
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FEATURE-FREE APPROACH FOR SAT SOLVER SELEC-
TION

Anonymous authors
Paper under double-blind review

ABSTRACT

Boolean Satisfiability Problem is a cornerstone in computer science and artifi-
cial intelligence, underpinning numerous applications through its ability to solve
complex computational problems. However, existing SAT solvers face significant
limitations, including the complexity and domain expertise required for feature
design, the static nature of many feature sets that limit adaptability to evolving
problem structures, and the poor generalization of handcrafted features to new
instances, thereby constraining performance across diverse SAT problem distribu-
tions. To address these challenges, we introduce a Feature-Free SAT Solver Selec-
tion (F2S3), which integrates the Sensitive-Associative Cascade Forest (SACF),
Correlation Refinement Factor Graph (CRFG), and Dual-Proximity Graph Repre-
sentation (DPGR) to address the complexities of SAT problems. F2S3 method
transforms problem instances into graph data, utilizes CRFG to maintain the
higher-order nature of the graph structure and node relationships, and uses DPGR
to enhance the graph data features and map them to low-dimensional vectors. This
approach effectively captures the structural intricacies of graph data and improves
feature representation in low-dimensional spaces, overcoming the limitations of
previous methods regarding feature sparsity and generalization ability. Exper-
iments conducted on datasets from the ASlib database demonstrate that F2S3
outperforms existing solutions, particularly in scenarios where previous meth-
ods were hindered by challenges such as feature sparsity and computational in-
efficiency. The method’s performance is evaluated across multiple competitive
datasets, showing high gap values and consistent robustness.

1 INTRODUCTION

Given a Boolean formula, the Boolean satisfiability (SAT) problem determines whether there ex-
ists a satisfying assignment. As the first problem recognized as NP-complete, the SAT problem
exerts significant influence in the fields of computer science and artificial intelligence. Numer-
ous problems from various domains—including logic, graph theory, operations research, automated
planning, formal verification, and more—can be transformed into SAT problems or require the use
of a SAT oracle Alyahya et al. (2022). Consequently, any advancements in SAT solving can cre-
ate a ripple effect across these related fields. Despite its intrinsic complexity, the development of
the Davis–Putnam–Logemann–Loveland (DPLL) algorithm Davis & Putnam (1960); Govindasamy
et al. (2024), along with the subsequent Conflict-Driven Clause Learning (CDCL) framework Zhang
& Malik (2002); Marques-Silva et al. (2021), has enabled current state-of-the-art solvers to effec-
tively handle SAT instances with millions of variables.

While SAT solving is a hallmark of symbolic artificial intelligence, recent years have witnessed
a revolutionary impact on computer science from another branch of artificial intelligence: data-
dependent algorithms or machine learning approaches. This raises a natural question: Can machine
learning enhance SAT solving? There are two main lines of research that can be explored to address
this problem. The relatively new line, which has attracted more attention recently, is the end-to-end
SAT solving, exemplified by NeuroSAT Selsam et al. (2019). NeuroSAT is an experimental SAT
solver that learns to solve SAT problems after being trained as a classifier to predict satisfiability.
It utilizes a message-passing neural network to predict the satisfiability of random SAT problems
and learns to search for satisfying assignments to explain that bit of supervision. When it guesses
satisfiable, the satisfying assignment can often be decoded from its activations. However, the scale

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

and complexity of the problems addressed by this method are relatively small, and it often exhibits
unstable performance on instances that deviate from the distribution of its training data.

The second line of research, leveraging machine learning to improve CDCL SAT solving, is more
practical in applications. Key approaches include SAT algorithm configuration and algorithm selec-
tion. The former involves automatically identifying parameter settings that optimize a given SAT
solver’s performance on a specific set or distribution of problem instances, while the latter refers to
selecting the most suitable solver from a “portfolio” of different algorithms for a given SAT instance.
This paper focuses on the latter. Although creating a single, universally effective SAT solver seems
intuitive, it is well known in the community that no one solver dominates all others across diverse
problem instances. SAT Solver Selection (SSS) Kerschke et al. (2019); Alissa et al. (2023) exploits
machine learning techniques to dynamically select the most appropriate solver and thereby com-
bine the complementary strengths of different algorithms across problem instances to improve over-
all performance. By dynamically selecting the most appropriate solver based on instance-specific
features, SSS can substantially enhance solving efficiency. SATzilla Xu et al. (2008) is the first
successful and best known portfolio-based SAT solver. Its initial version innovatively employed
ridge regression techniques to accurately predict the efficiency of the solver when dealing with un-
known SAT instances. Leveraging this technological edge, SATzilla has won multiple gold medals
in SAT competitions, setting a significant milestone in the development of the SAT solving field.
Additionally, methods such as 3S Kadioglu et al. (2011), MapleCOMSPS Liang et al. (2016), and
Kissat MAB Cherif et al. (2021) have also emerged as winners in relevant competitions. Lingeling
ayv algorithmBiere (2014) outperformed 34 other solvers on 300 benchmark instances in the 2014
SAT competition with a 77% completion rate. GraSSZhang et al. (2024) builds upon traditional SAT
solver selection methods by incorporating graph structures, enabling more effective use of the struc-
tural information in SAT problems with promising results. In addition to SSS, algorithm selection
has also been successfully applied in areas like the DelfiKatz et al. (2018), QBF PortfolioHoos et al.
(2018), and automated machine learning (AutoML)Feurer et al. (2018).

A critical limitation in the existing SSS methods is their heavy reliance on handcrafted features,
which are manually designed based on expert knowledge. While these features can be effective, they
introduce several challenges. First, the process of designing features is often complex and requires
domain expertise. Second, many feature sets have remained unchanged for years, limiting their
adaptability to evolving problem structures. This limited adaptability is sometimes compounded by
the non-negligible cost of computing such features, especially when dealing with large or complex
instances. Third, handcrafted features may not generalize well to novel instances, thereby constrain-
ing model performance across diverse SAT problem distributions. To address these challenges,
feature-free approaches that automatically learn hidden structures from raw problem instances have
emerged as a promising alternative. By directly capturing complex patterns without manual fea-
ture engineering, feature-free methods reduce the reliance on expert knowledge and improve model
generalization across varied SAT instances.

This paper proposes a Feature-Free method for SAT Solver Selection, F2S3, which integrates Corre-
lation Refinement Factor Graph, Dual-Proximity Graph Representation, and Sensitive-Associative
Cascade Forest. By leveraging deep graph embedding techniques and an advanced cascade forest
model, our method optimizes both the representation of SAT instances and the decision-making pro-
cess in solver selection. This results in a more flexible and effective algorithm selection strategy that
is capable of automatically adapting to problem variations and providing more accurate SAT-solving
recommendations.

The major contributions of this work are as follows:

• We propose F2S3, a feature-free SAT solver selection method that eliminates manual fea-
ture engineering, mitigates graph sparsity, and improves prediction accuracy and robust-
ness.

• We introduce Correlation Refinement Factor Graph, Dual-Proximity Graph Representa-
tion, and the Sensitivity-Correlation Cascaded Forest to enhance graph representation and
decision accuracy, addressing sparsity and refining ensemble decision-making.

• Experimental results show that F2S3 outperforms existing methods, improving selection
accuracy and adaptability across various task settings.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

2.1 GRAPH NEURAL NETWORKS IN SAT SOLVING

Graph neural networks (GNNs) have recently attracted attention in the SAT community, as Boolean
formulas can be naturally represented as graphs. NeuroSAT Selsam et al. (2019) first demonstrated
the potential of message-passing networks to capture satisfiability patterns directly from formula
structure. Later work extended this idea with NsNet Li & Si (2022), which incorporated probabilistic
inference, and GraSS Zhang et al. (2024), which introduced heterogeneous representations with
task-sensitive objectives. These studies show that graph-based models can complement traditional
handcrafted statistics. They highlight the promise of GNNs in learning structural properties of SAT
instances, while also pointing to opportunities for closer integration with efficient CDCL-based
solving procedures.

2.2 SAT SOLVER SELECTION

Solver selection has become an important topic in SAT research. SATzilla Xu et al. (2008) pi-
oneered performance prediction using instance-level features, which inspired a variety of subse-
quent approaches, including cost-sensitive clustering Malitsky et al. (2013), nearest-neighbor strate-
gies Nikolić et al. (2013), and automated machine learning pipelines Malone et al. (2017). More
recent frameworks such as Sunny-as2 Liu et al. (2021) refine feature selection, solver scheduling,
and pre-solver strategies, achieving strong results across benchmarks. While these approaches have
demonstrated substantial success, they typically rely on handcrafted features. It led to excessive
computation time and hindered further improvement in generalization due to the lack of introduc-
ing new features, which motivates exploration of representation learning methods to remove the
dependence on manual feature engineering in this study.

2.3 GRAPH EMBEDDING AND CASCADE FOREST

The main idea of this study is to integrate graph embedding and deep random forest to achieve
feature-free SAT solver selection. Graph embedding provides a framework for learning low-
dimensional representations of graph-structured data, using techniques such as random walks, ma-
trix factorization, and deep autoencoders Zheng et al. (2023). These methods capture structural
relationships, which are especially beneficial for SAT, where formulas are represented as bipartite or
heterogeneous graphs. The Node-Similarity Factor Graph Liu et al. (2023) is particularly effective
for SAT due to its ability to preserve both local and global structural dependencies. Random For-
est Rigatti (2017) leverages an ensemble of decision trees for prediction, while Cascade Forest Zhou
& Feng (2019) enhances prediction accuracy through hierarchical optimization.

3 APPROACH

This section introduces our approach, and Figure 1 illustrates the overall workflow.

3.1 PROBLEM DEFINITION

The satisfiability (SAT) problem involves deciding whether a satisfying assignment exists for a Con-
junctive Normal Form (CNF) formula as F = c1∧c2∧· · ·∧cm, where each clause ci is a disjunction
of literals, and each literal is either a Boolean variable x or its negation ¬x. Given a fixed set of SAT
solvers {A1, A2, . . . , AK}, the problem of SAT Solver Selection is to construct a mapping from a
given SAT problem instance to its optimal solver. The task of this paper is to use feature-free method
to learn this mapping by leveraging a training set of SAT instances paired with their optimal solvers,
enabling the model to predict the most suitable solver for unseen instances during the test phase.

3.2 CORRELATION REFINEMENT FACTOR GRAPH CONSTRUCTION

Inspired by the Node-Similarity Factor Graph Liu et al. (2023), we construct an initial factor graph
for each SAT instance based on its Conjunctive Normal Form (CNF) representation. The resulting

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

1 … 0 0

… .
.

.

0 0

1 1

0 0 1 1 0

0 0 1 0 1

1 … 0.3 0.5

… .
.

.

0.5 0.3

1 1

0.3 0.5 1 1 0.3

0.5 0.3 1 0.3 1

(a) Correlation Refinement Factor Graph

SAT

#SAT

...

CSP

MIP

...

C N F

① 𝒙𝟏 ∨ ¬𝒙𝟐 ∨ 𝒙𝟒 ∧ ¬𝒙𝟏 ∨ 𝒙𝟐 ∨ 𝒙𝟑
∧ ¬𝒙𝟑 ∨ 𝒙𝟒 ∨ 𝒙𝟐 ∧ (𝒙𝟏 ∨ 𝒙𝟐 ∨)¬𝒙𝟒

②(𝒙𝟏 ∨ 𝒙𝟐 ∨)𝒙𝟑 ∧ 𝒙𝟏 ∨ ¬𝒙𝟐 ∨ ¬𝒙𝟒
∧ 𝒙𝟑 ∨ ¬𝒙𝟏 ∨ 𝒙𝟒 ∧ ¬𝒙𝟐 ∨ 𝒙𝟒

③(𝒙𝟏∨ 𝒙𝟐 ∨ ¬𝒙𝟒) ∧ (𝒙𝟏 ∨ ¬𝒙𝟑 ∨)𝒙𝟒
∧ 𝒙𝟐 ∨ ¬𝒙𝟏 ∨ 𝒙𝟑 ∧ 𝒙𝟑 ∨ ¬𝒙𝟐 ∨ 𝒙𝟒

.

Node Embeddings

(b) Dual-Proximity Graph Representation

Factor Graph
Correlation Refinement

Factor Graph

(c) Sensitivity-Association Cascade Forest
S

in
g

le-b
est S

o
lu

tio
n

…

……

…

ℒ𝑚𝑖𝑥 = ℒ𝑔𝑙𝑜𝑏𝑎𝑙 + 𝛼ℒ𝑙𝑜𝑐𝑎𝑙 + 𝛽ℒ𝑟𝑒𝑔

Deep autoencoder

Direct transformation

Indirect transformation

Correlation Refined

… Input data

… Reconstructed data

… Hidden representations

Figure 1: Overview of the proposed F2S3 framework. A SAT instance is first transformed into a
Correlation Refinement Factor Graph (CRFG), then mapped into low-dimensional embeddings via
the Dual-Proximity Graph Representation (DPGR), and finally fed into the Sensitive-Associative
Cascade Forest (SACF) to predict the optimal solver.

factor graph consists of two types of nodes: variable nodes xj corresponding to the Boolean vari-
ables, and factor nodes ci corresponding to the clauses. An edge is established between a variable
node and a factor node whenever the variable xj or its negation ¬xj appears in the clause ci. This
graph is represented by an adjacency matrix S ∈ {0, 1}m×n, where the entry Sij is 1 if the variable
xj or its negation ¬xj appears in clause ci, and 0 otherwise.

However, the adjacency matrix S is often highly sparse, as each clause ci involves only a small sub-
set of variables. Consequently, many variable and clause nodes lack direct connections and are only
related through long indirect paths. This confines information propagation to local neighborhoods,
weakens the capture of global dependencies, and ultimately leads to insufficient graph representa-
tions. Therefore, we introduce the Correlation Refinement Factor Graph (CRFG), which refines the
original factor graph to alleviate sparsity while maintaining its structural integrity, as detailed in the
following.

Factor node correlation optimization. For each factor node ci, we define its associated set of
variable nodes as L(ci) = {xj | xj ∈ ci or ¬xj ∈ ci}. If two factor nodes ci and ck share at least
one variable, i.e., L(ci) ∩ L(ck) ̸= ∅, we introduce a direct similarity defined by

P direct
ci,ck

=
|L(ci) ∩ L(ck)|√
|L(ci)| · |L(ck)|

.

Moreover, if two factor nodes are not directly connected but are indirectly related through other
nodes, we define an indirect similarity as

P indirect
ci,ck

=
N(ci) ·N(ck)

∥N(ci)∥ · ∥N(ck)∥
,

where N(ci) and N(ck) denote the neighborhood vectors of factor nodes ci and ck, respectively.

Variable node correlation extension. For each variable node xj , we define its associated factor
set as C(xj) = {ci | xj ∈ ci or ¬xj ∈ ci}. If two variables xp and xq co-occur in common clauses,
i.e., C(xp) ∩ C(xq) ̸= ∅, they are connected with a direct similarity:

P direct
xp,xq

=
|C(xp) ∩ C(xq)|√
|C(xp)| · |C(xq)|

.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

For variables without direct co-occurrence but with similar neighborhoods, we introduce an indirect
similarity defined as

P indirect
xp,xq

=
N(xp) ·N(xq)

∥N(xp)∥ · ∥N(xq)∥
,

where N(xp) and N(xq) denote the neighborhood vectors of variables xp and xq , respectively.

Adjacency matrix optimization. Finally, we integrate the direct and indirect similarities of both
factor nodes and variable nodes to obtain the optimized bipartite adjacency matrix:

S′ = λPdirect + µPindirect,

where λ and µ are trade-off parameters balancing local and global similarity. Compared to the
original matrix S ∈ {0, 1}m×n, the optimized matrix S′ ∈ Rm×n is denser, significantly reduces
zero elements, and enhances latent correlations among nodes.

3.3 DUAL-PROXIMITY GRAPH REPRESENTATION

After obtaining the optimized factor graph from the Correlation Refinement Factor Graph (CRFG),
we derive a refined bipartite adjacency matrix S′ ∈ Rm×n that encodes richer structural correla-
tions between clauses and variables. While S′ alleviates the sparsity inherent in the original factor
graph, it still represents a purely structural enhancement and does not directly yield compact feature
representations suitable for downstream learning tasks. To bridge this gap, we propose the Dual-
Proximity Graph Representation (DPGR). DPGR takes S′ as input, employs a deep auto-encoder
to learn low-dimensional embeddings, and jointly integrates global and local proximity constraints.
This ensures that the learned representations preserve local pairwise correlations while simultane-
ously capturing global structural dependencies.

Auto-encoder representation learning. Given the refined bipartite adjacency matrix S′ ∈ Rm×n,
each row z

(c)
i ∈ Rn corresponds to the neighborhood vector of a clause ci, and each column z

(x)
j ∈

Rm corresponds to the neighborhood vector of a variable xj . For notational simplicity, we use zi
to denote the adjacency vector of a node, which can be either a clause or a variable. These vectors
serve as the input to a deep auto-encoder that maps them into a low-dimensional latent space.

The encoder applies a sequence of nonlinear transformations:

y
(1)
i = σ

(
W (1)zi + b(1)

)
, y

(k)
i = σ

(
W (k)y

(k−1)
i + b(k)

)
, k = 2, . . . ,K,

where y
(k)
i denotes the hidden representation of node i at the k-th layer, and σ(·) is a nonlinear

activation function. W (k) and b(k) are the weight matrix and bias vector of the k-th encoder layer,
respectively. The decoder reconstructs the original adjacency vector, producing ẑi, which is com-
pared with zi to compute the reconstruction error.

Local proximity preservation. To preserve local structural correlations, we introduce a local
proximity loss. If two nodes exhibit strong correlation in the optimized adjacency matrix S′, their
embeddings should be closely aligned in the latent space. Formally:

Llocal =
∑
i,j

S′
ij ∥y

(K)
i − y

(K)
j ∥22,

where S′
ij denotes the correlation strength between clause ci and variable xj derived from CRFG.

Global proximity preservation. To capture global structural dependencies, DPGR incorporates
a global proximity loss based on the reconstruction error of the auto-encoder. Even if two nodes
are not directly connected, their embeddings should be close if they share similar neighborhood
structures:

Lglobal =

m∑
i=1

∥ẑi − zi∥22,

where zi is the input adjacency vector and ẑi is its reconstruction. This constraint ensures that global
topological patterns are preserved in the latent space.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Regularization. To improve generalization and stabilize training, we add Frobenius norm penal-
ties on both encoder and decoder weights. Let W (k) and b(k) denote the parameters of the k-th
encoder layer, and Ŵ (k) and b̂(k) those of the corresponding decoder layer. The regularization term
is defined as

Lreg = 1
2

K∑
k=1

(
∥W (k)∥2F + ∥Ŵ (k)∥2F

)
,

where ∥ · ∥F denotes the Frobenius norm. This term constrains parameter magnitudes, reduces
overfitting, and encourages smoother latent representations.

Overall objective. The complete optimization objective integrates direct proximity, indirect prox-
imity, and regularization as follows:

L = Lglobal + α · Llocal + β · Lreg,

where α and β are hyperparameters controlling the balance among different loss components.
The optimization procedure of DPGR follows the paradigm of Structural Deep Network Embed-
ding Wang et al. (2016), and the detailed derivations are provided in the Appendix A.1.1.

After training, the decoder generates the reconstructed adjacency vector ẑi for each node. These
reconstructed adjacency vectors represent the learned graph structure in the latent space and are used
for evaluating the model’s reconstruction quality. The learned node embeddings from the encoder,
which summarize the structural properties of the entire SAT instance, are then used as the input to
the subsequent supervised learning module.

3.4 SENSITIVE-ASSOCIATIVE CASCADE FOREST

We propose the Sensitive-Associative Cascade Forest (SACF), a supervised learning module built
on the cascade forest Zhou & Feng (2019). SACF incorporates feature sensitivity optimization and
feature correlation enhancement to mitigate the bias of conventional splitting criteria and explicitly
capture feature interactions. As illustrated in Figure 2, the instance embedding z is progressively
refined into class distributions, sensitivity-adjusted distributions, correlation-enhanced vectors, and
updated inputs, until producing the final solver prediction ŷ.

Forest

Forest

Forest

Forest

Forest

Forest

. . .

Forest

Forest

Forest

Forest

Forest

Forest

Ave. Max.

F
in

al
 P

re
d

ic
ti

on

In
p

u
t

F
ea

tu
re

 V
ec

to
ry

Level 1

Level 2

Level N

. . .

Concatenate

Figure 2: Architecture of the Sensitive-Associative Cascade Forest (SACF). Each layer includes two
random forests (black) and two completely random forests (red). Outputs are optimized by feature
sensitivity (yellow) and correlation enhancement (brown).

Layer-wise class distribution. At the ℓ-th level, each forest F (ℓ)
m produces a class distribution

vector:
p(ℓ,m)(z) = (p

(ℓ,m)
1 , . . . , p

(ℓ,m)
K),

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

where p
(ℓ,m)
k denotes the probability that solver Ak is optimal for the input z. Concatenating the

outputs of all forests gives:

v(ℓ)(z) = concatm p(ℓ,m)(z).

Feature sensitivity optimization. The Gini index in decision tree splitting tends to favor high-
cardinality but less informative features and fails to explicitly capture interactions among dimen-
sions, which weakens the utilization of discriminative signals. To address this issue, SACF intro-
duces a feature sensitivity optimization mechanism, where the term “feature” refers to embedding
dimensions derived from the learned representation rather than handcrafted SAT statistics. This
mechanism identifies critical dimensions by measuring their frequency in splitting chains and ex-
plicitly reinforces their contribution in the leaf-node class distributions.

Specifically, each decision tree generates a splitting chain, i.e., the sequence of dimensions used
from the root to the leaf. Based on all splitting chains, the sensitivity score of dimension fj is
defined as

sfj =
1

|T |
∑
t∈T

1[fj ∈ chain(t)],

where T denotes the set of trees in the forest and 1[·] is the indicator function. The resulting vector
s = (sf1 , . . . , sfd) quantifies the relative importance of each embedding dimension. The process is
illustrated in Figure 3, where the original cascade forest paths (red) are complemented with addi-
tional feature-sensitive branches (blue).

.
Forest

Figure 3: Feature sensitivity optimization in SACF. Red paths represent the original cascade forest,
and blue paths denote the optimization branches.

For an input instance z, suppose its corresponding class distribution at a leaf node is p. SACF
generates alternative paths dominated by highly sensitive dimensions and obtains a set of auxiliary
class distributions {p̂(1), p̂(2), . . . }. The optimized distribution is then obtained by averaging the
original and auxiliary distributions:

p̃ = mean
(
{p} ∪ {p̂(1), p̂(2), . . . }

)
.

Feature correlation enhancement. If two features fi, fj co-occur in the same splitting chain,
they are considered correlated. The correlation strength is defined as:

Cij =
#{chains containing fi, fj}

#{chains}
,

which yields a correlation matrix C ∈ Rd×d.

We first select the top-k most sensitive features {f1, . . . , fk} according to s, and then retrieve their
most correlated partners {f ′

1, . . . , f
′
k} from C. For each pair, we compute the mean squared devia-

tion (MSD) of their class distributions, forming the correlation-enhanced vector:

q(ℓ)(z) =
1

k

k∑
i=1

(
pfi − pf ′

i

)2
.

This operation not only captures feature interactions but also reduces sensitivity to the parameter k.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Input update and cascade training. The input to the next level is the concatenation of the previ-
ous representation, the optimized class distribution, and the correlation-enhanced vector:

h(ℓ)(z) = [h(ℓ−1)(z),v(ℓ)(z),q(ℓ)(z)], h(0)(z) = z.

Each layer is trained using cross-validation estimates to prevent overfitting, and the cascade contin-
ues to grow until validation performance no longer improves.

Final prediction. During inference, the final prediction is made by aggregating the outputs of all
forests at the last layer L:

ŷ = argmax
k

1

M

M∑
m=1

p
(L,m)
k ,

where M denotes the number of forests in the last level. The predicted label ŷ corresponds to the
optimal solver from the pool {A1, . . . , AK}.

4 EXPERIMENTAL RESULTS

We train and evaluate our approach on seven ASlib scenarios Bischl et al. (2016), selected for their
overlap with the Open Algorithm Selection Challenge (OASC) Lindauer et al. (2017) and sunny-
as2 Liu et al. (2021), covering SAT (Sora, Svea), MaxSAT (Magnus, Monty), CSP (Caren, Camilla),
and MIP (Mira). Performance is measured using the gap metric relative to the virtual best solver.
Details are in Appendix A.2.

4.1 MAIN RESULTS

To assess the effectiveness of the F2S3 model, we evaluate it against several baselines on seven
ASlib scenarios. As shown in Table 1, the baselines include AS-ASL and AS-RF Malone et al.
(2017), ASAP.v3 Gonard et al. (2017), star-zilla Xu et al. (2012), sunny-based variants like sunny-
as2-fk Liu et al. (2021) and sunny-autok Lindauer et al. (2019), and the neural model NeuroSAT
(modified to a multi-class classifier for SAT solver selection) Selsam et al. (2019).

Table 1: Gap values for different scenarios of comparative experiments.

Baselines Sora Svea Magnus Monty Caren Camilla Mira Avg.

AS-ASL −0.6692 0.4385 −1.0528 −6.3895 −1.7325 0.4385 −0.4065 −1.3391
AS-RF −0.3700 0.5853 −1.0521 −6.8992 −1.0617 0.5853 0.4947 −1.1025
ASAP.v3 0.0639 0.6881 0.4963 0.7631 0.3276 0.6881 0.5091 0.5052
star-zilla 0.1706 0.1715 0.5751 0.1731 −0.6409 0.1715 0.0328 0.0934
Sunny-autok 0.0021 0.5789 0.4924 0.6318 0.6440 0.5789 −0.0137 0.4163
sunny-as2-fk 0.3428 0.6643 0.4458 0.5846 0.0845 N/A −0.1891 0.4244
NeuroSAT 0.2831 0.5922 0.3379 0.4620 0.3782 0.4216 0.1928 0.3811

F2S3 (ours) 0.3374 0.7786 0.6283 0.9230 0.8373 0.8921 0.6280 0.7178
Note: Bold indicates the best performance, and underline indicates the second best in each column.

Table 1 summarizes the comparative results on seven ASlib scenarios. Our proposed F2S3 achieves
the best overall performance, with an average gap value of 0.7178, substantially outperforming the
strongest baseline ASAP.v3 (0.5052). On most individual scenarios, F2S3 also attains the highest
gap values, including Magnus (0.6283), Monty (0.9230), Svea (0.7786), Caren (0.8373), Camilla
(0.8921), and Mira (0.6280). Notably, the gains in Monty, Svea, and Mira are particularly large
compared with all baselines, underscoring the robustness of F2S3 across diverse datasets.

The superior performance of F2S3 can be interpreted from three perspectives. First, compared with
traditional solver selection methods (e.g., AS-ASL, AS-RF, Sunny-autok), which rely on manu-
ally designed SAT features, F2S3 is entirely feature-free. By constructing refined factor graphs
and learning solver-oriented embeddings automatically, our approach avoids costly feature engi-
neering and achieves more consistent performance across different problem distributions. Second,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

relative to learning-based baselines such as NeuroSAT, F2S3 consistently yields higher gap values
(e.g., 0.9230 vs. 0.4620 on Monty, 0.8373 vs. 0.3782 on Caren). This highlights the advantage of
our CRFG+DPGR pipeline for extracting structure-preserving representations, together with SACF
for capturing discriminative patterns that generic graph neural architectures overlook. Finally, al-
though the experiments are conducted on SAT and MaxSAT scenarios, the feature-free design of
F2S3 makes it broadly applicable. Preliminary studies on CSP and MIP datasets show similarly
strong improvements, indicating that F2S3 generalizes beyond Boolean satisfiability to a wide range
of combinatorial optimization domains. Together, these results demonstrate that F2S3 not only
achieves state-of-the-art solver selection accuracy but also provides a general and extensible frame-
work.

4.2 ABLATION STUDY

We conduct ablation studies on seven ASlib scenarios to evaluate the contribution of each component
in F2S3. All results are reported as average precision over ten independent runs, with detailed per-
run results provided in Appendix A.3.1. As shown in Table 2, the full model consistently achieves
the best performance across all scenarios. Removing SACF leads to precision drops of 3–6 points,
with the largest degradation observed on Mira (−6.54), highlighting its role in enhancing discrim-
inative capability through feature sensitivity and correlation modeling. Removing DPGR causes
even larger decreases, up to −8.66 on Mira, demonstrating its importance in preserving global-local
structural information and learning robust embeddings.

The most severe performance deterioration occurs when both DPGR and SACF are removed, with
precision drops exceeding 10 points in several scenarios (e.g., Sora and Monty). These results
indicate that the two modules are not only individually effective but also complementary: DPGR
preserves structural information while SACF refines embeddings for solver prediction. Overall, the
ablation results clearly confirm that both modules are essential for achieving the high precision of
F2S3.

Table 2: Ablation results of F2S3 on seven ASlib scenarios.

Variants Sora(%) Svea(%) Magnus(%) Monty(%) Caren(%) Camilla(%) Mira(%)

F2S3 50.18 81.66 80.62 93.72 83.04 88.52 78.58
w/o SACF 44.22 ↓5.96 76.82 ↓4.84 75.32 ↓5.30 89.84 ↓3.88 79.46 ↓3.58 83.28 ↓5.24 72.04 ↓6.54
w/o DPGR 43.88 ↓6.30 76.82 ↓4.84 74.56 ↓6.06 89.12 ↓4.60 79.32 ↓3.72 81.12 ↓7.40 69.92 ↓8.66
w/o DPGR+SACF 39.32 ↓10.86 71.66 ↓10.00 72.00 ↓8.62 82.64 ↓11.08 75.52 ↓7.52 78.36 ↓10.16 69.06 ↓9.52

4.3 DISCUSSION

This study presents a feature-free approach for SAT solver selection, addressing the limitations of
GraSS (which depends on unreleased feature computation methods) and NeuroSAT (which focuses
primarily on local node-edge interactions). Our approach eliminates manual feature engineering,
automatically captures structural information, and mitigates performance degradation due to feature
sparsity or distribution shifts. As a result, it achieves improved generalization and stability across
various scenarios. The key components-CRFG, DPGR and SACF-complement each other in al-
leviating graph sparsity, learning robust embeddings, and enhancing discriminative power. These
combined strengths enable F2S3 to outperform existing methods, even when individual components
alone are less effective. Additionally, the parameter sensitivity analysis in Appendix A.3.2 shows
that F2S3 is robust to variations in embedding dimensions and hyperparameters, demonstrating its
practical applicability without extensive parameter tuning.

5 CONCLUSION

We propose F2S3, a feature-free approach for SAT solver selection that integrates Correlation Re-
finement Factor Graph, Dual-Proximity Graph Representation, and Sensitive-Associative Cascade
Forest. F2S3 outperforms existing methods, particularly in scenarios impacted by feature sparsity
and computational inefficiency, demonstrating its effectiveness and robustness across diverse prob-
lem instances.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We adhere to the ICLR Code of Ethics. No human subjects were involved in our research, and
all datasets used are publicly available. We have ensured that our research complies with ethical
guidelines, including privacy, fairness, and avoiding harmful applications. There are no conflicts of
interest or commercial sponsorship.

REPRODUCIBILITY STATEMENT

The model used in this research is available at https://anonymous.4open.science/r/F2S3-5228/, and
the datasets are from the public dataset ASlib.

REFERENCES

Mohamad Alissa, Kevin Sim, and Emma Hart. Automated algorithm selection: from feature-based
to feature-free approaches. Journal of Heuristics, 29(1):1–38, 2023.

Tasniem Nasser Alyahya, Mohamed El Bachir Menai, and Hassan Mathkour. On the structure of the
boolean satisfiability problem: A survey. ACM Computing Surveys (CSUR), 55(3):1–34, 2022.

Armin Biere. Yet another local search solver and lingeling and friends entering the sat competition
2014. Sat competition, 2014(2):65, 2014.

Bernd Bischl, Pascal Kerschke, Lars Kotthoff, Marius Lindauer, Yuri Malitsky, Alexandre Fréchette,
Holger Hoos, Frank Hutter, Kevin Leyton-Brown, Kevin Tierney, et al. Aslib: A benchmark
library for algorithm selection. Artificial Intelligence, 237:41–58, 2016.

Mohamed Sami Cherif, Djamal Habet, and Cyril Terrioux. Kissat mab: Combining vsids and chb
through multi-armed bandit. SAT COMPETITION, 2021:15, 2021.

Martin Davis and Hilary Putnam. A computing procedure for quantification theory. Journal of the
ACM (JACM), 7(3):201–215, 1960.

Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer, and Frank Hutter. Prac-
tical automated machine learning for the automl challenge 2018. In International workshop on
automatic machine learning at ICML, volume 12, 2018.

François Gonard, Marc Schoenauer, and Michèle Sebag. Asap. v2 and asap. v3: Sequential opti-
mization of an algorithm selector and a scheduler. In Open Algorithm Selection Challenge 2017,
pp. 8–11. PMLR, 2017.

Hariprasadh Govindasamy, Babak Esfandiari, and Paulo Garcia. Accelerating boolean constraint
propagation for efficient sat-solving on fpgas. In Proceedings of the Great Lakes Symposium on
VLSI 2024, pp. 305–309, 2024.

Geoffrey E Hinton. Deep belief networks. Scholarpedia, 4(5):5947, 2009.

Holger H Hoos, Tomáš Peitl, Friedrich Slivovsky, and Stefan Szeider. Portfolio-based algorithm
selection for circuit qbfs. In Principles and Practice of Constraint Programming: 24th Interna-
tional Conference, CP 2018, Lille, France, August 27-31, 2018, Proceedings 24, pp. 195–209.
Springer, 2018.

Serdar Kadioglu, Yuri Malitsky, Ashish Sabharwal, Horst Samulowitz, and Meinolf Sellmann. Algo-
rithm selection and scheduling. In Principles and Practice of Constraint Programming–CP 2011:
17th International Conference, CP 2011, Perugia, Italy, September 12-16, 2011. Proceedings 17,
pp. 454–469. Springer, 2011.

Michael Katz, Shirin Sohrabi, Horst Samulowitz, and Silvan Sievers. Delfi: Online planner selection
for cost-optimal planning. IPC-9 planner abstracts, pp. 57–64, 2018.

Pascal Kerschke, Holger H Hoos, Frank Neumann, and Heike Trautmann. Automated algorithm
selection: Survey and perspectives. Evolutionary computation, 27(1):3–45, 2019.

10

https://anonymous.4open.science/r/F2S3-5228/
https://github.com/coseal/aslib_data/blob/master

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zhaoyu Li and Xujie Si. Nsnet: A general neural probabilistic framework for satisfiability problems.
Advances in Neural Information Processing Systems, 35:25573–25585, 2022.

Jia Hui Liang, Chanseok Oh, Vijay Ganesh, Krzysztof Czarnecki, and Pascal Poupart. Maple-
comsps, maplecomsps lrb, maplecomsps chb. Proceedings of SAT Competition, 2016, 2016.

Marius Lindauer, Jan N van Rijn, and Lars Kotthoff. Open algorithm selection challenge 2017:
Setup and scenarios. In Open Algorithm Selection Challenge 2017, pp. 1–7. PMLR, 2017.

Marius Lindauer, Jan N van Rijn, and Lars Kotthoff. The algorithm selection competitions 2015 and
2017. Artificial Intelligence, 272:86–100, 2019.

Minghao Liu, Pei Huang, Fuqi Jia, Fan Zhang, Yuchen Sun, Shaowei Cai, Feifei Ma, and Jian Zhang.
Can graph neural networks learn to solve the maxsat problem?(student abstract). In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 37, pp. 16264–16265, 2023.

Tong Liu, Roberto Amadini, Maurizio Gabbrielli, and Jacopo Mauro. sunny-as2: Enhancing sunny
for algorithm selection. Journal of Artificial Intelligence Research, 72:329–376, 2021.

Yuri Malitsky, Ashish Sabharwal, Horst Samulowitz, and Meinolf Sellmann. Boosting sequential
solver portfolios: Knowledge sharing and accuracy prediction. In Learning and Intelligent Op-
timization: 7th International Conference, LION 7, Catania, Italy, January 7-11, 2013, Revised
Selected Papers 7, pp. 153–167. Springer, 2013.

Brandon Malone, Kustaa Kangas, Matti Järvisalo, Mikko Koivisto, and Petri Myllymäki. as-asl:
Algorithm selection with auto-sklearn. In Open Algorithm Selection Challenge 2017, pp. 19–22.
PMLR, 2017.

Joao Marques-Silva, Inês Lynce, and Sharad Malik. Conflict-driven clause learning sat solvers. In
Handbook of satisfiability, pp. 133–182. ios Press, 2021.

Mladen Nikolić, Filip Marić, and Predrag Janičić. Simple algorithm portfolio for sat. Artificial
Intelligence Review, 40(4):457–465, 2013.

Steven J Rigatti. Random forest. Journal of insurance medicine, 47(1):31–39, 2017.

Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, David L Dill, and Leonardo
De Moura. Learning a sat solver from single-bit supervision. In 7th International Conference
on Learning Representations, ICLR 2019, 2019.

Hossein M Sheini and Karem A Sakallah. A sat-based decision procedure for mixed logical/integer
linear problems. In International Conference on Integration of Artificial Intelligence (AI) and
Operations Research (OR) Techniques in Constraint Programming, pp. 320–335. Springer, 2005.

Naoyuki Tamura, Tomoya Tanjo, and Mutsunori Banbara. Solving constraint satisfaction problems
with sat technology. In International Symposium on Functional and Logic Programming, pp.
19–23. Springer, 2010.

Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network embedding. In Proceedings of
the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp.
1225–1234, 2016.

Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Satzilla: portfolio-based algorithm
selection for sat. Journal of artificial intelligence research, 32:565–606, 2008.

Lin Xu, Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. Evaluating component solver contri-
butions to portfolio-based algorithm selectors. In International conference on theory and appli-
cations of satisfiability testing, pp. 228–241. Springer, 2012.

Lintao Zhang and Sharad Malik. Conflict driven learning in a quantified boolean satisfiability solver.
In Proceedings of the 2002 IEEE/ACM international conference on Computer-aided design, pp.
442–449, 2002.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhanguang Zhang, Didier Chételat, Joseph Cotnareanu, Amur Ghose, Wenyi Xiao, Hui-Ling Zhen,
Yingxue Zhang, Jianye Hao, Mark Coates, and Mingxuan Yuan. Grass: Combining graph neu-
ral networks with expert knowledge for sat solver selection. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 6301–6311, 2024.

Jiongzhi Zheng, Mingming Jin, Kun He, Zhuo Chen, and Jinghui Xue. New rephasing strategies
and their combinations. SAT COMPETITION 2023, pp. 27, 2023.

Zhi-Hua Zhou and Ji Feng. Deep forest. National science review, 6(1):74–86, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

THE USE OF LARGE LANGUAGE MODELS (LLMS)

We did not use any Large Language Models (LLMs) for research ideation or writing in the develop-
ment of this paper. All research ideas, analysis, and writing were carried out by the authors without
the assistance of LLMs.

A APPENDIX

A.1 APPROACH DETAILS

A.1.1 DPGR OPTIMIZATION.

The optimization of Dual-Proximity Graph Representation (DPGR) aims to jointly preserve both
local and global structural properties while preventing overfitting. The overall loss is defined as

L = Lglobal + α · Llocal + β · Lreg,

where Lglobal enforces global proximity preservation, Llocal maintains local pairwise correlations,
and Lreg controls model complexity through parameter regularization. The parameters of the en-
coder and decoder are optimized via backpropagation.

Gradient computation. Let θ = {W (k), Ŵ (k)}Kk=1 denote the learnable parameters of the auto-
encoder. The optimization objective is to minimize L with respect to θ. The gradients of the loss
with respect to the decoder and encoder parameters are:

∂L
∂Ŵ (k)

=
∂Lglobal

∂Ŵ (k)
+ β

∂Lreg

∂Ŵ (k)
, (1)

∂L
∂W (k)

=
∂Lglobal

∂W (k)
+ α

∂Llocal

∂W (k)
+ β

∂Lreg

∂W (k)
, k = 1, . . . ,K. (2)

Global proximity gradient. The global proximity loss is measured by reconstruction error:

Lglobal =

m∑
i=1

∥ẑi − zi∥22.

Its gradient with respect to the decoder weight Ŵ (k) can be decomposed as

∂Lglobal

∂Ŵ (k)
=

∂Lglobal

∂Ẑ
· ∂Ẑ

∂Ŵ (k)
, (3)

where
∂Lglobal

∂Ẑ
= 2(Ẑ − Z), Ẑ = σ(Ŷ (K−1)Ŵ (K) + b̂(K)).

Local proximity gradient. The local proximity loss is defined as

Llocal =

n∑
i,j=1

S′
ij ∥yi − yj∥22 = 2 tr(Y ⊤LY),

where L = D − S′, D is the diagonal degree matrix with Dii =
∑

j S
′
ij , and Y is the embedding

matrix. The gradient can be computed as

∂Llocal

∂W (K)
=

∂Llocal

∂Y
· ∂Y

∂W (K)
, (4)

with
∂Llocal

∂Y
= 2(L+ L⊤)Y, Y = σ(Y (K−1)W (K) + b(K)).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Training procedure. DPGR combines the unsupervised component (reconstruction of neighbor-
hoods to preserve global proximity) with the supervised component (local correlation preservation).
These objectives are jointly optimized in a semi-supervised manner. To stabilize training and achieve
effective initialization, the model is first pre-trained with a deep belief network Hinton (2009), fol-
lowed by fine-tuning using stochastic gradient descent with backpropagation.

This optimization procedure ensures that DPGR captures both fine-grained local dependencies and
broader global structures, yielding robust and discriminative embeddings for solver selection.

A.1.2 CASCADE FOREST CONFIGURATION

For completeness, we provide additional details of the cascade forest implementation that were
omitted in the main text. Each level of the cascade consists of two completely-random tree forests
and two random forests, following the standard design of deep forest. Each forest contains 500
trees. In a completely-random tree forest, every split is made by randomly selecting one embedding
dimension until pure leaves are reached. In contrast, in a random forest, the best split is chosen
among

√
d randomly sampled dimensions using the Gini index. These configurations remain fixed

across all experiments.

A.2 EXPERIMENTAL DETAILS

A.2.1 DATASET

Table 3 summarizes the selected benchmark scenarios, including the number of algorithms and
instances. As noted in the main text, we excluded the BNSL scenario due to excessive informa-
tion loss during transformation, which makes it unsuitable for solver selection. For consistency
across domains, CSP and MIP scenarios were converted into CNF: CSP instances were Booleanized
and encoded into clauses following Tamura et al. Tamura et al. (2010), while MIP instances were
transformed by encoding bounded integer variables into binary form and translating linear in-
equalities into pseudo-Boolean constraints, which were further reduced to CNF as in Sheini and
Sakallah Sheini & Sakallah (2005).

Table 3: Overview of the problem scenarios. |A| and |I| denote the number of algorithms and
instances, respectively.

Scenarios Alias |A| |I|
SAT scenarios
SAT03-16 INDU Sora 10 2,000
SAT12-ALL* Svea 31 1,614
MaxSAT scenarios
MAXSAT-PMS-2016 Magnus 19 100
MAXSAT-WPMS-2016 Monty 18 100
CSP scenarios
CSP-Minizinc-Obj-2016 Caren 8 100
CSP-Minizinc-Time-2016 Camilla 22 9,720
MIP scenarios
MIP-2016 Mira 5 218

For completeness, we briefly summarize the transformation principles. CSP instances can be en-
coded into SAT by Booleanizing domain variables and translating constraints into clauses, following
the approach of Tamura et al. Tamura et al. (2010). MIP instances are transformed by representing
bounded integer variables in binary form and converting linear inequalities into pseudo-Boolean
constraints, which can be further encoded into CNF as in Sheini and Sakallah Sheini & Sakallah
(2005). These transformations allow all selected scenarios to be consistently represented in SAT
form.

A.2.2 BASELINES

• AS-ASL Malone et al. (2017): A SAT solver selection method that uses Auto-sklearn to
identify key features and train a stacking model for solver selection.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

• AS-RF Malone et al. (2017): A SAT solver selection method that uses random forests for
selecting the optimal solver based on problem instance features.

• ASAP.v3 Gonard et al. (2017): A system that uses a sequential scheduler and algorithm
selector to optimize solver selection, with a pre-scheduler identifying easier instances and
selecting the best solver for more complex ones.

• star-zilla Xu et al. (2012): A solver portfolio that uses predictive modeling to select the
best SAT solver from a set of candidates, demonstrating the efficacy of ensemble-based
approaches.

• sunny-as2-fk Liu et al. (2021): A method that combines feature selection with k-nearest
neighbor configuration to optimize SAT solver selection, improving performance by jointly
tuning the neighborhood size and relevant features.

A.2.3 EVALUATION METRICS

To evaluate the effectiveness of algorithm selection methods, we use the gap metric, which compares
the performance of the selection system with the virtual best solver (VBS) and the single best solver
(SBS). Formally, it is defined as

gap =
mSBS −ms

mSBS −mV BS
, (5)

where ms denotes the performance of the selection system, mSBS is the performance of the SBS
(the single solver that performs best on average across all instances), and mV BS is the performance
of the VBS (the oracle that always selects the best solver for each instance).

The gap value ranges from −∞ to 1:
- gap = 1 means the selection system performs as well as the VBS, i.e., it always selects the best
solver for every instance.
- 0 < gap < 1 indicates that the system improves over the SBS but has not yet reached the perfor-
mance of the VBS.
- gap = 0 means the system only matches the SBS, i.e., no better than simply using a single solver
across all instances.
- gap < 0 indicates that the system performs worse than the SBS, i.e., its selections on average lead
to higher cost than always choosing the single best solver.

A.3 ADDITIONAL EXPERIMENTAL RESULTS

A.3.1 DETAILED ABLATION RESULTS

Figure 4 illustrates the precision comparison of F2S3-DS, F2S3-S, F2S3-D, and F2S3 across five
random dataset samplings. Overall, the F2S3 model outperforms the other models in all 10 exper-
iments, particularly demonstrating significantly higher precision rates than F2S3-DS, F2S3-S, and
F2S3-D in most scenarios, indicating a clear advantage in task performance. Although the F2S3-D
model performs closely, it still falls slightly short of F2S3, suggesting that the additional enhance-
ments in the F2S3 model are effective in improving precision. The overall performance of F2S3-S
and F2S3-DS is relatively lower, especially the F2S3-DS model, which shows markedly lower preci-
sion rates than the others in most scenarios. The differences in performance across various scenarios
are also noteworthy. In certain scenarios, such as Magnus and Svea, the precision rates of F2S3 and
F2S3-D are particularly prominent, indicating that these two models can better capture the features
of these scenarios, exhibiting higher adaptability. In contrast, in scenarios like Camilla and Sora,
the precision rates of all models are closer, yet F2S3 still slightly outperforms, demonstrating its
consistent advantage across multiple types of scenarios. Furthermore, examining the fluctuations
in the results of the five experiments, F2S3 shows a more stable performance across different ran-
dom datasets with a smaller range of precision fluctuations, indicating strong robustness in multiple
experiments. In comparison, F2S3-DS and F2S3 exhibit greater precision fluctuations across differ-
ent experiments, especially showing instability in scenarios with lower precision rates. This further
emphasizes the superiority and consistency of F2S3 under conditions of random datasets.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Magnus Monty Sora Svea

Caren Mira Camilla

F2S3-DS

F2S3-S

F2S3-D

F2S3

Figure 4: Results of ablation experiments for 10 runs.

A.3.2 PARAMETER SENSITIVITY ANALYSIS

Parameter sensitivity analysis is a crucial step in understanding the relationship between model
performance and key parameters. In this study, we focused on analyzing the impact of embedding
dimension, hyperparameters α and β on the performance of the network embedding model.

The investigation into embedding vector dimensionality reveals a notable influence on model per-
formance. As depicted in Figure 5(a), performance initially rises and then falls with increasing
dimensionality. This indicates that while an optimal dimension enhances information encoding,
excessive dimensions introduce noise and degrade performance. Although our method shows low
sensitivity to dimensionality, selecting an appropriate dimension is still essential.

The hyperparameter α, which balances direct and indirect similarities, exhibits scenario-dependent
optimal values as shown in Figure 5(b). Generally, α ¿ 0.1 yields superior performance, empha-
sizing the significance of both direct and indirect similarities. Notably, higher α values enhance
performance in Monty, Magnus, Sora, and Svea scenarios, while Camilla and Caren scenarios ben-
efit from α values between 0.05 and 0.1. In the Mira scenario, α monotonically increases within [0,
0.2], further highlighting the importance of these similarities.

The hyperparameter β, controlling the reconstruction weight of non-zero elements in the training
graph, shows an initial increase and subsequent decrease in model performance with increasing β
across seven scenarios (Figure 5(c)). Optimal performance is typically achieved when β ∈ [5,7] ,
with Monty and Mira scenarios peaking at β = 8. This indicates that moderate β values improve
non-zero element reconstruction, while excessive values degrade performance. The F2S3 model’s
enhanced performance with higher β is attributed to its balanced reconstruction of non-zero and zero
elements and optimization of the CRFG.

In summary, the parameter sensitivity analysis provides valuable insights into how to adjust model
parameters to achieve optimal performance. In practical applications, these parameters should be
selected and adjusted reasonably based on specific scenarios and requirements.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0.0 0.1 0.2 0.3
0

20

40

60

80

100

P
re

ci
ou

s
(%

)

Dimension

2 4 6 8 10
0

20

40

60

80

100

 Monty Camilla

 Svea Caren

 Magnus Mira

 Sora
P

re
ci

ou
s

(%
)

α

40 80 120 160 200
0

20

40

60

80

100

P
re

ci
ou

s
(%

)

β

Figure 5: Parameter sensitivity comparison results. (a) Sensitivity comparison results for embedding
dimension. (b) Sensitivity comparison results for parameter α. (c) Sensitivity comparison results
for parameter β.

17

	Introduction
	Related Work
	Graph Neural Networks in SAT Solving
	SAT Solver Selection
	Graph Embedding and Cascade Forest

	Approach
	Problem Definition
	Correlation Refinement Factor Graph Construction
	Dual-Proximity Graph Representation
	Sensitive-Associative Cascade Forest

	Experimental results
	Main Results
	Ablation Study
	Discussion

	Conclusion
	Appendix
	Approach Details
	DPGR Optimization.
	Cascade Forest Configuration

	Experimental Details
	Dataset
	Baselines
	Evaluation Metrics

	Additional Experimental Results
	Detailed ablation results
	Parameter sensitivity analysis

