

TS-ATTN: TEMPORAL-WISE SEPARABLE ATTENTION FOR MULTI-EVENT VIDEO GENERATION

Anonymous authors

Paper under double-blind review

A dragon emerges from a cave, spreads its wings, breathes fire into the sky and then flies off a cliff.

A beach from morning high tide, to sunny midday waves, to evening low tide, and finally moonlit waters under the stars.

A humanoid robot pours wine into a glass, places the bottle on the table, and then lifts the glass.

(a) Qualitative results

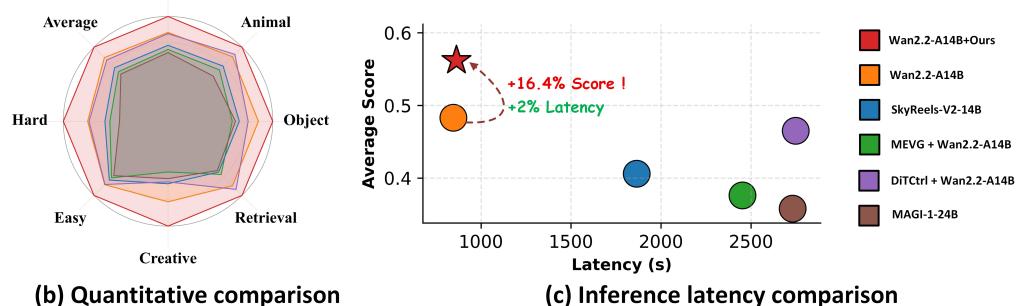


Figure 1: We present **TS-Attn**, a training-free attention mechanism, which enhances multi-event video generation through alleviating attention conflicts across multi-event conditions. **(a)** Qualitative results across subjects and scenes. **(b)** Quantitative comparison on StoryEval-Bench. **(c)** Latency-performance tradeoff analysis.

ABSTRACT

Generating high-quality videos from complex temporal descriptions that contain multiple sequential actions is a key unsolved problem. Existing methods are constrained by an inherent trade-off: using multiple short prompts fed sequentially into the model improves action fidelity but compromises temporal consistency, while a single complex prompt preserves consistency at the cost of prompt-following capability. We attribute this problem to two primary causes: 1) temporal misalignment between video content and the prompt, and 2) conflicting attention coupling between motion-related visual objects and their associated text conditions. To address these challenges, we propose a novel, training-free attention mechanism, **Temporal-wise Separable Attention** (TS-Attn), which dynamically rearranges attention distribution to ensure temporal awareness and global coherence in multi-event scenarios. TS-Attn can be seamlessly integrated into various pre-trained text-to-video models, boosting StoryEval-Bench scores by 33.5% and 16.4% on Wan2.1-T2V-14B and Wan2.2-T2V-A14B with only a 2% increase in inference time. It also supports plug-and-play usage across models for multi-event image-to-video generation. The source code and video demos are available in the supplementary materials.

054

1 INTRODUCTION

055
 056 Video generation models have undergone remarkable advancements, demonstrating impressive
 057 progress in their generation capabilities Blattmann et al. (2023a); Wang et al. (2024); Kong et al.
 058 (2024), which has in turn sparked a wide range of downstream applications Deng et al. (2025b); Hu
 059 et al. (2025); Deng et al. (2025a); Guo et al. (2024). Through the optimization of model architec-
 060 tures Peebles & Xie (2023); Flux (2024) and the scaling of training data Wang et al. (2025a), current
 061 models are capable of generating high-quality videos. However, the current good performance is
 062 mostly limited to the prompts containing single events, even for the state-of-the-art open-sourced
 063 models Wang et al. (2025a); Yang et al. (2024); Kong et al. (2024). How to faithfully generate
 064 videos from complex temporal descriptions (e.g., containing multiple events and dynamic motion
 065 information) remains underexplored.

066 Existing approaches can be broadly categorized into two streams, each facing inherent performance
 067 trade-offs. The first stream decomposes a complex multi-event prompt into several single-event
 068 prompts and executes them across multiple inference stages Lin et al. (2023); Zhang et al. (2024).
 069 While this paradigm is capable of producing action-rich content, combining individually generated
 070 clips using techniques such as KV cache Cai et al. (2025) or initial noise optimization Oh et al.
 071 (2024) often results in content drift and pronounced temporal inconsistencies Kim et al. (2025)
 072 with significantly increased inference time overhead. Conversely, the second stream of methods
 073 directly feeds the entire complex multi-event prompt into more powerful text encoders. Although
 074 this paradigm yields videos with improved consistency and global coherence Wang et al. (2025a);
 075 Zhang & Agrawala (2025), it often exhibits limited prompt-following ability, failing to accurately
 076 interpret and respond to all individual events. Such limitations frequently manifest as event omission
 077 or temporal hallucination.

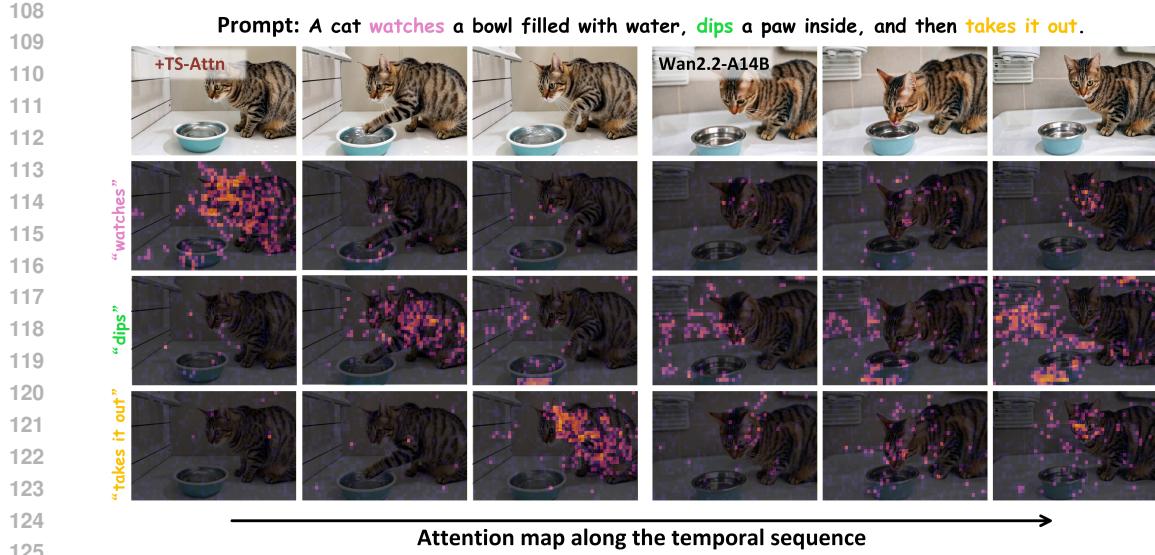
078 Achieving an optimal trade-off requires simultaneously balancing global consistency and prompt
 079 adherence. *This raises a key question: can we preserve global coherence with a single complex*
 080 *prompt while ensuring that the video accurately responds to each event in the correct temporal or-*
 081 *der?* As illustrated in Figure 3, our analysis shows that the primary cause of weak prompt-following
 082 lies in temporal misalignment and the entangled attention correlations between motion-related re-
 083 gions of video tokens and the textual conditions of multiple events. To address this, we propose
 084 a simple yet effective idea: disentangle the video–text attention distribution associated with differ-
 085 ent events in the prompt and realign it with the corresponding individual events, ensuring that they
 086 remain separable along the temporal dimension with proper transitions.

087 From this observation, we derive two key insights: (1) motion-related regions in each frame should
 088 focus primarily on the event that occurs at the same time, and (2) interactions across different events
 089 in the temporal dimension should be minimized.

090 Building on the above insights, we propose **Temporal-wise Separable Attention (TS-Attn)**, a
 091 method that dynamically adjusts the attention distribution in the cross-attention layer to enable tem-
 092 poral awareness in multi-event scenarios. Our idea is intuitive: TS-Attn first extracts and thresholds
 093 the cross-attention map associated with the event-performing entity to identify the motion-related
 094 regions. TS-Attn then rearranges the attention distribution between motion-related video tokens and
 095 each event condition with proper separation to strengthen the correspondence with the temporally
 096 aligned event while reducing attention coupling from unrelated events. Finally, TS-Attn incorporates
 097 an attention reinforcement mechanism that adaptively scales event-related attention values based on
 098 the attention distribution: a smoother distribution indicates that more modifications are needed.

099 In summary, the key contributions of our work are as follows:

- 100 • We conduct an in-depth analysis of the root causes underlying poor prompt-following performance
 101 in complex descriptions, and reveal that temporally separable grouping is essential to prevent
 102 temporal conflicts.
- 103 • We propose a novel framework, TS-Attn, which dynamically restructures the attention distribution
 104 between motion-related regions and multi-event conditions. This design enables accurate event
 105 responses in the correct temporal order, while simultaneously preserving global consistency and
 106 ensuring physically plausible transitions.
- 107 • We conduct extensive experiments demonstrating that TS-Attn can be used in a training-free man-
 108 ner and seamlessly integrated into diverse video generation foundation models. Both qualitative



124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Figure 2: **Comparison of attention maps along the temporal sequence between TS-Attn and valina cross-attention.** TS-Attn strengthens motion-event alignment and reduces cross-event interference, ensuring accurate attention distribution among multiple events.

and quantitative results show that it substantially improves baseline performance with negligible inference overhead, while remaining effective across multiple tasks, including multi-event text-to-video (T2V) and image-to-video (I2V).

2 RELATED WORKS

Diffusion-based video generation. Initial efforts concentrated on integrating temporal attention mechanisms into the 2D U-Net architecture Ronneberger et al. (2015), allowing image generation models to better capture the temporal dynamics required for video synthesis Blattmann et al. (2023b); Wang et al. (2023b); Khachatryan et al. (2023); Chen et al. (2024). As diffusion transformers (DiTs) gained prominence Ma et al. (2024), the focus shifted towards employing 3D full attention, effectively bridging spatial and temporal dependencies Zheng et al. (2024); Lin et al. (2024); Zhang et al. (2025a). This innovation laid the foundation for scalable models such as CogVideoX Yang et al. (2024), LTX-Video HaCohen et al. (2024), HunyuanVideo Kong et al. (2024), and Wan Wang et al. (2025a), which advanced the generation of high-resolution, temporally consistent video content.

Multi-event video generation. Several studies address multi-event video generation by breaking it into sequential multi-prompt generation Wang et al. (2023a); Qiu et al. (2024); Kim et al. (2025). MEVG Oh et al. (2024) ensures visual coherence by initializing each clip’s noise with the inverted last frame of the previous clip, while DiTCtrl Cai et al. (2025) enables smooth motion transitions via mask-guided key-value sharing. However, these approaches require repeated inference, increasing computational costs and causing temporal inconsistencies. Another line of methods uses local and global cross-attention to strengthen responses to multiple sub-prompts Wang et al. (2025c); Tian et al. (2024); Bansal et al. (2024). However, the use of hard-masked attention Tian et al. (2024); Bansal et al. (2024) for overly strict control can lead to issues such as background inconsistency and makes it difficult to process fine-grained temporal transitions when foreground subjects are small.

To address this issue, recent approaches focus on packaging individual events into a global prompt for single-pass inference generation. Among them, MinT Wu et al. (2025b) and ShotAdapter Kara et al. (2025) rely on large amounts of timestamp-labeled data for post-training to enable the model to handle multi-event scenarios. However, this requires extensive computational resources and is difficult to adapt to new models. An intuitive approach is to use more powerful video generation foundation models, with features such as the ability to handle more complex prompts (e.g., Wan Wang et al.

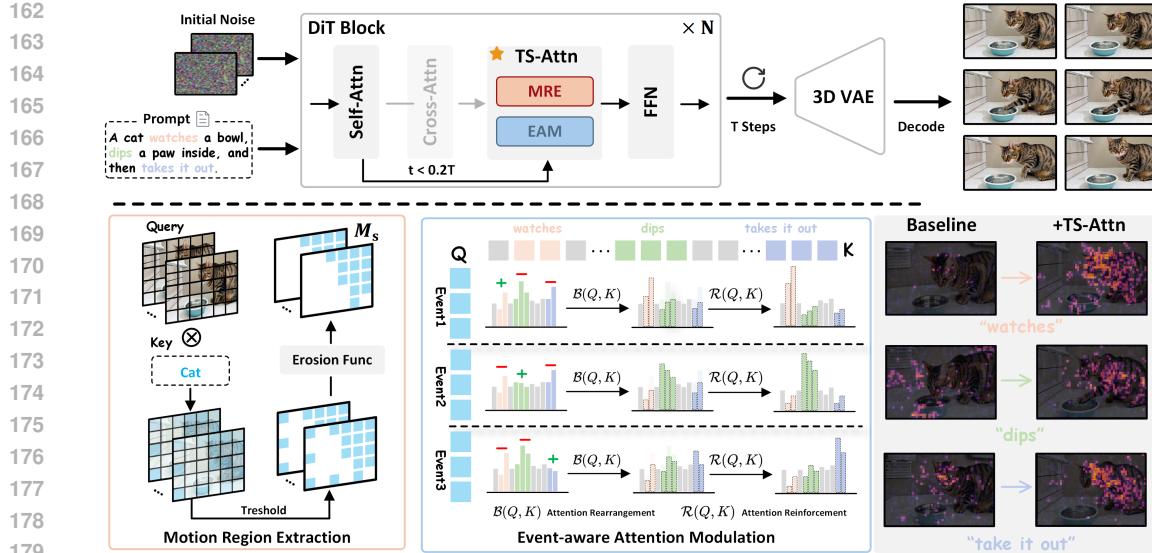


Figure 3: **The overall framework of TS-Attn.** TS-Attn replaces the original cross-attention in early denoising stages to incorporate motion information with temporal awareness. It consists of a motion region extraction module to identify motion-related tokens and an event-aware attention modulation module to adjust their attention distribution across multiple events.

(2025a), HunyuanVideo Kong et al. (2024)) and longer frame durations (e.g., Framepack Zhang & Agrawala (2025), SkyReels-V2 Chen et al. (2025), MAGI-1 Teng et al. (2025)). Yet in practice, these models still struggle with complex multi-event prompts, often leading to event omissions or temporal coupling, underscoring the need for more robust solutions.

3 METHOD

3.1 INSIGHTS OF TS-ATTN

We conduct an in-depth analysis of why existing state-of-the-art foundation models encounter issues such as event omission and temporal errors when a single sentence contains multiple events. Specifically, we examine whether the keyframes of the generated video establish the correct temporal correspondence between video tokens and event conditions within the cross-attention layer. Since motion information is primarily formed in the early stages of denoising Zhang et al. (2025b), the middle layer at 20% of the denoising steps is used for attention analysis.

As illustrated on the right of Figure 2, we identify two critical issues in the cross-attention distribution of Wan2.2-A14B: (1) Motion-related regions (i.e., the layout of the subject “cat”) in each frame fail to establish strong attention associations with their corresponding verbs in the temporal sequence. For instance, “watch” loosely aligns with the layout of “cat”, while actions like “dips” and “take it out” focus on irrelevant background areas, leading to severe misalignment. (2) Attention coupling of verbs from different events occurs within the same frame. For example, in the middle frame, all three verbs exhibit strong responses on the same video regions.

The issues discussed above lead to incorrect injection of multiple event conditions, resulting in severe event omission and temporal errors. This phenomenon indicates that the cross-attention map requires significant recalibration to accommodate the temporal distribution of multiple events.

To address these issues, TS-Attn is designed based on two core insights: 1) Strengthen the attention correlation between each frame’s motion-relevant region and its corresponding temporal event; 2) Minimize interference caused by coupled attention across different events. As expected, the implemented TS-Attn significantly improves temporal attention alignment across multiple events, ensuring faithful generation of multi-event sequences (Figure 2 left).

216 3.2 OVERALL FRAMEWORK
217

218 As shown in Figure 3, the overall framework is implemented based on the DiT architecture. We
219 replace the original cross-attention with TS-Attn in the early denoising stages to inject motion in-
220 formation with stronger temporal awareness. TS-Attn consists of two components: first, it identifies
221 motion-region video tokens using the motion-related subject semantic layout, then applies event-
222 aware attention modulation to these video tokens.

223 The temporal segmentation of multiple event intervals for video tokens can be simply achieved
224 through various methods, including user input, leveraging efficient LLM APIs (e.g., GPT-4o-mini),
225 or default uniform segmentation. These approaches show minimal differences in final performance.
226 Details can refer to Appendix Table 8. **By default, we use GPT-4o-mini for temporal segmentation,**
227 **unless otherwise specified in the context.**

228 3.3 MOTION REGION EXTRACTION
229

230 To achieve precise attention modulation, TS-Attn first adaptively identifies motion regions across the
231 video. Motion information in a video primarily originates from the foreground subject performing
232 actions. Thus, the semantic layout of the subject in the prompt can approximately represent motion-
233 related regions. As shown in Figure 3, given the query of the video tokens $\mathbf{Q} \in \mathbb{R}^{N \times d}$ and the key
234 of the text tokens $\mathbf{K} \in \mathbb{R}^{M \times d}$, we obtain the semantic map $\mathbf{A}_s \in \mathbb{R}^{N \times 1}$ of the subject s :

$$235 \mathbf{A}_s = \text{Mean} \left(\mathcal{I}_s \left(\frac{\mathbf{Q} \mathbf{K}^\top}{\sqrt{d}} \right) \right), \quad (1)$$

236 where $\mathcal{I}_s(\cdot)$ represents the function for indexing subject s . Similar to Helbling et al. (2025), we use
237 the mean value of \mathbf{A}_s as an adaptive threshold to obtain the motion region mask $\mathbf{M}_s \in \mathbb{R}^{N \times 1}$:

$$238 \mathbf{M}_s = \mathcal{F}_{\mathcal{K}}(\mathbb{I}(\mathbf{A}_s \geq \text{Mean}(\mathbf{A}_s))), \quad (2)$$

239 where $\mathcal{F}_{\mathcal{K}}(\cdot)$ represents the erosion function with a kernel \mathcal{K} , which is used to remove scattered
240 noise and refine the boundaries of the binary mask. Experimentally, \mathcal{K} is set to 3. Finally, we can
241 use \mathbf{M}_s to guide attention modulation in motion-related regions.

242 3.4 EVENT-AWARE ATTENTION MODULATION
243

244 To address the temporal misalignment and coupling of multi-events observed in Figure 2, event-
245 aware attention modulation in TS-Attn is divided into two components: *attention rearrangement*
246 and *attention reinforcement*.

247 *Attention rearrangement* is directly based on the insight from Sec. 3.1. It redistributes the attention
248 in cross-attention along the temporal dimension, ensuring that motion-related video tokens in each
249 frame focus on their temporally corresponding events while attenuating attention to other events.
250 *Attention reinforcement* adaptively adjusts the intensity of attention based on the sharpness of the
251 attention distribution, ensuring balanced and event-aware attention scaling. Therefore, the entire
252 attention modulation process in TS-Attn can be formulated as follows:

$$253 \mathbf{A} = \text{softmax} \left(\frac{\mathbf{Q} \mathbf{K}^\top + \mathbf{M}_s \odot \mathcal{R}(\mathbf{Q}, \mathbf{K}) \odot \mathcal{B}(\mathbf{Q}, \mathbf{K})}{\sqrt{d}} \right) \in \mathbb{R}^{N \times M}, \quad (3)$$

254 where $\mathcal{B}(\mathbf{Q}, \mathbf{K})$ is the bias function to achieve attention rearrangement, $\mathcal{R}(\mathbf{Q}, \mathbf{K})$ is the attention
255 reinforcement function, and \mathbf{M}_s is derived from Sec. 3.3 to constrain attention modulation in the
256 motion-related region. The details of these two functions are introduced below separately.

257 **Attention Rearrangement.** Given the event token list $[e_1, e_2, \dots, e_m]$ in the prompt, and the
258 corresponding temporally segmented video queries $[\mathbf{Q}_1, \mathbf{Q}_2, \dots, \mathbf{Q}_m]$ as described in Sec. 3.2.
259 Attention rearrangement encourages each temporally segmented video query to interact with its
260 corresponding event while weakening the influence of other events. This process is mainly achieved
261 by applying positive bias b_i^+ or negative bias b_i^- to different events:

$$262 b_i^+ = \max(\mathbf{Q}_i \mathbf{K}^\top) - \text{mean}(\mathbf{Q}_i \mathbf{K}^\top), \quad (4)$$

270 $b_i^- = \min(\mathbf{Q}_i \mathbf{K}^\top) - \text{mean}(\mathbf{Q}_i \mathbf{K}^\top),$ (5)
 271

272 $\mathcal{B}(\mathbf{Q}_i, \mathbf{K})[x, y] = \begin{cases} \mathbf{b}_i^+[x, y], & \text{if } y \in e_i, \\ \mathbf{b}_i^-[x, y], & \text{if } y \in e_j, i \neq j \\ 0, & \text{otherwise,} \end{cases}$ (6)
 273
 274
 275

where $\mathcal{B}(\mathbf{Q}_i, \mathbf{K})$ is the bias function for \mathbf{Q}_i , and $[x, y]$ represents the indices of the query and key. For \mathbf{Q}_i , a positive bias is applied to e_i , while a negative bias is applied to other events. The remaining text is treated as prompt context, with no bias applied.

Finally, we obtain the bias term for each segmented video query in a similar manner and concatenate them together to obtain the complete bias function $\mathcal{B}(\mathbf{Q}, \mathbf{K})$:

279 $\mathcal{B}(\mathbf{Q}, \mathbf{K}) = \mathcal{B}(\mathbf{Q}_1, \mathbf{K}) \oplus \mathcal{B}(\mathbf{Q}_2, \mathbf{K}) \dots \oplus \mathcal{B}(\mathbf{Q}_m, \mathbf{K}) \in \mathbb{R}^{N \times M},$ (7)
 280

283 where \oplus indicates the concatenation function.
 284

285 **Attention Reinforcement.** We observe that when the attention between \mathbf{Q}_i and e_i is too inevident
 286 and the overall distribution is overly flat, it is still difficult to achieve temporal alignment solely
 287 through attention rearrangement. To address this, we further leverage attention reinforcement to
 288 adaptively strengthen the focus on the temporally aligned event by additionally introducing a rein-
 289forcement factor term $\mathcal{R}(\mathbf{Q}, \mathbf{K})$ to attention rearrangement.

290 Specifically, we first obtain the original distribution of attention probes $\mathbf{p}_i = \text{Softmax}\left(\frac{\mathbf{Q}_i \mathbf{K}^\top}{\sqrt{d}}\right)$,
 291 and measure the attention intensity of each text token after normalization as $\mathbf{p}'_i = \frac{\mathbf{p}_i - \mathbf{p}_i^{\min}}{\mathbf{p}_i^{\max} - \mathbf{p}_i^{\min} + \epsilon}$.
 292 Subsequently, we can adaptively adjust the positive strengthen factor r_i^+ and the negative strengthen
 293 factor r_i^- based on \mathbf{p}_i . Specifically, when \mathbf{p}'_i is small for a temporally aligned event e_i or large for
 294 other events, the intensity needs to be increased accordingly:
 295

296 $r_i^+ = r^{\min} + (1 - \mathbf{p}'_i) \cdot (r^{\max} - r^{\min}),$ (8)
 297

298 $r_i^- = r^{\min} + \mathbf{p}'_i \cdot (r^{\max} - r^{\min}),$ (9)
 299

300 where r^{\min} and r^{\max} are the lower and upper bounds of the strengthen factor, which are experimen-
 301 tally set to 1 and 1.5, respectively. Then $\mathcal{R}(\mathbf{Q}_i, \mathbf{K})$ can be formulated as:

302 $\mathcal{R}(\mathbf{Q}_i, \mathbf{K})[x, y] = \begin{cases} r_i^+[x, y], & \text{if } y \in e_i, \\ r_i^-[x, y], & \text{if } y \in e_j, i \neq j \\ 0, & \text{otherwise,} \end{cases}$ (10)
 303
 304
 305

306 Finally, we obtain the complete $\mathcal{R}(\mathbf{Q}, \mathbf{K})$ to match $\mathcal{B}(\mathbf{Q}, \mathbf{K})$.
 307

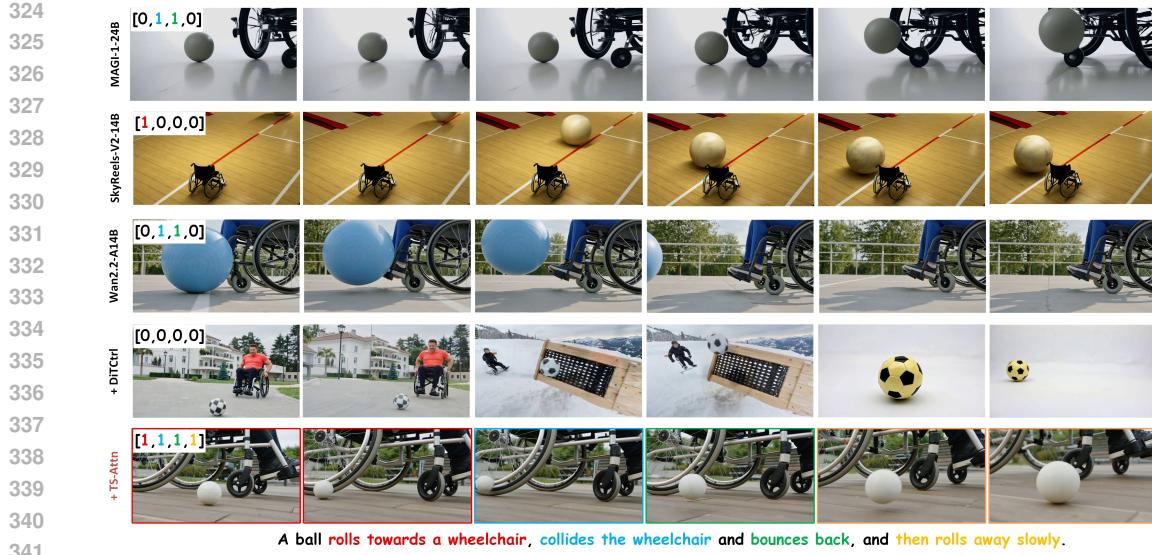
308 $\mathcal{R}(\mathbf{Q}, \mathbf{K}) = \mathcal{R}(\mathbf{Q}_1, \mathbf{K}) \oplus \mathcal{R}(\mathbf{Q}_2, \mathbf{K}) \dots \oplus \mathcal{R}(\mathbf{Q}_m, \mathbf{K}) \in \mathbb{R}^{N \times M},$ (11)
 309

310 For simplicity, we illustrate the process of TS-Attn using the prompt containing only a single subject.
 311 The details for handling prompts with multiple subjects can be found in Appendix A.
 312

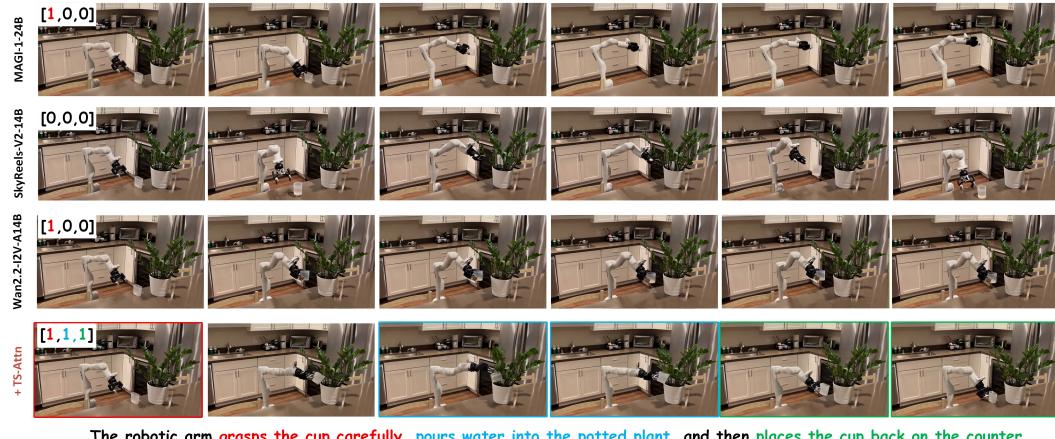
313 4 EXPERIMENTS

315 4.1 EXPERIMENTAL SETUP

317 **Implementation Details.** We seamlessly integrate TS-Attn into multiple video generation models,
 318 including: (1) CogVideoX Yang et al. (2024) based on the MM-DiT architecture, and (2) Wan2.1
 319 and Wan2.2 models Wang et al. (2025a) based on the Cross-DiT architecture, which injects text
 320 conditions through cross-attention. We perform both T2V and I2V tasks on these models. For the
 321 T2V task, TS-Attn is applied to the first 20% of the denoising steps. For the I2V task, the first
 322 40% of the denoising steps are selected to enhance control effects. Basic inference settings such as
 323 the number of denoising steps, the scheduler type, and video resolution remain consistent with the
 original configurations of these models. All experiments are conducted on NVIDIA A100 GPU.



341
342 Figure 4: **Qualitative comparison results on multi-event T2V generation.** The list in the top-left
343 corner, evaluated jointly by GPT-4o and humans, indicates the completion status of events.
344



358
359 Figure 5: **Qualitative comparison results on multi-event I2V generation.** The list in the top-left
360 corner, evaluated jointly by GPT-4o and humans, indicates the completion rates. SkyReels-V2-14B
361 generates actions that defy the laws of physics, resulting in a completion score of zero for all events.
362

363 **Baseline Models.** The comparison models we selected can be divided into three categories: (1)
364 Basic video generation models, which include Open-Sora-Plan 1.3.0 Lin et al. (2024), Open-Sora
365 1.2 Zheng et al. (2024), Vchitect-2.0 Fan et al. (2025), Pyramid-Flow Jin et al. (2024), SkyReels-
366 V2 Chen et al. (2025), and MAGI-1 Teng et al. (2025); (2) Multi-event video generation models,
367 which includes MEVG Oh et al. (2024) and DiTCtrl Cai et al. (2025) reimplemented on Wan2.2-
368 A14B; (3) Closed-sourced models, including KlingAI (2024), and HailuoAI (2024). Training-
369 based methods MinT Wu et al. (2025b) and ShotAdapter Kara et al. (2025) are excluded due to
370 closed-source code and data.

371 **Benchmark and Evaluation Metrics.** We select StoryEval-Bench Wang et al. (2025b) for the
372 quantitative evaluation of multi-event T2V tasks, as it is a representative benchmark containing 423
373 prompts across seven classes, with 2–4 events per prompt. This benchmark utilizes GPT-4o OpenAI
374 (2024) and LLaVA-OV-chat-72B Li et al. (2024) to evaluate event completeness, temporal accuracy,
375 and subject consistency in the generated videos. Since no existing multi-event I2V benchmark is
376 available, we construct StoryEval-Bench-I2V. Specifically, GPT-4o is used to reparse each prompt
377 to describe the initial state of the video, and Qwen-Image Wu et al. (2025a) synthesizes the first
378 frame according to the reparsed prompt. Further details can be found in the Appendix B.

378 Table 1: Evaluation results on T2V tasks with GPT-4o verifier. Best scores are **bolded**.
379

380 Model	381 Human	382 Animal	383 Object	384 Retrieval	385 Creative	386 Easy	387 Hard	388 Average
Hailuo	38.2%	38.3%	27.5%	42.6%	18.0%	58.9%	9.7%	35.1%
Kling-1.5	37.2%	44.9%	36.6%	39.4%	36.0%	60.8%	16.4%	40.1%
Open-Sora-Plan 1.3.0	9.1%	9.7%	9.4%	13.2%	7.1%	18.2%	3.2%	9.4%
Open-Sora 1.2	16.4%	18.3%	16.2%	24.7%	11.8%	32.7%	4.3%	17.9%
Vchitect-2.0	21.5%	19.9%	20.4%	22.0%	15.2%	42.8%	3.9%	21.7%
Pyramid-Flow	17.8%	16.5%	12.8%	23.4%	9.7%	35.1%	1.0%	16.0%
SkyReels-V2	43.8%	39.9%	35.4%	43.1%	27.0%	55.9%	26.7%	40.6%
MAGI-1-24B	39.6%	32.7%	33.5%	41.9%	24.8%	51.7%	20.5%	35.8%
MEVG + Wan2.2-A14B	47.7%	39.7%	40.5%	47.6%	28.3%	57.8%	28.9%	43.1%
DiTCtrl + Wan2.2-A14B	50.5%	48.4%	39.8%	57.9%	26.2%	60.1%	33.4%	46.5%
CogVideoX-5B	17.1%	16.4%	14.0%	16.0%	7.4%	35.4%	4.6%	16.4%
+Ours	28.0%	25.4%	21.7%	32.9%	13.9%	45.7%	9.9%	25.8%
Wan2.1-1.3B	32.4%	31.0%	24.9%	30.6%	22.1%	42.3%	17.6%	29.1%
+Ours	43.1%	33.9%	34.6%	47.0%	24.5%	53.2%	23.5%	37.6%
Wan2.1-14B	41.4%	37.2%	31.9%	45.2%	21.9%	53.8%	24.6%	37.6%
+Ours	54.7%	50.0%	45.1%	62.1%	35.2%	64.5%	38.7%	50.2%
Wan2.2-A14B	51.2%	46.7%	44.9%	54.8%	34.8%	60.3%	34.0%	48.3%
+Ours	60.4%	53.6%	52.0%	63.0%	45.3%	70.5%	44.3%	56.2%

396 Table 2: Quantitative comparison results on I2V evaluation tasks with GPT-4o verifier.
397

398 Model	399 Human	400 Animal	401 Object	402 Retrieval	403 Creative	404 Easy	405 Hard	406 Average
Framepack-13B	37.3%	30.9%	28.2%	45.0%	21.1%	43.9%	25.3%	33.5%
SkyReels-V2-I2V-14B	40.5%	37.9%	34.1%	41.1%	25.5%	43.7%	28.0%	36.9%
MAGI-1-I2V-24B	37.2%	31.3%	32.6%	37.0%	19.4%	44.7%	26.7%	34.2%
CogVideoX-I2V-5B	21.0%	18.8%	17.5%	23.3%	10.0%	35.8%	9.9%	19.6%
+Ours	28.2%	28.8%	23.5%	35.1%	16.5%	44.3%	15.9%	28.3%
Wan2.1-I2V-14B	43.8%	33.9%	36.0%	42.1%	29.8%	44.4%	31.9%	37.0%
+Ours	46.0%	38.8%	43.3%	44.9%	32.0%	54.2%	32.6%	42.6%
Wan2.2-I2V-A14B	48.4%	49.3%	43.1%	50.3%	34.4%	57.8%	39.1%	47.5%
+Ours	58.3%	53.2%	50.4%	63.0%	36.5%	64.0%	43.8%	54.4%

408 4.2 QUALITATIVE COMPARISON

409 Figure 1(a) presents representative examples generated by our method, showcasing its robust capability to handle multi-event generation tasks. In particular, Figure 4 illustrates results for multi-event 410 T2V generation, where the ball interacts with a wheelchair, demonstrating a smooth sequence of 411 events, including rolling, collision, and subsequent movement. Additionally, Figure 5 highlights 412 multi-event I2V generation, showing a robotic arm performing tasks such as grasping, pouring, and 413 placing an object. In both cases, our method effectively captures the interactions and transitions 414 between events, with GPT-4o and human evaluations jointly assessing the completion status. This 415 comparison underscores the model’s ability to handle complex, multi-step sequences across various 416 scenarios, emphasizing its effectiveness, and robust generalization in diverse video generation tasks. 417

419 4.3 QUANTITATIVE COMPARISON

421 **Benchmark Comparison.** As shown in Table 1, incorporating TS-Attn into Wan2.2-A14B, 422 Wan2.1-14B, Wan2.1-1.3B, and CogVideoX-5B significantly improves baseline performance across 423 different architectures and scales. For example, we observe relative improvements of 33.5% and 424 57.3% on the StoryEval-Bench score in Wan2.1-T2V-14B and CogVideoX-5B models, respectively. This 425 clearly demonstrates the versatility of TS-Attn across various model architectures. Besides, 426 when using Wan2.2-A14B as the baseline, TS-Attn significantly outperforms DiTCtrl and MEVG, 427 which are based on the multi-prompt paradigm. This further demonstrates TS-Attn’s excellent trade- 428 off between temporal consistency and prompt-following.

429 In the I2V task, TS-Attn consistently brings performance improvements across various baseline 430 models, as shown in Table 2. Overall, the extensive experiments above demonstrate the excellent 431 performance of TS-Attn across various tasks and model architectures. Further quantitative comparisons 432 evaluated using LLaVA-OV-Chat-72B are provided in the Appendix Table 5 and Table 6.

432 Table 3: Inference time comparison on a single A100 GPU for different models.
433

434 Model	SkyReels-v2-14B	MAGI-1-24B	Wan2.2-A14B	+MEVG	+DiTCtrl	+TS-Attn(Ours)
435 Latency (s)	1865	2732	846	2453	2749	863

436 Table 4: Ablation results of TS-Attn on StoryEval-Bench.
437

439 Method	440 Wan2.2-A14B			441 Wan2.1-14B			442 CogVideoX-5B		
	443 Easy	444 Hard	445 Avg	446 Easy	447 Hard	448 Avg	449 Easy	450 Hard	451 Avg
452 Baseline	60.3%	34.0%	48.3%	53.8%	24.6%	37.6%	35.4%	4.6%	16.4%
453 + EAM	66.2%	39.8%	51.9%	62.6%	31.1%	46.4%	42.1%	7.3%	22.9%
454 + EAM & MRE	70.5%	44.3%	56.2%	64.5%	38.7%	50.2%	45.7%	9.9%	25.8%

445 **Inference Efficiency Analysis.** We compare TS-Attn with other models in generating 480×832
446 videos to evaluate inference efficiency. For single-prompt models, the frame count is fixed at 81,
447 while for multi-prompt models (e.g., DiTCtrl, MEVG), it is approximately $81 \times n$, where n denotes
448 the number of events in the prompt. The average response time for temporal segmentation using
449 GPT-4o-mini is 2.65 seconds, which is also included in the overall inference time. The average
450 inference time on StoryEval-Bench is used for comparison. As shown in Table 3, TS-Attn increases
451 inference time by only 2% compared to Wan2.2-A14B, while significantly outperforming models
452 like DiTCtrl and MAGI-1-24B.

453 4.4 ABLATION STUDY

455 **Event-aware Attention Modulation.** We verify the effectiveness of event-aware attention modu-
456 lation (EAM). As shown in Table 4, EAM significantly improves baseline performance by 23.4% on
457 Wan2.1-14B and 39.6% on CogVideoX-5B, validating its effectiveness. We also conduct an in-depth
458 analysis of the attention rearrangement and attention reinforcement subcomponents within EAM. As
459 illustrated in Appendix Table 7, attention rearrangement contributes more to performance improve-
460 ment, validating its effectiveness in temporally aligning multiple events. Attention reinforcement,
461 on the other hand, serves more as a supporting component, adaptively adjusting the strength of
462 attention rearrangement to accommodate diverse cases.

463 **Motion Region Extraction.** We also analyze the role of the Motion Region Extraction (MRE)
464 module. As shown in Figure 7, MRE constrains attention modulation to motion-related regions,
465 ensuring the precision of modulation while avoiding interference with the cross-attention distri-
466 bution of background video tokens, thus preventing issues such as abrupt scene changes. Table 4
467 quantitatively validates the effectiveness of MRE.

468 **Different Temporal Segmentation Methods.** Finally, we discuss the impact of different temporal
469 segmentation methods on performance. As shown in Appendix Table 8, the performance differences
470 among uniform segmentation, human annotation, and GPT-4o-mini planning are minimal. This
471 indicates that TS-Attn only requires a rough temporal segmentation to effectively perform reasonable
472 attention reallocation. More discussions can be found in the Appendix E.

473 5 CONCLUSION

477 In this work, we introduce Temporal-wise Separable Attention (TS-Attn), a novel attention mecha-
478 nism designed to address the challenges of generating videos from complex temporal descriptions.
479 The mechanism dynamically reallocates attention to ensure both temporal consistency and global
480 coherence, effectively overcoming the trade-offs between action fidelity and prompt adherence ob-
481 served in existing methods. Experimental results demonstrate that TS-Attn enhances the per-
482 formance of pre-trained text-to-video models, yielding significant improvements in StoryEval-Bench
483 scores with minimal impact on inference time. Moreover, TS-Attn operates as a plug-and-play solu-
484 tion, making it compatible with a variety of models for multi-event image-to-video tasks. This
485 approach represents a significant advancement in scalable, high-quality video generation capable of
486 handling complex and temporally dynamic input prompts.

486 REFERENCES
487

488 Hritik Bansal, Yonatan Bitton, Michal Yarom, Idan Szpektor, Aditya Grover, and Kai-Wei Chang.
489 Talc: Time-aligned captions for multi-scene text-to-video generation, 2024. URL <https://arxiv.org/abs/2405.04682>.
490

491 Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
492 Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
493 latent video diffusion models to large datasets. *arXiv preprint arXiv:2311.15127*, 2023a.
494

495 Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler,
496 and Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion
497 models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
498 pp. 22563–22575, 2023b.
499

500 Minghong Cai, Xiaodong Cun, Xiaoyu Li, Wenze Liu, Zhaoyang Zhang, Yong Zhang, Ying Shan,
501 and Xiangyu Yue. Dictrtl: Exploring attention control in multi-modal diffusion transformer for
502 tuning-free multi-prompt longer video generation. In *Proceedings of the Computer Vision and*
503 *Pattern Recognition Conference*, pp. 7763–7772, 2025.
504

505 Guibin Chen, Dixuan Lin, Jiangping Yang, Chunze Lin, Junchen Zhu, Mingyuan Fan, Hao Zhang,
506 Sheng Chen, Zheng Chen, Chengcheng Ma, et al. Skyreels-v2: Infinite-length film generative
507 model. *arXiv preprint arXiv:2504.13074*, 2025.
508

509 Haoxin Chen, Yong Zhang, Xiaodong Cun, Menghan Xia, Xintao Wang, Chao Weng, and Ying
510 Shan. Videocrafter2: Overcoming data limitations for high-quality video diffusion models. *arXiv*
511 *preprint arXiv:2401.09047*, 2024.
512

513 Yufan Deng, Xun Guo, Yizhi Wang, Jacob Zhiyuan Fang, Angtian Wang, Shenghai Yuan, Yiding
514 Yang, Bo Liu, Haibin Huang, and Chongyang Ma. Cinema: Coherent multi-subject video gener-
515 ation via mllm-based guidance. *arXiv preprint arXiv:2503.10391*, 2025a.
516

517 Yufan Deng, Xun Guo, Yuanyang Yin, Jacob Zhiyuan Fang, Yiding Yang, Yizhi Wang, Shenghai
518 Yuan, Angtian Wang, Bo Liu, Haibin Huang, et al. Magref: Masked guidance for any-reference
519 video generation. *arXiv preprint arXiv:2505.23742*, 2025b.
520

521 Weichen Fan, Chenyang Si, Junhao Song, Zhenyu Yang, Yinan He, Long Zhuo, Ziqi Huang, Ziyue
522 Dong, Jingwen He, Dongwei Pan, et al. Vchitect-2.0: Parallel transformer for scaling up video
523 diffusion models. *arXiv preprint arXiv:2501.08453*, 2025.
524

525 Flux. Flux. <https://github.com/black-forest-labs/flux>, 2024.
526

527 Xun Guo, Mingwu Zheng, Liang Hou, Yuan Gao, Yufan Deng, Pengfei Wan, Di Zhang, Yufan Liu,
528 Weiming Hu, Zhengjun Zha, et al. I2v-adapter: A general image-to-video adapter for diffusion
529 models. In *ACM SIGGRAPH 2024 Conference Papers*, pp. 1–12, 2024.
530

531 Yoav HaCohen, Nisan Chiprut, Benny Brazowski, Daniel Shalem, Dudu Moshe, Eitan Richardson,
532 Eran Levin, Guy Shiran, Nir Zabari, Ori Gordon, et al. Ltx-video: Realtime video latent diffusion.
533 *arXiv preprint arXiv:2501.00103*, 2024.
534

535 HailuoAI. Hailuo. <https://hailuoai.video/>, 2024.
536

537 Alec Helbling, Tuna Han Salih Meral, Ben Hoover, Pinar Yanardag, and Duen Horng Chau.
538 Conceptattention: Diffusion transformers learn highly interpretable features. *arXiv preprint*
539 *arXiv:2502.04320*, 2025.
540

541 Teng Hu, Zhentao Yu, Zhengguang Zhou, Sen Liang, Yuan Zhou, Qin Lin, and Qinglin Lu. Hun-
542 yuancustom: A multimodal-driven architecture for customized video generation, 2025. URL
543 <https://arxiv.org/abs/2505.04512>.
544

545 Yang Jin, Zhicheng Sun, Ningyuan Li, Kun Xu, Hao Jiang, Nan Zhuang, Quzhe Huang, Yang Song,
546 Yadong Mu, and Zhouchen Lin. Pyramidal flow matching for efficient video generative modeling.
547 *arXiv preprint arXiv:2410.05954*, 2024.
548

540 Ozgur Kara, Krishna Kumar Singh, Feng Liu, Duygu Ceylan, James M Rehg, and Tobias Hinz.
 541 Shotadapter: Text-to-multi-shot video generation with diffusion models. In *Proceedings of the*
 542 *Computer Vision and Pattern Recognition Conference*, pp. 28405–28415, 2025.

543

544 Levon Khachatryan, Andranik Mousisyan, Vahram Tadevosyan, Roberto Henschel, Zhangyang
 545 Wang, Shant Navasardyan, and Humphrey Shi. Text2video-zero: Text-to-image diffusion models
 546 are zero-shot video generators. 2023.

547 Subin Kim, Seoung Wug Oh, Jui-Hsien Wang, Joon-Young Lee, and Jinwoo Shin. Tuning-
 548 free multi-event long video generation via synchronized coupled sampling. *arXiv preprint*
 549 *arXiv:2503.08605*, 2025.

550 KlingAI. Kling. <https://klingai.kuaishou.com/>, 2024.

551

552 Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li,
 553 Bo Wu, Jianwei Zhang, et al. Hunyuandvideo: A systematic framework for large video generative
 554 models. *arXiv preprint arXiv:2412.03603*, 2024.

555 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
 556 Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. *arXiv preprint*
 557 *arXiv:2408.03326*, 2024.

558

559 Bin Lin, Yunyang Ge, Xinhua Cheng, Zongjian Li, Bin Zhu, Shaodong Wang, Xianyi He, Yang Ye,
 560 Shenghai Yuan, Liuhan Chen, et al. Open-sora plan: Open-source large video generation model.
 561 *arXiv preprint arXiv:2412.00131*, 2024.

562 Han Lin, Abhay Zala, Jaemin Cho, and Mohit Bansal. Videodirectorgpt: Consistent multi-scene
 563 video generation via llm-guided planning. *arXiv preprint arXiv:2309.15091*, 2023.

564

565 Xin Ma, Yaohui Wang, Gengyun Jia, Xinyuan Chen, Ziwei Liu, Yuan-Fang Li, Cunjian Chen,
 566 and Yu Qiao. Latte: Latent diffusion transformer for video generation. *arXiv preprint*
 567 *arXiv:2401.03048*, 2024.

568

569 Gyeongrok Oh, Jaehwan Jeong, Sieun Kim, Wonmin Byeon, Jinkyu Kim, Sungwoong Kim, and
 570 Sangpil Kim. Mevg: Multi-event video generation with text-to-video models. In *European Con-*
 571 *ference on Computer Vision*, pp. 401–418. Springer, 2024.

572

573 OpenAI. Hello gpt-4o. <https://openai.com/index/hello-gpt-4o/>, 2024.

574

575 William Peebles and Saining Xie. Scalable diffusion models with transformers. 2023.

576

577 Haonan Qiu, Menghan Xia, Yong Zhang, Yingqing He, Xintao Wang, Ying Shan, and Ziwei Liu.
 578 Freenoise: Tuning-free longer video diffusion via noise rescheduling. In *The Twelfth International*
 579 *Conference on Learning Representations*, 2024.

580

581 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
 582 image segmentation. In *Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III* 18, pp. 234–241. Springer, 2015.

582

583 Meituan LongCat Team, Xunliang Cai, Qilong Huang, Zhuoliang Kang, Hongyu Li, Shijun Liang,
 584 Liya Ma, Siyu Ren, Xiaoming Wei, Rixu Xie, and Tong Zhang. Longcat-video technical report,
 585 2025. URL <https://arxiv.org/abs/2510.22200>.

586

587 Hansi Teng, Hongyu Jia, Lei Sun, Lingzhi Li, Maolin Li, Mingqiu Tang, Shuai Han, Tianning
 588 Zhang, WQ Zhang, Weifeng Luo, et al. Magi-1: Autoregressive video generation at scale. *arXiv*
 589 *preprint arXiv:2505.13211*, 2025.

590

591 Ye Tian, Ling Yang, Haotian Yang, Yuan Gao, Yufan Deng, Jingmin Chen, Xintao Wang, Zhaochen
 592 Yu, Xin Tao, Pengfei Wan, et al. Videotetris: Towards compositional text-to-video generation.
 593 *Advances in Neural Information Processing Systems*, 37:29489–29513, 2024.

594

595 Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu, Haiming Zhao,
 596 Jianxiao Yang, Jianyuan Zeng, et al. Wan: Open and advanced large-scale video generative
 597 models. *arXiv preprint arXiv:2503.20314*, 2025a.

594 Fu-Yun Wang, Wenshuo Chen, Guanglu Song, Han-Jia Ye, Yu Liu, and Hongsheng Li. Gen-l-video:
 595 Multi-text to long video generation via temporal co-denoising. *arXiv preprint arXiv:2305.18264*,
 596 2023a.

597 Jiuniu Wang, Hangjie Yuan, Dayou Chen, Yingya Zhang, Xiang Wang, and Shiwei Zhang. Modelscope text-to-video technical report. *arXiv preprint arXiv:2308.06571*, 2023b.

600 Yaohui Wang, Xinyuan Chen, Xin Ma, Shangchen Zhou, Ziqi Huang, Yi Wang, Ceyuan Yang, Yinan
 601 He, Jiashuo Yu, Peiqing Yang, et al. Lavie: High-quality video generation with cascaded latent
 602 diffusion models. *International Journal of Computer Vision*, pp. 1–20, 2024.

603 Yiping Wang, Xuehai He, Kuan Wang, Luyao Ma, Jianwei Yang, Shuohang Wang, Simon Shaolei
 604 Du, and Yelong Shen. Is your world simulator a good story presenter? a consecutive events-based
 605 benchmark for future long video generation. In *Proceedings of the Computer Vision and Pattern
 606 Recognition Conference*, pp. 13629–13638, 2025b.

607 Zun Wang, Jialu Li, Han Lin, Jaehong Yoon, and Mohit Bansal. Dreamrunner: Fine-grained com-
 608 positional story-to-video generation with retrieval-augmented motion adaptation, 2025c. URL
 609 <https://arxiv.org/abs/2411.16657>.

610 Chenfei Wu, Jiahao Li, Jingren Zhou, Junyang Lin, Kaiyuan Gao, Kun Yan, Sheng-ming Yin, Shuai
 611 Bai, Xiao Xu, Yilei Chen, et al. Qwen-image technical report. *arXiv preprint arXiv:2508.02324*,
 612 2025a.

613 Ziyi Wu, Aliaksandr Siarohin, Willi Menapace, Ivan Skorokhodov, Yuwei Fang, Varnith Chordia,
 614 Igor Gilitschenski, and Sergey Tulyakov. Mind the time: Temporally-controlled multi-event video
 615 generation. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp.
 616 23989–24000, 2025b.

617 Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
 618 Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models
 619 with an expert transformer. *arXiv preprint arXiv:2408.06072*, 2024.

620 Bowen Zhang, Xiaofei Xie, Haotian Lu, Na Ma, Tianlin Li, and Qing Guo. Mavin: Multi-
 621 action video generation with diffusion models via transition video infilling. *arXiv preprint
 622 arXiv:2405.18003*, 2024.

623 Hongyu Zhang, Yufan Deng, Shenghai Yuan, Peng Jin, Zesen Cheng, Yian Zhao, Chang Liu, and
 624 Jie Chen. Magiccomp: Training-free dual-phase refinement for compositional video generation.
 625 *arXiv preprint arXiv:2503.14428*, 2025a.

626 Lvmin Zhang and Maneesh Agrawala. Packing input frame context in next-frame prediction models
 627 for video generation. *arXiv preprint arXiv:2504.12626*, 2025.

628 Shiyi Zhang, Junhao Zhuang, Zhaoyang Zhang, Ying Shan, and Yansong Tang. Flexiact: Towards
 629 flexible action control in heterogeneous scenarios. In *Proceedings of the Special Interest Group on
 630 Computer Graphics and Interactive Techniques Conference Conference Papers*, pp. 1–11, 2025b.

631 Zangwei Zheng, Xiangyu Peng, Tianji Yang, Chenhui Shen, Shenggui Li, Hongxin Liu, Yukun
 632 Zhou, Tianyi Li, and Yang You. Open-sora: Democratizing efficient video production for all.
 633 *arXiv preprint arXiv:2412.20404*, 2024.

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 TS-Attn: Temporal-wise Separable Attention for Multi-Event 649 Video Generation

651 Appendix

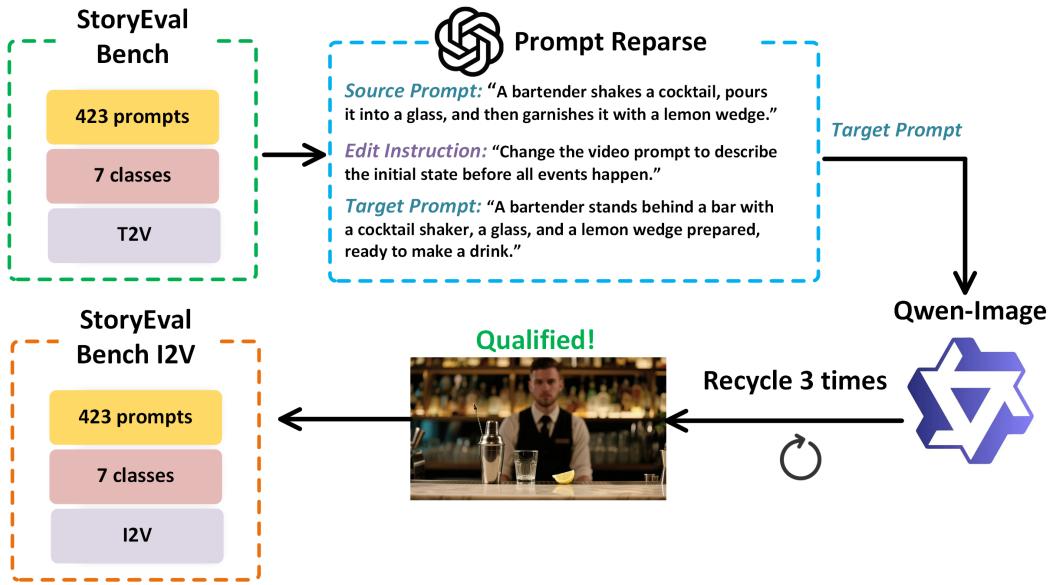
654 A TS-ATTN FOR MULTIPLE SUBJECTS

656 For brevity of description, we introduce TS-Attn in the main text using a single subject and its cor-
657 responding event list. Therefore, this section provides a supplementary explanation for scenarios
658 involving multiple subjects. Given a prompt with a subject list $[s_1, s_2, \dots, s_m]$, we iteratively ex-
659 tract the motion-related region mask for each subject, resulting in $[M_{s_1}, M_{s_2}, \dots, M_{s_m}]$. Similarly,
660 based on the temporal distribution of the event list corresponding to each subject, we derive the
661 attention rearrangement terms $[\mathcal{B}_{s_1}(\mathbf{Q}, \mathbf{K}), \mathcal{B}_{s_2}(\mathbf{Q}, \mathbf{K}), \dots, \mathcal{B}_{s_m}(\mathbf{Q}, \mathbf{K})]$ and the attention rein-
662 forcement terms $[\mathcal{R}_{s_1}(\mathbf{Q}, \mathbf{K}), \mathcal{R}_{s_2}(\mathbf{Q}, \mathbf{K}), \dots, \mathcal{R}_{s_m}(\mathbf{Q}, \mathbf{K})]$ for every subject. We can then obtain
663 the final modulated attention map by summing the bias terms of all subjects:

$$664 \mathbf{A} = \text{softmax} \left(\frac{\mathbf{Q}\mathbf{K}^\top + \sum_{i=1}^m \mathbf{M}_{s_i} \odot \mathcal{R}_{s_i}(\mathbf{Q}, \mathbf{K}) \odot \mathcal{B}_{s_i}(\mathbf{Q}, \mathbf{K})}{\sqrt{d}} \right) \in \mathbb{R}^{N \times M}, \quad (12)$$

667 It is worth noting that for multiple subjects, our implementation avoids repeated computation of the
668 attention matrix. Instead, we only sequentially index the attention values at required positions for
669 each subject to construct the bias terms. As a result, the inference overhead for multiple subjects
670 remains nearly identical to that of a single subject.

672 B CONSTRUCTION PIPELINE FOR STORYEVAL-BENCH-I2V



694 **Figure 6: Construction pipeline of StoryEval-Bench-I2V.**

695 Due to the absence of a dedicated multi-event I2V benchmark, we construct a new evaluation frame-
696 work to assess the generalization ability of TS-Attn on I2V tasks. StoryEval-Bench Wang et al.
697 (2025b), as a representative benchmark for multi-event text-to-video generation, has undergone peer
698 review and features a large scale of prompts with high data diversity. Based on this foundation, we
699 explore extending StoryEval-Bench to support the I2V task.

700 The core lies in deriving a reasonable first frame image from the video prompts in StoryEval-Bench.
701 As illustrated in Figure 6, we first use GPT-4o OpenAI (2024) to convert source video prompts into

target descriptions of the initial state before any events occur. These descriptions primarily include static information such as the subjects and background layout involved in the video prompt, and can therefore be regarded as an approximate representation of the first frame of the video. We then employ the state-of-the-art text-to-image model Qwen-Image Wu et al. (2025a) to synthesize the first frame of the video based on the target descriptions. To ensure the accuracy of synthesized images, we select three different random seeds for synthesis and manually identify the optimal image. Through this process, we obtain 423 image-text pairs to support I2V task validation. Since we do not alter the prompt categories in StoryEval-Bench, we use the original benchmark’s evaluation methodology for assessing the generated videos.

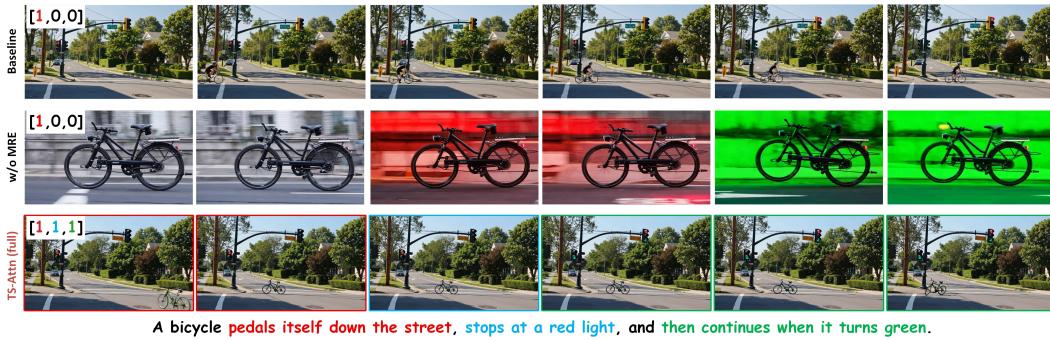


Figure 7: Ablation results on the effect of motion region mask. Not restricting attention modulation to motion-related regions can, in some cases, lead to background flickering, which ultimately degrades the overall video quality. Additionally, it hinders the motion regions from effectively responding to individual events.

C MORE COMPARISON RESULTS WITH LLAVA-OV-CHAT-72B VERIFIER

As shown in Tables 5 and 6, we also employ the LLaVA-OV-Chat-72B Li et al. (2024) verifier to evaluate the generated videos. Consistent with the conclusions drawn using the GPT-4o verifier, TS-Attn consistently and significantly improves baseline performance across multiple models and both I2V and T2V tasks.

D ABLATION RESULTS OF EAM

The core of TS-Attn, event-aware attention modulation, primarily consists of two sub-modules: attention rearrangement and attention reinforcement. To understand their individual contributions to performance, we conduct a more detailed ablation study in Table 7. It can be observed that removing attention rearrangement leads to a significant performance drop, further demonstrating that the more critical aspect of TS-Attn is the temporal redistribution of cross-attention distributions. Relying solely on attention reinforcement reduces TS-Attn to a mere attention enhancement mechanism for event tokens, lacking temporal correspondence. Combining both modules enables intensity-adaptive attention allocation and achieves optimal performance.

E COMPARISON OF DIFFERENT TEMPORAL SEGMENTATION METHODS

We compare different temporal segmentation strategies that can be employed in TS-Attn.

Uniform Segmentation. This represents the simplest method for temporal segmentation: based on the number of events in the prompt, the video tokens are evenly divided into a corresponding number of intervals. In this setup, multiple events in the prompt are parsed by GPT-4o-mini.

User Input. Users can customize the intervals for each event based on the event count. For example, for a prompt containing four events, the video tokens can be partitioned in a ratio of 20%, 20%,

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

System prompt

You are a video analysis assistant. Your task is to divide the total video duration into time ranges corresponding to each event described in a given list of events. When performing this task, consider real-world physical constraints as well as the subject performing these events. The output should be a list of time ranges (as fractions of the total time) for each event, ensuring they sum to 1.0.

Specifically, given a prompt, you should first extract the subjects and motion components from it, then reasonably allocate intervals based on the order of events. Finally, please return a JSON file that hierarchically organizes these events in a temporal sequence. Below is an example:

In-context example

"A dog chases a ball and barks, while a cat naps on the couch and stretches."

```
{
  "PROMPT": "A dog chases a ball and barks, while a cat naps on the couch and stretches",
  "dog": {"motion": ["chases a ball", "barks"], "event_range": "[0.0-0.5, 0.5-1.0"]},
  "cat": {"motion": ["naps on the couch", "stretches"], "event_range": "[0.0-0.5, 0.5-1.0"]"}
}
```


Figure 8: **The prompt template for temporal segmentation using the LLM API.**

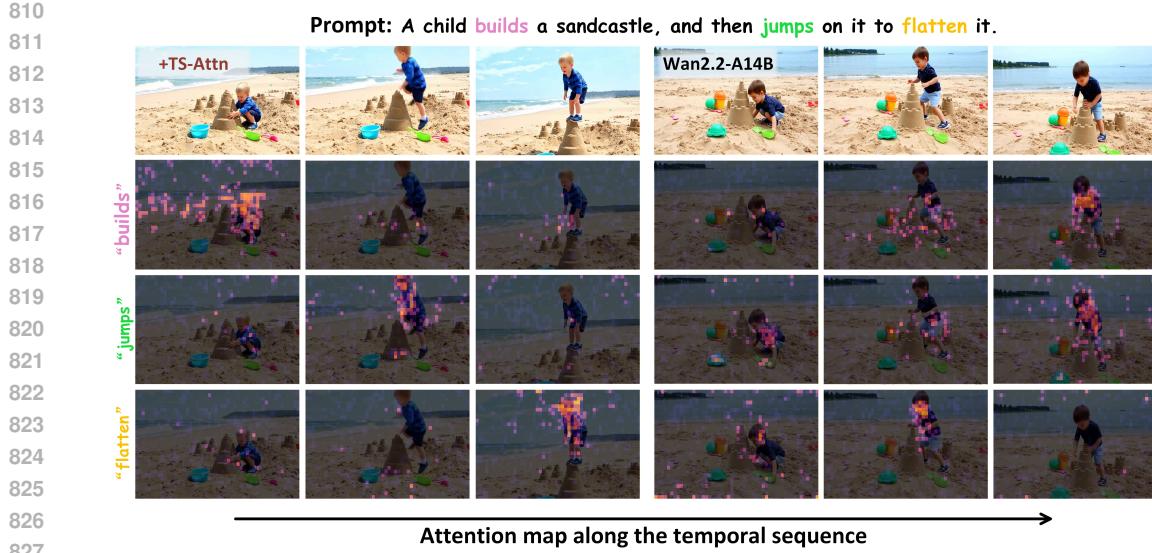
30%, and 30% to align with each event. In the experiments summarized in Table 8, we manually annotated temporal intervals for each prompt in StoryEval-Bench based on commonsense knowledge.

Efficient Planning with LLM API. This approach is similar to user input: we instruct the LLM to partition reasonable temporal intervals for each prompt. Specifically, we employ the GPT-4o-mini for this segmentation task due to its simplicity. The LLM API processes each prompt in approximately 2 to 3 seconds, demonstrating high efficiency.

All three methods mentioned above are straightforward and easy to implement. As demonstrated in Table 8, their differences in final performance are minimal. This further confirms that even with only coarse temporal interval guidance, TS-Attn is capable of achieving temporal-aware multi-event video generation. Moreover, overlapping intervals between different events do not significantly impact performance, as TS-Attn employs a soft attention redistribution mechanism. Video tokens within a specific temporal interval are guided to focus primarily on attention interactions corresponding to their assigned event, rather than being completely isolated from other events. [The prompt template we used is shown in Figure 8.](#)

F MORE ATTENTION VISUALIZATION RESULTS

We present additional attention analysis to further elaborate on the insights of TS-Attn. As shown in Figure 9, the attention distributions of different actions in TS-Attn are clearly separated along the temporal sequence. Meanwhile, each event exhibits a strong response to the motion regions of its corresponding frames. This significantly enhances the temporal awareness of the original cross-attention and, as expected, results in videos that respond accurately to all actions.



828
829 Figure 9: **More comparison of attention maps along the temporal sequence between TS-Attn**
830 **and valina cross-attention.**

G MORE QUALITATIVE RESULTS

833 In this section, we provide additional qualitative comparisons to further demonstrate the effectiveness
834 of our method on multi-event video generation tasks. Figures 10–15 present more text-to-video
835 (T2V) cases under complex temporal prompts, where our approach consistently achieves coherent
836 event transitions and maintains high visual fidelity. These results highlight the generalization ability
837 of our model in handling diverse multi-event scenarios across different subjects and environments.

838 Moreover, Figures 16 and 17 showcase comparisons with Wan2.1-14B. Our method demonstrates
839 stronger temporal consistency and better adherence to prompt semantics, especially in cases involving
840 multiple interacting events. These results further validate the robustness and scalability of our
841 approach beyond standard benchmarks.

H MORE COMPARISON WITH MULTI-PROMPT METHODS

845 VideoTetris Tian et al. (2024) and TALC Bansal et al. (2024) are frameworks that use multi-prompt
846 strategies to address compositional generation and multi-scene generation, which share certain similarities
847 with multi-event generation. To further expand our evaluation scope, we extend these frameworks to the
848 multi-event generation task. Specifically, we implement VideoTetris and TALC on
849 Wan2.2-A14B using the optimal hyperparameters specified in their original papers, ensuring a fair
850 comparison with TS-Attn. As shown in Table 9, TS-Attn substantially outperforms both TALC and
851 VideoTetris. TALC’s strict conditioning of each segment on sub-prompts disrupts global coherence,
852 leading to reduced performance. Although VideoTetris combines weighted global and local
853 cross-attention, its lack of training distorts the original video latent distribution, resulting in quality
854 degradation and minimal improvement. Qualitative visual comparisons are provided in Figure 18.

I MORE DIVERSE APPLICATIONS OF TS-ATTN

855 In this section, we present more potential application scenarios of TS-Attn, including multi-event
856 generation involving multiple subjects, scene-level multi-event generation, and enhancing the potential
857 for interactive long-video generation.

862 **Multi-subject multi-event generation.** As shown in Figure 19, multi-event generation involving
863 multiple subjects can be achieved by using attention rearrangement to dynamically bind each subject
to its corresponding event in the temporal sequence while suppressing interference from other events.

864 In this way, TS-Attn greatly enhances the model’s capability to handle complex spatial and temporal
865 prompts.
866

867 **Scene-level multi-event generation.** Meanwhile, we also observe that TS-Attn can handle scene-
868 level multi-event transitions, such as landscapes and video styles (Figure 20). It accurately interprets
869 dynamic temporal changes, responds precisely to weather and artistic styles in each temporal seg-
870 ment, and smoothly completes the transitions.
871

872 **Interactive long video generation.** The Wan model typically supports generating videos of up
873 to 5 seconds in length, which limits the number of events it can reasonably express to no more
874 than 5. To handle more events, we applied TS-Attn to the recently proposed LongCat-Video-13.6B
875 model Team et al. (2025), which natively supports video continuity. This enables us to distribute a
876 larger number of events across multiple clips. For example, 9 events can be divided into 3 clips for
877 generation while maintaining temporal consistency.
878

879 As illustrated in Figure 21, TS-Attn improves temporal awareness within each clip, greatly enhanc-
880 ing the capability to handle videos with a large number of events. The benefits of integrating TS-Attn
881 into architectures like LongCat-Video are twofold: 1) For a fixed number of events, TS-Attn enables
882 generation with fewer clips; 2) For a fixed number of clips, TS-Attn effectively manages more intricate
883 temporal descriptions. These results highlight the potential of TS-Attn for both interactive and
884 long-form video generation.
885

886 J THE USE OF LARGE LANGUAGE MODELS

887 We use large language models (LLMs) solely for polishing sentence structures and refining the lan-
888 guage throughout the manuscript. All core aspects of this research, including central ideas, experi-
889 mental design, data analysis, result interpretation, and conclusion derivation, are conducted entirely
890 by the authors. The LLM serves only as an auxiliary tool and is not involved in any key aspects
891 requiring academic judgment or creative intellectual input.
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918
919
920
Table 5: **Evaluation results on T2V tasks with LLaVA-OV-Chat-72B verifier.** Best scores are
921 **bolded.**

Model	Human	Animal	Object	Retrieval	Creative	Easy	Hard	Average
Closed-Source Model								
Hailuo	48.0%	40.1%	35.6%	51.7%	19.5%	58.3%	17.1%	41.0%
Kling-1.5	41.9%	46.0%	35.1%	41.7%	30.8%	56.1%	24.1%	41.7%
Open-Source Model								
Open-Sora-Plan 1.3.0	13.5%	13.2%	9.6%	17.1%	6.9%	28.3%	2.2%	12.7%
Open-Sora 1.2	26.2%	22.2%	20.2%	32.2%	15.4%	37.8%	10.8%	23.6%
Vchitect-2.0	33.4%	30.5%	33.6%	33.6%	20.5%	51.4%	19.1%	31.6%
Pyramid-Flow	23.6%	20.0%	15.8%	26.4%	10.5%	38.1%	4.5%	20.3%
SkyReels-V2	47.6%	47.2%	40.6%	56.9%	33.2%	60.5%	30.1%	45.9%
MAGI-1-24B	45.4%	38.8%	38.6%	48.7%	25.2%	55.8%	26.2%	41.2%
MEVG + Wan2.2-A14B	55.4%	46.2%	45.2%	55.8%	33.9%	58.7%	35.0%	48.5%
DiTCtrl + Wan2.2-A14B	56.6%	54.5%	45.0%	59.9%	33.0%	65.2%	37.1%	51.8%
CogVideoX-5B	19.7%	20.7%	17.4%	27.2%	8.1%	37.6%	7.1%	19.9%
+Ours	32.4%	29.8%	25.7%	39.9%	18.5%	48.2%	15.8%	29.6%
Wan2.1-1.3B	37.6%	37.7%	27.1%	33.6%	21.5%	45.6%	26.4%	34.4%
+Ours	46.2%	42.6%	36.5%	51.3%	28.5%	50.9%	33.3%	41.8%
Wan2.1-14B	51.0%	40.6%	36.4%	58.2%	23.8%	57.3%	31.6%	43.5%
+Ours	60.4%	55.9%	50.6%	67.6%	40.3%	73.7%	41.3%	55.9%
Wan2.2-A14B	62.6%	56.5%	48.8%	70.2%	42.9%	69.3%	45.9%	56.8%
+Ours	70.6%	63.4%	58.0%	76.6%	48.9%	78.0%	50.2%	63.9%

918
919
920
Table 6: **Evaluation results on I2V tasks with LLaVA-OV-Chat-72B verifier.** Best/2nd best
921 scores are **bolded**/underlined.

Model	Human	Animal	Object	Retrieval	Creative	Easy	Hard	Average
Framepack-13B	41.4%	37.3%	35.4%	50.1%	25.0%	51.8%	28.0%	37.9%
SkyReels-V2-14B	49.8%	44.5%	40.7%	52.7%	30.8%	54.7%	32.5%	43.8%
MAGI-1-24B	43.6%	38.3%	39.0%	46.2%	25.1%	49.7%	36.1%	40.4%
CogVideoX-I2V-5B	24.7%	24.6%	20.5%	29.3%	12.4%	42.9%	9.8%	23.9%
+Ours	37.9%	36.4%	30.8%	43.0%	20.2%	52.2%	22.1%	35.3%
Wan2.1-I2V-14B	48.6%	38.4%	36.0%	53.2%	26.7%	53.0%	28.2%	41.4%
+Ours	53.0%	46.8%	42.8%	57.9%	32.3%	55.3%	39.0%	47.9%
Wan2.2-I2V-A14B	56.7%	51.0%	47.6%	61.6%	35.3%	62.2%	41.3%	52.0%
+Ours	59.7%	58.8%	51.8%	66.8%	40.2%	67.5%	45.4%	57.6%

918
919
920
Table 7: **Ablation experiments on the subcomponents of Event-aware Attention Modulation.**

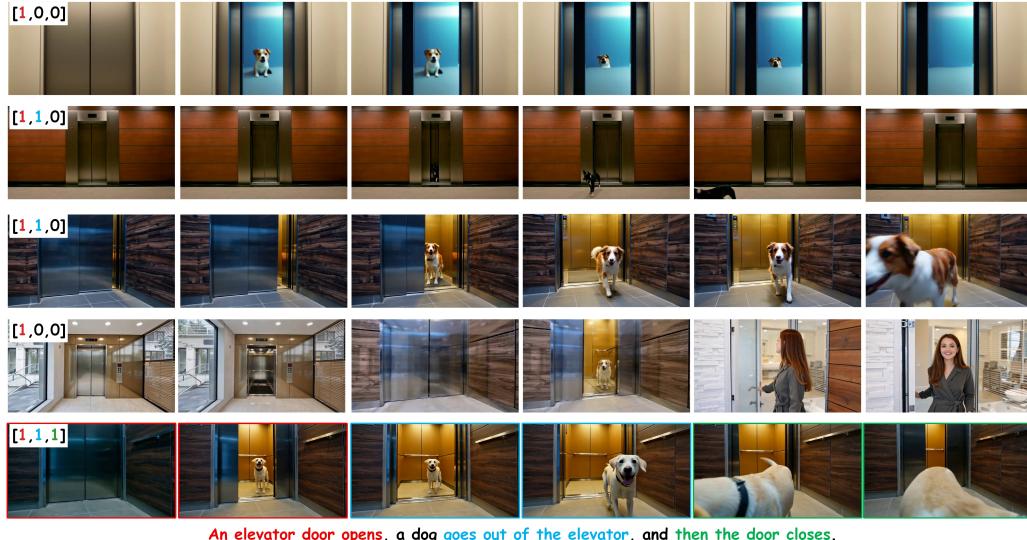
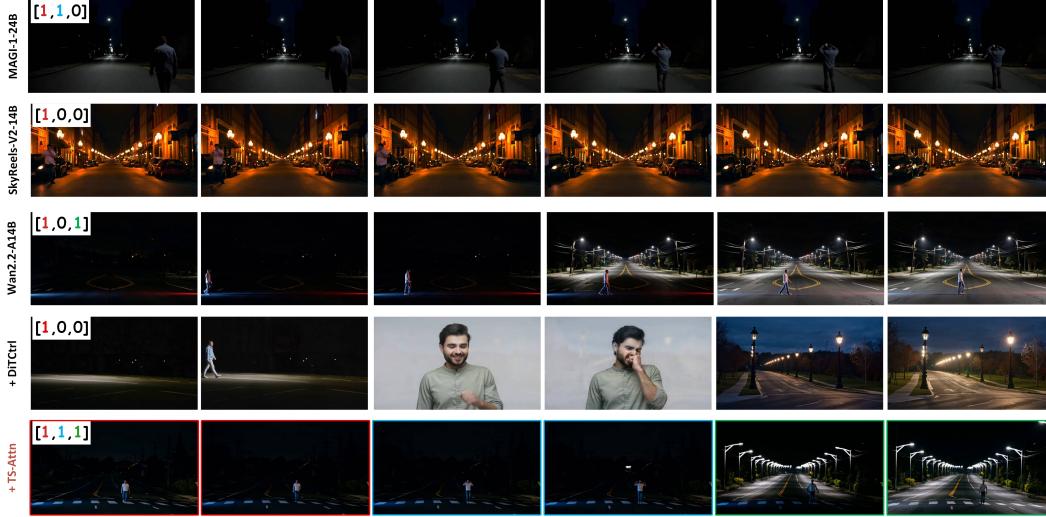
Method	Wan2.2-A14B			CogVideoX-5B		
	Easy	Hard	Avg	Easy	Hard	Avg
w/o Attention Rearrangement	63.1%	36.8%	49.4%	38.2%	5.9%	18.8%
w/o Attention Reinforcement	67.4%	41.2%	53.5%	41.8%	8.4%	23.6%
TS-Attn	70.5%	44.3%	56.2%	45.7%	9.9%	25.8%

972
973
974
975
976
977
978
979
Table 8: **Ablation results of different temporal segmentation methods.**

Method	Wan2.2-A14B			CogVideoX-5B		
	Easy	Hard	Avg	Easy	Hard	Avg
Uniform Segmentation	69.8%	42.6%	55.3%	44.5%	9.2%	25.2%
User Input	71.4%	45.0%	56.8%	44.8%	11.3%	26.5%
GPT-4o-mini Plan	70.5%	44.3%	56.2%	45.7%	9.9%	25.8%

980
981
982
Table 9: **More multi-event T2V comparison with multi-prompt methods using GPT-4o verifier.**
Best scores are **bolded**.

Model	Human	Animal	Object	Retrieval	Creative	Easy	Hard	Average
Wan2.2-T2V-A14B	51.2%	46.7%	44.9%	54.8%	34.8%	60.3%	34.0%	48.3%
+ TALC	50.9%	45.4%	44.1%	56.2%	33.8%	60.6%	31.9%	47.1%
+ VideoTertis	53.0%	46.5%	46.8%	63.6%	35.9%	63.5%	37.5%	49.7%
+ Ours	60.4%	53.6%	52.0%	63.0%	45.3%	70.5%	44.3%	56.2%

1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
Figure 10: **More qualitative comparison results on multi-event generation.**1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
Figure 11: **More qualitative comparison results on multi-event generation.**

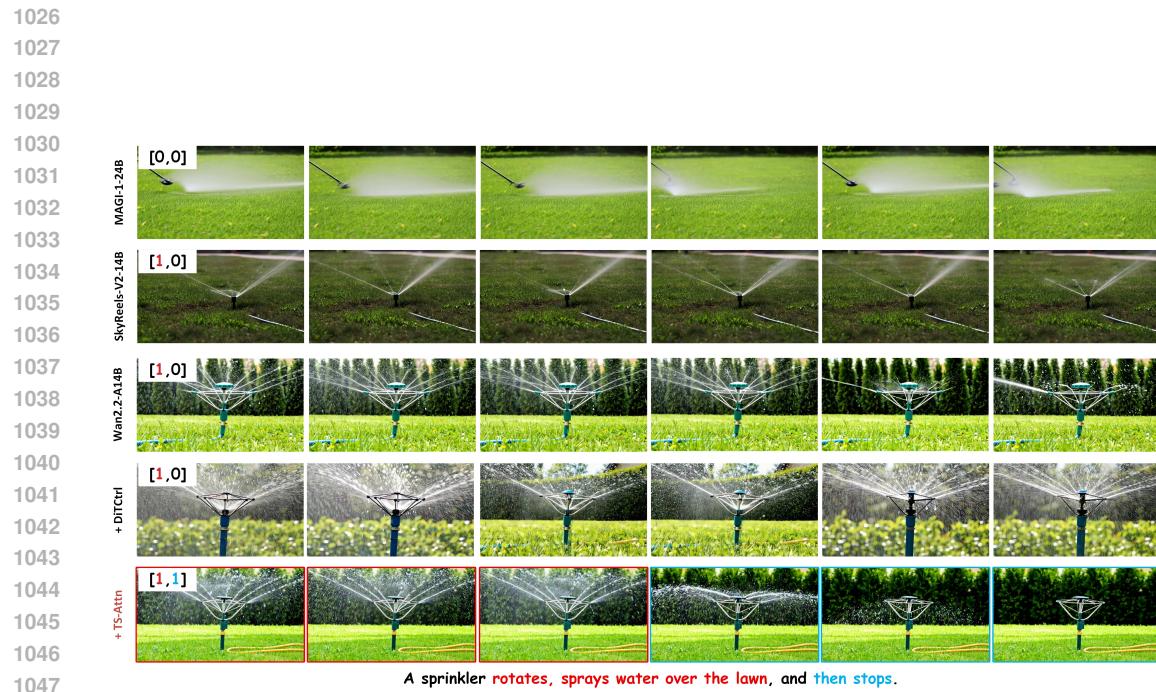


Figure 12: More qualitative comparison results on multi-event generation.

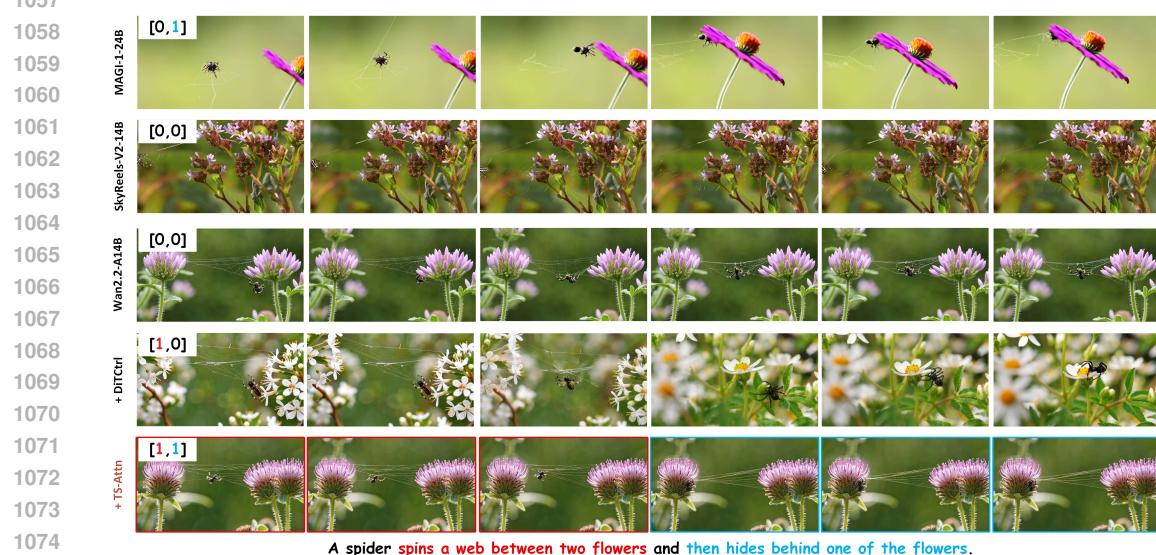


Figure 13: More qualitative comparison results on multi-event generation.

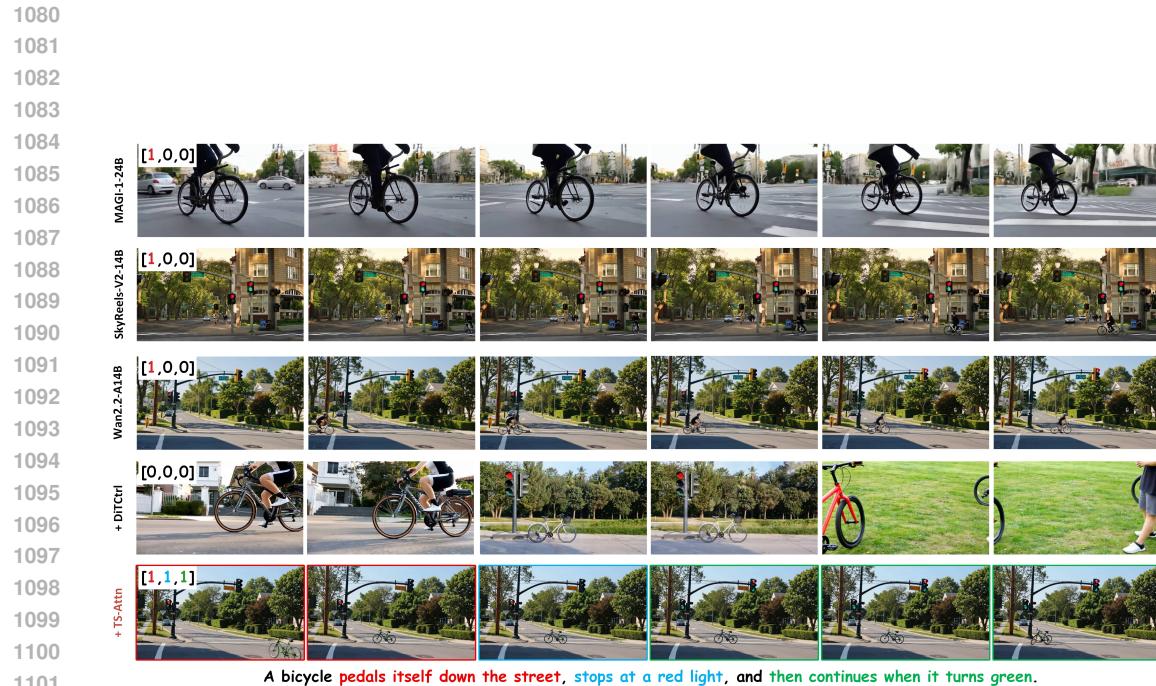


Figure 14: More qualitative comparison results on multi-event generation.

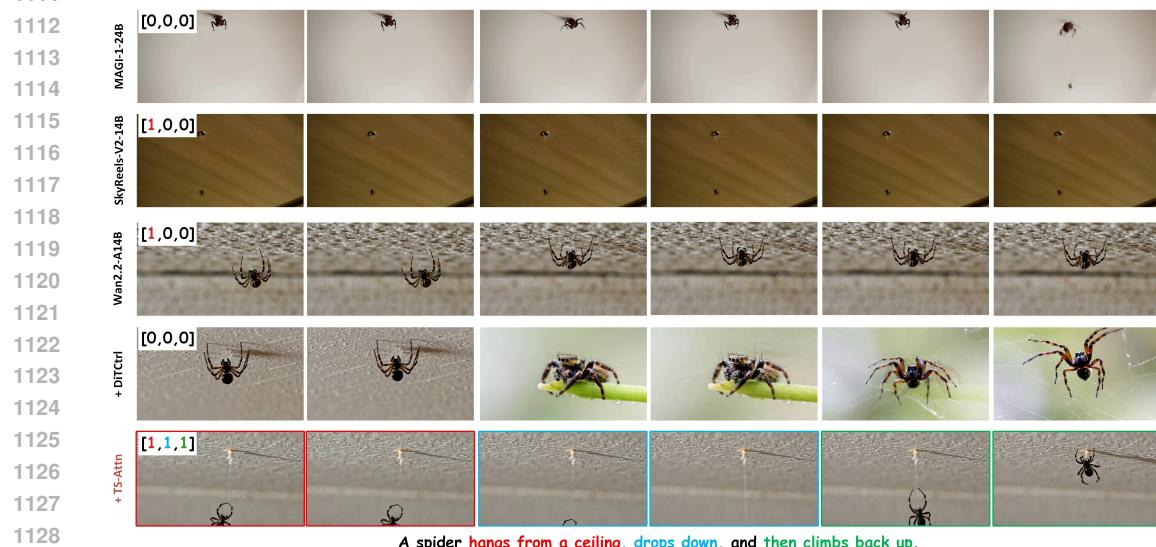


Figure 15: More qualitative comparison results on multi-event generation.

Figure 16: More qualitative comparison results with Wan2.1-14B.

1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

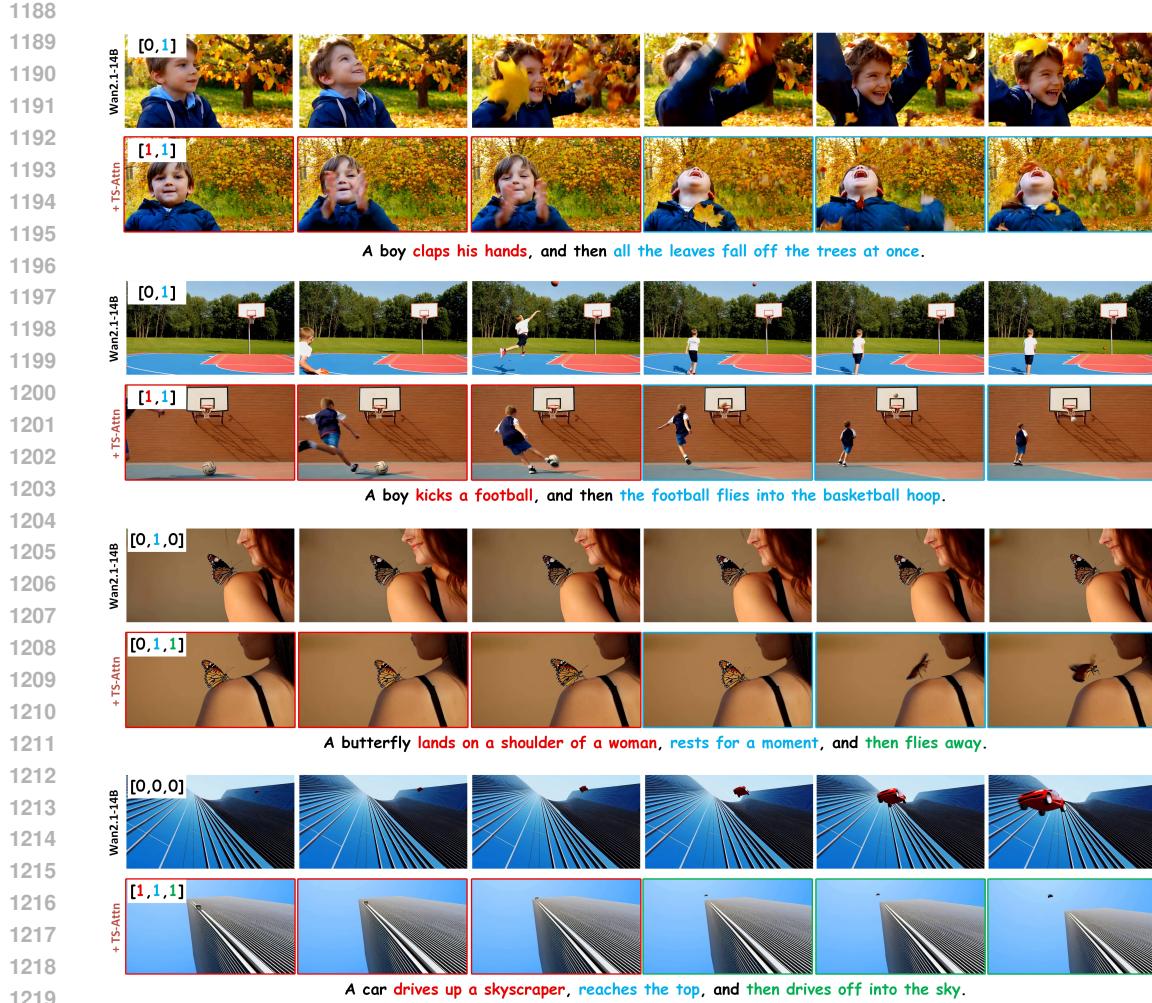


Figure 17: More qualitative comparison results with Wan2.1-14B.

Figure 18: More qualitative comparison results with multi-prompt methods.

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Figure 21: **More qualitative comparison results on interactive long video generation.**