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ABSTRACT
Zero-shot image classification, which aims to predict unseen classes
whose samples have never appeared during the training phase, is
crucial in the Web domain because many new web images ap-
pear on various websites. Attributes, as annotations for class-level
characteristics, are widely used semantic information for zero-shot
image classification. However, most current methods often fail to
capture discriminative image features between similar images from
different classes, leading to unsatisfactory zero-shot image classifi-
cation results. This is because they solely focus on limited semantic
alignments between visual and attribute features. Therefore, we
propose a Zero-Shot image Classification with Logic adapter and
Rule prompt method called ZSCLR, which utilizes logic adapter
and rule prompts to encourage the model to capture discriminative
image features and achieve reasoning. Specifically, ZSCLR consists
of a visual perception module and a logic adapter. The visual per-
ception module extracts basic image features from training data. At
the same time, the logic adapter utilizes the Markov logic network
to encode the extracted basic image features and rule prompts for
refining the discriminative image features. Due to predicates of
rule prompts representing symbolic discriminative features, the
proposed model can focus more on these discriminative features
and achieve more precise image classification. Additionally, the
logic adapter enables the model to adapt from recognizing images
in seen classes to those in unseen classes through the reasoning
of the Markov logic networks. We implement experiments on two
standard zero-shot image classification benchmarks, and ZSCLR
achieves competitive performance. Furthermore, ZSCLR can pro-
vide explanations for its predictions through rule prompts.

CCS CONCEPTS
•Computingmethodologies→Object recognition;Computer
vision; Semantic networks.

KEYWORDS
Zero-shot Learning, Image Classification, Logic Adapter, Rule Prompt,
Markov Logic Network
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Figure 1: The illustrative diagrams. (a) Due to the object’s
visual features being similar, the Brewer_sparrow is misclas-
sified as a Clay_colored_sparrow in semantic space. It is cor-
rectly recognized using discriminative features in the rule
prompts by our proposed ZSCLR. (b) The cognitive process
of the human for recognizing objects unseen previously.
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1 INTRODUCTION
Relying on massive labeled training data to classify images has led
to significant progress in the computer vision domain in recent
years [22]. However, annotating all objects’ classes is unrealistic,
especially those that are expensive to label or not efficiently col-
lectible in real-world applications. This limitation poses challenges
for supervised learning methods when classifying objects that were
unseen during training. To address this issue, zero-shot learning
(ZSL) has emerged as a promising approach [15, 35]. ZSL requires
labeled objects from seen classes but can effectively recognize ob-
jects from unseen classes. Applying ZSL to the computer vision
domain is crucial because a vast number of new web images are
created daily on social media and other websites.

In this paper, we focus on zero-shot image classification (ZSC),
which involves training the model on images of seen categories
and recognizing images of unseen categories. Most methods map
images from the visual space into the semantic space and clas-
sify them [12, 14, 19, 30]. However, these methods may lead to
misclassification due to the similarity between image features.
For instance, as shown in Figure 1 (a) left, images of instance
"𝑐𝑙𝑎𝑦_𝑐𝑜𝑙𝑜𝑟𝑒𝑑_𝑠𝑝𝑎𝑟𝑟𝑜𝑤" and "𝑏𝑟𝑒𝑤𝑒𝑟_𝑠𝑝𝑎𝑟𝑟𝑜𝑤" are mapped into
the semantic space, where the image feature of "𝑏𝑟𝑒𝑤𝑒𝑟_𝑠𝑝𝑎𝑟𝑟𝑜𝑤"
falls into the "𝑐𝑙𝑎𝑦_𝑐𝑜𝑙𝑜𝑟𝑒𝑑_𝑠𝑝𝑎𝑟𝑟𝑜𝑤" category space since they
are visually similar. Based on this situation, we observe that ob-
jects with similar appearances exhibit similar image features in the
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semantic space, producing a wrong classification. To avoid such
misclassifications, the model needs to capture discriminative image
features, such as vital attributes that distinguish differences. For
example, the discriminative features of "𝑐𝑙𝑎𝑦_𝑐𝑜𝑙𝑜𝑟𝑒𝑑_𝑠𝑝𝑎𝑟𝑟𝑜𝑤"
and "𝑏𝑟𝑒𝑤𝑒𝑟_𝑠𝑝𝑎𝑟𝑟𝑜𝑤" are the shape of the bill, e.g., "𝑐𝑜𝑛𝑒_𝑏𝑖𝑙𝑙"
and "𝑑𝑎𝑔𝑔𝑒𝑟_𝑏𝑖𝑙𝑙" and the color of the wing, e.g., "𝑔𝑟𝑒𝑦_𝑤𝑖𝑛𝑔" and
"𝑏𝑟𝑜𝑤𝑛_𝑤𝑖𝑛𝑔". If informing the model about these discriminative
features via rule prompts such as cone_bill(𝑥)∧grey_wing(𝑥) ⇒
clay_colored_sparrow(𝑥) and dagger_bill(𝑥)∧brown_wing(𝑥)
⇒ brewer_sparrow(𝑥), images can be better classified in the se-
mantic space, as depicted in Figure 1 (a) right. Therefore, the proper
discovery of discriminative image features in semantic spaces for
ZSC is of great importance.

Recently, several methods have emerged for learning discrimina-
tive image features in ZSC. Researchers have focused more on atten-
tion networks, leading to the development of attention-based ZSC
methods [3, 14, 36]. These methods leverage attribute descriptions,
e.g., word vectors, as auxiliary information to discover discrimina-
tive image features, facilitating accurate alignment with semantic
representations. Although these efforts improve the classification
accuracy in ZSC, the results are still unsatisfactory, particularly
when handling datasets containing very visually similar images
belonging to different classes. Because these approaches primarily
rely on attention networks, which focus on limited semantic align-
ments between visual and attribute features. Logic rules, which
condense human intelligence and knowledge, can be utilized to
guide extracting discriminative image features. However, there is
currently no existing method to apply them to ZSC tasks in terms
of image classification from unseen classes due to the challenge
of integrating two distinct representations: logic rules in symbolic
form and image representations in vector/matrix form. Therefore,
in this paper, we seek to address the following question: How do we
properly use logic rules to capture discriminative image features for
improving zero-shot image classification accuracy?

To address the above issue, we will introduce a logic adapter for
integrating logic rules to ZSC for classifying images from unseen
classes inspired by the human cognitive process. Humans possess
the ability to comprehend unseen objects through reasoning based
on prior experiences, even without prior exposure to them. For ex-
ample, in Figure 1 (b), seen classes are "𝑐𝑙𝑎𝑦_𝑐𝑜𝑙𝑜𝑟𝑒𝑑_𝑠𝑝𝑎𝑟𝑟𝑜𝑤" with
attribute features "𝑐𝑜𝑛𝑒_𝑏𝑖𝑙𝑙", "𝑔𝑟𝑒𝑦_𝑤𝑖𝑛𝑔" and "𝑏𝑟𝑒𝑤𝑒𝑟_𝑠𝑝𝑎𝑟𝑟𝑜𝑤"
with "𝑑𝑎𝑔𝑔𝑒𝑟_𝑏𝑖𝑙𝑙", "𝑏𝑟𝑜𝑤𝑛_𝑤𝑖𝑛𝑔", while unseen class is "𝑡𝑟𝑒𝑒_𝑠𝑝𝑎𝑟𝑟
𝑜𝑤". When humans encounter a new image of a "𝑡𝑟𝑒𝑒_𝑠𝑝𝑎𝑟𝑟𝑜𝑤"
for the first time, they rely on prior knowledge from having seen
images of "𝑐𝑙𝑎𝑦_𝑐𝑜𝑙𝑜𝑟𝑒𝑑_𝑠𝑝𝑎𝑟𝑟𝑜𝑤" and "𝑏𝑟𝑒𝑤𝑒𝑟_𝑠𝑝𝑎𝑟𝑟𝑜𝑤". By com-
paring the new image’s visual attributes, such as "𝑐𝑜𝑛𝑒_𝑏𝑖𝑙𝑙" and
"𝑏𝑟𝑜𝑤𝑛_𝑤𝑖𝑛𝑔", towhat they have learned from seen classes, humans
can select the proper rule prompt, i.e., cone_bill(𝑥)∧brown_wing(
𝑥)⇒ tree_sparrow(𝑥), from the knowledge base containing var-
ious rule prompts. Thus, they can logically deduce that the new
image from the unseen class is indeed "𝑡𝑟𝑒𝑒_𝑠𝑝𝑎𝑟𝑟𝑜𝑤".

Based on the above analysis, we have proposed a method called
ZSCLR (Zero-Shot image Classification with Logic adapter and
Rule prompt), which integrates rule prompts into ZSC models
to capture discriminative image features. ZSCLR comprises two
key components: a visual perception module and a logic adapter.
The visual perception module, designed using CNN and attention

network, primarily focuses on basic image feature extraction. Mean-
while, the logic adapter takes basic image features from the visual
perception module and encodes them and rule prompts that predi-
cates represent symbolic discriminative features via Markov logic
network [16]. More concretely, in the logic adapter, we introduce
a statistical relation learning model, i.e., Markov logic network
(MLN). MLN can combine statistical models (e.g., ZSC models) and
relational models (e.g., rule prompts) to attain a unified representa-
tion, such as a joint probability distribution, and achieve reasoning
via computing posterior. Moreover, rule prompts with symbolic
discriminative features can tell the model which features are dis-
criminative in an image, such as the shape of the bill, and then the
model can focus more on what during training. In this paper, rule
prompts are formalized through first-order logics (FOLs), such as
dagger_bill(𝑥)∧brown_wing(𝑥) ⇒ brewer_sparrow(𝑥), encod-
ing themwithin theMLN. FOLs serve a dual purpose: they represent
logical relationships between attribute features and classes and pro-
vide a powerful means of expressing symbolic knowledge. We use
a variational Expectation-Maximization (EM) algorithm to train the
model in an end-to-end way and utilize the logic adapter to reason-
ing results during the test. Additionally, the logic adapter offers a
reasoning process through FOLs, which enables the model to adapt
from seen classes to recognize unseen classes and explain why a
particular decision was made. Finally, we present the results of our
experiments conducted on the AwA2 [25] and CUB [24] datasets
to evaluate the performance and interpretability of ZSCLR. These
results vividly illustrate the remarkable superiority and promising
potential of ZSCLR in zero-shot image classification.

In summary, our contributions can be summarized as follows:

• To the best of our knowledge, ZSCLR is the first to integrate
logic rules into zero-shot image classification. It includes a
visual perception module and a logic adapter. It is a novel
paradigm for zero-shot image classification.

• The visual perception module extracts basic image features
via attributes guided, while the logic adapter enhances this
process by utilizing rule prompts to attain discriminative
image features. Furthermore, the logic adapter employs a
Markov logic network to integrate rule prompts and the
visual perception module and achieve reasoning. Impor-
tantly, our approach enables end-to-end training within a
flexible variational EM framework. It not only enhances
model performance for unseen classes but also provides
interpretability for predictions, offering insights into the
underlying reasoning process.

• Based on our extensive experimental results, we attain the
superior performance of ZSCLR compared to the state-
of-the-art methods. Furthermore, we illustrate the inter-
pretability aspect of our model by offering visualizations
that significantly enhance the comprehension of the under-
lying reasoning process.

2 RELATEDWORK
Zero-shot learning aims to train a model to recognize classes not
included in its original training. There aremanyworks to study zero-
shot learning in image classification. These works can be classified
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into three categories: embedding-based approaches, generative-
based approaches and knowledge-based approaches. Embedding-
based approaches aim to learn amapping function for visual-semantic
interaction. They determine the label of a sample by matching their
vectors in the same space using similarity metrics. Some approaches
are implemented by mapping the visual features to semantic space
by [17, 26, 28]. In contrast, other methods propose mapping the
semantic features into visual space and point out that using se-
mantic space as shared latent space may reduce the variance of
features [34]. As the embedding is learned only on seen classes,
these embedding-based methods inevitably overfit to seen classes.
To address this problem, generative-based methods have been in-
troduced utilizing generative models such as VAEs, GANs to learn
semantic-visual mapping to generate visual features of unseen
classes, which can offset the shortage of unseen classes and convert
ZSL into a supervised classification task. This category focuses on
learning a class condition generator to generate features of unseen
classes [1, 32] or using semantic information (e.g., attributions) of
class to generate features of unseen classes directly [5, 17, 21]. How-
ever, these methods still usually yield relatively undesirable results
since they cannot capture the subtle differences between seen and
unseen classes. Knowledge-based methods have been explored to
capture more correlations between seen and unseen classes. Most
approaches utilize knowledge graphs (e.g., class hierarchies and
commonsense knowledge) as side information. Specifically, they
are used to build relationship graphs between seen and unseen
classes as a semantics-level graph to learn recognizing unseen
classes [2, 10, 11, 23, 29].

Besides the three mentioned categories, the zero-shot image
classification methods can also be divided into discriminative and
non-discriminative methods based on whether they consider the
importance of different features. Since the above-mentioned ap-
proaches fail to account for discriminative features, they are attrib-
uted to non-discriminative methods. Recently, some discriminative
methods have begun to explore the discriminative image features
using attention networks [3, 4, 6, 27, 36]. Xie et al. [27] constructs
a region graph using parts of the object via the attention technique
and achieves transferring knowledge between different classes.
Chen et al. [3, 4] utilize mutually visual-attribute attention sub-net
for semantic distillation, encouraging the model to explore the dis-
criminative features for image. To solve the attribute imbalance
and co-occurrence, Chen et al. [6] introduces an attribute-level
contrastive learning mechanism.

To some extent, our model is a discriminative approach. In con-
trast to existing approaches, we incorporate logic rules as auxiliary
information to capture discriminative image features and logical re-
lationships between discriminative features and classes and employ
theMarkov logic network for prediction. Moreover, our model intro-
duces rule promptswith symbolic discriminative features, providing
interpretability compared to those who use attention networks to
capture discriminative image features.

3 METHODOLOGY
Problem Setting. Zero-shot classification (ZSC) aims to recognize
unseen classes by transferring knowledge from the seen domain
D𝑠 to the unseen domain D𝑢 . The training data for seen classes

is denoted as D𝑠 = {(𝑥𝑠 , 𝑦𝑠 ,𝑨𝑠 ) |𝑥𝑠 ∈ X𝑠 , 𝑦𝑠 ∈ Y𝑠 }, where X𝑠

represents the image sets with class labels fromY𝑠 , and𝑨𝑠 ∈ R𝑆×𝑚
represents the category attributes of the seen classes. Similarly,
D𝑢 = {(𝑥𝑢 , 𝑦𝑢 ,𝑨𝑢 ) |𝑥𝑢 ∈ X𝑢 , 𝑦𝑢 ∈ Y𝑢 } is data of the unseen
classes. Additionally, X = X𝑠 ∪ X𝑢 . In ZSC, the class space is
disjoint between the seen and unseen domains, i.e., Y𝑠 ∩ Y𝑢 = ∅.
The model is trained on the seen classes Y𝑠 but is tested on the
unseen classes Y𝑢 . To bridge the gap between seen and unseen
categories, auxiliary information such as attribute descriptions 𝑨𝑠

and 𝑨𝑢 is required. To aid in understanding the paper, important
notations and their descriptions have been provided in Table 1.

Table 1: Important notations and their descriptions.

Notations Descriptions

X𝑠 , 𝑥𝑠 seen image

X𝑢 , 𝑥𝑢 unseen image

Y𝑠 , 𝑦𝑠 seen class label

Y𝑢 , 𝑦𝑢 unseen class label

a𝑠𝑦,A𝑠 seen class attribute

a𝑢𝑦,𝑨𝑢 unseen class attribute

𝑽 , 𝑽
′

image feature

𝑨𝒕 𝒕 attribute feature

𝑆 the number of seen classes

𝜶 attribute weight matrix of image features

𝝓 prediction score

𝑅𝑠 , 𝑅𝑢 , 𝑅, 𝑟 logic rule (FOL)

𝑎𝑟 ground atom in a logic rule

A𝑟 ,A ground atom set(s)

𝜑 potential function

𝑤 weight sets of the logic rules

𝑤𝑟 weight of a logic rule

Overview. In Figure 2, ZSCLR consists of a visual perception mod-
ule and a logic adapter. The visual perception module can learn a
mapping function from visual space to semantic space to extract
image features 𝑽

′
for recognizing objects. In this paper, to train

the visual perception module, we compute the inner product of
both extracted image features and class attribute labels to attain
a score of classification. To make extracted image features more
discriminative, we design a logic adapter. The logic adapter initially
receives image features from the visual perception module. It then
models rule prompts through Markov logic networks to learn a
joint probability distribution. In logic adapter, we compute posterior
via feature network to predict attribute labels, and combine these
attribute labels, e.g., 𝑐𝑙𝑜𝑛_𝑏𝑖𝑙𝑙 (𝑽 ′ ) according to rule prompts to in-
fer class labels, e.g., 𝑐𝑙𝑎𝑦_𝑐𝑜𝑙𝑜𝑟𝑒𝑑_𝑠𝑝𝑎𝑟𝑟𝑜𝑤 (𝑽 ′ ) through fuzzy logic
reasoning. During training, this process can refine image features
𝑽

′
via backpropagation to attain discriminative image features. In

this process, the logic adapter serves a dual purpose: aiding the
3
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1
2
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Feature network
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𝑐𝑜𝑛𝑒_𝑏𝑖𝑙𝑙 𝑉′ ∧ 𝑔𝑟𝑒𝑦_𝑤𝑖𝑛𝑔(𝑉′) ⟹ 𝑐𝑙𝑎𝑦_𝑐𝑜𝑙𝑜𝑟𝑒𝑑_𝑠𝑝𝑎𝑟𝑟𝑜𝑤(𝑉′)

Fuzzy logic reasoning

Visual perception module Logic adapter Inner product×

𝐿 = 𝐿𝑉 − 𝐿𝐸𝐿𝐵𝑂

𝑉′Refine

…

…

.

.

Hadama product

𝛼11

𝛼𝑁1

…𝛼1𝑚

…𝛼𝑁𝑚

Figure 2: Overview of ZSCLR: ZSCLR comprises a visual perception module and a logic adapter. The visual perception module
extracts image features using a CNN, fully connected layers (FCs), and an attention network guided by attribute features. The
learned image features are then input into the logic adapter, which employs a Markov logic network to learn a joint probability
distribution capturing shared variables between seen and unseen classes. This facilitates effective knowledge transfer in
zero-shot image classification, allowing inference of attribute feature labels and class labels via feature network and fuzzy logic.

model in acquiring discriminative image features and facilitating
adaptation to new environments, i.e., recognizing unseen classes.
In our ZSCLR, the input includes seen class images X𝑠 , correspond-
ing attribute feature vectors a𝑠𝑦 , class attribute labels 𝑨𝑠 and rule
prompts 𝑅𝑠 of seen classes during training. In the testing phase,
we input unseen class images X𝑢 , their corresponding attribute
feature vectors a𝑢𝑦 , and the knowledge base 𝑅𝑢 containing the rule
prompts for unseen classes.

3.1 Visual Perception Module
In the Visual Perception Module (VPM), we aim to map the visual
features in visual space to the corresponding attribute features in
the semantic space. Specifically, the VPM requires two inputs for
obtaining basic image features 𝑽

′
: a set of images X = {𝑥1, ..., 𝑥𝑁 },

where 𝑁 is the number of images, and matrix of the attribute fea-
tures 𝑨𝑡𝑡 ∈ R𝑁×𝑚 , where𝑚 is dimension of attribute feature. The
initial features, represented by 𝑽 ∈ R𝑁×𝑚 , are obtained by feeding
these into a CNN, and then the fully connected layers with ReLU
activation. As previous work [13] claims that learning useful vi-
sual features is crucial in ZSC, we coarsely screen out good image
features as basic image features, denoted as 𝑽

′ ∈ R𝑁×𝑚 , using the
attention network guided by attribute features from a given image.
These basic image features are prepared for the logic adapter to
refine the discriminative image features. Specifically, we need to
calculate the attention for each feature by

𝜶 = softmax(𝑨𝑡𝑡𝑾𝑎𝑽 ), (1)

where 𝜶 ∈ R𝑁×𝑚 represents attribute weight matrix of image
features, and𝑾𝒂 ∈ R𝑚×𝑁 is a learnable matrix.

Next, initial visual features 𝑽 and 𝜶 calculate Hadama product
to attain new visual features 𝑽

′

by

𝑽
′
= 𝜶 ⊙ 𝑽 , (2)

where ⊙ is the Hadama product.
Then, 𝑽

′
are refined and updated by the logic adapter in Section

3.2. Finally, we calculate similar scores for both basic image features
and class attribute labels to attain image class labels. Note, this score
calculation is performed solely during training to generate the loss
Eq. (6) in VPM, thereby facilitating model training. More concretely,
basic image feature 𝑽

′
match its corresponding seen class attribute

labels 𝑨𝑠 , which is formulated as compute inner product:

𝝓 = 𝑽
′
𝑨𝑠⊤, (3)

where 𝝓 ∈ R𝑁×𝑆 is the score that represents the distribution of
classes for the images.

3.2 Logic Adapter
As the core of ZSCLR, the logic adapter (LA) integrates the VPM
with rule prompts to extract discriminative image features. Mean-
while, LA can adapt the trained model from seen to unseen classes,
and enables reasoning through Markov logic networks. To achieve
this integration, it’s crucial to establish a unified representation
between the VPM and rule prompts. Thus, we introduce Markov
logic networks (MLN), a framework that seamlessly combines sta-
tistical models (VPM) with relational models (rule prompt) into
a unified representation [7]. For this purpose, we use FOLs like
dagger_bill(𝑥) ∧brown_wing(𝑥) ⇒ brewer_sparrow(𝑥) as rule
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prompts. These FOLs establish logical relationships between sym-
bolic discriminative features (attributes) and classes. Specifically,
LA uses MLN to learn a joint probability distribution for symbolic
discriminative features, enabling the prediction of discriminative
feature labels by calculating posterior probabilities. The class la-
bels are then inferred using fuzzy logic based on the predicted
discriminative feature labels.

In fact, MLN can be thought of as a knowledge base utilizing
FOLs. In MLN, we assume there is a FOL set 𝑅 for a given dataset,
and an FOL 𝑟 ∈ 𝑅 comprises a set of predicate functions, like
𝑝1𝑟 (𝑥), 𝑝2𝑟 (𝑥), etc., where the domain of 𝑥 is the set of constants
𝐶 = {𝑐1, 𝑐2, ...}, 𝑐𝑖 denotes object 𝑖 . When the constants are assigned
to the arguments of a predicate, these assigned predicates are called
ground atoms, and each FOL corresponds to a ground atom set
A𝑟 = {𝑎1𝑟 , 𝑎2𝑟 , ...}. Using the examples from Figure 1 (a), the con-
stants 𝑐1 and 𝑐2 are the image features 𝑽

′

1 and 𝑽
′

2 obtained by the
VPM, the ground atom sets are A1 = {cone_bill(𝑽 ′

1), grey_wing
(𝑽 ′

1), clay_colored_sparrow(𝑽
′

1),cone_bill(𝑽
′

2), grey_wing(𝑽
′

2)
, clay_colored_sparrow(𝑽 ′

2)}, andA2 = {dagger_bill(𝑽 ′

1), bro
wn_wing(𝑽 ′

1), brewer_sparrow(𝑽
′

1), dagger_bill(𝑽
′

2), brown_win
g(𝑽 ′

2), brewer_sparrow(𝑽
′

2)} for the two FOLs, i.e., the rule prompts.
MLN models FOLs as a probabilistic graph, where nodes repre-

sent ground atoms, and edges between nodes correspond to logical
relationships between these ground atoms. For the FOL set 𝑅 and
its ground atoms, the joint distribution defined by MLN can be
represented as follows:

𝑃𝑤 =
1

𝑍 (𝑤) exp{
∑︁
𝑟 ∈𝑅

𝑤𝑟

∑︁
𝑎𝑟 ∈A𝑟

𝜑 (𝑎𝑟 )}, (4)

where𝑍 (𝑤) is the partition function summing overall ground atoms.
𝑤 represents the weight sets of all rules, and𝑤𝑟 is the corresponding
weight of each FOL. 𝜑 denotes a potential function in terms of the
number of times the logic rule is true.

3.3 Model Optimization
We consider both the VPM and LA in our model and optimize them
end-to-end. For the VPM, we follow the same way as in LFGAA [13]
that uses triplet loss [18] to learn image features by simultaneously
enlarging interclass distance and reducing intra-class distance:

𝐿𝑇 =
1
𝑁

𝑁∑︁
𝑖=1

[| |𝑽
′
𝑖 − 𝑽

′
𝑗 | |

2 − ||𝑽
′
𝑖 − 𝑽

′
𝑚 | |2 + 𝛽]+, (5)

where 𝑽
′
𝑖
, 𝑽

′
𝑗
and 𝑽

′
𝑚 serve as anchor, positive and negative sam-

ple within a triplet respectively. [◦]+ is equivalent to𝑚𝑎𝑥 (◦, 0). 𝛽
is a hyperparameter controlling the desired margin between the
positive and negative pairs.

Furthermore, to learn a mapping function from visual features
to semantic space, we design the following loss:

𝐿𝑆 = − 1
𝑁

𝑁∑︁
𝑖=1

log
exp(𝝓𝑖 )∑
𝑆 exp(𝝓𝑖 )

, (6)

where 𝝓𝑖 represents class label score of each image.
Therefore, the VPM’s final loss can be written as follows:

𝐿𝑉 = 𝐿𝑇 + 𝐿𝑆 . (7)

Logic adapter is a MLN, we need to maximize the log-likelihood
of all the observed predicates (variables) log 𝑃𝑤 . However, it is in-
tractable to maximize the overall objective directly since it requires
computing the whole partition function 𝑍 (𝑤) and integrating over
all predicates. Therefore, as suggested in [31], the approach is to
optimize the variational evidence lower bound (ELBO) of the data
log-likelihood, which is as follows:

𝐿𝐸𝐿𝐵𝑂 = 𝐸𝑄 [log𝑃𝑤 ] − 𝐸𝑄 [log𝑄 (A) ], (8)

where A is ground atom sets. 𝑄 (A) is the variational posterior.
We use the variational EM algorithm to optimize 𝐿𝐸𝐿𝐵𝑂 , i.e., to

minimize KL divergence between the 𝑄 (A) and 𝑃𝑤 to implement
inference during E-step. In the M-step, the algorithm uses gradient
descent to learn the weight of the FOL. Due to the inference of
the MLN is #𝑃-complete [16], we need to use mean-field theory to
factorize variational distribution 𝑄 (A) to approximate the 𝑃𝑤 :

𝑄 (A) =
∏

A𝑖 ∈A
𝑄 (A𝑖 ). (9)

1
2

𝑘

Tensor layer

…

𝑉′

𝑝1(𝑉
′)

Feature network

𝑝𝑘(𝑉
′)

Figure 3: Feature network. The inputs are image features of
the object, e.g., 𝑽

′
, and the outputs are probabilities of the

attribute labels of the object, e.g., 𝑝𝑘 (𝑽
′). 𝑘 represents the

tensor layer, and each layer is a predicate.

To improve inference effectiveness, we use neural networks (fea-
ture networks in this paper) to parameterize variational calculation
in Eq. (9). Consequently, this variational operation becomes a pro-
cess of learning parameters. In this paper, we use a tensor network
as our feature network to model 𝑄 as 𝑄𝜃 in Figure 3, and 𝜃 is the
parameter of the feature network.

Thus, according to Eq. (4), Eq. (9) and feature network, the Eq.
(8) can be rewritten as follows:

𝐿𝐸𝐿𝐵𝑂 =
∑︁
𝑟 ∈𝑅

𝑤𝑟

∑︁
𝑎𝑟 ∈A𝑟

𝐸𝑄𝜃
[𝜑 (𝑎𝑟 ) ] − log𝑍 (𝑤 )

−
∑︁

A𝑖 ∈A
𝐸𝑄𝜃

[log𝑄𝜃 (A𝑖 ) ] .
(10)

Finally, we combine optimization targets of the visual perception
module and logic adapter to minimize final loss 𝐿:

𝐿 = 𝐿𝑉 − 𝐿𝐸𝐿𝐵𝑂 . (11)

In the M-step, the model needs to learn the weights of the FOLs.
The partition function 𝑍 (𝑤) has an exponential number of terms,
which makes it intractable to optimize ELBO directly. To address
this issue, we use pseudo-likelihood [16] to optimize 𝐿𝐸𝐿𝐵𝑂 in
M-step, as the following:

𝑃∗
𝑤 := 𝐸𝑄𝜃

[
∑︁

𝑟,A𝑖 ∈A𝑟

log𝑃𝑤 (A𝑖 |𝑀𝐵A𝑖
) ], (12)
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where𝑀𝐵A𝑖
is Markov blanket of the ground atom A𝑖 . For each

rule 𝑟 that connects A𝑖 to its Markov blanket, we optimize the
weights𝑤𝑟 by gradient descent, the derivative is following:

▽𝑤𝑟 𝐸𝑄𝜃
[log𝑃𝑤 (A𝑖 |𝑀𝐵A𝑖

) ] ≃ 𝑌A𝑖
− 𝑃𝑤 (A𝑖 |𝑀𝐵A𝑖

), (13)

where𝑌A𝑖
= 0 or 1 ifA𝑖 is an observed variable, and𝑌A𝑖

=𝑄𝜃 (A𝑖 )
otherwise.

3.4 Inference
Prediction. After training ZSCLR, the model recognizes unseen
images using the logic adapter. Specifically, the model uses the vi-
sual perception module to extract the discriminative image features,
denoted as 𝑽

′
. These discriminative image features are then input

into the logic adapter. In the logic adapter, the feature network
is used to calculate the posterior probability 𝑄 (A𝑖 ), attaining the
attribute feature labels of the instances. Then, the model leverages
rule prompts from unseen classes to combine recognized attribute
feature labels to infer class labels via fuzzy logic reasoning.
Interpretability. Our ZSCLR offers interpretability for predictions
through corresponding rule prompts. That is to say, the model not
only can predict class labels of objects in the images but also tell rea-
sons for classifying the images to the class labels through symbolic
language. In this study, we employ key attribute characteristics as
our discriminative image features. To enhance understanding, we
represent these attribute features using symbolic logic rules, replac-
ing them in vector form. For example, when the model recognizes
an unseen class image, it can identify the key attribute character-
istics present in the sample and subsequently classify the unseen
class object based on both these key attribute characteristics and the
associated rule prompts. In this process, the key attribute character-
istics and their corresponding rule prompts serve as explanations
for the predictions.

4 EXPERIMENT
4.1 Experimental Setup
Datasets.Weemployed two challenging benchmark datasets, AwA2
(Animals with Attributes 2) [25] and CUB (Caltech UCSD Birds 200-
2011) [24], to validate our method. These datasets offer varying
degrees of granularity, with AwA2 being a coarse-grained dataset
and CUB being fine-grained. AwA2 consists of 37,322 images dis-
tributed across 50 animal categories, each associated with 85 at-
tributes. Within this dataset, 40 categories are considered seen
during training, while the remaining 10 are unseen during train-
ing and are used for evaluation. CUB, on the other hand, com-
prises 11,788 images spanning 200 bird classes, each associated
with 312 attributes. Among these classes, 150 classes are designated
as seen during training, while the remaining 50 are unseen and
used for evaluation. Moreover, to enable logic-based reasoning,
we constructed logic rules based on attributes, taking the form
of attribute1 (𝑥) ∧ attribute2 (𝑥) ∧ · · · ∧ attribute𝑛 (𝑥) ⇒
class(𝑥). In these rules, the rule body consists of attributes, while
the rule head represents class labels. To divide the classes into seen
and unseen categories, we adopted the Proposed Split (PS) method
[25]. The statistics of the datasets are shown in Table 2.
Evaluation Protocols.We followed the evaluation protocol out-
lined in [25] and assessed the top-1 accuracy in two distinct settings.

Table 2: Dataset statistics.

Datasets Attributes |Y𝑠 | |Y𝑢 | |X𝑠 | |X𝑢 | |𝑅 |
AwA2 85 40 10 30,414 6,908 85
CUB 312 150 50 7,057 4,731 312

First, we conducted experiments within the conventional zero-shot
learning (CZSL) framework, where exclusively unseen categories
were involved in testing. Consequently, all prediction results were
restricted to be drawn from unseen classes, and this accuracy is
denoted as Acc. Secondly, we ventured into the realm of generalized
zero-shot learning (GZSL), wherein test images encompassed both
seen and unseen categories. In this setting, we computed the top-1
accuracy for both seen (S) and unseen (U) categories independently.
Furthermore, to gauge the trade-off between performance on seen
and unseen categories, we calculated the harmonic mean (H) by
using the formula H = 2 × S×U

S+U .
Implementation Details. We employed CNN as our basic image
features extractor in the visual perception module. Indeed, our CNN
can be initialized by a pre-trained backbone such as GoogleNet [20].
Before being fed into the model, the images need to be randomly
cropped for data augmentation. For optimization, we used the Adam
optimizer with specific configurations. On the AwA2 dataset, we set
the number of epochs to 15, the batch size to 64, and the learning
rate to 1e-4. On the CUB dataset, we conducted training for 20
epochs, with a batch size of 32 and a learning rate of 1e-5.
Baselines.We compare our ZSCLR with representative approaches
proposed in recent years. These approaches are divided into two
classes: No-Discriminative methods include E-PGN [32], Composer
[8], GCM-CF [33], FREE [5], LFGAA [13], DAZLE [9], APN [28],
CF-ZSL[29]; Discriminative methods include MSDN [4], TransZero
[3], DUET[6].

4.2 Comparision with State-of-the-Arts
Conventional Zero-Shot Learning. Table 3 presents the results
of CZSL on various datasets. Our ZSCLR achieves competitive Acc
results on AwA2 and CUB, respectively. This shows that ZSCLR cap-
tures the discriminative visual representations for distinguishing
unseen classes and utilizes the logic relationship between seen and
unseen classifications via MLN. Comparing results on AwA2, our
ZSCLR performs better on CUB. This is because AwA2 is a coarse-
grained dataset, and attribute semantics are relatively abstract, e.g.,
big or small, while CUB is a fine-grained dataset, and its attribute
semantics are specific, e.g., shape of bill. Based on these fine-grained
object contour semantics, ZSCLR can learn decent image features
on CUB and transfer them to unseen classes via fine-grained logic
rules. Moreover, we observed that discriminative methods outper-
form non-discriminative methods in most cases. This validates the
importance of discriminative features in recognizing objects.
Generalized Zero-Shot Learning. Table 3 also presents the results
of different methods in the GZSL setting. It is evident that many
methods achieve good results on seen classes but struggle with
unseen classes in the CUB and AWA2 datasets. In contrast, our
ZSCLR performs well in unseen classes. This advantage can be
attributed to the logic adapter in ZSCLR, which enables the capture
of discriminative image features for effective knowledge transfer
from seen to unseen categories.
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Table 3: Results (%) of our method and compared baselines. The best results in baselines are marked in bold. "-" is not reported
in their paper.

AWA2 CUB
Classes Methods CZSL GZSL CZSL GZSL

Acc U S H Acc U S H
E-PGN [32] 73.4 52.6 83.5 64.6 72.4 52.0 61.1 56.2
Composer [8] 71.5 62.1 77.3 68.8 69.4 56.4 63.8 59.9
GCM-CF [33] - 60.4 75.1 67.0 - 61.0 59.7 60.3

No-Discriminative FREE [5] - 60.4 75.4 67.1 - 55.7 59.9 57.7
LFGAA [13] 68.1 27.0 93.4 41.9 67.6 36.2 80.9 50.0
DAZLE [9] 67.9 60.3 75.7 67.1 66.0 56.7 59.6 58.1
APN [28] 68.4 57.1 72.4 63.9 72.0 65.3 69.3 67.2
CF-ZSL[29] 69.2 33.3 82.0 47.4 66.2 36.3 72.9 48.5
MSDN [4] 70.1 62.0 74.5 67.7 76.1 68.7 67.5 68.1

Discriminative TransZero [3] 70.1 61.3 82.3 70.2 76.8 69.3 68.3 68.8
DUET[6] 69.9 63.7 84.7 72.7 72.3 62.9 72.8 67.5

ZSCLR (our) 76.0 70.4 76.7 73.4 77.8 70.5 74.3 72.4

Table 4: Ablation studies for different compositions of ZSCLR.
The Att Net is the attention network.

Methods AwA2 CUB
VPM w/o Att Net 62.2 51.0
VPM w/ Att Net 68.4 67.6

VPM w/o Att Net, w/ LA 70.3 70.5
ZSCLR 76.0 77.8

(b
) 

Z
S

C
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R
(a

) 
B

as
el

in
e

Figure 4: t-SNE visualizations of visual features for unseen
classes on AwA2 and CUB dataset in CZSL, respectively. (a)
represents the baseline method, while (b) is our ZSCLR. 𝐶𝑖
represents different unseen classes.

4.3 Ablation Studies
We evaluate our model to compare performance gain (Acc) brought
by different components on the AwA2 and CUB datasets as shown
in Table 4. Specifically, we first observe a sharp drop in performance
if using only a visual perception module with CNN (VPM w/o Att
Net) to predict unseen class images via computing the inner product
of both extracted image features and class attribute labels. Second,

from the results obtained using a visual perception module with
both CNN and attention network as the image feature extractor
to predict results through the inner product of extracted image
features and class attribute labels (VPM w/ Att Net). We observe
that employing an attribute-guided strategy for extracting visual
features benefits our model. Next, we also assess the influence of the
logic adapter, where the visual perception module with CNN and
predict results by logic adapter (VPM w/o Att Net, w/ LA), which
results in better performance compared to the VPMw/ Att Net. This
demonstrates that the logic adapter not only benefits the capture of
discriminative image features but also adapts the model to unseen
classes. Finally, we find that by combining all these components,
the model can achieve the best results.

Figure 5: t-SNE visualizations of visual features for both seen
and unseen classes on AwA2 and CUB datasets in GZSL, re-
spectively. We show 10 classes in this experiment.

4.4 Qualitative Results
Discriminative Image Features Analyze. In CZSL scenes. To
demonstrate ZSCLR’s ability to capture discriminative image fea-
tures, we visualize features for unseen classes using t-SNE on the
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Baseline
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Figure 6: Interpretabilty. Visualization of learned discriminative image features for baseline (LFGAA [13]) and our ZSCLR on
the CUB dataset. We highlight the position of three discriminative features, such as the shape of the bill, the shape of the wing,
and the shape of the tail in an image.

AwA2 and CUB datasets (Figure 4). Compared to the baseline [13],
ZSCLR displays distinct clusters. This affirms that our model ef-
fectively learns discriminative and transferable features. It also
underscores the logic adapter’s role in prompting the visual per-
ception module to capture fine-grained attribute semantics shared
between seen and unseen classes, resulting in the learning of dis-
criminative visual representations that facilitate knowledge transfer.
In GZSL scenes. We visualize visual features of both seen and un-
seen classes in the AwA2 and CUB datasets in Figure 5. To facilitate
visualization, we randomly selected 10 test classes for each dataset.
We observed that our ZSCLR shows better clustering results on
both seen and unseen classes. This demonstrates the superiority
and potential of ZSCLR for knowledge transfer.

Effectiveness and Interpretability Analyze. To provide a
clear illustration of ZSCLR’s effectiveness and interpretability, we
have employed heatmaps to visualize the discriminative image fea-
tures learned by the proposed model ZSCLR and a baseline (LFGAA
[13] as an example) without logic knowledge on the CUB testing
data. As depicted in Figure 6, the highlighted regions represent the
captured discriminative features. Compared to the baseline, our
ZSCLR obtains better results, e.g., accurately positioning by pay-
ing attention to discriminative feature regions. This demonstrates
ZSCLR’s effectiveness in capturing discriminative image attributes
utilizing rule prompt knowledge. Furthermore, by combining the
predicted discriminative feature labels with the rule prompts, ZS-
CLR can infer class labels, e.g., 𝑔𝑟𝑜𝑜𝑣𝑒_𝑏𝑖𝑙𝑙𝑒𝑑_𝑎𝑛𝑖 and provide an
interpretation of the results. This reasoning process is transparent,
allowing for easy comprehension of the model’s recognition pro-
cess when presented with an image. For instance, when the model
identifies an image as 𝑔𝑟𝑜𝑜𝑣𝑒_𝑏𝑖𝑙𝑙𝑒𝑑_𝑎𝑛𝑖 , it can provide an expla-
nation by highlighting the presence of features like 𝑑𝑖𝑔𝑔𝑒𝑟_𝑏𝑖𝑙𝑙 ,

𝑡𝑎𝑝𝑒𝑟𝑒𝑑_𝑤𝑖𝑛𝑔 and 𝑠𝑞𝑢𝑎𝑟𝑒𝑑_𝑡𝑎𝑖𝑙 in the image, and then logically de-
ducing that the object possessing these features corresponds to the
𝑔𝑟𝑜𝑜𝑣𝑒_𝑏𝑖𝑙𝑙𝑒𝑑_𝑎𝑛𝑖 class, according to the provided rule prompts.

5 CONCLUSION AND DISCUSSION
In this paper, we propose the zero-shot image classification model
with logic adapter and rule prompt (ZSCLR) to more accurately
classify images in zero-shot scenes and provide the results’ inter-
pretability. ZSCLR consists of two modules: a visual perception
module and a logic adapter. The visual perception module aims to
extract basic image features. At the same time, the logic adapter
takes basic image features from the visual perception module and
encodes them and rule prompts via the Markov logic network. Dur-
ing training, the logic adapter refines these basic image features
using backpropagation to derive discriminative image features and
adapt the model from seen classes to unseen classes. Furthermore,
ZSCLR offers explanations for its prediction results through rule
prompts with symbolic discriminative features. Comprehensive
experiments conducted on two well-known benchmarks under-
score the superior performance of ZSCLR. We believe that ZSCLR
presents an innovative direction for the research community, par-
ticularly in the context of logic reasoning.

Our ZSCLR not only predicts classes of images but also explains
reasons for predictions by providing an interpretation in natural
language form. Meantime, the model can locate the position of the
discriminative features of objects. Therefore, in the future, ZSCLR
has the potential to integrate into visual question models with
natural language interactive Q&A. For instance, given an image
and its prompt like "there are bill, wing and tail in the image"
in the natural language style, the model can answer the following
questions like "What is an object in this image?", "Why is the object?",
"Where are the discriminative features for determining the object?",
and so on.
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