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Figure 1: We present TS-Attn, a training-free attention mechanism, which enhances multi-event
video generation through alleviating attention conflicts across multi-event conditions. (a) Qualitative
results across subjects and scenes. (b) Quantitative comparison on StoryEval-Bench. (c¢) Latency-
performance tradeoff analysis.

ABSTRACT

Generating high-quality videos from complex temporal descriptions that contain
multiple sequential actions is a key unsolved problem. Existing methods are
constrained by an inherent trade-off: using multiple short prompts fed sequen-
tially into the model improves action fidelity but compromises temporal consis-
tency, while a single complex prompt preserves consistency at the cost of prompt-
following capability. We attribute this problem to two primary causes: 1) temporal
misalignment between video content and the prompt, and 2) conflicting attention
coupling between motion-related visual objects and their associated text condi-
tions. To address these challenges, we propose a novel, training-free attention
mechanism, Temporal-wise Separable Attention (TS-Attn), which dynamically
rearranges attention distribution to ensure temporal awareness and global coher-
ence in multi-event scenarios. TS-Attn can be seamlessly integrated into various
pre-trained text-to-video models, boosting StoryEval-Bench scores by 33.5% and
16.4% on Wan2.1-T2V-14B and Wan2.2-T2V-A14B with only a 2% increase in
inference time. It also supports plug-and-play usage across models for multi-event
image-to-video generation. The source code and video demos are available in the
supplementary materials.
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1 INTRODUCTION

Video generation models have undergone remarkable advancements, demonstrating impressive
progress in their generation capabilities Blattmann et al.| (2023a); Wang et al.[ (2024); [Kong et al.
(2024), which has in turn sparked a wide range of downstream applications Deng et al.|(2025b); [Hu
et al.| (2025)); Deng et al.|(2025a); |Guo et al.| (2024). Through the optimization of model architec-
tures Peebles & Xie|(2023); [Flux|(2024) and the scaling of training data|Wang et al.|(2025a)), current
models are capable of generating high-quality videos. However, the current good performance is
mostly limited to the prompts containing single events, even for the state-of-the-art open-sourced
models [Wang et al| (2025a); [Yang et al.| (2024)); Kong et al.| (2024). How to faithfully generate
videos from complex temporal descriptions (e.g., containing multiple events and dynamic motion
information) remains underexplored.

Existing approaches can be broadly categorized into two streams, each facing inherent performance
trade-offs. The first stream decomposes a complex multi-event prompt into several single-event
prompts and executes them across multiple inference stages |Lin et al.[(2023); |[Zhang et al.| (2024)).
While this paradigm is capable of producing action-rich content, combining individually generated
clips using techniques such as KV cache |Cai et al.[ (2025) or initial noise optimization |Oh et al.
(2024) often results in content drift and pronounced temporal inconsistencies Kim et al.| (2025)
with significantly increased inference time overhead. Conversely, the second stream of methods
directly feeds the entire complex multi-event prompt into more powerful text encoders. Although
this paradigm yields videos with improved consistency and global coherence Wang et al.| (2025a);
Zhang & Agrawala (2025), it often exhibits limited prompt-following ability, failing to accurately
interpret and respond to all individual events. Such limitations frequently manifest as event omission
or temporal hallucination.

Achieving an optimal trade-off requires simultaneously balancing global consistency and prompt
adherence. This raises a key question: can we preserve global coherence with a single complex
prompt while ensuring that the video accurately responds to each event in the correct temporal or-
der? As illustrated in Figure 3] our analysis shows that the primary cause of weak prompt-following
lies in temporal misalignment and the entangled attention correlations between motion-related re-
gions of video tokens and the textual conditions of multiple events. To address this, we propose
a simple yet effective idea: disentangle the video—text attention distribution associated with differ-
ent events in the prompt and realign it with the corresponding individual events, ensuring that they
remain separable along the temporal dimension with proper transitions.

From this observation, we derive two key insights: (1) motion-related regions in each frame should
focus primarily on the event that occurs at the same time, and (2) interactions across different events
in the temporal dimension should be minimized.

Building on the above insights, we propose Temporal-wise Separable Attention (TS-Attn), a
method that dynamically adjusts the attention distribution in the cross-attention layer to enable tem-
poral awareness in multi-event scenarios. Our idea is intuitive: TS-Attn first extracts and thresholds
the cross-attention map associated with the event-performing entity to identify the motion-related
regions. TS-Attn then rearranges the attention distribution between motion-related video tokens and
each event condition with proper separation to strengthen the correspondence with the temporally
aligned event while reducing attention coupling from unrelated events. Finally, TS-Attn incorporates
an attention reinforcement mechanism that adaptively scales event-related attention values based on
the attention distribution: a smoother distribution indicates that more modifications are needed.

In summary, the key contributions of our work are as follows:

* We conduct an in-depth analysis of the root causes underlying poor prompt-following performance
in complex descriptions, and reveal that temporally separable grouping is essential to prevent
temporal conflicts.

* We propose a novel framework, TS-Attn, which dynamically restructures the attention distribution
between motion-related regions and multi-event conditions. This design enables accurate event
responses in the correct temporal order, while simultaneously preserving global consistency and
ensuring physically plausible transitions.

* We conduct extensive experiments demonstrating that TS-Attn can be used in a training-free man-
ner and seamlessly integrated into diverse video generation foundation models. Both qualitative
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Figure 2: Comparison of attention maps along the temporal sequence between TS-Attn and
valina cross-attention. TS-Attn strengthens motion-event alignment and reduces cross-event inter-
ference, ensuring accurate attention distribution among multiple events.

and quantitative results show that it substantially improves baseline performance with negligible
inference overhead, while remaining effective across multiple tasks, including multi-event text-to-
video (T2V) and image-to-video (I2V).

2 RELATED WORKS

Diffusion-based video generation. Initial efforts concentrated on integrating temporal attention
mechanisms into the 2D U-Net architecture [Ronneberger et al. (2015)), allowing image genera-
tion models to better capture the temporal dynamics required for video synthesis
(2023b); Wang et al.| (2023b)); |[Khachatryan et al. (2023)); |Chen et al.| (2024). As diffusion trans-
formers (DiTs) gained prominence [Ma et al.| (2024), the focus shifted towards employing 3D full
attention, effectively bridging spatial and temporal dependencies [Zheng et al.| (2024); [Lin et al.
(2024); [Zhang et al.| (2025a). This innovation laid the foundation for scalable models such as

CogVideoX |Yang et al.| (2024), LTX-Video [HaCohen et al. (2024), HunyuanVideo

(2024)), and Wan [Wang et al.| (2025a), which advanced the generation of high-resolution, tempo-
rally consistent video content.

Multi-event video generation. Several studies address multi-event video generation by breaking
it into sequential multi-prompt generation [Wang et al.|(2023al); Qiu et al.| (2024)); |Kim et al.| (2025).
MEVG [Oh et al (2024) ensures visual coherence by initializing each clip’s noise with the inverted
last frame of the previous clip, while DiTCtrl[Cai et al| enables smooth motion transitions via
mask-guided key—value sharing. However, these approaches require repeated inference, increasing
computational costs and causing temporal inconsistencies. Another line of methods uses local and
global cross-attention to strengthen responses to multiple sub-prompts [Wang et al.| (2025¢)); [Tian]|
et al.| (2024); (2024). However, the use of hard-masked attention Tian et al.| (2024);
Bansal et al.| (2024)) for overly strict control can lead to issues such as background inconsistency and
makes it difficult to process fine-grained temporal transitions when foreground subjects are small.

To address this issue, recent approaches focus on packaging individual events into a global prompt
for single-pass inference generation. Among them, MinT [Wu et al.| (2025b) and ShotAdapter [Kara)
rely on large amounts of timestamp-labeled data for post-training to enable the model to
handle multi-event scenarios. However, this requires extensive computational resources and is diffi-
cult to adapt to new models. An intuitive approach is to use more powerful video generation founda-
tion models, with features such as the ability to handle more complex prompts (e.g., Wan
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Figure 3: The overall framework of TS-Attn. TS-Attn replaces the original cross-attention in early
denoising stages to incorporate motion information with temporal awareness. It consists of a motion
region extraction module to identify motion-related tokens and an event-aware attention modulation
module to adjust their attention distribution across multiple events.

(2025a), HunyuanVideo Kong et al.| (2024)) and longer frame durations (e.g., Framepack [Zhang &
Agrawala (2025), SkyReels-V2 |Chen et al.| (2025), MAGI-1 [Teng et al.[ (2025)). Yet in practice,
these models still struggle with complex multi-event prompts, often leading to event omissions or
temporal coupling, underscoring the need for more robust solutions.

3 METHOD

3.1 INSIGHTS OF TS-ATTN

We conduct an in-depth analysis of why existing state-of-the-art foundation models encounter is-
sues such as event omission and temporal errors when a single sentence contains multiple events.
Specifically, we examine whether the keyframes of the generated video establish the correct tem-
poral correspondence between video tokens and event conditions within the cross-attention layer.
Since motion information is primarily formed in the early stages of denoising Zhang et al.[(2025b),
the middle layer at 20% of the denoising steps is used for attention analysis.

As illustrated on the right of Figure [2] we identify two critical issues in the cross-attention distri-
bution of Wan2.2-A14B: (1) Motion-related regions (i.e., the layout of the subject “cat”) in each
frame fail to establish strong attention associations with their corresponding verbs in the temporal
sequence. For instance, “watch” loosely aligns with the layout of “cat”, while actions like “dips”
and “take it out” focus on irrelevant background areas, leading to severe misalignment. (2) Attention
coupling of verbs from different events occurs within the same frame. For example, in the middle
frame, all three verbs exhibit strong responses on the same video regions.

The issues discussed above lead to incorrect injection of multiple event conditions, resulting in
severe event omission and temporal errors. This phenomenon indicates that the cross-attention map
requires significant recalibration to accommodate the temporal distribution of multiple events.

To address these issues, TS-Attn is designed based on two core insights: 1) Strengthen the atten-
tion correlation between each frame’s motion-relevant region and its corresponding temporal event;
2) Minimize interference caused by coupled attention across different events. As expected, the
implemented TS-Attn significantly improves temporal attention alignment across multiple events,
ensuring faithful generation of multi-event sequences (Figure [2]left).
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3.2 OVERALL FRAMEWORK

As shown in Figure [3] the overall framework is implemented based on the DiT architecture. We
replace the original cross-attention with TS-Attn in the early denoising stages to inject motion in-
formation with stronger temporal awareness. TS-Attn consists of two components: first, it identifies
motion-region video tokens using the motion-related subject semantic layout, then applies event-
aware attention modulation to these video tokens.

The temporal segmentation of multiple event intervals for video tokens can be simply achieved
through various methods, including user input, leveraging efficient LLM APIs (e.g., GPT-40-mini),
or default uniform segmentation. These approaches show minimal differences in final performance.
Details can refer to Appendix Table|8| By default, we use GPT-40-mini for temporal segmentation,
unless otherwise specified in the context.

3.3 MOTION REGION EXTRACTION

To achieve precise attention modulation, TS-Attn first adaptively identifies motion regions across the
video. Motion information in a video primarily originates from the foreground subject performing
actions. Thus, the semantic layout of the subject in the prompt can approximately represent motion-
related regions. As shown in Figure [3| given the query of the video tokens @ € R™*¢ and the key
of the text tokens K € RM*? we obtain the semantic map A, € RV *! of the subject s :

A, :Mean<IS (Q\I;(;))’ (D

where Z;(-) represents the function for indexing subject s. Similar to|Helbling et al.[(2025), we use
the mean value of A, as an adaptive threshold to obtain the motion region mask M, € R¥*1:

M, = Fx (]I(As > Mean(AS))), 2)

where Fi(-) represents the erosion function with a kernel XC, which is used to remove scattered
noise and refine the boundaries of the binary mask. Experimentally, K is set to 3. Finally, we can
use M to guide attention modulation in motion-related regions.

3.4 EVENT-AWARE ATTENTION MODULATION

To address the temporal misalignment and coupling of multi-events observed in Figure [2| event-
aware attention modulation in TS-Attn is divided into two components: attention rearrangement
and attention reinforcement.

Attention rearrangement is directly based on the insight from Sec. [3.1] It redistributes the attention
in cross-attention along the temporal dimension, ensuring that motion-related video tokens in each
frame focus on their temporally corresponding events while attenuating attention to other events.
Attention reinforcement adaptively adjusts the intensity of attention based on the sharpness of the
attention distribution, ensuring balanced and event-aware attention scaling. Therefore, the entire
attention modulation process in TS-Attn can be formulated as follows:

QKT +Ms GR(Q7K) GB(Q7K)) c RNX]W
\/& )

where B(Q, K) is the bias function to achieve attention rearrangement, R(Q, K) is the attention
reinforcement function, and M is derived from Sec. 3.3]to constrain attention modulation in the
motion-related region. The details of these two functions are introduced below separately.

A= softmax( 3

Attention Rearrangement. Given the event token list [e, ea, ..., e,,] in the prompt, and the
corresponding temporally segmented video queries [Q1, Qo2 ..., Q] as described in Sec.
Attention rearrangement encourages each temporally segmented video query to interact with its
corresponding event while weakening the influence of other events. This process is mainly achieved
by applying positive bias b} or negative bias b; to different events:

b = max(Q;K ") — mean(Q; K "), @)



Under review as a conference paper at ICLR 2026

b; = min(Q; K ") — mean(Q; K "), ®)
b_{[xvy]v ifyeei7
B(Qi, K)[z,y] = S bi[z,yl, ify€e;i#j (6)
0, otherwise,

where B(Q;, K) is the bias function for Q;, and [z, y] represents the indices of the query and key.
For Q;, a positive bias is applied to e;, while a negative bias is applied to other events. The remaining
text is treated as prompt context, with no bias applied.

Finally, we obtain the bias term for each segmented video query in a similar manner and concatenate
them together to obtain the complete bias function 5(Q, K):

B(Q.K)=B(Q1,K)®B(Q2,K)... ® B(Qn, K) € RVM, (7

where @ indicates the concatenation function.

Attention Reinforcement. We observe that when the attention between @Q; and e; is too inevident
and the overall distribution is overly flat, it is still difficult to achieve temporal alignment solely
through attention rearrangement. To address this, we further leverage attention reinforcement to
adaptively strengthen the focus on the temporally aligned event by additionally introducing a rein-
forcement factor term R(Q, K) to attention rearrangement.

Vd
pi—p;"
P e
Subsequently, we can adaptively adjust the positive strengthen factor r;} and the negative strengthen
factor r; based on p;. Specifically, when p is small for a temporally aligned event e; or large for

other events, the intensity needs to be increased accordingly:

Specifically, we first obtain the original distribution of attention probes p; = Softmax (QlK . ),

and measure the attention intensity of each text token after normalization as p; =

’I";— — rmin + (1 _ p;) . (,r,max _ rmin), (8)
T‘; _ rmin +p; . (,’,max _ ,’,min)7 (9)
where ™" and 7™ are the lower and upper bounds of the strengthen factor, which are experimen-

tally set to 1 and 1.5, respectively. Then R(Q);, K) can be formulated as:

T; [1‘7y}7 ifyeeia
R(Q“K)[m,y} = T‘;[l’,y}, inyej,i7éj (10)
0, otherwise,

Finally, we obtain the complete R(Q, K) to match 5(Q, K).
R(Q.K) =R(Q1,K) ®R(Q2, K)... 8 R(Q, K) € RV*M, (11)

For simplicity, we illustrate the process of TS-Attn using the prompt containing only a single subject.
The details for handling prompts with multiple subjects can be found in Appendix [A]

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Implementation Details. We seamlessly integrate TS-Attn into multiple video generation models,
including: (1) CogVideoX |Yang et al.|(2024) based on the MM-DiT architecture, and (2) Wan2.1
and Wan2.2 models [Wang et al| (2025a) based on the Cross-DiT architecture, which injects text
conditions through cross-attention. We perform both T2V and 12V tasks on these models. For the
T2V task, TS-Attn is applied to the first 20% of the denoising steps. For the I2V task, the first
40% of the denoising steps are selected to enhance control effects. Basic inference settings such as
the number of denoising steps, the scheduler type, and video resolution remain consistent with the
original configurations of these models. All experiments are conducted on NVIDIA A100 GPU.
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A ball rolls towards a wheelchair, collides the wheelchair and bounces back, and

Figure 4: Qualitative comparison results on multi-event T2V generation. The list in the top-left
corner, evaluated jointly by GPT-40 and humans, indicates the completion status of events.
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The robotic arm grasps the cup carefully, pours water into the potted plant, and then places the cup back on the counter.

Figure 5: Qualitative comparison results on multi-event I2V generation. The list in the top-left
corner, evaluated jointly by GPT-40 and humans, indicates the completion rates. SkyReels-V2-14B
generates actions that defy the laws of physics, resulting in a completion score of zero for all events.

Baseline Models. The comparison models we selected can be divided into three categories: (1)
Basic video generation models, which include Open-Sora-Plan 1.3.0 (2024), Open-Sora
1.2 Zheng et al|(2024), Vchitect-2.0 [Fan et al.| (2025), Pyramid-Flow (2024), SkyReels-
V2 |Chen et al|(2025), and MAGI-1 [Teng et al.| (2025)); (2) Multi-event video generation models,
which includes MEVG (2024) and DiTCtrl (2025) reimplemented on Wan2.2-
A14B; (3) Closed-sourced models, including [KlingAl| (2024), and [HailuoAl| (2024). Training-
based methods MinT (2025b) and ShotAdapter Kara et al.| (2025) are excluded due to
closed-source code and data.

Benchmark and Evaluation Metrics. We select StoryEval-Bench |Wang et al.,| (2025b)) for the
quantitative evaluation of multi-event T2V tasks, as it is a representative benchmark containing 423
prompts across seven classes, with 2—4 events per prompt. This benchmark utilizes GPT-40(OpenAl|
(2024) and LLaVA-OV-chat-72B (2024) to evaluate event completeness, temporal accuracy,
and subject consistency in the generated videos. Since no existing multi-event [2V benchmark is
available, we construct StoryEval-Bench-I12V. Specifically, GPT-4o is used to reparse each prompt

to describe the initial state of the video, and Qwen-Image (20252) synthesizes the first
frame according to the reparsed prompt. Further details can be found in the Appendix [B]
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Table 1: Evaluation results on T2V tasks with GPT-4o0 verifier. Best scores are bolded.

Model | Human  Animal  Object Retrieval Creative | Easy Hard | Average
Hailuo 38.2% 38.3% 27.5% 42.6% 18.0% 58.9% 9.7% 35.1%
Kling-1.5 37.2% 44.9% 36.6% 39.4% 36.0% 60.8% 16.4% 40.1%
Open-Sora-Plan 1.3.0 9.1% 9.7% 9.4% 13.2% 7.1% 18.2% 3.2% 9.4%
Open-Sora 1.2 16.4% 18.3% 16.2% 24.7% 11.8% 32.7% 4.3% 17.9%
Vchitect-2.0 21.5% 19.9% 20.4% 22.0% 15.2% 42.8% 3.9% 21.7%
Pyramid-Flow 17.8% 16.5% 12.8% 23.4% 9.7% 35.1% 1.0% 16.0%
SkyReels-V2 43.8% 39.9% 35.4% 43.1% 27.0% 55.9% 26.7% 40.6%
MAGI-1-24B 39.6% 32.7% 33.5% 41.9% 24.8% 51.7% 20.5% 35.8%
MEVG + Wan2.2-A14B 47.7% 39.7% 40.5% 47.6% 28.3% 57.8% 28.9% 43.1%
DiTCtrl + Wan2.2-A14B 50.5% 48.4% 39.8% 57.9% 26.2% 60.1% 33.4% 46.5%
CogVideoX-5B ‘ 17.1% 16.4% 14.0% 16.0% 7.4% 35.4% 4.6% 16.4%
+Ours 28.0% 25.4% 21.7% 32.9% 13.9% 45.7% 9.9% 25.8%
Wan2.1-1.3B | 32.4% 31.0% 24.9% 30.6% 22.1% 42.3% 17.6% 29.1%
+Ours 43.1% 33.9% 34.6% 47.0% 24.5% 53.2% 23.5% 37.6%
Wan2.1-14B 41.4% 37.2% 31.9% 45.2% 21.9% 53.8% 24.6% 37.6%
+Ours 54.7% 50.0% 45.1% 62.1% 35.2% 64.5% 38.7% 50.2%
Wan2.2-A14B ‘ 51.2% 46.7% 44.9% 54.8% 34.8% 60.3% 34.0% 48.3%
+Ours 60.4% 53.6% 52.0% 63.0% 45.3% 70.5% 44.3% 56.2%

Table 2: Quantitative comparison results on 12V evaluation tasks with GPT-40 verifier.

Model | Human Animal  Object Retrieval Creative | Easy Hard | Average
Framepack-13B 37.3% 30.9% 28.2% 45.0% 21.1% 43.9% 25.3% 33.5%
SkyReels-V2-12V-14B 40.5% 37.9% 34.1% 41.1% 25.5% 43.7% 28.0% 36.9%
MAGI-1-12V-24B 37.2% 31.3% 32.6% 37.0% 19.4% 44.7% 26.7% 34.2%
CogVideoX-12V-5B 21.0% 18.8% 17.5% 23.3% 10.0% 35.8% 9.9% 19.6%
+Ours 28.2% 28.8% 23.5% 35.1% 16.5% 44.3% 15.9% 28.3%
Wan2.1-12V-14B 43.8% 33.9% 36.0% 42.1% 29.8% 44.4% 31.9% 37.0%
+Ours 46.0% 38.8% 43.3% 44.9% 32.0% 54.2% 32.6% 42.6%
Wan2.2-12V-A14B 48.4% 49.3% 43.1% 50.3% 34.4% 57.8% 39.1% 47.5%
+Ours 58.3% 53.2% 50.4 % 63.0% 36.5% 64.0% 43.8% 54.4%

4.2 QUALITATIVE COMPARISON

Figure[T(a) presents representative examples generated by our method, showcasing its robust capa-
bility to handle multi-event generation tasks. In particular, Figure[dillustrates results for multi-event
T2V generation, where the ball interacts with a wheelchair, demonstrating a smooth sequence of
events, including rolling, collision, and subsequent movement. Additionally, Figure [5] highlights
multi-event 12V generation, showing a robotic arm performing tasks such as grasping, pouring, and
placing an object. In both cases, our method effectively captures the interactions and transitions
between events, with GPT-40 and human evaluations jointly assessing the completion status. This
comparison underscores the model’s ability to handle complex, multi-step sequences across various
scenarios, emphasizing its effectiveness, and robust generalization in diverse video generation tasks.

4.3 QUANTITATIVE COMPARISON

Benchmark Comparison. As shown in Table [I] incorporating TS-Attn into Wan2.2-A14B,
Wan2.1-14B, Wan2.1-1.3B, and CogVideoX-5B significantly improves baseline performance across
different architectures and scales. For example, we observe relative improvements of 33.5% and
57.3% on the StoryEval-Bench score in Wan2.1-T2V-14B and CogVideoX-5B models, respectively.
This clearly demonstrates the versatility of TS-Attn across various model architectures. Besides,
when using Wan2.2-A14B as the baseline, TS-Attn significantly outperforms DiTCtrl and MEVG,
which are based on the multi-prompt paradigm. This further demonstrates TS-Attn’s excellent trade-
off between temporal consistency and prompt-following.

In the I2V task, TS-Attn consistently brings performance improvements across various baseline
models, as shown in Table @ Overall, the extensive experiments above demonstrate the excellent
performance of TS-Attn across various tasks and model architectures. Further quantitative compar-
isons evaluated using LLaVA-OV-Chat-72B are provided in the Appendix Table[5]and Table 6]
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Table 3: Inference time comparison on a single A100 GPU for different models.

Model SkyReels-v2-14B MAGI-1-24B Wan2.2-A14B  +MEVG +DiTCtrl +TS-Attn(Ours)
Latency (s) 1865 2732 846 2453 2749 863

Table 4: Ablation results of TS-Attn on StoryEval-Bench.

Method ‘ Wan2.2-A14B ‘ Wan2.1-14B ‘ CogVideoX-5B

| Easy Hard Avg | Easy Hard Avg | Easy Hard Avg
Baseline 603% 34.0% 483% | 53.8% 24.6% 37.6% | 35.4% 4.6% 16.4%
+ EAM 66.2% 398% 51.9% | 62.6% 31.1% 46.4% | 42.1% 7.3% 22.9%

+EAM & MRE | 705% 443% 562% | 645% 387% 502% | 457% 99%  25.8%

Inference Efficiency Analysis. We compare TS-Attn with other models in generating 480x832
videos to evaluate inference efficiency. For single-prompt models, the frame count is fixed at 81,
while for multi-prompt models (e.g., DiTCtrl, MEVG)), it is approximately 81 x n, where n denotes
the number of events in the prompt. The average response time for temporal segmentation using
GPT-40-mini is 2.65 seconds, which is also included in the overall inference time. The average
inference time on StoryEval-Bench is used for comparison. As shown in Table[3} TS-Attn increases
inference time by only 2% compared to Wan2.2-A14B, while significantly outperforming models
like DiTCtrl and MAGI-1-24B.

4.4 ABLATION STUDY

Event-aware Attention Modulation. We verify the effectiveness of event-aware attention modu-
lation (EAM). As shown in Table[d, EAM significantly improves baseline performance by 23.4% on
Wan2.1-14B and 39.6% on CogVideoX-5B, validating its effectiveness. We also conduct an in-depth
analysis of the attention rearrangement and attention reinforcement subcomponents within EAM. As
illustrated in Appendix Table[/] attention rearrangement contributes more to performance improve-
ment, validating its effectiveness in temporally aligning multiple events. Attention reinforcement,
on the other hand, serves more as a supporting component, adaptively adjusting the strength of
attention rearrangement to accommodate diverse cases.

Motion Region Extraction. We also analyze the role of the Motion Region Extraction (MRE)
module. As shown in Figure [/, MRE constrains attention modulation to motion-related regions,
ensuring the precision of modulation while avoiding interference with the cross-attention distribu-
tion of background video tokens, thus preventing issues such as abrupt scene changes. Table [
quantitatively validates the effectiveness of MRE.

Different Temporal Segmentation Methods. Finally, we discuss the impact of different temporal
segmentation methods on performance. As shown in Appendix Table[8] the performance differences
among uniform segmentation, human annotation, and GPT-40-mini planning are minimal. This
indicates that TS-Attn only requires a rough temporal segmentation to effectively perform reasonable
attention reallocation. More discussions can be found in the Appendix [E]

5 CONCLUSION

In this work, we introduce Temporal-wise Separable Attention (TS-Attn), a novel attention mecha-
nism designed to address the challenges of generating videos from complex temporal descriptions.
The mechanism dynamically reallocates attention to ensure both temporal consistency and global
coherence, effectively overcoming the trade-offs between action fidelity and prompt adherence ob-
served in existing methods. Experimental results demonstrate that TS-Attn enhances the perfor-
mance of pre-trained text-to-video models, yielding significant improvements in StoryEval-Bench
scores with minimal impact on inference time. Moreover, TS-Attn operates as a plug-and-play so-
lution, making it compatible with a variety of models for multi-event image-to-video tasks. This
approach represents a significant advancement in scalable, high-quality video generation capable of
handling complex and temporally dynamic input prompts.
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TS-Attn: Temporal-wise Separable Attention for Multi-Event
Video Generation

Appendix

A TS-ATTN FOR MULTIPLE SUBJECTS

For brevity of description, we introduce TS-Attn in the main text using a single subject and its cor-
responding event list. Therefore, this section provides a supplementary explanation for scenarios
involving multiple subjects. Given a prompt with a subject list [s1, S2, . . ., 8], We iteratively ex-
tract the motion-related region mask for each subject, resulting in [My,, Ms,, ..., M, _ ]. Similarly,
based on the temporal distribution of the event list corresponding to each subject, we derive the
attention rearrangement terms [Bs, (Q, K ), Bs,(Q, K),...,Bs,, (Q, K)] and the attention rein-
forcement terms [Rs, (Q, K), Rs,(Q, K), ..., Rs,, (Q, K)] for every subject. We can then obtain
the final modulated attention map by summing the bias terms of all subjects:

12)

T m )
A= SOftmax(QK + Zi:l MSi © RSi(Q7 K) © Bsz(Q? K)) c ]RNXM7

Vd

It is worth noting that for multiple subjects, our implementation avoids repeated computation of the
attention matrix. Instead, we only sequentially index the attention values at required positions for
each subject to construct the bias terms. As a result, the inference overhead for multiple subjects
remains nearly identical to that of a single subject.

B CONSTRUCTION PIPELINE FOR STORYEVAL-BENCH-12V

StoryEval
“7 Bench ~~ o Prompt Reparse _———

Source Prompt: “A bartender shakes a cocktail, pours

: | .
I ! !
|

| 423 prompts | ) it into a glass, and then garnishes it with a lemon wedge.” : T ¢ P :
] arget Fromp
| :%' Edit Instruction: “Change the video prompt to describe |
| 7 classes | : the initial state before all events happen.” :
: | | Target Prompt: “A bartender stands behind a bar with |
| T2V I | acocktail shaker, a glass, and a lemon wedge prepared, |
| | | ready to make a drink.” |
— e ) e e e e e e e e —— - — — - )

StoryEval Qwen-Image
f Bench 12V

Recycle 3 times

423 prompts

7 classes

Figure 6: Construction pipeline of StoryEval-Bench-I2V.

Due to the absence of a dedicated multi-event I2V benchmark, we construct a new evaluation frame-
work to assess the generalization ability of TS-Attn on 12V tasks. StoryEval-Bench |Wang et al.
(2025b)), as a representative benchmark for multi-event text-to-video generation, has undergone peer
review and features a large scale of prompts with high data diversity. Based on this foundation, we
explore extending StoryEval-Bench to support the 12V task.

The core lies in deriving a reasonable first frame image from the video prompts in StoryEval-Bench.
As illustrated in Figure[6] we first use GPT-40|OpenAl| (2024) to convert source video prompts into
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target descriptions of the initial state before any events occur. These descriptions primarily include
static information such as the subjects and background layout involved in the video prompt, and
can therefore be regarded as an approximate representation of the first frame of the video. We then
employ the state-of-the-art text-to-image model Qwen-Image to synthesize the
first frame of the video based on the target descriptions. To ensure the accuracy of synthesized
images, we select three different random seeds for synthesis and manually identify the optimal im-
age. Through this process, we obtain 423 image-text pairs to support I2V task validation. Since we
do not alter the prompt categories in StoryEval-Bench, we use the original benchmark’s evaluation
methodology for assessing the generated videos.

A bicycle pedals itself down the street, stops at a red light, and then continues when it turns green.

Figure 7: Ablation results on the effect of motion region mask. Not restricting attention modu-
lation to motion-related regions can, in some cases, lead to background flickering, which ultimately
degrades the overall video quality. Additionally, it hinders the motion regions from effectively re-
sponding to individual events.

C MORE COMPARISON RESULTS WITH LLAVA-OV-CHAT-72B VERIFIER

As shown in Tables [5] and [f] we also employ the LLaVA-OV-Chat-72B (2024) verifier to
evaluate the generated videos. Consistent with the conclusions drawn using the GPT-4o0 verifier,
TS-Attn consistently and significantly improves baseline performance across multiple models and
both I2V and T2V tasks.

D ABLATION RESULTS OF EAM

The core of TS-Attn, event-aware attention modulation, primarily consists of two sub-modules:
attention rearrangement and attention reinforcement. To understand their individual contributions to
performance, we conduct a more detailed ablation study in Table[7] It can be observed that removing
attention rearrangement leads to a significant performance drop, further demonstrating that the more
critical aspect of TS-Attn is the temporal redistribution of cross-attention distributions. Relying
solely on attention reinforcement reduces TS-Attn to a mere attention enhancement mechanism for
event tokens, lacking temporal correspondence. Combining both modules enables intensity-adaptive
attention allocation and achieves optimal performance.

E COMPARISON OF DIFFERENT TEMPORAL SEGMENTATION METHODS
We compare different temporal segmentation strategies that can be employed in TS-Attn.

Uniform Segmentation. This represents the simplest method for temporal segmentation: based
on the number of events in the prompt, the video tokens are evenly divided into a corresponding
number of intervals. In this setup, multiple events in the prompt are parsed by GPT-40-mini.

User Input. Users can customize the intervals for each event based on the event count. For exam-
ple, for a prompt containing four events, the video tokens can be partitioned in a ratio of 20%, 20%,
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System prompt

You are a video analysis assistant. Your task is to divide the total video duration into
time ranges corresponding to each event described in a given list of events. When
performing this task, consider real-world physical constraints as well as the subject
performing these events. The output should be a list of time ranges (as fractions of the
total time) for each event, ensuring they sum to 1.0.

Specifically, given a prompt, you should first extract the subjects and motion
components from it, then reasonably allocate intervals based on the order of events.
Finally, please return a JSON file that hierarchically organizes these events in a
temporal sequence. Below is an example:

In-context example

8 “A dog chases a ball and barks, while a cat naps on the couch and stretches.”

"PROMPT":"A dog chases a ball and barks, while a cat naps on the couch and stretches"”,
"dog": {"motion": ["chases a ball", "barks"], "event_range": "[0.0-0.5, 0.5-1.0]"},

"cat": {"motion": ["naps on the couch", "stretches"], "event_range": "[0.0-0.5, 0.5-1.0]"}
}

Figure 8: The prompt template for temporal segmentation using the LLM APIL.

30%, and 30% to align with each event. In the experiments summarized in Table[8] we manually an-
notated temporal intervals for each prompt in StoryEval-Bench based on commonsense knowledge.

Efficient Planning with LLM API. This approach is similar to user input: we instruct the LLM
to partition reasonable temporal intervals for each prompt. Specifically, we employ the GPT-40-mini
for this segmentation task due to its simplicity. The LLM API processes each prompt in approxi-
mately 2 to 3 seconds, demonstrating high efficiency.

All three methods mentioned above are straightforward and easy to implement. As demonstrated
in Table 8, their differences in final performance are minimal. This further confirms that even with
only coarse temporal interval guidance, TS-Attn is capable of achieving temporal-aware multi-event
video generation. Moreover, overlapping intervals between different events do not significantly
impact performance, as TS-Attn employs a soft attention redistribution mechanism. Video tokens
within a specific temporal interval are guided to focus primarily on attention interactions corre-
sponding to their assigned event, rather than being completely isolated from other events. The
prompt template we used is shown in Figure

F MORE ATTENTION VISUALIZATION RESULTS

We present additional attention analysis to further elaborate on the insights of TS-Attn. As shown
in Figure [0 the attention distributions of different actions in TS-Attn are clearly separated along
the temporal sequence. Meanwhile, each event exhibits a strong response to the motion regions of
its corresponding frames. This significantly enhances the temporal awareness of the original cross-
attention and, as expected, results in videos that respond accurately to all actions.
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Prompt: A child a sandcastle, and then jumps on it to it.

ATS-AUN s N ‘Wan22-a148
T .

3

Attention map along the temporal sequence

Figure 9: More comparison of attention maps along the temporal sequence between TS-Attn
and valina cross-attention.

G MORE QUALITATIVE RESULTS

In this section, we provide additional qualitative comparisons to further demonstrate the effective-
ness of our method on multi-event video generation tasks. Figures[TOHI3|present more text-to-video
(T2V) cases under complex temporal prompts, where our approach consistently achieves coherent
event transitions and maintains high visual fidelity. These results highlight the generalization ability
of our model in handling diverse multi-event scenarios across different subjects and environments.

Moreover, Figures [16] and [T7] showcase comparisons with Wan2.1-14B. Our method demonstrates
stronger temporal consistency and better adherence to prompt semantics, especially in cases involv-
ing multiple interacting events. These results further validate the robustness and scalability of our
approach beyond standard benchmarks.

H MORE COMPARISON WITH MULTI-PROMPT METHODS

VideoTetris (2024)) and TALC [Bansal et al.| (2024)) are frameworks that use multi-prompt

strategies to address compositional generation and multi-scene generation, which share certain simi-
larities with multi-event generation. To further expand our evaluation scope, we extend these frame-
works to the multi-event generation task. Specifically, we implement VideoTetris and TALC on
Wan2.2-A14B using the optimal hyperparameters specified in their original papers, ensuring a fair
comparison with TS-Attn. As shown in Table [J] TS-Attn substantially outperforms both TALC
and VideoTetris. TALC’s strict conditioning of each segment on sub-prompts disrupts global coher-
ence, leading to reduced performance. Although VideoTetris combines weighted global and local
cross-attention, its lack of training distorts the original video latent distribution, resulting in quality
degradation and minimal improvement. Qualitative visual comparisons are provided in Figure [I§]

I MORE DIVERSE APPLICATIONS OF TS-ATTN

In this section, we present more potential application scenarios of TS-Attn, including multi-event
generation involving multiple subjects, scene-level multi-event generation, and enhancing the po-
tential for interactive long-video generation.

Multi-subject multi-event generation. As shown in Figure[T9] multi-event generation involving
multiple subjects can be achieved by using attention rearrangement to dynamically bind each subject
to its corresponding event in the temporal sequence while suppressing interference from other events.
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In this way, TS-Attn greatly enhances the model’s capability to handle complex spatial and temporal
prompts.

Scene-level multi-event generation. Meanwhile, we also observe that TS-Attn can handle scene-
level multi-event transitions, such as landscapes and video styles (Figure[20). It accurately interprets
dynamic temporal changes, responds precisely to weather and artistic styles in each temporal seg-
ment, and smoothly completes the transitions.

Interactive long video generation. The Wan model typically supports generating videos of up
to 5 seconds in length, which limits the number of events it can reasonably express to no more
than 5. To handle more events, we applied TS-Attn to the recently proposed LongCat-Video-13.6B
model [Team et al.| (2025), which natively supports video continuity. This enables us to distribute a
larger number of events across multiple clips. For example, 9 events can be divided into 3 clips for
generation while maintaining temporal consistency.

As illustrated in Figure 2] TS-Attn improves temporal awareness within each clip, greatly enhanc-
ing the capability to handle videos with a large number of events. The benefits of integrating TS-Attn
into architectures like LongCat-Video are twofold: 1) For a fixed number of events, TS-Attn enables
generation with fewer clips; 2) For a fixed number of clips, TS-Attn effectively manages more intri-
cate temporal descriptions. These results highlight the potential of TS-Attn for both interactive and
long-form video generation.

J THE USE OF LARGE LANGUAGE MODELS

We use large language models (LLMs) solely for polishing sentence structures and refining the lan-
guage throughout the manuscript. All core aspects of this research, including central ideas, experi-
mental design, data analysis, result interpretation, and conclusion derivation, are conducted entirely
by the authors. The LLM serves only as an auxiliary tool and is not involved in any key aspects
requiring academic judgment or creative intellectual input.
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Table 5: Evaluation results on T2V tasks with LLaVA-OV-Chat-72B verifier. Best scores are
bolded.

Model | Human Animal Object Retrieval Creative | Easy Hard | Average
Closed-Source Model |

Hailuo 48.0% 40.1% 35.6% 51.7% 19.5% 58.3% 17.1% 41.0%
Kling-1.5 41.9% 46.0% 35.1% 41.7% 30.8% 56.1% 24.1% 41.7%
Open-Source Model |

Open-Sora-Plan 1.3.0 13.5% 13.2% 9.6% 17.1% 6.9% 28.3% 2.2% 12.7%
Open-Sora 1.2 26.2% 22.2% 20.2% 32.2% 15.4% 37.8% 10.8% 23.6%
Vchitect-2.0 33.4% 30.5% 33.6% 33.6% 20.5% 514% 19.1% 31.6%
Pyramid-Flow 23.6% 20.0% 15.8% 26.4% 10.5% 38.1% 4.5% 20.3%
SkyReels-V2 47.6% 47.2% 40.6% 56.9% 33.2% 60.5% 30.1% 45.9%
MAGI-1-24B 45.4% 38.8% 38.6% 48.7% 25.2% 558% 26.2% 41.2%

MEVG + Wan2.2-A14B 55.4% 462%  452% 55.8% 33.9% 58.7%  35.0% 48.5%
DiTCtrl + Wan2.2-A14B | 56.6% 54.5%  45.0% 59.9% 33.0% 652%  37.1% 51.8%

CogVideoX-5B 19.7% 20.7% 17.4% 27.2% 8.1% 37.6%  1.1% 19.9%
+Ours 32.4% 29.8% 25.7% 39.9% 18.5% 482%  15.8% 29.6%
Wan2.1-1.3B 37.6% 37.7% 27.1% 33.6% 21.5% 45.6%  26.4% 34.4%
+Ours 46.2% 42.6% 36.5% 51.3% 28.5% 50.9%  33.3% 41.8%
Wan2.1-14B 51.0% 40.6% 36.4% 58.2% 23.8% 573%  31.6% 43.5%
+Ours 60.4% 55.9% 50.6% 67.6% 40.3% 73.7%  41.3% 55.9%
Wan2.2-A14B 62.6% 56.5%  48.8% 70.2% 42.9% 69.3%  45.9% 56.8%
+Ours 70.6 % 634%  58.0% 76.6% 48.9% 780% 50.2% 63.9%

Table 6: Evaluation results on I2V tasks with LLaVA-OV-Chat-72B verifier. Best/2nd best
scores are bolded/underlined.

Model | Human Animal Object Retrieval Creative | Easy  Hard | Average
Framepack-13B 41.4% 37.3% 35.4% 50.1% 25.0% 51.8%  28.0% 37.9%
SkyReels-V2-14B 49.8% 44.5% 40.7% 52.7% 30.8% 547%  32.5% 43.8%
MAGI-1-24B 43.6% 38.3% 39.0% 46.2% 25.1% 49.7%  36.1% 40.4%
CogVideoX-12V-5B 24.7% 24.6% 20.5% 29.3% 12.4% 42.9% 9.8% 23.9%
+Ours 37.9% 36.4% 30.8% 43.0% 20.2% 522%  22.1% 35.3%
Wan2.1-12V-14B 48.6% 38.4% 36.0% 53.2% 26.7% 53.0%  28.2% 41.4%
+Ours 53.0% 46.8% 42.8% 57.9% 32.3% 553%  39.0% 47.9%
Wan2.2-12V-A14B 56.7% 51.0% 47.6% 61.6% 35.3% 622% 41.3% 52.0%
+Ours 59.7 % 588% 51.8% 66.8 % 40.2% 67.5% 45.4% 57.6 %

Table 7: Ablation experiments on the subcomponents of Event-aware Attention Modulation.

Method | Wan2.2-A14B | CogVideoX-5B
| Easy Hard Avg | Easy Hard Avg

w/o Attention Rearrangement | 63.1% 36.8% 49.4% | 382% 59% 18.8%
w/o Attention Reinforcement 67.4% 41.2% 53.5% | 41.8% 84% 23.6%
TS-Attn 70.5% 443% 562% | 457% 99% 25.8%
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Table 8: Ablation results of different temporal segmentation methods.

Method | Wan2.2-A14B | CogVideoX-5B
| Easy Hard Avg | Easy Hard Avg

Uniform Segmentation | 69.8% 42.6% 553% | 44.5% 92% 252%
User Input 71.4% 45.0% 56.8% | 44.8% 113% 26.5%
GPT-40-mini Plan 70.5% 443% 562% | 45.7% 9.9%  25.8%

Table 9: More multi-event T2V comparison with multi-prompt methods using GPT-4o verifier.
Best scores are bolded.

Model | Human Animal Object Retrieval Creative | Easy  Hard | Average
Wan2.2-T2V-A14B | 51.2% 46.7%  44.9% 54.8% 34.8% 60.3% 34.0% 48.3%
+ TALC 50.9% 45.4% 44.1% 56.2% 33.8% 60.6% 31.9% 47.1%
+ VideoTertis 53.0% 46.5% 46.8% 63.6% 35.9% 63.5% 37.5% 49.7%
+ Ours 60.4% 53.6% 52.0% 63.0% 45.3% 70.5% 44.3% | 56.2%
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Figure 10: More qualitative comparison results on multi-event generation.
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A man walks on the dark street, snaps his fingers, and then all the streetlights turn on simultaneously.

Figure 11: More qualitative comparison results on multi-event generation.
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Figure 12: More qualitative comparison results on multi-event generation.
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A spider spins a web between two flowers and then hides behind one of the flowers.

Figure 13: More qualitative comparison results on multi-event generation.
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Figure 14: More qualitative comparison results on multi-event generation.
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1128 A spider hangs from a ceiling, drops down, and then climbs back up.
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A bird sings on a branch, and then flies away into the sky.

Figure 16: More qualitative comparison results with Wan2.1-14B.
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A boy kicks a football, and fhen the football flies into the basketball hoop.

A butterfly lands on a shoulder of a woman, rests for a moment, and then flies away.

A car drives up a skyscraper, reaches the fop, and then drives off into the sky.
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Figure 17: More qualitative comparison results with Wan2.1-14B.
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A husky Jjumps into a rockmg chair, starts rocking it, and then gets thrown out of it.

Figure 18: More qualitative comparison results with multi-prompt methods.
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Figure 19: More qualitative results on multi-event generation with multiple subjects. The mask
diagram on the right side of the figure briefly illustrates how attention rearrangement regulates the
temporal attention intensity of each subject to different events under each prompt.
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A forest shifts from a dark gothic style to a glowing neon cyberpunk style, and then to a serene watercolor painting style.

Figure 20: More qualitative comparison results on scene-level multi-event generation.
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@® A man sits at a desk, turns on his laptop, begins typing on the keyboard, and stops to think for a while.

@ He then grab a glass of water, takes a sip, and then looks over some papers beside him.
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@ The man adjusts the gesture, quickly checks the notes in the paper, and finally closes the laptop.

Figure 21: More qualitative comparison results on interactive long video generation.
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