
Adaptive Proximal Gradient Methods for Structured
Neural Networks

Jihun Yun
KAIST

arcprime@kaist.ac.kr

Aurélie C. Lozano
IBM T.J. Watson Research Center

aclozano@us.ibm.com

Eunho Yang
KAIST, AITRICS

eunhoy@kaist.ac.kr

Abstract

We consider the training of structured neural networks where the regularizer can
be non-smooth and possibly non-convex. While popular machine learning libraries
have resorted to stochastic (adaptive) subgradient approaches, the use of proximal
gradient methods in the stochastic setting has been little explored and warrants
further study, in particular regarding the incorporation of adaptivity. Towards this
goal, we present a general framework of stochastic proximal gradient descent meth-
ods that allows for arbitrary positive preconditioners and lower semi-continuous
regularizers. We derive two important instances of our framework: (i) the first prox-
imal version of ADAM, one of the most popular adaptive SGD algorithm, and (ii) a
revised version of PROXQUANT [1] for quantization-specific regularizers, which
improves upon the original approach by incorporating the effect of preconditioners
in the proximal mapping computations. We provide convergence guarantees for our
framework and show that adaptive gradient methods can have faster convergence
in terms of constant than vanilla SGD for sparse data. Lastly, we demonstrate
the superiority of stochastic proximal methods compared to subgradient-based
approaches via extensive experiments. Interestingly, our results indicate that the
benefit of proximal approaches over sub-gradient counterparts is more pronounced
for non-convex regularizers than for convex ones.

1 Introduction

We study the regularized training of neural networks, which can be formulated as the following
(stochastic) optimization problem

minimize
θ∈Rd

F (θ) :=

f(θ)︷ ︸︸ ︷
Eξ∼P

[
f(θ; ξ)

]
+R(θ) (1)

where θ ∈ Rd represents the network parameter, ξ is the random variable representing mini-batch
data samples, andR(·) is a regularizer encouraging low-dimensional structural constraints on θ.

The technique of regularization is ubiquitous in machine learning as it can effectively prevent
overfitting and yield better generalization. The `1-regularized training for Lasso estimators/sparse
Gaussian graphical model (GMRF) estimation [2, 3] and `2 weight decay [4] on parameters are
prototypical examples. In the context of deep learning, important instances include network pruning [5,
6], which induces a sparse network structure, and network quantization [7, 8, 1], which gives hard
constraints so that parameters have only discrete values.

For the unregularized case, i.e., when R(θ) = 0, stochastic gradient descent (SGD) has been a
prevalent approach to solve the optimization problem stated in (1). At each iteration, SGD evaluates
the gradient on a randomly chosen subset of training samples (mini-batch). While vanilla SGD
employs a uniform learning rate for all coordinates, several adaptive variants have been proposed to

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Table 1: Comparison among stochastic (or online) PGD for solving the problem in (1).

Algorithm Non-convex
Loss

Non-convex
Regularizer

Arbitrary
Preconditioner Momentum Convergence

Guarantee

ADAGRAD [9] 7 7 4 (ADAGRAD) 7 3
[10] 3 7 3 7 3
[11] 3 7 7 3 3
[12] 3 7 7 3 3
[13] 3 7 7 3 3
[14] 3 3 7 7 3
[15] 3 3 4 (ADAGRAD) 7 3
Prox-SGD [16] 3 7 3 3 7
[17] 3 3 7 3 3

PROXGEN (Ours) 3 3 3 3 3

dynamically take advantage of the data geometry by scaling the learning rate for each coordinate by
its gradient history. Prime examples of such approaches include ADAGRAD [9], which adjusts the
learning rate by the sum of all the past squared gradients, and exponential moving average (EMA)
approaches such as RMSPROP [18] and ADAM [19], which scale down the gradients by square
roots of exponential moving averages of squared past gradients to essentially limit the scope of
the adaptation to only a few recent gradients. In terms of theory, convergence analyses of these
unregularized SGD methods, whether adaptive or not, have been well studied both for convex [19, 20]
and non-convex [21, 22] loss f cases.

For the regularized case, since the regularizer is often non-smooth around some region (e.g. the `1
norm), modern machine learning libraries such as TensorFlow [23] and PyTorch [24] therefore resort
to using the subgradient of the objective function F (θ) in (1). Such a strategy is problematic as it
may slow down convergence and result in oscillations.

A simple idea to bypass the non-smoothness of a regularizer is via its proximal operator. This
idea is the basis of proximal gradient descent (PGD) methods, which first update the parameter
using the gradient of the loss function f(θ) and then perform a proximal mapping of R(θ). In the
non-stochastic case, PGD with both convex and non-convex regularizers has been extensively studied
in the literature [25, 26, 11, 12, 27]. Another work, VMFB [28], analyzes the preconditioned gradient
descent on convex regularized problems with non-convex loss but does not consider the first-order
momentum. In contrast, PGD in the stochastic setting has been little explored. [9, 10] consider
PGD to solve the stochastic objectives with convex regularizers. Recently, [15] studies non-convex
and non-smooth regularized problems for DC (difference of convex) functions and [14, 17] present
non-asymptotic analysis for non-convex smooth loss and non-convex regularizers, which is the most
general setting, but do not consider the preconditioner in the update rule.

All the aforementioned studies of the stochastic case, however, focus either on limited settings (e.g.
[9] only covers the update rule of ADAGRAD) with convex regularizers only, or on pure vanilla
gradient descent for non-convex regularizers. Hence, they cannot accommodate all advanced modern
optimization algorithms with preconditioners, such as adaptive gradient methods. The only exception
is PROX-SGD [16], with the caveat that PROX-SGD update rule is not a pure PGD. Moreover, the
theory in [16] only guarantees convergence, not how fast Prox-SGD converges, and the analysis is
performed without considering preconditioners.

In this paper, we propose an exact framework for stochastic proximal gradient methods with arbitrary
positive preconditioners and lower semi-continuous (possibly non-convex) regularizers. With our
framework, our goal is to provide theoretical and empirical understanding of stochastic proximal
gradient methods for training structured neural networks. Our main contributions can be summarized
as follows:

• We propose the first general family of stochastic proximal gradient methods, which we term
PROXGEN. We introduce two important instances stemming from our approach: (i) the first
proximal version of ADAM [19] and (ii) a revised version of PROXQUANT [1] that improves
upon the original approach for quantization-specific regularizers by incorporating the effect of
preconditioners when computing proximal mappings.

2

Algorithm 1 PROXGEN: A General Stochastic Proximal Gradient Method

1: Input: Stepsize αt, {ρt}t=Tt=1 ∈ [0, 1), regularization parameter λ, and small constant 0 < δ << 1.
2: Initialize: θ1 ∈ Rd, m0 = 0 ∈ Rd, and C0 = O ∈ Rd×d.
3: for t = 1, 2, . . . , T do
4: Draw a minibatch sample ξt from P
5: gt ←∇f(θt; ξt) . Stochastic gradient
6: mt← ρtmt−1 + (1− ρt)gt . 1st-order momentum
7: Ct← Preconditioner construction

8: θt+1 ∈ argmin
θ∈Ω

{
〈mt, θ〉+ λR(θ) +

1

2αt
(θ − θt)T

(
Ct + δI)(θ − θt)

}
. Update rule

9: end for

• We analyze the convergence of the general PROXGEN family and identify essential conditions
for convergence. We show that in general PROXGEN enjoys the same convergence rate as vanilla
SGD, but more importantly that the adaptive methods can have faster convergence in terms of
constant than vanilla SGD for sparse data. Our convergence guarantee encompasses several
existing approaches as special cases.

• In terms of practice, we demonstrate the superiority of proximal methods over subgradient-based
methods with various non-convex regularizers which have not yet been studied in deep learning.
Interestingly, our experiments indicate that the benefit of proximal methods over subgradient
approaches is more pronounced with non-convex regularizers than with convex regularizers for
learning sparse deep models.

Table 1 summarizes the previous studies and our work in terms of stochastic PGD.

2 A Unified Framework of Adaptive Proximal Gradient Methods

In this section, we present PROXGEN, a general family of stochastic proximal gradient methods, and
present both existing and novel instances as showcase examples in our family. Algorithm 1 describes
the details of PROXGEN. The update rule on line 8 of Algorithm 1 can be written more compactly:

θt+1 ∈ argmin
θ∈Ω

{
〈mt, θ〉+ λR(θ) +

1

2αt
(θ − θt)T

(
Ct + δI

)
(θ − θt)

}
= proxCt+δI

αtλR(·)

(
θt − αt(Ct + δI)−1mt

)
(2)

where the proximal operator in (2) is defined as proxAh (z) = argminx{h(x) + 1
2‖x − z‖

2
A}. In

PROXGEN, we allow both the loss and the regularizer to be non-convex. Now, we introduce possible
examples according to the proper combinations of preconditioners Ct and regularizersR(·).

Existing Instances of PROXGEN. We briefly recover some known examples in PROXGEN family.

• ADAGRAD [9] is the first key instance of adaptive gradient methods where Ct = (
∑t
τ=1 gτg

T
τ)1/2

andR(θ) = ‖θ‖1. Any convex regularizerR(·) is allowed.
• The proximal Newton methods [29] employ the exact Hessian Ct = ∇2f(θt) andR(θ) = ‖θ‖1.

In addition, we can approximate the exact Hessian, which yield proximal Newton-type methods
such as quasi-Newton approximation [30], L-BFGS approximation [31], and adding a multiple of
the identity to the Hessian.

Although the above examples enjoy good theoretical properties in convex settings, many of the
modern practical optimization problems involve non-convex loss functions such as learning deep
models. Moreover, it is known that non-convex regularizers yield better performance (also in terms
of theory) than convex penalties in some applications (see [32, 33, 34, 35] and references therein).
Considering this motivation and recent advanced optimizers, we arrive at the following new examples.

Novel Instances of PROXGEN. Beyond the well-known methods above, PROXGEN naturally
introduces proximal versions of standard SGD techniques developed for solving unregularized
problems for deep learning. The following examples are just a few instances that have not been

3

explored so far, and PROXGEN can cover a broader range of new examples depending on the
combinations of preconditioners and regularizers.

• The proximal version of ADAM [19] with `q regularization is a possible example where
Ct =

√
βCt−1 + (1− β)g2

t with β ∈ [0, 1) and R(θ) = ‖θ‖q for 0 ≤ q ≤ 1. We validate
empirically the superiority of our novel proximal version of ADAM over the usual subgradient-
based counterpart in Section 4.

• We can also consider the proximal version of KFAC [36]. For an L-layer neural network, KFAC
approximates the Fisher information matrix with layer-wise block diagonal structure where l-
th diagonal block Ct,[l] corresponds to Kronecker-factored approximation with respect to the
parameters at l-th layer. The proximal version of KFAC corresponds to Ct,[l] = E[δlδ

T
l] ⊗

E[al−1a
T
l−1] and R(θ) = ‖θ‖q where δl is the gradient with respect to the outputs of l-th layer

and al−1 is the activation of (l − 1)-th layer.

Examples of Proximal Mappings for PROXGEN. We provide update rules for PROXGEN with `q
regularization (0 ≤ q ≤ 1) and diagonal preconditioners, for which closed-form updates are available.
Diagonal preconditioners are used by popular adaptive gradient methods such as ADAM. Note,
however, that our framework and convergence analysis are not limited to diagonal preconditioners and
apply to general positive preconditioners. Specifically, we consider regularizerR(θ) = λ

∑p
j=1 |θj |q

for θ ∈ Rp with diagonal preconditioner matrix Ct. Note that for Ct = I (i.e. vanilla gradient
descent), it is known that closed-form solutions exist for proximal mappings for q ∈ {0, 1

2 ,
2
3 , 1} [37].

We denote the i-th coordinate of the vector θt as θt,i and the diagonal entry [Ct]ii as Ct,i
• `1 regularization. The proximal mappings for the case of `1 regularization with preconditioner
can be computed efficiently via soft-thresholding as

θ̂t,i = θt,i − αt
mt,i

Ct,i + δ
, θt+1,i = sign

(
θ̂t,i
)(∣∣θ̂t,i∣∣− αtλ

Ct,i + δ

)
(3)

• `0 regularization. In case of `0 regularization, we can compute the closed-form solutions via
hard-thresholding as

θ̂t,i = θt,i − αt
mt,i

Ct,i + δ
, θt+1,i =

θ̂t,i, |θ̂t,i| >

√
2αtλ
Ct,i+δ

,

0, |θ̂t,i| <
√

2αtλ
Ct,i+δ

{0, θ̂t,i}, |θ̂t,i| =
√

2αtλ
Ct,i+δ

(4)

The closed-form proximal mappings for `1/2 and `2/3 regularization are provided in the Appendix.

Table 2: PROXQUANT versus revised PROXQUANT

PROXQUANT proxαtλR(·)

(
θt − αt(Ct + δI)−1mt

)
Revised

PROXQUANT
proxCt+δI

αtλR(·)

(
θt − αt(Ct + δI)−1mt

)

Revised PROXQUANT [1]. The recently pro-
posed PROXQUANT proposes novel regular-
izations for network quantization. Especially
for binary quantization, a W-shaped regular-
izer is defined as Rbin(θ) = ‖θ − sign(θ)‖1
where sign(θ) is applied on θ in an element-
wise manner. Using this regularizer, the
main difference between PROXQUANT and
our PROXGEN approach is shown in Table 2.
Note that PROXQUANT (top in Table 2) does not consider the effect of preconditioners when comput-
ing proximal mappings. Therefore, we revise the proximal update in PROXQUANT by considering
preconditioners in proximal mappings with PROXGEN (bottom in Table 2). Moreover, we also propose
generalized regularizers motivated by `q regularization for 0 < q < 1: Rqbin(θ) = ‖θ − sign(θ)‖q.
In terms of theory, [1] prove the convergence of PROXQUANT only for the full-batch gradient with
differentiable regularizers, which is also guaranteed only for vanilla gradient descent. In contrast,
using our revised PROXQUANT, we can completely bridge the gap in theory (via Theorem 1 in
Section 3, which is stated for stochastic optimization), and we provide the exact update rule for
solving the problem in (1). We also investigate the empirical differences of PROXQUANT and our
revised PROXQUANT in Section 4.

4

3 Convergence Analysis

In this section, we provide convergence guarantees for the PROXGEN family. Our goal is to find an
ε-stationary point for the problem in (1) where ε is the required precision. For notational convenience,
we assume that the regularization parameter λ is incorporated into R(θ) in (1). To guarantee the
convergence under this setting, we should deal with the subdifferentials defined as:
Definition 1 (Fréchet Subdifferential). Let ϕ be a real-valued function. The Fréchet subdifferential
of ϕ at θ̄ with |ϕ(θ̄)| <∞ is defined by

∂̂ϕ(θ̄) := {θ∗ ∈ Ω
∣∣∣ lim inf

θ→θ̄

ϕ(θ)− ϕ(θ̄)− 〈θ∗, θ − θ̄〉
‖θ − θ̄‖

≥ 0}.

Definition 2 (Limiting Subdifferential). Let ∂̂ϕ(θ̄) be the Fréchet subdifferential in Definition 1. The
limiting subdifferential of ϕ at θ̄ is defined by

∂ϕ(θ̄) := {u ∈ Rd : ∃θk
ϕ→ θ̄, uk ∈ ∂̂ϕ(θk), uk → u}.

where θk
ϕ→ θ̄ means θk → θ̄ with ϕ(θk)→ ϕ(θ̄).

To derive the convergence bound, we make the following mild conditions:

(C-1) (L-smoothness) The loss function f is differentiable, L-smooth, and lower-bounded:
∀x, y, ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ and f(x∗) > −∞ for the optimal solution x∗.

(C-2) (Bounded variance) The stochastic gradient gt = ∇f(θt; ξ) is unbiased and has the bounded
variance: Eξ

[
∇f(θt; ξ)

]
= ∇f(θt), Eξ

[
‖gt −∇f(θt)‖2

]
≤ σ2.

(C-3) (i) final step-vector is finite, (ii) the stochastic gradient is bounded, and (iii) the momentum
parameter should be exponentially decaying: (i) ‖θt+1 − θt‖ ≤ D, (ii) ‖gt‖ ≤ G, (iii) ρt =
ρ0µ

t−1 with D,G > 0 and ρ0, µ ∈ [0, 1).
(C-4) (Sufficiently positive-definite) The minimum eigenvalue of effective spectrums should be

uniformly lower bounded over all time t: ∀t, λmin

(
αt(Ct + δI)−1

)
≥ γ > 0.

(C-1) and (C-2) are very standard in convergence analysis for optimization algorithms designed
for deep learning such as ADAM, YOGI, and many others [21, 38, 39, 40, 41]. In addition, (C-
3) is extensively studied in previous literature for analysis of general non-convex optimization
[19, 20, 42, 40, 41]. Lastly, a similar condition to (C-4) is also considered in [39, 42]. We note that
(C-3) and (C-4) are reasonable conditions: It is well-known that the parameter of an overparametrized
neural network hardly changes from the initial point during training [43, 44, 45], so one can expect
that the diameter D of parameter space and the bound for the size of gradient G have very small
values and can be understood as constants in rates of the results. To validate this for real cases, we
train ResNet-34 on CIFAR-10 dataset. In Figure-1-(a), the difference of parameters ‖θt+1 − θt‖2
and the size of stochastic gradients ‖gt‖2 attain just 1 ∼ 3 while the parameter dimension d of
ResNet-34 is about 107. Hence, the constants D and G in (C-3) are negligible compared to the
problem dimension d in practice. The exponentially decaying momentum parameter assumption
ρt = ρ0µ

t−1 could be relaxed to ρt = ρ0/t sacrificing the logarithmic factor in our analysis. Also,
(C-4) is indeed easily satisfied both theoretically and empirically. This condition holds in theory
for most of the popular optimization algorithms for deep learning such as ADAGRAD, ADAM, and
KFAC (the constant γ is irrelevant to the problem dimension d for each algorithm, and we defer the
derivations to Appendix D). In order to investigate whether these conditions could be satisfied in real
problems, we revisit the experiments of training ResNet-34. In Figure 1-(b), we can see the minimum
eigenvalue of αt(Ct + δI)−1 tends to increase, so the condition (C-4) is also satisfied empirically.

Since the loss function f is assumed to be differentiable as in (C-1) and it is known that ∂̂ϕ(θ) ⊆
∂ϕ(θ), we have, at stationary points, 0 ∈ ∂̂F (θ) = ∇f(θ) + ∂̂R(θ), so the convergence criterion
is slightly different from that of general non-convex optimization. Hence, we use the following
convergence criterion E[dist(0, ∂̂F (θ))] ≤ ε for an ε-stationary point where dist(x,A) denotes the
distance between a vector x and a set A. If no regularizer is considered (R = 0), this criterion boils
down to the one usually used in non-convex optimization, E[‖∇f(θ)‖] ≤ ε.
• Challenges specific to the analysis of PROXGEN. The most challenging issue in the analysis of
PROXGEN compared to previous studies [14, 21] is that we should handle the momentum mt and

5

0 1 2 3 4
Iterations, t ×104

1

2
t+

1
t

2

Diameter of Parameter Space

0 1 2 3 4
Iterations, t ×104

1

2

3

g t
2

Gradient Norm

(a) Bounded domain and bounded gradients

0.0 2.5 5.0
Iterations, t ×104

10 2

m
in

(
t(C

t+
I)

1)

Condition (C-4)

= 10 3

= 10 5

= 10 8

(b) Minimum eigenvalue

Figure 1: Empirical results for (a) condition (C-3) and (b) condition (C-4) using ResNet-34.

non-trivial preconditioner Ct. In terms of adaptive gradient methods, [21] guarantees the convergence
of a family of adaptive methods (but without proximal mapping) using the changes of effective
learning rate (Γt := αt/

√
Vt − αt+1/

√
Vt+1 ≥ 0 where Vt is an adaptation matrix), which is a key

quantity in their theory. [21] define a new sequence {zt} involving the quantity Γt and exploit the
simple closed-form of the quantity zt+1 − zt to derive the convergence with coordinate-wise analysis.
However, this proof technique is not available to the regularized problems since zt+1 − zt is not
amenable anymore to compute in a simple closed-form due to the proximal mapping. On the other
hand, our proof directly solves the quadratic subproblem w.r.t. θt at line 8 in Algorithm 1 to handle
a regularizer term. It should also be emphasized that our proof skill can handle arbitrary positive
curvatures (hence including more general non-diagonal one) that were not acceptable in [21]. In
the context of proximal gradient descent, our proof is totally different from [14] which is only for
vanilla SGD. Due to the existence of mt, it is highly non-trivial to bound the term ‖mt −∇f(θt)‖2
without suitable assumptions whereas ‖gt −∇f(θt)‖2 in [14] can be easily bounded using (C-2).
Also, we need to deal with quadratic approximation term (θ − θt)T(Ct + δI)(θ − θt) in Algorithm 1
which is not problematic in [14] simply because Ct is trivially I . We could successfully bypass those
difficulties using mild conditions (C-3) and (C-4), respectively.

We are ready to state our theorem for general convergence.
Theorem 1. Let θa denote an iterate uniformly randomly chosen from {θ1, · · · , θT }. Under the
conditions (C-1), (C-2), (C-3), (C-4) with the initial stepsize α0 ≤ δ

3L and non-increasing stepsize
αt, PROXGEN, Algorithm 1, is guaranteed to yield

Ea[dist(0, ∂̂F (θa))2] ≤ Q1σ
2

T

T−1∑
t=0

1

bt
+
Q2∆

T
+
Q3

T

where ∆ = f(θ)− f(θ∗) with optimal point θ∗, and bt is the minibatch size at time t. The constants
{Qi}3i=1 on the right-hand side depend on the constants {α0, δ, L,D,G, ρ0, µ, γ}, but not on T .

Note that the constants {Qi}3i=1 in Theorem 1 are completely independent of the problem dimension
d. From Theorem 1, the appropriate minibatch size is important to ensure a good convergence.
Various settings for the minibatch size could be employed for convergence guarantee, but considering
practical cases, we provide the following important corollary for constant minibatch.
Corollary 1 (Constant Mini-batch). Under the same assumptions as in Theorem 1 with sample size
n and constant minibatch size bt = b = Θ(T), we have Ea

[
dist(0, ∂̂F (θa))2

]
≤ O

(
1/T

)
and the

total complexity is O(1/ε4) in order to have Ea
[
dist

(
0, ∂̂F (θa)

)]
≤ ε.

Here we make several remarks on our results and relationship with prior work.

• On Convergence Results. Note that our Corollary 1 achieves the optimal complexity O(1/ε4)
of SGD to find ε-stationary points under the standard assumptions (C-1) ∼ (C-4). Recent studies
[46, 47] show faster rate, but under additional stronger assumptions such as second-order smoothness
(i.e., the smoothness of Hessian matrix). Also, we could relax the exponentially decaying momentum
ρt = ρ0µ

t−1 in (C-3) to ρt = ρ0/t as mentioned in [48] with the logarithm factor as Q3 = O(log T),
which in result still ensures Õ(1/ε4).

6

0 75 150 225 300
Epochs

10 1

100

F(
)=

f(
)+

(
)

Learning Curve for ResNet-34
ProxGen (Ours)
Sub-Adam
Prox-SGD (ICLR 2020)

75 80 85 90 95
Pruned Ratio (%)

94.5

95.0

95.5

Te
st

 A
cc

ur
ac

y
(%

)

Performance for ResNet-34

(a) `1 regularization

0 75 150 225 300
Epochs

10 1

100

F(
)=

f(
)+

(
)

Learning Curve for ResNet-34
ProxGen (Ours)
Sub-Adam

80 85 90 95
Pruned Ratio (%)

94.5

95.0

95.5

Te
st

 A
cc

ur
ac

y
(%

)

Performance for ResNet-34

(b) `2/3 regularization

0 75 150 225 300
Epochs

10 1

100

F(
)=

f(
)+

(
)

Learning Curve for ResNet-34
ProxGen (Ours)
Sub-Adam

80 85 90 95 100
Pruned Ratio (%)

94.0

94.5

95.0

95.5

Te
st

 A
cc

ur
ac

y
(%

)

Performance for ResNet-34

(c) `1/2 regularization

40 60 80 100
Pruned Ratio (%)

90

92

94

Te
st

 A
cc

ur
ac

y
(%

)

ResNet-34 on CIFAR-10

ProxGen (Ours)
0hc (ICLR 2018)

(d) `0 regularization

Figure 2: Comparison for sparse ResNet-34 on CIFAR-10 dataset with step-decay stepsize scheduling.

• Advantages of using adaptive gradient methods in Theorem 1. We discuss how the constant
γ in (C-4) affects the convergence in terms of theory. According to our proofs, γ depends on the
algorithmic details and the constants Q1, Q2 and Q3 in Theorem 1 are proportional to 1/γ. The
convergence rate depends on these constants and the benefit of preconditioners can be found here.
To view this more clearly, we consider the diagonal matrix adaptation of ADAM [19], i.e. constant

stepsize αt = α and Ct =
√

(1− β)
∑t
τ=1 β

t−τgτ � gτ , with β ∈ [0, 1) and the total iteration T .
In this setting, the 1/γ can be computed as

Qi ∝
1

γ
=

√
(1− β)

∑t
τ=1 β

t−τ‖gτ‖22 + δ

α
≤ G+ δ

α

where gτ is the gradient at time τ and δ is a small constant while the vanilla SGD (Ct = 0 and
δ = 1) satisfies 1/γ = 1/α. Here, we can clearly see the advantages of adaptive methods (i.e., using
preconditioners) since 1/γ could be dramatically smaller if ‖gτ‖2 << 1 holds roughly with small
constant δ, which corresponds to sparse gradients ‖gτ‖2 (the data features are sparse). This coincides
with the convex regret theory for adaptive gradient methods [9, 19, 48], which also holds in our theory
with non-convex smooth loss and non-convex regularizers.

• Implications of condition (C-4) on theory. Our analysis relies on (C-4), the lower bound
for the minimum eigenvalue of Γt := αt(Ct + δI)−1. This means that Theorem 1 guarantees
Ea[dist(0, ∂̂F (θa)2] ≤ O(1/

√
T) (in case of b = Θ(T) as in Corollary 1) for any change of basis of

Γt, so in that sense, we provide a worst-case analysis and there is room for more optimistic bounds.

• On minibatch in Corollary 1. The conditions b = Θ(T) is considered as standard in many
previous literature [38, 14] and is not stringent. In terms of stochastic optimization, it is natural in
practice to choose the batch size b and the number of epochs e in advance. Then, the total number of
iterations T satisfies the following relation: T = e× n

b = e× n
Θ(T) . In this sense, the total iterations

T should be an order of O(
√
n) in practice. For example, this condition sets a minibatch size of

approximately 200 and 1000 for CIFAR-10 and ImageNet dataset respectively, which is practical.

• Connections to second-order methods. Our analysis can provide guarantees for positive second-
order preconditioners as long as (C-4) is satisfied (The empirical Fisher information [36] is one
example). Although second-order solvers generally enjoy very fast convergence under strongly
convex loss [29, 49], it can be understood that our theory guarantees at least a sublinear rate for such
second-order curvatures with less stringent conditions.

7

Table 3: Comparison for binary neural networks. The best performance in mean value is highlighted.

Test Error (%)

Baselines PROXGEN (Ours)

Model
Full

Precision
(32-bit)

BinaryConnect
[8]

PROXQUANT
[1]

Revised
ProxQuant

`1

Revised
ProxQuant
`2/3

Revised
ProxQuant
`1/2

ResNet-20 8.06 9.54 ± 0.03 9.35 ± 0.13 9.50 ± 0.12 9.72 ± 0.06 9.78 ± 0.18
ResNet-32 7.25 8.61 ± 0.27 8.53 ± 0.15 8.29 ± 0.07 8.22 ± 0.05 8.43 ± 0.15
ResNet-44 6.96 8.23 ± 0.23 7.95 ± 0.05 7.68 ± 0.07 7.91 ± 0.08 7.90 ± 0.13
ResNet-56 6.54 7.97 ± 0.22 7.70 ± 0.06 7.52 ± 0.18 7.60 ± 0.09 7.61 ± 0.12

4 Experiments

We consider two important tasks for regularized training in deep learning communities: (i) training
sparse neural networks and (ii) network quantization. Throughout our experiments, we consider
ADAM as a representative of PROXGEN where mt = ρtmt−1 + (1− ρt)gt with constant decaying
parameter ρt = 0.9 and Ct =

√
βCt−1 + (1− β)g2

t with β = 0.999 in Algorithm 1. The details on
other hyperparameter/experiment settings are provided in the Appendix.

Training Sparse Neural Networks. Motivated by the lottery ticket hypothesis [50], we consider
training VGG-16 [51] and ResNet-34 [52] on CIFAR-10 dataset using sparsity encouraging regu-
larizers. Toward this, we consider the following objective function with possibly non-convex `q
regularization: F (θ) := Eξ∼P[f(θ; ξ)] + λ

∑p
j=1 |θj |q where 0 ≤ q ≤ 1. We train the network

parameters with the closed-form proximal mappings introduced in Section 2. The results on VGG-16
are provided in Appendix.

We compare PROXGEN with subgradient methods and also include PROX-SGD [16] as a baseline
especially for `1 regularization since PROX-SGD considers only convex regularizers. In PROX-SGD,
the hand-crafted fine-tuned scheduling on αt and ρt is essential for fast convergence and good
performance, but in our experiments we use standard settings ρt = 0.9. We first validate our theory in
practice using constant stepsize in order to purely see the effect of proximal approaches (the results on
this setting are provided in the Appendix). Then the step-decay learning rate scheduling is employed
to consider standard training schemes for the state-of-the-art performance, which also satisfies the
non-increasing stepsize condition in our Theorem 1. For `0 regularization, the problem in (1) cannot
be optimized in a subgradient manner, so we compare PROXGEN with another popular baseline, `0hc

[6] which approximates the `0-norm via hard-concrete distributions.

Figures 2 illustrates the results for ResNet-34. In terms of convergence, PROXGEN shows faster
convergence than PROX-SGD for `1 case in Figure 2-(a), but there is no difference between PROXGEN
and subgradient methods as in Figure 2-(a). However, there are notable differences in convergence
for non-convex regularizers `1/2 and `2/3, which get bigger as q decreases. We believe this might be
because the `q-norm derivative, q/|θ|1−q , is very large for non-zero tiny θ for q ∈ (0, 1). Meanwhile,
∂|θ|/∂θ is merely the sign value regardless of size of θ, so the large gradient of |θ|q may hinder
convergence. The learning curves in Figure 2-(b,c) empirically corroborate this phenomenon.

In terms of performance, we can see that PROXGEN consistently achieves better performance than
baselines for ResNet-34 with similar or even better sparsity level. Importantly, PROXGEN with
`0 outperforms `0hc

baseline by a great margin. This might be due to the design of `0hc
, which

approximates ‖θ‖0 =
∑p
j=1 I{θj 6= 0} with binary mask zj parameterized by learnable probability

πj for each coordinate. Thus, the number of parameters to be optimized is doubled, which might
make optimization harder. In constrast, PROXGEN does not introduce additional parameters.

More results for other famous non-convex regularizers MCP [53] and SCAD [54] are in Appendix.

Training Group-Sparse Neural Networks. In the Appendix, we consider training Statistical
Recurrent Units where `1,2 group-norm penalty is imposed on the input layer weights to detect
non-linear Granger Causality [55]. As the proximal mappings for PROXGEN with group sparsity are
not available in closed-form, we develop an efficient procedure for computation, whose derivations
are also provided in the Appendix.

8

0 500
Features

2

0

2

Si
gn

al
s

True Parameter

0 500
Features

2

0

2

Si
gn

al
s

ProxGen (Ours)

0 500
Features

2

0

2

Si
gn

al
s

Prox-SGD (ICLR 2020)

(a) Random initialization

0 500
Features

2

0

2

Si
gn

al
s

True Parameter

0 500
Features

2

0

2

Si
gn

al
s

ProxGen (Ours)

0 500
Features

2

0

2

Si
gn

al
s

Prox-SGD (ICLR 2020)

(b) Zero initialization

Figure 3: Lasso simulations with different initialization schemes.

Training Binary Neural Networks. We consider the network quantization constraining the pa-
rameters to some set of discrete values which is a key approach for model compression. We
evaluate our revised PROXQUANT in Table 2 with extended regularization Rqbin in Section 2.
We consider the following objective function with quantization-specific regularizers: F (θ) :=
Eξ∼P[f(θ; ξ)] + λ

∑p
j=1 |θj − sign(θj)|q where 0 ≤ q ≤ 1. For comparisons, we quantize ResNet

weight parameters (except bias and activations) on CIFAR-10 and ImageNet dataset.

Table 4: Comparison for binary neural net-
works for ImageNet. † means the first and last
layer not quantized.

ResNet-18

Top-1
Error (%)

Top-5
Error (%)

Full precision 30.46 10.81

BWN [56] 39.20 17.00
LR-Net† [57] 40.10 17.70
ELQ [58] 35.28 13.96
PROXQUANT [1] 36.24 14.23

Revised
PROXQUANT `1 (Ours) 34.85 12.38

Table 3 presents the results. For all q values, revised
PROXQUANT consistently outperforms the baselines
except for ResNet-20, which implies PROXGEN may
work better for larger networks. As such, our gen-
eralized regularizers Rqbin contribute to one of the
state-of-the-art optimization-based methods in net-
work quantization. Notably, revised PROXQUANT
`1 greatly outperforms PROXQUANT baseline while
these two approaches differ only in update rules (see
Table 2). Hence, we can conclude that revised PROX-
QUANT based on PROXGEN provides an exact prox-
imal update and also yields more generalizable so-
lutions. In our experience, revised PROXQUANT `0
shows little degradation in performance, so we do not
include this result. However, revised PROXQUANT `0
shows superiority to baselines for language modeling,
whose preliminary results are in Appendix.

Table 4 illustrates Top-1/Top-5 error (%) for training ResNet on ImageNet with binary quantization.
The most important thing is that our revised PROXQUANT shows great improvements in performance
over the original PROXQUANT. Furthermore, PROXGEN shows superior performance to various
baselines for weight quantization.

5 A Closer Look into Prox-SGD [16] vs. PROXGEN

Prox-SGD [16] is the approach closest to our PROXGEN method. However, PROX-SGD is not an
exact proximal approach and is significantly different from PROXGEN. PROXGEN’s update rule

9

involves directly solving the quadratic subproblem (2). In contrast, PROX-SGD’s update rule consists
of two stages: (i) solving the quadratic subproblem without learning rate (5), then (ii) updating the
parameters with the computed direction (i.e. θ̂t − θt) by the learning rate αt (6).

θ̂t = proxCt+δI
λR(·)

(
θt − (Ct + δI)−1mt

)
︸ ︷︷ ︸

no learning rate

, (5)

θt+1 = θt + αt(θ̂t − θt) (6)

To clearly see the differences between both approaches, we conduct two studies.

Study 1: Lasso Support Recovery. For this task, the two-stage update scheme of PROX-SGD
might have some potential issues. For example, for `1-regularized problems, the updated parameter
θt+1 (6) might not achieve exact zero (while θ̂t can) whereas θt+1 for PROXGEN (2) can attain
exact zero value according to the update rule (3) in Section 2. Another potential caveat is that
PROX-SGD might overestimate the sparsity level. In view of the above, we run Lasso simulations
with different two initialization schemes: (i) random initialization and (ii) zero initialization. For
random initialization, it can be seen in Figure 3-(a) that PROX-SGD could not achieve exact zero
value, which corroborates our first observation. More interestingly, for zero initialization, we can
see in Figure 3-(b) that the estimates using PROX-SGD are exactly zeros for all coordinates, which
supports our second observation. This might be because θ̂t (5) is always zero since the quadratic
subproblem does not consider the learning rate, which might overestimate the sparsity level. Hence,
the subsequent iterate θt+1 would be always zero since we initialize the parameters with zeros, but
PROXGEN recovers the correct support in both cases.

Figure 4: Learning curve.

Study 2: DenseNet-201 on CIFAR-100 Dataset. To validate the supe-
riority of PROXGEN upon PROX-SGD, we revisit the largest experiments
in [16]. We train DenseNet-201 architecture on CIFAR-100 dataset with
`1 regularization since PROX-SGD only consider convex regularizers.
For both methods, we use the same hyperparameter settings for fair com-
parison. Figure 4 illustrates the training learning curves, and it can be
seen that our PROXGEN achieves faster convergence as well as lower
objective values. For our experience, the learning curves show the similar
dynamics for different λ values.

Comparison of Theoretical Contributions. [16] guarantees the con-
vergence of PROX-SGD, but not how fast it converges. Moreover, this is
proved without considering preconditioners. In contrast, our analysis for
the PROXGEN framework appropriately incorporates the first-order momentum and arbitrary positive
preconditioner with detailed non-asymptotic convergence.

6 Conclusion

In this work, we proposed PROXGEN, the first general family of stochastic proximal gradient
methods. Within our framework, we presented novel examples of proximal versions of standard
SGD approaches, including a proximal version of ADAM. We analyzed the convergence of the
whole PROXGEN family and showed that PROXGEN can encompass the results of several previous
studies. We also demonstrated that PROXGEN empirically outperforms subgradient-based methods
for popular deep learning problems. As future work, we plan to further study efficient procedures to
compute the proximal mappings for structured regularizers such as `1/`q-norms with preconditioners.

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grants
(2018R1A5A1059921, 2019R1C1C1009192) and Institute of Information & Communications Tech-
nology Planning & Evaluation (IITP) grants (No.2019-0-01371, Development of brain-inspired AI
with human-like intelligence, No.2019-0-00075, Artificial Intelligence Graduate School Program
(KAIST)) funded by the Korea government (MSIT).

10

References
[1] Yu Bai, Yu-Xiang Wang, and Edo Liberty. Proxquant: Quantized neural networks via proximal

operators. In International Conference on Learning Representations, 2019.

[2] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society, Series B, 58(1):267–288, 1996.

[3] P. Ravikumar, M. J. Wainwright, G. Raskutti, and B. Yu. High-dimensional covariance estima-
tion by minimizing `1-penalized log-determinant divergence. Electronic Journal of Statistics,
5:935–980, 2011.

[4] A. N. Tychonoff. On the stability of inverse problems. Doklady Akademii Nauk SSSR, 39(5):195–
198, 1943.

[5] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. In Advances in neural information processing systems, pages 2074–2082,
2016.

[6] Christos Louizos, Max Welling, and Diederik P. Kingma. Learning sparse neural networks
through l0 regularization. In International Conference on Learning Representations, 2018.

[7] Jiwei Yang, Xu Shen, Jun Xing, Xinmei Tian, Houqiang Li, Bing Deng, Jianqiang Huang, and
Xian-sheng Hua. Quantization networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 7308–7316, 2019.

[8] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep
neural networks with binary weights during propagations. In Advances in neural information
processing systems, pages 3123–3131, 2015.

[9] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. In Journal of Machine Learning Research (JMLR), 2011.

[10] Saeed Ghadimi, Guanghui Lan, and Hongchao Zhang. Mini-batch stochastic approximation
methods for nonconvex stochastic composite optimization. Mathematical Programming, 155(1-
2):267–305, 2016.

[11] Zhe Wang, Kaiyi Ji, Yi Zhou, Yingbin Liang, and Vahid Tarokh. Spiderboost: A class of faster
variance-reduced algorithms for nonconvex optimization. arXiv preprint arXiv:1810.10690,
2018.

[12] Nhan H Pham, Lam M Nguyen, Dzung T Phan, and Quoc Tran-Dinh. Proxsarah: An effi-
cient algorithmic framework for stochastic composite nonconvex optimization. arXiv preprint
arXiv:1902.05679, 2019.

[13] Damek Davis and Dmitriy Drusvyatskiy. Stochastic model-based minimization of weakly
convex functions. SIAM Journal on Optimization, 29(1):207–239, 2019.

[14] Yi Xu, Rong Jin, and Tianbao Yang. Non-asymptotic analysis of stochastic methods for non-
smooth non-convex regularized problems. In Advances in Neural Information Processing
Systems, pages 2626–2636, 2019.

[15] Yi Xu, Qi Qi, Qihang Lin, Rong Jin, and Tianbao Yang. Stochastic optimization for DC functions
and non-smooth non-convex regularizers with non-asymptotic convergence. In International
conference on machine learning, 2019.

[16] Yang Yang, Yaxiong Yuan, Avraam Chatzimichailidis, Ruud JG van Sloun, Lei Lei, and Symeon
Chatzinotas. Proxsgd: Training structured neural networks under regularization and constraints.
In International Conference on Learning Representations, 2020.

[17] Damek Davis, Dmitriy Drusvyatskiy, Sham Kakade, and Jason D Lee. Stochastic subgradient
method converges on tame functions. Foundations of computational mathematics, 20(1):119–
154, 2020.

11

[18] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–
31, 2012.

[19] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Interna-
tional Conference on Learning Representation (ICLR), 2015.

[20] Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In
International Conference on Learning Representations, 2018.

[21] Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On the convergence of a class of adam-
type algorithms for non-convex optimization. In 7th International Conference on Learning
Representations, ICLR 2019, 2019.

[22] Yunwen Lei, Ting Hu, Guiying Li, and Ke Tang. Stochastic gradient descent for nonconvex
learning without bounded gradient assumptions. IEEE Transactions on Neural Networks and
Learning Systems, 2019.

[23] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for
large-scale machine learning. In 12th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 16), pages 265–283, 2016.

[24] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. In Advances in Neural Information Processing
Systems, pages 8024–8035, 2019.

[25] Sashank J Reddi, Suvrit Sra, Barnabas Poczos, and Alexander J Smola. Proximal stochastic
methods for nonsmooth nonconvex finite-sum optimization. In Advances in Neural Information
Processing Systems, pages 1145–1153, 2016.

[26] Zeyuan Allen-Zhu. Natasha: Faster non-convex stochastic optimization via strongly non-convex
parameter. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pages 89–97. JMLR. org, 2017.

[27] Tianyi Chen, Tianyu Ding, Bo Ji, Guanyi Wang, Yixin Shi, Sheng Yi, Xiao Tu, and Zhihui Zhu.
Orthant based proximal stochastic gradient method for ` 1-regularized optimization. arXiv
preprint arXiv:2004.03639, 2020.

[28] Emilie Chouzenoux, Jean-Christophe Pesquet, and Audrey Repetti. Variable metric forward–
backward algorithm for minimizing the sum of a differentiable function and a convex function.
Journal of Optimization Theory and Applications, 162(1):107–132, 2014.

[29] Jason D Lee, Yuekai Sun, and Michael Saunders. Proximal newton-type methods for convex
optimization. In Advances in Neural Information Processing Systems, pages 827–835, 2012.

[30] Stephen Becker, Jalal Fadili, and Peter Ochs. On quasi-newton forward-backward splitting:
Proximal calculus and convergence. SIAM Journal on Optimization, 29(4):2445–2481, 2019.

[31] Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization.
Mathematical programming, 45(1-3):503–528, 1989.

[32] Wenjiang J Fu. Penalized regressions: the bridge versus the lasso. Journal of computational
and graphical statistics, 7(3):397–416, 1998.

[33] Cheolwoo Park and Young Joo Yoon. Bridge regression: adaptivity and group selection. Journal
of Statistical Planning and Inference, 141(11):3506–3519, 2011.

[34] Eunho Yang and Aurélie C Lozano. Sparse+ group-sparse dirty models: Statistical guarantees
without unreasonable conditions and a case for non-convexity. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70, pages 3911–3920. JMLR. org,
2017.

12

[35] Jihun Yun, Peng Zheng, Eunho Yang, Aurelie Lozano, and Aleksandr Aravkin. Trimming the `1
regularizer: Statistical analysis, optimization, and applications to deep learning. In International
Conference on Machine Learning, pages 7242–7251, 2019.

[36] James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored ap-
proximate curvature. In International conference on machine learning, pages 2408–2417,
2015.

[37] Wenfei Cao, Jian Sun, and Zongben Xu. Fast image deconvolution using closed-form thresh-
olding formulas of lq (q= 12, 23) regularization. Journal of visual communication and image
representation, 24(1):31–41, 2013.

[38] Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive
methods for nonconvex optimization. In Advances in neural information processing systems,
pages 9793–9803, 2018.

[39] Jihun Yun, Aurelie C. Lozano, and Eunho Yang. Stochastic gradient methods with block
diagonal matrix adaptation. arXiv preprint arXiv:1905.10757, 2019.

[40] Zaiyi Chen, Zhuoning Yuan, Jinfeng Yi, Bowen Zhou, Enhong Chen, and Tianbao Yang.
Universal stagewise learning for non-convex problems with convergence on averaged solutions.
In International Conference on Learning Representations, 2019.

[41] Rachel Ward, Xiaoxia Wu, and Leon Bottou. Adagrad stepsizes: Sharp convergence over
nonconvex landscapes. In International Conference on Machine Learning, pages 6677–6686.
PMLR, 2019.

[42] Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On the convergence of a class of
adam-type algorithms for non-convex optimization. In International Conference on Learning
Representations, 2019.

[43] Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc., 2018.

[44] Simon S. Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably
optimizes over-parameterized neural networks. In International Conference on Learning
Representations, 2019.

[45] Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of op-
timization and generalization for overparameterized two-layer neural networks. In International
Conference on Machine Learning, pages 322–332. PMLR, 2019.

[46] Zeyuan Allen-Zhu. Natasha 2: Faster non-convex optimization than sgd. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018.

[47] Zeyuan Allen-Zhu and Yuanzhi Li. Neon2: Finding local minima via first-order oracles. In
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018.

[48] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond.
arXiv preprint arXiv:1904.09237, 2019.

[49] Guodong Zhang, James Martens, and Roger B Grosse. Fast convergence of natural gradient
descent for over-parameterized neural networks. In Advances in Neural Information Processing
Systems, pages 8080–8091, 2019.

[50] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. In International Conference on Learning Representations, 2019.

[51] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

13

[52] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[53] Cun-Hui Zhang et al. Nearly unbiased variable selection under minimax concave penalty. The
Annals of statistics, 38(2):894–942, 2010.

[54] Jianqing Fan and Runze Li. Variable selection via nonconcave penalized likelihood and its
oracle properties. Journal of the American statistical Association, 96(456):1348–1360, 2001.

[55] Saurabh Khanna and Vincent Y. F. Tan. Economy statistical recurrent units for inferring
nonlinear granger causality. In International Conference on Learning Representations, 2020.

[56] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In European conference on computer
vision, pages 525–542. Springer, 2016.

[57] Oran Shayer, Dan Levi, and Ethan Fetaya. Learning discrete weights using the local reparame-
terization trick. In International Conference on Learning Representations, 2018.

[58] Aojun Zhou, Anbang Yao, Kuan Wang, and Yurong Chen. Explicit loss-error-aware quantization
for low-bit deep neural networks. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 9426–9435, 2018.

14

	Introduction
	A Unified Framework of Adaptive Proximal Gradient Methods
	Convergence Analysis
	Experiments
	A Closer Look into Prox-SGD Yang2020ProxSGD vs. ProxGen
	Conclusion

