODER with Hierarchical Programmatic Reinforcement
Learning (HPRL) (Liu et al., 2023b), which uses neural and programmatic representations of policies.
We evaluate the version of the system that uses PPO (HPRL-PPO), one of the best variants of
HPRL. Table 2 shows the comparison between INNATECODER, HPRL-PPO, SHC (Carvalho et al.,
2024), and CEM (Trivedi et al., 2021). These tests were performed with a budget of 105 episodes.
INNATECODER (IC in the table) obtained the highest average return in all tasks.
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Figure 6: Individual results for INNATECODER against DRL in basesWorkers16x16A map. The
columns are in order: win, tie, and loss, that INNATECODER got against DRL.

Figure 7: Average results of INNATECODER against DRL in basesWorkers16x16A map, with 95%
confidence interval.

C CAN INNATECODER IMPROVE WITH MORE INFORMATION?

We evaluated whether INNATECODER’s sample efficiency can scale with the amount of information
we provide in the prompt used to generate the programmatic options. Figure 8 shows the results of
two versions of INNATECODER: one that uses prompts with more information (IC+) and one that
uses prompts with less information (IC-). The prompts are given in Section J.2 (more information)
and Section J.3 (less information). The key difference between IC+ and IC- is that, in the former,
we explain in the prompt how the agent can maximize its return. For example, in FourCorners we
wrote “gent has to place one marker in each of the four corner cells of the grid”. In contrast, in IC-
we wrote “the robot will receive different reward values depending on its interactions inside the grid”.
Providing more information was never worse, and it was significantly better in two cases: Seeder
and Snake. The ability to improve with more information is important because it allows the user of
INNATECODER to achieve stronger results by crafting prompts that encode domain knowledge.
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Task HPRL-PPO SHC CEM IC

StairClimberSparse 1.000 ±0.00 1.000 ±0.00 0.601 ±0.44 1.000 ±0.00
MazeSparse 1.000 ±0.00 1.000 ±0.00 0.097 ±0.03 1.000 ±0.00
TopOff 1.000 ±0.00 1.000 ±0.00 0.812 ±0.29 1.000 ±0.00
FourCorners 1.000 ±0.00 1.000 ±0.00 0.332 ±0.29 1.000 ±0.00
Harvester 0.924 ±0.13 0.906 ±0.07 0.487 ±0.17 1.000 ±0.00
CleanHouse 0.826 ±0.21 0.598 ±0.41 0.127 ±0.02 1.000 ±0.00
DoorKey 0.389 ±0.09 0.449 ±0.04 0.203 ±0.11 0.493 ±0.03
OneStroke 0.784 ±0.11 0.908 ±0.01 0.683 ±0.23 0.932 ±0.01
Seeder 0.539 ±0.17 0.779 ±0.10 0.339 ±0.14 0.931 ±0.09
Snake 0.283 ±0.18 0.217 ±0.08 0.053 ±0.02 0.391 ±0.15

Table 2: Mean and standard error of final episodic return of INNATECODER HPRL-PPO, SHC, and
CEM in Karel problems.
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Figure 8: Evaluating INNATECODER with more (IC+) and less (IC-) information provided in the
prompt used to harness programmatic options from the foundation model. We used GPT 4o in this
experiment. Average episodic return (maximum is 1.0 for all tasks) per number of episodes. The
plots show average episodic return of 30 independent runs (seeds) and the 95% confidence interval.

D CAN INNATECODER IMPROVE WITH MODEL SIZE?

Figure 9: The plots show the average winning rate of 30 independent runs (seeds) and the 95%
confidence interval.
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1 # InnateCoder’s policy for the 64x64 map

2 for (Unit u)

3 u.attackIfInRange()

4 for (Unit u)

5 u.attackIfInRange()

6 u.train(Heavy, EnemyDir, 50)

7 u.harvest(10)

8 if (u.OpponentHasUnitInPlayerRange())

9 pass
10 else
11 u.train(Worker, EnemyDir, 3)

12 u.train(Ranged, EnemyDir, 15)

13 u.attack(Strongest)

14 for (Unit u)

15 u.harvest(5)

16 for (Unit u)

17 u.build(Barracks, EnemyDir, 8)

18 u.moveToUnit(Enemy, Strongest)

19 if (u.HasUnitInOpponentRange())

20 for (Unit u)

21 u.moveToUnit(Enemy, Farthest)

22 u.train(Light, EnemyDir, 6)

23 u.train(Worker, Down, 6)

1 # Llama’s policy for the 64x64 map

2 for(Unit u)

3 for(Unit u)

4 u.train(Worker, Down, 5)

5 for(Unit u)

6 u.moveToUnit(Ally, Closest)

7 u.harvest(5)

8 for(Unit u)

9 u.build(Barracks, Up, 1)

10 u.train(Ranged, EnemyDir, 10)

11 u.attackIfInRange()

12 for(Unit u)

13 u.moveToUnit(Enemy, Weakest)

14 u.attack(Weakest)

Figure 10: Left: A programmatic policy INNATECODER generated for the largest 64×64 map. This
policy defeats the last three winners of the MicroRTS Competition: COAC, Mayari, and RAISocketAI.
Right: one of the policies Llama 3.1 generated for the same map.

We evaluated GPT 3.5-turbo and GPT 4o on the MicroRTS tasks. Figure 9 shows the results, where
we report the average winning rate and the 95% confidence intervals of 30 independent runs (seeds).
Interestingly, we do not notice a significant change in winning rate as we move from the larger GPT
4o to the smaller GPT 3.5.

E SAMPLES OF PROGRAMS

Figure 10 shows an example of a programmatic policy INNATECODER generated for the BloodBath
64×64 map (left), and a program Llama 3.1 generated for the same map (right). The policy INNATE-
CODER generated defeats the last three winners of the MicroRTS competition: COAC, Mayari, and
RAISocketAI. This policy presents non-trivial features. For example, lines 7-11 will train Worker
and Ranged units only if the player is not engaged in combat. This means that this policy focuses on
economy and on Ranged units in the early stages of the game. Later in the game, the agent will save
its resources to train Light units (line 21). Light units can be trained and move more quickly than
Ranged units. While a Light unit is trained in 80 time steps of the game, a Ranged unit requires 100
time steps to be trained; also, a Light unit can move one cell every 8 time steps, while Ranged units
move one cell every 10 time steps. Light units allow for a faster return of the resources invested.

The program the foundation model generates represents a weak policy (program shown on the right
of Figure 10). However, even weak policies can contain pieces of code—options—that can be helpful
while searching for strong policies to play the game. For example, lines 2 and 3 offer a prioritization
scheme for investing resources to train Worker units because it will iterate over all units until it finds
the Base, which will be used to train up to 5 workers. Lines 2 and 3 are often found in strong policies.
For example, the program shown on the left of Figure 10 shows a similar structure in lines 1 and 10.

F OPTION USAGE IN PROGRAMMATIC POLICIES

Figure 11 shows an example of a program INNATECODER generated as the final policy (the one that
the system produces as output) for the LetMeOut map (16 × 8), where four options are used. The
colored lines represent the options. Lines 3 and 4 form one option (blue), while lines 8 and 9 (red), 11
and 12 (purple), and 13 and 14 (green) form the other three options. In this representative example, 8
of 14 lines are options, which represents 57% of the lines. We also analyzed 10 independent runs of
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Figure 11: Programmatic policy INNATECODER generated for the LetMeOut map (16 × 8). The
colored lines represent options from one execution of INNATECODER that used 5000 options.

INNATECODER in the 9×8 map with an initial option set extracted from 120 policies, which were
generated with the Llama 3.1 model. We found that on average, 63% of the options in the initial
set are used in a best response during the self-play training process. Recall that a best response is
the solution INNATECODER finds to a given MDP within the self-play algorithm. The maximum
percentage of options used in the 10 runs was 73% and the minimum was 46%. Even if an option is
not used in the policy INNATECODER outputs, the option can still have played an important role in
allowing INNATECODER arrive at the output it produced. This is because an option could have been
part of one of the best responses encountered during self play, and these best responses provide the
signal needed to guide the search toward stronger policies for playing the game (Moraes et al., 2023).

The policy shown in Figure 11 also provides an explanation for the difference in performance
between the versions of INNATECODER that are initialized with a pool of 1400 or fewer options
and the versions that are initialized with a pool of 5000 or more options (see Figure 5). The options
highlighted in Figure 11 are in the set of 5000 options of an INNATECODER run, but they are not in
the set of 1400 options of another run of the algorithm. These options are clearly helpful because they
appear in the output policy. Sampling 5000 options instead of 1400 increases the chances of adding
some of these helpful options to the library, thus explaining the gap we see between INNATECODER
with 1400 options or fewer and INNATECODER with 5000 options or more in Figure 5.

G VARYING THE VALUE OF ϵ

Figure 12 shows the performance of INNATECODER as we vary the value of ϵ. Recall that ϵ dictates
how much of the search is done in the syntax space and how much of the search is done in the
semantic space. Also, recall that smaller values of ϵ mean that the semantic space is used more often.
There are two groups of lines at 80000 games played: ϵ-values of 0.3, 0.4, 0.5, and 0.6 (top lines)
and 0.1, 0.2, and 0.7 (bottom lines). These results suggest that INNATECODER is robust to the choice
of ϵ value, as a wide range of values produce competitive results among themselves. The results also
suggest that if the value of ϵ is too small, then the search does not sufficiently explore the syntax
space to eventually find programs that were not originally in the library of options. If the value of ϵ is
too large, then the search is not making use of the helpful options in the library as often as it could.

H DOMAIN-SPECIFIC LANGUAGES (DSLS)

In this section, we present the DSLs used in our experiments for both Karel the Robot and MicroRTS.
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Figure 12: INNATECODER with values of ϵ in {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7} in the 9×8 MicroRTS
map. Here, each INNATECODER line is evaluated as in the “Efficiency Experiment” (Figure 3). Each
line shows the average of 30 independent runs and the 95% confidence intervals.

H.1 KAREL

The context-free grammar below presents the DSL for Karel the Robot. This DSL is the same as that
used in the previous work (Trivedi et al., 2021; Liu et al., 2023b).

Program ρ := DEF run m( s m)

Statement s := WHILE c( b c) w( s w) | IF c( b c) i( s i) |
IFELSE c( b c) i( s i) ELSE e( s e) | REPEAT R=n r( s r) |
s; s | a

Condition b := h | not( h )

Number n := 1 | 2 | 3 | ... | infinity
Perception h := frontIsClear | leftIsClear | rightIsClear |

markersPresent | noMarkersPresent

Action a := move | turnLeft | turnRight | putMarker | pickMarker

H.2 MICRORTS

The context-free grammar below presents the DSL for MicroRTS. This DSL is the same as that used
in recent work (Moraes & Lelis, 2024). Note that an early version of the Microlanguage appears in
the work of Mariño et al. (2021), which was published prior to the cut-off date of the ChatGPT model
used in our experiments. However, this earlier version of the language is fundamentally different
from the one used in recent work and in our experiments. For context, the interpreter we use in
our experiments cannot run the programs written in the language used of Mariño et al. (2021). To
illustrate some differences, the instruction moveToUnit(Light, Ally, strongest, u)
in the older Microlanguage has four parameters, while in ours it has only two. The older language
has a larger collection of high-level functions, such as HaveQtdUnitsbyType, which our version
of the language does not have. Considering these key differences, it is unlikely that the data from
Mariño et al. (2021) have influenced our results more than the vast collection of programs written in
various programming languages that are present in the corpus used to train these foundation models.
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S → SS | for(Unit u) S | if(B) then S

| if(B) then S else S | C | λ
B → hasNumberOfUnits(T,N) | opponentHasNumberOfUnits(T,N)

| hasLessNumberOfUnits(T,N) | haveQtdUnitsAttacking(N)

| hasUnitWithinDistanceFromOpponent(N)

| hasNumberOfWorkersHarvesting(N)

| is Type(T ) | isBuilder()
| canAttack() | hasUnitThatKillsInOneAttack()
| opponentHasUnitThatKillsUnitInOneAttack()
| hasUnitInOpponentRange()
| opponentHasUnitInPlayerRange()
| canHarvest()

C → build(T,D,N) | train(T,D,N) | moveToUnit(Tp, Op) | attack(Op)

| harvest(N) | attackIfInRange() | moveAway()
T → Base | Barracks | Ranged | Heavy

| Light | Worker
N → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

| 10 | 15 | 20 | 25 | 50 | 100
D → EnemyDir | Up | Down | Right | Left
Op → Strongest | Weakest | Closest | Farthest

| LessHealthy | MostHealthy | Random
Tp → Ally | Enemy

I KAREL PROBLEM SETS

The KAREL problem sets (Trivedi et al., 2021; Liu et al., 2023b) are divided into two parts— KAREL
and KAREL-HARD. KAREL consists of six different tasks, while KAREL-HARD includes four
additional tasks that are comparatively more difficult to solve. In this section, we describe the initial
state and the return function of each task in both KAREL and KAREL-HARD problem sets.

I.1 KAREL

StairClimber. In this task, the agent operates within a 12× 12 grid containing stairs formed by
walls. The goal for the agent is to reach a marker located above its position on the stairs. The initial
positions of the agent and the marker are randomly initialized on the stairs. The agent receives an
episodic return of 1 if it successfully reaches the marker, and 0 otherwise. Moving to a position
outside the contour of the stairs results in a return of −1.

FourCorners. In this task, the goal for the agent is to place a marker in the four corners of a 12×12
grid. The initial position of the agent is randomly initialized near the wall. The return is calculated as
the number of corners with one marker divided by four.

TopOff. In this task, the agent is always initialized on the bottom left of a 12× 12 grid, and the
markers are placed randomly on the bottom row of the grid. The goal for the agent to place markers
on top of the markers present in that row. The return is calculated as the number of markers topped
off divided by the number of markers present in the grid.

Maze. A maze, formed by walls, is randomly configured on a 12× 12 grid, and a marker and an
agent are randomly placed within it. The goal for the agent is to reach the marker, that yields an
episodic return of 1. Otherwise, the episodic return is 0.
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CleanHouse. Markers and walls are randomly placed in a 22× 14 grid, referred to as the apartment.
The position of the agent is also initialized randomly. Its goal is to pick all the markers inside the
apartment. The return is calculated as the number of picked markers divided by the total number of
markers present.

Harvester. In this task, the agent operates within an 8× 8 grid filled with markers. The agent is
placed randomly on the bottom row, with the goal of collecting all markers in the grid. The return is
calculated as the number of collected markers divided by the total number of cells in the grid.

I.2 KAREL-HARD

DoorKey. The environment, consisting of an 8× 8 grid is divided into two chambers by a vertical
bar with a door. The position of the agent is initialized randomly, and a marker is placed randomly in
each chamber. The goal for the agent is to pick the marker in the left chamber, which will open the
door in the vertical bar, and then pick the marker in the right chamber. Picking each marker results in
a return of 0.5.

OneStroke. In this task, the goal for the agent is to visit every cell of an 8×8 grid without repetition.
Once a cell is visited, it transforms into a wall, and the episode terminates if the agent hits a wall.
The return is calculated as the number of visited cells divided by the total number of cells in the grid.

Seeder. The environment is given by an 8 × 8 empty grid with an agent initialized at a random
position. The goal for the agent is to place a marker in each cell of the grid. The return is calculated
as the number of placed markers divided by the total number of cells.

Snake. In this task, an 8 × 8 grid is initialized with an agent and a marker at random positions.
The agent behaves like the head of a snake, with its body growing after collecting a marker. Once a
marker is collected, another marker is placed at a random position. This process continues until the
agent collects 20 markers. The goal for the agent is to collect the markers without hitting its own
body. The return is calculated as the number of collected markers divided by 20.

J KAREL PROMPTS

In this section, we present the prompts used to generate a program that encodes a policy. These are
the prompts we used multiple times to obtain a set of programmatic policies. This section is divided
into three subsections. Section J.1 includes the complete prompt used to obtain a program from the
model to solve the ‘Seeder’ task. For each task, we provide two types of prompts: one with more
information and another with less information. Section J.2 contains the details of the environment
with more information for each task, while Section J.3 contains the prompts with less information for
each task.

J.1 COMPLETE PROMPT FOR THE SEEDER TASK

The prompt for obtaining a program that encodes a policy for the ‘Seeder’ task is shown below. Note
that the first paragraph of the prompt explains the environment. Only this paragraph is changed from
one task to the next.

Consider an 8x8 gridded 2D environment in Karel the Robot, where an agent has to place
one marker in every cell of the grid. The grid is initially empty and the initial position of the
agent is randomly assigned at the beginning of each episode.
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The following is the Context Free Grammar (CFG) for the Karel domain:

P → run {S}
S → WHILE (B) {S} | S S | A | REPEAT R=N {S} | IF (B) {S} | IF (B) {S} ELSE {S}
B → H | not H
H → frontIsClear | leftIsClear | rightIsClear | markersPresent | noMarkersPresent
A → move | turnLeft | turnRight | putMarker | pickMarker
N → 1 | 2 | 3 | ... | infinity

The CFG is explained below in the “CFG Explanation” section:

CFG Explanation:
P: The main program named as “run” which contains Statement S
S: Consists of statements such as WHILE, IF, IFELSE, REPEAT. Can have multiple
statements “S S” or action “A”
B: Perception H or not perception H that returns true or false
H: Some boolean variables that provide the idea of the environment with true or false
A: Action to be taken by the agent
N: A positive integer that indicates the number of repetitions
frontIsClear: Checks if the next cell towards the direction the agent is facing is inside the grid
leftIsClear: Checks if the next cell to the left of the direction the agent is facing is inside the
grid
rightIsClear: Checks if the next cell to the right of the direction the agent is facing is inside
the grid
move: The agent moves towards its front
turnLeft: The agent turns left
turnRight: The agent turns right
putMarker: The agent puts a marker in the current cell
pickMarker: The agent picks a marker from the current cell
...: It is not part of the CFG. It has been used to indicate all positive numbers in between.

To write a program from the given CFG, the following “Program Writing Guidelines” must
be followed:

Program Writing Guidelines:
1. In the CFG, ‘infinity’ means that the value of N can be up to infinity. So do not write any
part of the program like “R=infinity”
2. DO NOT write “...” in the program, since it is not a part of the CFG
3. The program must start with “run”

Now your tasks are the following 3:

1. Read carefully about the details of the environment, the CFG and its explanation.
2. Follow the CFG and the program writing guidelines and write a program of maximum 8
lines that will gain the maximum reward inside this given environment.
3. Write the program inside ¡program¿¡/program¿ tag.
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J.2 ENVIRONMENT DETAILS WITH MORE INFORMATION

STAIRCLIMBER

Consider a 12x12 gridded 2D environment in Karel the Robot, where an agent has to reach a
marker by climbing up along a stair. The grid contains a stair-like structure and the initial
position of the agent is randomly assigned near the stair with the marker placed at the higher
end, at the beginning of each episode.

FOURCORNERS

Consider a 12x12 gridded 2D environment in Karel the Robot, where an agent has to place
one marker in each of the four corner cells of the grid. The grid is initially empty and the
initial position of the agent is randomly assigned near the wall of the grid at the beginning of
each episode.

TOPOFF

Consider a 12x12 gridded 2D environment in Karel the Robot, where an agent has to place
markers on top of other cells that already have markers, and then reach at the rightmost cell
of the bottom row. The markers are initialized randomly at the bottom row. The position of
the agent is fixed at the leftmost cell of the bottom row at the beginning of each episode.

MAZE

Consider a 12x12 gridded 2D environment in Karel the Robot, where an agent has to pick a
marker following a path surrounded by walls. Some cells of the grid are filled with walls,
collectively referred to as the maze. The agent, the marker and the maze are randomly placed
at the beginning of each episode.

CLEANHOUSE

Consider a 22x14 gridded 2D environment in Karel the Robot, where an agent has to pick
some markers that are placed randomly inide the grid. There are also some cells filled with
obstacles. The position of the agent is fixed whereas, the markers are initialized at random
cells at the beginning of each episode.

HARVESTER

Consider an 8x8 gridded 2D environment in Karel the Robot, where an agent has to pick one
marker from every cell of the grid. The grid is initially filled with markers and the initial
position of the agent is randomly assigned at the beginning of each episode.

DOORKEY

Consider an 8x8 gridded 2D environment divided into two chambers by walls in Karel the
Robot, where an agent has to pick a marker from the left chamber and put it over another
marker placed at the right chamber. The agent cannot access the right chamber without
picking the marker from the left chamber. The position of the agent, the marker of the left
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chamber and the marker of the right chamber are initialized randomly at the beginning of
each episode.

ONESTROKE

Consider an 8x8 gridded 2D environment in Karel the Robot, where an agent has to visit as
many cells as possible in one attempt. Once the agent visits a cell, it will be filled with a wall.
The position of the agent is initialized randomly at the beginning of each episode.

SEEDER

Consider an 8x8 gridded 2D environment in Karel the Robot, where an agent has to place
one marker in every cell of the grid. The grid is initially empty and the initial position of the
agent is randomly assigned at the beginning of each episode.

SNAKE

Consider an 8x8 gridded 2D environment in Karel the Robot, where an agent has to pick a
marker multiple times inside the grid. The position of the marker will be changed once the
agent picks the marker. Each time the agent picks a marker, it will be attached to its body.
For instance, if the agent picks 3 markers, it will have 3 markers added to its back. The agent
has to pick as many markers as possible without hitting the markers attached to its body. The
position of the agent and the marker are initialized randomly at the beginning of each episode.

J.3 ENVIRONMENT DETAILS WITH LESS INFORMATION

STAIRCLIMBER

Consider a 2D 12x12 grid with an agent placed randomly in any cell, which will interact
within the grid. Each cell may contain a marker, be empty, or be blocked by a wall. Initially,
for this particular problem, there is a stair-like structure and the agent is placed near the stair.
The robot will receive different reward values depending on its interactions inside the grid.
The interaction of the robot will be decided by a program written in the domain-specific
language to be provided below as a context-free grammar (CFG). The goal is to generate a
program that will maximize the sum of rewards the robot obtains by following that program.

FOURCORNERS

Consider a 2D 12x12 grid with an agent placed randomly in any cell, which will interact
within the grid. Each cell may contain a marker, be empty, or be blocked by a wall. Initially,
for this particular problem, no markers are present in any cell of the grid.
The robot will receive different reward values depending on its interactions inside the grid.
The interaction of the robot will be decided by a program written in the domain-specific
language to be provided below as a context-free grammar (CFG). The goal is to generate a
program that will maximize the sum of rewards the robot obtains by following that program.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

TOPOFF

Consider a 2D 12x12 grid with an agent placed at a fixed cell at the leftmost cell of the bottom
row, which will interact within the grid. Each cell may contain a marker, be empty, or be
blocked by a wall. Initially, for this particular problem, there are markers present in some
cells at the bottom row of the grid.
The robot will receive different reward values depending on its interactions inside the grid.
The interaction of the robot will be decided by a program written in the domain-specific
language to be provided below as a context-free grammar (CFG). The goal is to generate a
program that will maximize the sum of rewards the robot obtains by following that program.

MAZE

Consider a 2D 12x12 grid with an agent placed randomly in any cell, which will interact
within the grid. Each cell may contain a marker, be empty, or be blocked by a wall. Initially,
for this particular problem, there are few walls and a marker inside the grid.
The robot will receive different reward values depending on its interactions inside the grid.
The interaction of the robot will be decided by a program written in the domain-specific
language to be provided below as a context-free grammar (CFG). The goal is to generate a
program that will maximize the sum of rewards the robot obtains by following that program.

CLEANHOUSE

Consider a 2D 22x14 grid with an agent placed at a fixed cell, which will interact within the
grid. Each cell may contain a marker, be empty, or be blocked by a wall. Initially, for this
particular problem, there are some markers and obstacles randomly placed inside the grid.
The robot will receive different reward values depending on its interactions inside the grid.
The interaction of the robot will be decided by a program written in the domain-specific
language to be provided below as a context-free grammar (CFG). The goal is to generate a
program that will maximize the sum of rewards the robot obtains by following that program.

HARVESTER

Consider a 2D 8x8 grid with an agent placed randomly in any cell, which will interact within
the grid. Each cell may contain a marker, be empty, or be blocked by a wall. Initially, for this
particular problem, a marker is present in each cell of the grid.
The robot will receive different reward values depending on its interactions inside the grid.
The interaction of the robot will be decided by a program written in the domain-specific
language to be provided below as a context-free grammar (CFG). The goal is to generate a
program that will maximize the sum of rewards the robot obtains by following that program.

DOORKEY

Consider a 2D 8x8 grid divided into two chambers with an agent placed randomly in the left
chamber, which will interact within the grid. Each cell may contain a marker, be empty, or be
blocked by a wall. Initially, for this particular problem, there is one marker in each chamber
of the grid.
The robot will receive different reward values depending on its interactions inside the grid.
The interaction of the robot will be decided by a program written in the domain-specific
language to be provided below as a context-free grammar (CFG). The goal is to generate a
program that will maximize the sum of rewards the robot obtains by following that program.
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ONESTROKE

Consider a 2D 8x8 grid with an agent placed randomly in any cell, which will interact within
the grid. Each cell may contain a marker, be empty, or be blocked by a wall. Initially, for this
particular problem, no markers are present in any cell of the grid. Cells that will be visited by
the agent will be filled with obstacles.
The robot will receive different reward values depending on its interactions inside the grid.
The interaction of the robot will be decided by a program written in the domain-specific
language to be provided below as a context-free grammar (CFG). The goal is to generate a
program that will maximize the sum of rewards the robot obtains by following that program.

SEEDER

Consider a 2D 8x8 grid with an agent placed randomly in any cell, which will interact within
the grid. Each cell may contain a marker, be empty, or be blocked by a wall. Initially, for this
particular problem, no markers are present in any cell of the grid.
The robot will receive different reward values depending on its interactions inside the grid.
The interaction of the robot will be decided by a program written in the domain-specific
language to be provided below as a context-free grammar (CFG). The goal is to generate a
program that will maximize the sum of rewards the robot obtains by following that program.

SNAKE

Consider a 2D 8x8 grid with an agent placed randomly in any cell, which will interact within
the grid. Each cell may contain a marker, be empty, or be blocked by a wall. Initially, for this
particular problem, there is one marker inside the grid. The position of the marker changes
depending on a certain behaviour of the agent.
The robot will receive different reward values depending on its interactions inside the grid.
The interaction of the robot will be decided by a program written in the domain-specific
language to be provided below as a context-free grammar (CFG). The goal is to generate a
program that will maximize the sum of rewards the robot obtains by following that program.

K MICRORTS MAPS

Figure 13 shows the three MicroRTS maps used in our experiments. In these maps, the geometric
shapes with blue borders represent the units of one player, while those bounded by red borders
represent the units of the other player. Neutral objects do not have colored borders (e.g., resources in
light green and walls in dark green).
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Figure 13: From left to right: LetMeOut (16×8), NoWhereToRun (9×8), BasesWorkers(16×16),
BasesWorkers(24×24), BWDistantResources (32×32), BloodBath (64×64)
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L MICRORTS PROMPTS

In this section, we present the prompt used to obtain one program that encodes a policy for MI-
CRORTS. This is the prompt that we use multiple times to obtain a set of programmatic policies.
Section L.1 shows the complete prompt for the ‘NoWhereToRun (9x8)’ map, as a complete example.
Section L.2 shows the description of the environment used in the prompts of each map.

L.1 COMPLETE PROMPT FOR THE NOWHERETORUN (9X8) MAP

The prompt for obtaining a program that encodes policies for the ‘NoWhereToRun (9x8)’ map is
shown below. Note that the first paragraph of the prompt mentions the details of the environment for
a given map. Only this paragraph describing the environment is updated to obtain the program for
each separate map. We use a subset of the MicroLanguage, where conditionals are removed. Our
goal was to have a language that would be easier for the foundation model to use.

Consider a 9x8 gridded map of microRTS, a real-time strategy game. Consider this map as a
2-dimensional array with the following structure:

– There are a total of 8 neutral resource cells situated along the central column of
the map, dividing the map into two parts. Each resource cell contains 10 units of
resources.

– The base B1 of player 1 is located at index (1,1), which is located on the left side of
the map.

– The base B2 of player 2 is located at index (7,6), which is located on the right side
of the map.

– Each player controls one base, which initially has 5 units of resources.
– The only unit a player controls at the beginning of the game is the base.

Consider this Context-Free Grammar (CFG) describing a programming language for writing
programs encoding strategies of microRTS. The CFG is shown in the < CFG >< /CFG >
tag bellow:

< CFG >

S → SS | for(Unit u) S | C | λ
C → u.build(T,D,N) | u.train(T,D,N) | u.moveToUnit(Tp, Op)

| u.attack(Op) | u.harvest(N) | u.attackIfInRange() | u.moveAway()
T → Base | Barracks | Ranged | Heavy

| Light | Worker
N → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

| 10 | 15 | 20 | 25 | 50 | 100
D → EnemyDir | Up | Down | Right | Left
Op → Strongest | Weakest | Closest | Farthest

| LessHealthy | MostHealthy | Random
Tp → Ally | Enemy

< /CFG >

This language allows nested loops. It contains several command-oriented functions (C).
The Command functions (‘C’ in the CFG) are described below:

1. u.build(T, D, N): Builds N units of type T on a cell located in the D direction of the
unit. The u.build function is used to build Barracks and Base.

2. u.train(T, D, N): Trains N units of type T on a cell located in the D direction of the
structure responsible for training them. For example, the instruction u.train(Heavy,
Down, 1) will allow the agent to train at most 1 heavy unit in the down direction of
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the Barrack, while the instruction u.train(Heavy, EnemyDir, 20) will allow to train
at most 20 towards the direction of the opponent. The number used in the function
calls could play a big role in the strategy the program encodes. The u.train function
is used to train Worker, Ranged, Light, and Heavy units.

3. u.moveToUnit(T p, O p): Commands a unit to move towards the player T p follow-
ing a criterion O p.

4. u.attack(O p): Sends N Worker units to harvest resources.
5. u.harvest(N): Sends N Worker units to harvest resources. For example, u.harvest(5)

will send 5 workers to harvest resources.
6. u.attackIfInRange(): Commands a unit to stay idle and attack if an opponent unit

comes within its attack range.
7. u.moveAway(): Commands a unit to move in the opposite direction of the player’s

base.
‘T’ represents the types a unit can assume.
‘D’ represents the directions available used in action functions.
‘O p’ is a set of criteria to select an opponent unit based on their current state.
‘T p’ represents the set of target players.
‘N’ is the number of units that can be any integers from 0 to 10, or 15, or 20, or 25, or 50, or
100.

The following 4 are some guidelines for writing the playing strategy:
1. There is NO NEED TO write classes, or initiate objects such as Unit, Worker, etc.

There is also NO NEED TO write comments.
2. Use curly braces like C/C++/Java while writing any ‘for’ block. Start the curly

braces in the same line of the block.
3. A strategy must be written inside one or multiple ‘for’ blocks.
4. This language does not have if-statements.

Now your tasks are the following 8:

1. Understand the command (C) functions from above and try to relate them in the
context of playing strategies for a real-time strategy game.

2. Write a program in the microRTS language encoding a very strong game-playing
strategy for the map described above. You must follow the guidelines of writing the
playing strategy while writing your program.

3. You must not use any symbols (for example &&, ∥, etc.) that the CFG does not
accept. You have to strictly follow the CFG while writing the program.

4. Look carefully, the methods of non-terminal symbols C have prefixes ’u.’ in the
examples since they are methods of the object ’Unit u’. You should follow the
patterns of the examples.

5. Write only the pseudocode inside ‘< strategy >< /strategy >’ tag.
6. Do not write unnecessary symbols of the CFG such as, ‘S →’, ‘→’, etc.
7. Check the program and ensure it does not violate the rules of the CFG or the

guidelines for writing the strategy.
8. The for loops in this language iterate over all units and the instructions inside the for

loops attempt to assign actions to each of these units. That is why having nested for
loops allows for a prioritization scheme. The innermost for-loops will contain the
actions with the highest priority. Effective programs usually have nested for-loops.
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L.2 ENVIRONMENT DETAILS

NOWHERETORUN (9X8)

Consider a 9x8 gridded map of microRTS, a real-time strategy game. Consider this map as a
2-dimensional array with the following structure:

– There are a total of 8 neutral resource cells situated along the central column of
the map, dividing the map into two parts. Each resource cell contains 10 units of
resources.

– The base B1 of player 1 is located at index (1,1), which is located on the left side of
the map.

– The base B2 of player 2 is located at index (7,6), which is located on the right side
of the map.

– Each player controls one base, which initially has 5 units of resources.
– The only unit a player controls at the beginning of the game is the base.

DOUBLEGAME (24X24)

Consider a 24x24 gridded map of microRTS, a real-time strategy game. Consider this map as
a 2-dimensional array with the following structure:

– There is a wall in the middle of the map consisting of two columns that has a small
passage of 4 cells. The small passage consists of 4 resource cells each having only 1
resource.

– There are 28 resource cells at the top-left, top-right, bottom-left and bottom-right
corners of the map respectively where each of them contains 10 units of resources.

– The bases of player 1 are located at indices (3,2) and (20,2), located on both sides of
the wall.

– The bases of player 2 are located at indices (20,21) and (3,21), also located on both
sides of the wall.

– Each player controls two bases, which initially have 5 units of resources each.
– There are 2 workers beside each base. So a total of 4 workers for each of the players.

BWDISTANTRESOURCES (32X32)

Consider a 32x32 map of microRTS, a real-time strategy game. Consider this map as a
2-dimensional array with the following structure:

– There are two L-shaped obstacles on the map, each with a passage of 4 cells located
at the middle of left and right sides.

– There are a total of 12 neutral resource cells R located at the top-right and bottom-left
corners of the map. Each resource center contains 20 units of resources.

– The base B1 of player 1 is located at index (6,14), which is located on the left side
of the map.

– The base B2 of player 2 is located at index (25,17), which is located on the right
side of the map.

– Each player controls one Base, which initially has 20 units of resources.
– There is one worker for each player besides their bases.
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BLOODBATH (64X64)

Consider a 64x64 gridded map of microRTS, a real-time strategy game. Consider this map as
a 2-dimensional array with the following structure:

– There are total 4 neutral resource cells situated close to the top-left, top-right, bottom-
left and bottom-right sides of the map respectively. Each resource cell contains 40
units of resources.

– There are obstacles in between each of the 4 resource centers.
– The base B1 of player 1 is located at index (53, 55), which is located on the bottom-

right side of the map.
– The base B2 of player 2 is located at index (2, 6), which is located on the top-left

side of the map.
– Each player controls one Base each, which initially has 5 units of resources.
– There is no worker for both player 1 and 2 in the initial map setup.
– The only unit a player controls at the beginning of the game is the Base.

M SELF-PLAY LEARNING ALGORITHMS

Self-play algorithms attempt to approximate an optimal policy for two-player games. Iterated Best
Response (IBR) (Lanctot et al., 2017) is perhaps the simplest self-play algorithm that we could use.
IBR starts with an arbitrary policy π0 in JDK for one of the players and approximates a best response
π1 to π0 for the other player. Then it approximates a best response π2 to π1 for the first player. This
process is repeated a number of times m, which is normally determined by a computational budget.
The last resulting policy πm is returned as IBR’s approximate optimal policy for the game.

The self-play process IBR follows generates a sequence of policies for the players, but IBR only
considers the latest policy while computing a best response. Other algorithms, such as Fictitious Play
(FP) (Brown, 1951), compute best responses to a policy that mixes the best responses computed in
all previous iterations. The use of more policies allows the method to find optimal policies even in
games with cyclic dynamics such as Rock, Paper, and Scissors.

The algorithm we use in our experiments, Local Learner (2L) (Moraes et al., 2023), also considers
multiple policies in its self-play loop. This allows 2L to use more information than IBR. However,
instead of including all policies seen in the process, like FP does, it selects a subset of the policies
seen in the process. Using all policies can be computationally wasteful, as many of the policies are
“redundant”. 2L selects which policies to use based on the information collected during the search
for programmatic policies. We refer the reader to the work of Moraes et al. (2023) for a detailed
explanation of 2L.
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