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Abstract

A long-term ambition of information seeking
question answering (QA) systems is to rea-
son over multi-modal contexts and generate
natural answers to user queries. Today, mem-
ory intensive pre-trained language models are
adapted to downstream tasks such as QA by
fine-tuning the model on QA data in a spe-
cific modality like unstructured text or struc-
tured tables. To avoid training such memory-
hungry models and utilizing a uniform archi-
tecture for each modality, parameter-efficient
transfer learning techniques such as adapters
add and train small task-specific bottle-neck
layers between transformer layers. However,
modality-specific adapter layers infused in a
pre-trained transformer also require uniformity
in the input sequence, which contradicts with
existing work that trains structure-specific lay-
ers on multi-modal data. In this work, we study
parameter-efficient abstractive QA in encoder-
decoder models over structured tabular data
and unstructured textual data using only 1.5%
additional parameters for each modality. We
retain table structure information by a hierar-
chy preserving transformation of complex hi-
erarchical tables to 1-dimensional sequences,
thus maintaining uniformity in the model in-
put. We also ablate over adapter layers in both
encoder and decoder modules and study the
efficiency-performance trade-off and demon-
strate that reducing additional trainable param-
eters down to 0.7%—1.0% leads to comparable
results. Our models outperform current state-
of-the-art models on tabular QA datasets such
as Tablesum and FeTaQA and achieve compa-
rable performance on a text QA dataset such as
NarrativeQA using significantly less trainable
parameters.

1 Introduction

Information seeking systems over diverse contexts
necessitates model capabilities to reason over un-
structured and structured data such as free-form
text, tables and images (Agrawal et al., 2016; Vaku-

Natural Answer

| LM Head |
Temlal data Textual data
Adapter Ada ter
rx Encoder Decoder
Tabular data Tabular data
Ada ter Ada pter
question| | Tese question| [ .

Figure 1: Parameter-efficient transfer learning using
modality-specific (table/text) adapters for Abstractive
Question Answering

lenko et al., 2019; Hudson and Manning, 2019;
Zhang et al., 2020; Zhu et al., 2021; Deldjoo et al.,
2021). Such systems might have the additional re-
quirement of generating natural language responses
if deployed as task-oriented conversational agents
(Wen et al., 2015; Carnegie and Oh, 2000; Rambow
et al., 2001; Ratnaparkhi, 2002). Recent work on
open-domain question answering (QA) predomi-
nately addresses these challenges with fine-tuning
massive pre-trained language models on the differ-
ent modalities such as tables and text (Yin et al.,
2020; Herzig et al., 2020, 2021; Katsis et al., 2021;
Nan et al., 2021). However, each model trained
on a specific input type is incompatible with other
modalities and imposes huge constraints on stor-
age efficient systems. For example, in tabular QA
(Herzig et al., 2020), the structure of the table is
learnt by training additional position (row and col-
umn identifiers) embeddings to identify which row
and column a table cell belongs to. Multi-modal
models (Zhu et al., 2021) can reason over both
tables and text by concatenating the textual con-
text and the flattened table, leading to longer input
sequences and limiting the length of the context
paragraph and the size of the table that can be en-



coded. Moreover, they do not explicitly handle

encoding complex hierarchical tabular structure in

either the model (row and column embeddings) or
in the input sequence (ambiguous association of
table cells with table headers in complex tables).

To address these challenges, we study parameter-
efficient transfer learning for abstractive QA over
tables and text. We are motivated to use adapter-
layers that inject small bottle-neck layers between
frozen pre-trained transformer layers as adapters
achieve comparable performance to fine-tuning on
a variety of tasks such as multi-lingual translation
(Pfeiffer et al., 2020b; Philip et al., 2020; Guo
et al., 2020), classification (Houlsby et al., 2019a),
language generation (Lin et al., 2020), domain-
adaptation in dialogue state tracking and response
generation (Hung et al., 2021).

Ablation studies on adapter-layers (Rucklé
et al., 2020) on masked language models such as
RoBERTa over the GLUE benchmark demonstrate
that removing beginning adapter layers leads to
a minimal drop in performance. Our task of ab-
stractive QA is more challenging as it involves
language generation in addition to natural language
understanding (NLU) capability of the model. Fur-
ther, extending adapter-layer ablation over separate
encoders and decoders is non-trivial. Lin et al.
(2020) explore the impact of the bottle-neck em-
bedding size for various language generation tasks
over n auto-regressive model such as GPT-2 (Rad-
ford et al., 2019). Our work deviates from theirs as
we focus on language generation from multi-modal
(structured or unstructured) input.

We propose a system, named parameter-efficient
abstractive question answering (PeaQA), which
learns to reason over unstructured and structured
input using a single, shared pre-trained language
model and modality-specific adapter layers. We
also automatically transform hierarchical tables to
regular tables to have a uniform representation with-
out breaking association between table cells. In
addition, we extend the study of ablating adapter-
layers in a multi-modal setting over both encoder
and decoder modules.

Our main contributions can be summarized as
follows:

(1) We perform parameter-efficient transfer-
learning for abstractive question answering
multi-modal context consisting of semi-
structured tables and unstructured text using
only additional 1.5% of trainable parameters

for each modality. Our model outperforms
existing work by a large margin on tabular
QA datasets (FeTaQA and Tablesum) and
achieves comparable performance on text QA
dataset (NarrativeQA) with significantly less
parameters.

(2) We propose using a single, shared pre-trained
language model and modality-specific adapter
layers for different types of data. To do so, we
introduce a 2-step transformation of hierarchi-
cal tables to 1-dimensional sequences which
not only preserves table-cell association but
also produces a uniform representation for our
model.

(3) We study the impact of different adapter layers
on performance in both encoder and decoder
modules and show that beginning adapter lay-
ers can be eliminated without significant drop
in performance. We also demonstrate that last
encoder adapter layers are indispensable and
have greater contribution than decoder layers
at the same level.

2 Background and Related Work

Tabular question answering. Tabular QA systems
aim to answer questions from tabular data. Such
systems are required to reason over the structure of
the table to perform numeric computations or ex-
tract cellular information. The structure of the table
is usually encoded in the embedding layer of large
language models by introducing table specific posi-
tion information such as row id and column id. The
table can then be flattened into a sequence without
losing information about the table structure. This
method of representing tables is utilized in (Herzig
et al., 2020; Zhu et al., 2021; Katsis et al., 2021).
Abstractive QA over tables poses additional chal-
lenges of generating natural answers by reasoning
and aggregating various discontinuous facts from
the table. Abstractive QA over tables has been
explored in (Nan et al., 2021; Cheng et al., 2021),
where the answer is generated with seq2seq models
from the structured context. Nan et al. (2021) train
a T5 model (Raffel et al., 2020) over a linearized
table where each row is separated by a [SEP] token,
whereas Cheng et al. (2021) explore generating
answers from complex hierarchical tables using
hierarchy-aware symbolic logic over a tree-based
representation of the table.

Our work handles hierarchical tables by lineariz-
ing them, after which they can be treated as 1-



dimensional sequences with prompt <context> con-
catenated as a prefix, imposing uniformity in text
and tabular QA encoding.

Textual question answering. Question Answering
over text measures a system’s ability to compre-
hend free-form text in the user question and context
passage(s) and predict an answer. The answer pre-
dicted can be extractive (Lee et al., 2016; Seo et al.,
2016; Rajpurkar et al., 2016; Pearce et al., 2021) in
nature where the system identifies short text spans
in the context passage to answer the user query or
it can be abstractive (Yin et al., 2016; Mitra, 2017;
Bauer et al., 2018; Reddy et al., 2019) in nature
where the system is required to generate the answer
in natural free-form text.

Our work focuses on generative/abstractive
Question Answering using large pre-trained
seq2seq models. More specifically, we focus on ma-
chine reading comprehension aspect of QA where
the model is provided with the gold context pas-
sages from where the answer is generated.

Transfer learning. Transfer learning techniques
such as fine-tuning large pre-trained models for
downstream tasks, require a new set of model pa-
rameters to be learnt for each new task and do-
main. To avoid such memory intensive transfer
learning methods, adapters have been proposed as
a parameter-efficient method of adapting to new do-
mains (Houlsby et al., 2019b; Pfeiffer et al., 2020b).
A bottleneck adapter layer is injected after each
sub-layer of the transformer. The total number of
parameters added at each layer is limited by the
size of the bottleneck embedding and reduces the
total number of trainable parameters in the trans-
former. Adapters have been extended to language
generation in a variety of generative tasks such
as translation, summarization, multi-turn dialogue,
and task-oriented natural language generation (Lin
et al., 2020).

Our work attempts to reduce the additional pa-
rameters further to 0.7% by removing the begin-
ning adapter layers from both encoder and decoder
but still achieving comparable results.

3 Approach

Our approach utilizes a shared pre-trained language
model across modalities and only learns modality-
specific information in the adapter layers. To en-
code tables using a language model trained only on
text imposes a transformation of the 2-dimensional
tables to a linearized sequence which implicitly re-
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Figure 2: A multi-span table represented as a regular
table.

tains the structure information of the original data.
The next sections describe the process of transform-
ing hierarchical tables' into a linear representation,
abstractive question answering using BART and
details of the ablation study on adapter layers.

3.1 Representation of tables

QA systems over structured data must parse tables
that can be regular or hierarchical. Hierarchical ta-
bles can have header cells and body cells spanning
across multiple rows and columns. Most existing
work on tabular data (Nan et al., 2021; Zhang et al.,
2020) is over regular tables. Concurrent to our
work, recent work on hierarchical tables (Cheng
et al., 2021) uses heuristics to extract hierarchies in
tables and uses logical forms to perform operations
of selected regions in the table. For our work, we
choose to represent all tables uniformly in a 2 step
process:
(1) Transformation of a hierarchical table into a
regular table.
(2) Linearization of a regular table into a flattened
sequence which can be encoded with a lan-
guage model.

Linearize hierarchical table headers. Hierarchi-
cal table headers are linearized into a single row
of headers by the following process. A header cell
spanning multiple columns is duplicated and split
into multiple number of cells. Next, the values of
cells in all rows over which this header cell spans
are concatenated with the entire split. For example,
as shown in Figure 2, table header a spans across
2 other header columns d and e of the next header
row. We first split header cell a into 2 columns a,
a. Next, we concatenate the values of the next row
over which the span is present, i.e., values d and
e, to a linearized header a(d), b(e). Repeating this
process over all the table header rows flattens the
hierarchical header into a sequential one. In our
running example, this process will yield the linear

!The tables in the datasets we studied contains only hierar-
chical column headers.



header a(d), a(d), b, e(f).

Linearizing table body. Multi-span cells in the ta-
ble body are parsed differently than the table header.
All table body cells are associated with one or mul-
tiple header cells depending on whether the cell
spans across one or multiple columns. For exam-
ple, in Figure 2, cell at position (1, 1) with value 1
is associated with 2 header columns a(d) and a(e),
whereas the cell at position (1, 2) is associated with
1 header column b. Cells which spans across multi-
ple rows are associated with all the spanned rows
in that column. For example, the cell with value 4
spans across 2 rows and can be treated as present
in both rows in separate cells. This process leads
to a regular table (Nan et al., 2021) which can then
be interpreted as a sequence of keys (table head-
ers) with associated values (table body). We flatten
the regular table in row-major form, concatenating
rows sequentially. Each row is a sequence of (key,
value) pairs where a key is a column header and
the value is the cell value of that column. The table
in our running example is flattened to a(d): 1 b(e):
1b:2c(f):3al(d): 1b(e): 1b:4c(f):5a(d): 1
ble): 1b:4c(f): 6a(d): 7b(e): 8b:9c(f): 10.

3.2 Uniform representation of text and tables
for abstractive question answering

We focus on encoder-decoder models for the task
of abstractive question answering. We use BART
(Lewis et al., 2019) encoder-decoder architecture
which comprises of a bidirectional encoder and an
auto-regressive decoder. The input sequence con-
sists of the question, the context title and context
sequence preceded with prompts indicating the be-
ginning of the each sub-sequence. Formally, the
input sequence is represented as <question> qg q1
s Qm <title> 1y to ...ty <context> cg cy ... Cp,
where g; is the i-th question token, ¢, is the j-th title
token, and ¢, is the k-th context token. The context
can either be a text passage or a flattened table as
explained in the previous section. The parameters
of the pre-trained BART model are frozen during
training. Modality specific adapter layers added to
the model are trained on either tabular context or
textual context to generate natural answers.

3.3 Ablation study: Adapter pruning

Adapter-layer pruning has been explored on the
GLUE benchmark in (Rucklé et al., 2020) which
demonstrates that removing adapter layers from the
beginning transformer layers leads to minimal per-

Adapter-tune

Encoder Decoder #Trainable
adapters adapters parameters
removed removed
- - 6,343,680 (1.56%)
0 12 5,815,040 (1.43%)
0—-1 12 —-13 5,286,400 (1.30%)
0—2 12—-14 4,757,760 (1.17%)
0-3 12—-15 4,229,120 (1.04%)
0—4 12 —-16 3,700,480 (0.91%)
0—-5 12 —17 3,171,840 (0.78%)
0—6 12 —18 2,643,200 (0.65%)
0—-7 12—-19 2,114,560 (0.52%)
0-8 12 — 20 1,585,920 (0.39%)
0-9 12 - 21 1,057,280 (0.26%)
0—10 12 —22 528,640 (0.13%)
0—11 12 —22 264,320 (0.07%)
Fine-tune 406,291,456 (100%)

Table 1: Trainable parameters in the encoder and de-
coder. Encoder adapter layers are numbered from 0 — 11
and decoder adapter layers are numbered from 12 — 23.
x — y implies all adapter layers from x to y inclusive.

formance drop. For encoder-decoder architectures,
we hypothesize that this phenomenon should be
observed on both the encoder and decoder modules.
However, it is non-trivial how the adapter-layers
in the encoder and decoder modules contribute to
performance and whether the adapter layers of the
encoder and decoder module have equal impact
on the performance. To measure the impact of the
adapter layers in different modules, we perform
adapter ablation in both the encoder and decoder.
We progressively remove adapter layers from both
the encoder and decoder modules starting from the
beginning layers and analyze performance drop
caused by each successive elimination. We report
our findings in Section 5. We observe minimal
performance drop until the last few adapter-layers
indicating that these layers contribute the most to
task-specific representations.

4 Experimental Setup

We seek to answer the following research questions
with our experiments: (RQ1) How does adapter—
tuning affect performance and can we achieve com-
parable results to fine-tuning in the context of mul-
ti-modal input? (RQ2) Do all adapter layers across
the encoder and decoder contribute equally to per-
formance across tasks/modalities?



Method Model Training Rouge-1 Rouge-2 Rouge-. BLEU
CopyNet 0.041 0.012 0.030 0.80

Tablesum (Lin et al., 2020) GPT2 Fine-tune 0.272 0.073 0.200 5.35
T5 0.362 0.143 0.276 10.43

Fine-tune 0.410 0.188 0.32 6.46

Ours (Pea-QA) bartlarge \ jter-tune  0.391 0183 0309 6.64

Table 2: Results: Scores calculated on the test split of 20% random split of Tablesum.

Method Model Training Rouge-1 Rouge-2 Rouge-L. BLEU
T5-small 0.55 0.33 0.47 21.60

FeTaQA (Nan et al., 2021) T5-base Fine-tune 0.61 0.39 0.51 28.14
T5-large 0.63 0.414 0.53 30.54

Fine-tune 0.632 0.415 0.534 30.81

Ours (Pea-QA) bart-large ) qinter-tune  0.651 0436 0.553 3345

Table 3: Results: Scores calculated on the test split of FeTaQA.

Method Model Training Rouge-1 Rouge-2 Rouge-L. BLEU

Masque (Nishida et al., 2019) - Fine-tune - - 0.547 -
Fine-tune 0.518 0.268 0.515 21.07

Ours (Pea-QA) bart-large 4o nter-tune  0.51 0.27 0.50  20.08

Table 4: Results: Scores calculated on the test split of NarrativeQA. We use sacreBLEU ? to measure BLEU score

4.1 Datasets

Tabular datasets. For abstractive QA over tables
we use the Tablesum (Zhang et al., 2020) and Fe-
TaQA (Nan et al., 2021) datasets. Tablesum con-
sists of 200 unique Wikipedia tables over which
questions and abstractive answers are manually an-
notated. Tablesum contains natural answers as well
as summaries to tables as abstractive answers. 35%
of samples are questions over complex hierarchi-
cal tables. For our experiments, we randomly split
the samples into a 80%-20% split as the training
and validation set.> FeTaQA is a larger abstrac-
tive tabular QA dataset consisting of question and
free-form answers over 10, 330 regular tables. The
dataset consists of 7,326 samples in the training
set, 1,001 in the validation set, and 2, 003 in the
test set. FeTaQA consists of human-annotated an-
swers containing explanations involving entities
and relations.

Text dataset. We train adapter layers for textual
context on the NarrativeQA dataset (Kocisky et al.,
2018). NarrativeQA is a complex abstractive ques-
tion answering dataset over stories. The dataset

3The original Tablesum dataset do not have Dev and Test
splits. We choose to use the random Dev split for evaluaring
our models due to limited number of samples in the dataset

contains 32, 747 samples in the training set, 3,461
samples in the validation set and 10, 557 samples
in the test set. For our task, we have selected the
input context passage to be the human annotated
summary of each sample which is the Wikipedia
page summary of the story and represented as a
paragraph. The input to the seq2seq model is the
question, title and summary of each passage and
the target is the abstractive answer associated with
each sample. For samples with multiple answers,
we treat each answer and the associated question
and context as an independent sample.

Tablesum dataset’s target answers are of
summary-type where many questions require sum-
marizaing the sections of the table. This leads to
longer target sequences as observed in the maxi-
mum target length of 1579 compared to 338 for
FeTaQA and 224 for NarrativeQA. Tablesum also
contains larger tables of maximum 155 rows com-
pared to 34 rows of FeTaQA. A summary of all
datasets is presented in Appendix C.

4.2 Experiments

We perform all our experiments on a BART-Large
variant of the BART model.* We add bottle-neck

“The results can be reproduced using code at
https://anonymous.4open.science/r/


 https://anonymous.4open.science/r/Pea-QA-0717/README.md

adapter layers from the Houlsby adapter configu-
ration (Houlsby et al., 2019a). Each adapter layer
has a bottle-neck embedding size of 64. We also
fine-tune the model on each dataset for comparison.
We sweep learning rates from {86_4, 6e 4, 3e4,
le %, 5e72, 475, 3¢5 2e7°, 1e7 5} and select a
learning rate of 6e~* to train the adapter layers
for the tabular QA datasets Tablesum and FeTaQA
and use le! to train text QA dataset NarrativeQA.
We select 4e > for fine-tuning on Tablesum, 8e~*
on FeTaQA datasets and 2e~° to fine-tune Nar-
rativeQA. We use a batch size of 4 and gradient
accumulation of 8 to emulate an effective batch size
of 32. The maximum prediction sequence length
is set to 200 for the tabular QA datasets and to 100
for the text QA dataset. We train the model on
each dataset for 15 epochs and evaluate on Rouge-
2, Rouge-L and sacreBLEU metrics.> A summary
of hyper-parameters are mentioned in Appendix B.

5 Results

We conduct experiments to answer the research
questions as described in Section 4. The experi-
mental results to answer our question are explained
in the following sections.

5.1 Parameter efficient adapter-tuning

We address (RQ1) by comparing the performance
of adapter-tuning to fine-tuning across the three
datasets described in Section 4.1. The results of the
experiments are shown in Table 2 for the Tablesum
dataset, Table 3 for the FeTaQA dataset, and Table
4 for the NarrativeQA dataset.

We observe that for tabular QA, we outperform
the state-of-art models. On the Tablesum dataset,
we evaluate the model performance on 20% ran-
dom split which we keep aside during training. We
observe that the model outperforms the existing
work by a large margin on both adapter-tuning and
fine-tuning. Fine-tuning on Tablesum achieves 2%
higher performance compared to adapter-tuning
on Rouge-L.° 1% on Rouge-1 and is marginally
higher on Rouge-2 scores. For the FeTaQA dataset,
our model achieves higher gains in performance
on adapter-tuning compared to fine-tuning. This
can be attributed to catastrophic forgetting (French,
1999; Kirkpatrick et al., 2017; Chen et al., 2020)

Pea-QA-0717/README .md

>We use Adapter-hub library to conduct all our experi-
ments (Pfeiffer et al., 2020a)

®Rouge scores are calculated using https://pypi.
org/project/rouge-score/

induced by differences in the distribution of down-
stream task data. Fine-tuning on FeTaQA achieves
comparable performance with slight performance
gain compared to the state-of-the-art model. For
text QA, on the NarrativeQA dataset, adapter-tune
performs comparable to fine-tune as shown in the
F-scores of Table 4. Our fine-tuning results on
NarrativeQA are lower than state-of-the-art mod-
els trained with sophisticated reasoning architec-
tures, as our focus was primarily on comparing
fine-tuning and adapter-tuning. We conclude that
adapter-tuning achieves comparable performance
to fine-tuning when using a standard pre-trained
language model.
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Figure 3: Adapter layer ablation Rouge-2 scores. X-axis
represents encoder-adapter layers (0 — 11) and decoder
adapter layers (12 — 23) deleted progressively. © — y
implies all adapter layers from z to y inclusive. Each
point represents the Rouge-2 F-score for the model con-
figuration that has encoder layers p to ¢ deleted and

decoder layers r to s deleted for x-tick ((f:g)) .

5.2 Ablation of adapter layers

We study (RQ2) by ablating adapter layers in both
the encoder and decoder modules. We do so to
study the impact of each adapter layer in the per-
formance across different modality inputs. We
progressively eliminate adapter layers from both
the encoder and decoder starting from the first
adapter layer from both the modules and finally
deleting all layers from both the encoder and de-
coder. This leads to 12 experiments corresponding
to 12 encoder adapter layer and 12 decoder adapter
layer. We number the encoder adapter layers from
0 — 11 and the decoder adapter layers from 12 — 23.
We measure the performance of the models using
Rouge-2, Rouge-L and sacreBLEU scores. The
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F-scores for each dataset (NarrativeQA, Tablesum,
FeTaQA) are shown in Figure 3, 4, and 5, respec-
tively. We observe that as more adapter layers
are eliminated, the performance drops across all
datasets. However, the performance drop is mini-
mal until the last adapter layers are also deleted. A
steep drop is observed when the last few adapter
layers from the encoder and decoder are deleted.
This inflection point varies across dataset but is lim-
ited to the last 2 layers of the encoder and decoder.
For the NarrativeQA dataset, this point is when

all layers till the second last adapter layer from
both the encoder and decoder are deleted. For the
FeTaQA and Tablesum dataset, the performance
drops sharply only when the last encoder and de-
coder layers are removed.

To analyze contribution of the ¢-th adapter layer
of the encoder and the i-th layer of the decoder to
the performance, we ablate over different combi-
nations of eliminating adapter layers from the later
half of both encoder and decoder, i.e., successively
removing adapter layers 0 — 6,0 — 7,0 — 8,0 — 9,
0 — 10, 0 — 11 from the encoder and adapter lay-
ers 12 — 18,12 — 19, 12 — 20, 12 — 21, 12 — 22,
12 — 23 from the decoder (decoder layers are num-
bered from 12 — 23). This leads to 36 different
configurations of ablation study where a configura-
tion (p — q, r — s) represents all adapters from the
p-th to the g-th layer in the encoder and from the
r-th to the s-th in the decoder has been removed.
The results are shown in Figure 6.

We observe that performance remains compa-
rable as we progressively eliminate adapter lay-
ers from the encoder and decoder until layers at
the end are removed. The drop in performance is
steeper when we remove the last encoder and de-
coder adapter layers depicted towards the top-right
corner of Figures 6a, 6b, and 6¢. This reinforces the
assumption that the last adapter layers learns most
of the domain/task specific information. We also
observe that the last adapter layers of the encoder
and decoder contribute differently to performance.
Removing the last encoder adapter layer (depicted
in the last column 0 — 11 across all rows) leads
to a massive drop in all scores in-spite of decoder
adapter layers. This pattern is observed across all
datasets. This indicates that the last encoder adapter
layer is indispensable for learning domain-specific
knowledge. Dropping all decoder adapter layers
till the last (represented by top row 12 — 23) is com-
parable to dropping all adapter-layers till the 2-nd
last encoder adapter layer (represented by column
0 — 10). This pattern is observed for all ablation
configurations till last 4 layers in the decoder (top 4
rows 12—20, 12—21, 12—22, 12— 23 in Figure 6).
The drop in performance stabilizes as we retain
more end adapter layers and remove only beginning
adapter layers. We observe that retaining just 50%
of adapter layers by removing the beginning half
of the adapters from both the encoder and decoder
further increases parameter efficiency by introduc-
ing only 0.7% parameters as summarized in Table 1
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increases deletion of encoder adapter layers along the X-axis and decoder adapter layers along the Y-axis.

but without significant compromise to performance.
Further parameters can be removed to only 0.52%
(removing (0 — 7, 12 — 19)) trainable parameters
with only minor drop in performance. As an ex-
treme case of performance-parameter trade-off, all
but the last adapter layer of the decoder (2-nd last
row in Figure 6) can be removed with any of the
encoder configurations of 0 — 7,0 — 8 and 0 — 9.

5.3 Case studies

In Appendix F we detail a number of case studies.
The main insights gained from these case studies
are: (1) The mean length of predicted sequences
is 193.27 for Tablesum dataset while that of target
sequences is 259.76. The adapter-tuned model pre-
dicts shorter sequences than the target as observed
in the case-study and in lower BLEU scores (pre-
cision) compared to the Rouge-L (recall) scores
listed in Table 2 and ablation results in Figure 3,
4, and 5. This may be due to brevity penalty of
BLEU. (2) The adapter-tuned model performs best
on FeTaQA with gradual decrease in Rouge and
BLEU across more ablations; the dataset has simi-
lar length targets in both training and test sets and
scores are more stable across different configura-
tions. (3) NarrativeQA samples contains diverse
targets from very short phrases to longer sequences
with a maximum target length of 224 characters.
Many fact-based correct predictions have words
reordered but reproduced correctly.

6 Conclusion

We study parameter-efficient transfer learning over
tables and text in the context of abstractive question
answering using small bottle-neck adapter layers.
We achieve comparable performance to fine-tuning

with only 1.5% training parameters across each
modality. We propose a transformation from hier-
archical tables to regular ones which can then be
flattened to a 1-dimensional sequence for use in the
shared pre-trained language model. This leads to
a uniform pre-trained model with frozen weights
across all modalities. We outperform results of
state-of-the-art models on tabular QA datasets such
as Tablesum and FeTaQA, and achieve compara-
ble performance on the text QA dataset Narra-
tiveQA. We extend an ablation study on adapter
layers to encoder-decoder setting to study the im-
pact of adapter layers from the respective modules.
Encoder and decoder adapter layers at the same
level contribute deferentially to performance. More
specifically, we demonstrate that the adapter lay-
ers from the end of the encoder is indispensable
to performance and contributes significantly more
to encoding modality specific information than de-
coder adapter layers of the same level. Our results
are useful for exploring scalability of QA models in
memory constrained situations where comparable
performance can be achieved with storing only one
copy of a uniform language model while scaling
across modalities using light-weight adapters.
One of the limitations of our work is that we
only consider one way of representing the struc-
ture of the table by a hierarchical transformation
process that linearizes the 2-dimensional table to
a I-dimensional sequence. Alternatively, one can
encode the table structure in model embeddings
using structure specific row and column ids. This
is left as future work. We also do not perform ex-
plicit logical reasoning and cell aggregation over
the tables. This might lead to better explainability
of the model and is to be explored as future work.
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APPENDICES

We provide further details on training hyper-
parameters for adapter-tuning (Appendix A), train-
ing hyper-parameters for fine-tuning (Appendix B),
statistics of the datasets used (Appendix C), Rouge-
2 scores for an encoder-decoder adapter layer abla-
tion study (Appendix D), Bleu scores for an encode-
decoder adapter layer ablation study (Appendix E),
example outputs of adapter-tuned bart-large model
on Tablesum dataset, FeTaQA dataset and Narra-
tiveQA dataset. Appendix F includes examples of
predictions on the 3 datasets.

A Training Hyper-Parameters for
Adapter-Tuning

The hyper-parameters for adapter-tuning for Ta-
blesum dataset, FeTaQA dataset and NarrativeQA
dataset are listed as in Table 5.

Dataset Hyper-parameters Value
learning rate 4e-5
scheduler linear
batch size 32

Tablesum sequence length 200
seed 6
training epochs 15
learning rate 8e-4
scheduler linear
batch size 32

FeTaQA sequence length 100
seed 6
training epochs 15
learning rate 2e-5
scheduler linear

. batch size 32

NarrativeQA sequence length 50
seed 6
training epochs 15

Table 6: Hyper-parameters for fine-tuning.

C Dataset Statistics

Dataset Hyper-parameters Value
learning rate Ge-4
scheduler linear
batch size 32

Tablesum sequence length 200
seed 6
training epochs 15
learning rate Ge-4
scheduler linear
batch size 32

FeTaQA sequence length 100
seed 6
training epochs 15
learning rate le-4
scheduler linear

) batch size 32

NarrativeQA sequence length >0
seed 6
training epochs 15

Table 5: Hyper-parameters for adapter-tuning.

Statistics of the 3 datasets, i.e., Tablesum, FeTaQA
and NarrativeQA are listed in Table 7. Tablesum
has the longest answer length. The answers are
summary-like, often, describing aspects of the ta-
ble contents. FeTaQA dataset contains answers
of mostly single sentences and targeted towards
specific facts asked in the question. NarrativeQA
datasets focuses on questions from stories. The
answer lengths vary from single words to long
sentences. For the tabularQA dataset, Tablesum
contains larger tables than FeTaQA dataset even
though it is limited to 200 unique tables over which
questions are asked. FeTaQA dataset’s tables con-
tain more columns on an average compared to Ta-
blesum. Examples of samples can be found in
Appendix F in Table 8 for Tablesum dataset, in
Table 9 for FeTaQA dataset, and in Table 10 for
NarrativeQA dataset.

B Training Hyper-Parameter for
Fine-Tuning

The hyper-parameters for fine-tuning on Tablesum
dataset, FeTaQA dataset and NarrativeQA dataset
are listed in Table 6.
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Tablesum

Domain Open
Modality Table
Table-type Regular
Training samples 798
Validation samples 200
Test samples -
Max question length 114
Max target length 1,579
Max table row 155
Max table column 8
FeTaQA
Domain Open
Modality Table
Table-type Hybrid
Training samples 7,326
Validation samples 1,001
Test samples 2,003
Train max question length 165
Train max target length 338
Train max table rows 34
Train max table columns 30
Val max question length 182
Val target length 325
Val max table rows 34
Val max table columns 22
Test max question length 193
Test max target length 295
Test max table lows 34
Test max table columns 22
NarrativeQA
Domain Stories
Modality Text
Training samples 65,494
Validation samples 6,922
Test samples 21,114
Train max question length 175
Train max target length 171
Train max context length 6,045
Val max question length 158
Val target length 187
Val max context length 6,033
Test max question length 1,220
Test target length 224
Test max context length 6,090

Table 7: Dataset statistics.
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D Encoder-Decoder Adapter layer
Ablation Rouge-2 Scores

Ablation results (Rouge-2 F-scores) of 36 config-
urations of adapter layers deleted from the later
half of the encoder and decoder. Deleting the last
encoder adapter layers leads to massive drop in
performance as observed in last 3 columns of Fig-
ures 7, 8 and 9. However, deleting the last decoder
adapter layers results in better performance in com-
parison to the encoder layers at the same level as
observed from the top 3 rows of Figures 7, 8 and 9.

B 0.3695 | 0.3759 | 0.3587 Pluikcrri-Spkiiky)
0.3223 NvkLLPl 0.2749

0.42

12-23

0.40

12-22

0.38

0.3679 Eiclrr

Decoder Adapter Layers Eliminated
12-20 12-21

12-19

12-18
]

. 0.3754 | 0.3483
I
011

I [ [
0-8 0-9 0-10
Encoder Adapter Layers Eliminated

Figure 7: FeTaQA Rouge-2 scores. X-axis represents
encoder adapter layers (0 — 11) deleted, Y-axis repre-
sents decoder adapter layers (12 — 23) deleted.
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Figure 8: Tablesum Rouge-2 scores. X-axis represents
encoder adapter layers (0 — 11) deleted, Y-axis repre-
sents decoder adapter layers (12 — 23) deleted.

E Encode-Decoder Adapter layer
Ablation sacreBLEU Scores

Ablation results (sacreBLEU F-scores) of 36 con-
figurations of adapter layers deleted from the later
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Figure 9: NarrativeQA Rouge-2 scores. X-axis repre-
sents encoder adapter layers(0-11) deleted, Y-axis rep-
resents decoder adapter layers(12-23) deleted.

half of the encoder and decoder. Deleting the last
encoder adapter layers leads to massive drop in per-
formance as observed in last 3 columns of Figures
10, 11 and 12. However, deleting the last decoder
adapter layers results in less performance drop in
comparison to the encoder layers at the same level
as observed from the top 3 rows of Figures 7, 8 and
0.
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I
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Figure 10: FeTaQA sacreBLEU-F scores. X-axis rep-
resents encoder adapter layers (0 — 11) deleted, Y-axis
represents decoder adapter layers (12 — 23) deleted.

F Examples

We present a few examples of predictions from tab-
ular QA datasets (FeTaQA and Tablesum) and text
QA (NarrativeQA). Each row of Tables 8, 9 and 10
depicts the input sub-sequences to the system such
as Question, title, context in the form of Flattened
table for tabular QA or Text summary for text QA,
the ground-truth Target abstractive answer and the
Prediction by the adapter-tuned model.
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Figure 11: Tablesum sacreBLEU scores. X-axis repre-
sents encoder adapter layers (0 — 11) deleted, Y-axis
represents decoder adapter layers (12 — 23) deleted.
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Figure 12: NarrativeQA sacreBLEU-F scores. X-axis
represents encoder adapter layers (0 — 11) deleted, Y-
axis represents decoder adapter layers (12 —23) deleted.

For Tablesum samples, the abstractive answer is
long summary type. The questions can vary from
fact-based queries as depicted in the 1-st sample to
summarization of table cells as depicted in the 2-nd
and 3-rd samples of Table 8. The predictions of the
adapter-tuned model are usually shorter than the
target as observed by the lower BLEU scores due
to brevity penalty for Tablesum dataset as listed
in Table 2. The Rouge scores are also lower in
comparison to the other 2 datasets. This indicates
that the target contains n-grams not present in the
predicted answer. This pattern also persists across
the ablation studies as observed from similar trend
in the Rouge scores in Figure 3, 4, 8, and 6b, and
BLEU scores are in Figure 11.

The FeTaQA dataset mostly contains single sen-
tence abstractive answers as ground-truth as ob-
served from the Target of Table 9. Our model per-
forms best over FeTaQA dataset generating similar
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length answers as the ground-truth. This is indi-
cated in more stable Rouge and BLEU scores as
depicted in Table 3. The Rouge scores can be ob-
served in Figure 3, 4, 7, and 6a, and BLEU scores
are in Figure 10.

NarrativeQA dataset also contains shortest ab-
stractive answers compared to the other 2 datasets
as observed in Table 7. The maximum answer
length for the test set is 224 compared to 295
for test split of FeTaQA and 1,579 for Table-
sum. Many target answers of NarrativeQA are
short phrases as depicted in the last row of Table
10. Many predictions of the adapter-tuned model
change the order of words even though the facts
are reproduced correctly as shown in the 1-st and
2-nd rows of Table 9.



Tablesum Examples

Question: What are the songs included in 21 & Over?

Title: Track listing

Flattened table: No.: 1. <,> Title: "Likwit" (featuring King Tee) <,> Writer(s): SmithBrooksRobin-
sonRoger McBride <,> Producer(s): E-SwiftTha Alkaholiks[a] <,> Length: 3:27 <,> No.: 2. <,> Title:
"Only When I’'m Drunk" <,> Writer(s): ...

Target: The table is about listing of tracks related to group “21 & Over” In this track listing one can
find the title of the track, Producer name, Performer name and Length of the performance.
Prediction: I found a table of the track listing of 21 & Over. It is a compilation of songs by E-
Swift and King Tee. The songs include "Likwit", "Only When I’'m Drunk", "Last Call", "Soda Pop",
"Make Room", "Bullshit", "Can’t Tell Me Shit" and "Last Night". The songs are all written by
SmithBrooksRobinsonRoger McBride.

Question: Tell me about the games that the Badgers lost in 1981

Title: 1981 Wisconsin Badgers football team schedule

Flattened table: Date: September 12 <,> Opponent: No. 1 Michigan <,> Rank: <,> Site: Camp
Randall StadiumMadison, WI <,> Result: W 21-14 <,> Attendance: 68,733 <,> Date: September 19
<,> Opponent: No. 9 UCLA* <,> Rank: No. 20 <,> Site: Camp Randall StadiumMadison, WI <,>
Result: L 13-31 ...

Target: In 1981 the Wisconsin Badgers lost to UCLA 13-31 on September 19th for the first loss of the
season. October showed two losses, both away games, at Michigan State and again at Illinois with just
a 2 point deficit. In November lowa stomped them on the field winning with a ten point lead, and their
final loss in December was to Tennessee.

Prediction: I found a table of the 1981 wisconsin badgers football team schedule. it shows the games
that the badgers lost in 1981.

Question: Can you introduce to me Richard Strauss’s operas?

Title: List of operas by Richard Strauss

Flattened table: Period[a]: 1876 <,> Title: Der Kampf mit dem Drachen <,> Genre: ? <,> Act(s):
1 act <,> Librettist: Korner <,> Premiere (Date): Unperformed <,> Premiere (Venue): Unperformed
<> Op.[1]: = <> TrV[1]: 44 <> Av: 206 <,> Period[a]: 1892-93 <,> Title: Guntram(revised
1940) <,> Genre: Opera[3] <,> Act(s): 3 acts <,> Librettist: Strauss <,> Premiere (Date): 10 May
1894;revised version: 29 October 1940 <,> Premiere (Venue): Weimar, Grossherzogliches Hoftheater
(both versions)...

Target: 1 found a table called List of operas by Richard Strauss. 18 operas have been made by the
composer Richard Strauss. Strauss has operas from 1876 all they way through 1964.

Prediction: I found a table of Richard Strauss’s operas. It is a list of operas by Richard Strauss from
1876 to 1940. There are 12 operas in the list. The first one is Der Kampf mit dem Drachen (1876) and
the last one is Elektra (1908).

Question: Tell me about the teams and their performance in the 2007 San Jose Grand Prix Race
Title: 2007 San Jose Grand Prix at Redback Raceway

Flattened table: 1: 2 <,> [United_Kingdoml]: [Francel] <,> [Justin_Wilson_(racing_driver)lJustin
Wilson]: [S%C3%A9bastien_Bourdais|Sébastien Bourdais] <,> [RSPORTSIRSPORTS]:
[N/H/L_RacingIN/H/L Racing] <,> 49.747:...

Target: I see the top 17 results. Within the 17, the best and worst times ranged between 40.039 and
50.083. The top person was Justin Wilson from Great Brittain. The table shows the rank, name and
country of person as well as their times.

Prediction: i found a table of 2007 san jose grand prix at redback raceway. there were 5 teams and
their performance in the race. the first team was minardi team usa with sébastien bourdais. the second
team was forsythe racing with neel jani.

Table 8: Predictions by adapter-tuned bart-large model on the Tablesum dataset.
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FeTaQA Examples

Question: What roles did Christian Cooke play in 20097

Title: Christian Cooke Television

Flattened table: Title: Wilmot Year: 1999 Role: Wilmot Tanner Notes: Main role Title: Where the
Heart Is Year: 2000-06 Role: Luke Kirkwall Notes: 68 episodes...

Target: During 2009, Christian Cooke played the lead role of Luke Rutherford in Demons & Lord
Dorian Gaudain in Trinity.

Prediction: In 2009, Christian Cooke played Lord Dorian Gaudain in Dark Relic and Luke Rutherford-
Van Helsing in Trinity.

Question: Who did Grace Dove Play in The Revenant and How It Ends?

Title: Grace DoveFilm

Flattened table: Year: 2012 Title: These Walls Role: Mary Notes: - Year: 2014 Title: The Cut Role:
Emma Notes: - Year: 2015 Title: The Revenant Role: Hugh Glass’s wife Notes: - Year: 2017 Title: O
for a Thousand Tongues Role: Yaahl-Ts uu-Kuuyas Notes: - Year: 2017 Title: Mino Bimaadiziwin
Role: Bangishimogikwe Notes: - Year: 2018 Title: How It Ends Role: Ricki Notes: - Year: 2019 Title:
Monkey Beach Role: Lisa Notes: Filming ...

Target: Grace Dove played as Hugh Glass’s wife in the 2015 film The Revenant and Ricki in the 2018
film How It Ends.

Prediction: Grace Dove starred as Hugh Glass’s wife in The Revenant (2015) and as Ricki in How It
Ends (2018).

Question: What was Yevgeniy Ektov’s personal record in the 2007 Asian Indoor Games, and how did
he place?

Title: Yevgeniy Ektov Competition record

Flattened table: Year: Representing Kazakhstan Competition: Representing Kazakhstan Venue:
Representing Kazakhstan Position: Representing Kazakhstan Event: Representing Kazakhstan Notes:
Representing Kazakhstan Year: 2005 Competition: Asian Championships Venue: Incheon, ...
Target: At the 2007 Asian Indoor Games, Yevgeniy Ektov jumped 16.34 m, which brought him the
bronze.

Prediction: Yevgeniy Ektov won the bronze medal at the 2007 Asian Indoor Games with a personal
record of 16.34 m.

Question: In the 86th United States Congress, What date was the end of Richard M. Simpson’s service,
and who was his successor?

Title: 86th United States CongressHouse of Representatives

Flattened table: District: Missouri 4th Vacator: George H. Christopher (D) Reason for change: Died
January 23, 1959 Successor: William J. Randall (D) Date of successor’s formal installation: March
3, 1959 District: New York 43rd Vacator: Daniel A. Reed (R) Reason for change: Died February 19,
1959 Successor: Charles Goodell (R) Date of successor’s formal installation: ...

Target: In the 86th United States Congress, Richard M. Simpson (R) served until January 7, 1960 and
was succeeded by Douglas H. Elliott (R) on April 26, 1960, who served until June 19, 1960.
Prediction: In the 86th United States Congress, Richard M. Simpson (R) served from January 7, 1960
to January 7th, 1960, when he was succeeded by Douglas H. Elliott (R).

Table 9: Predictions by adapter-tuned bart-large model on the FeTaQA dataset.
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NarrativeQA Examples

Question: What are the four objects the three-headed giant gives Jack as a show of gratitude?

Title: Jack the Giant Killer

Text summary: This plot summary is based on a text published ca. 1760 by John Cotton and Joshua
Eddowes, which in its turn was based on a chapbook ca. 1711, and reprinted in "The Classic Fairy
Tales’ by Iona and Peter Opie in 1974. The tale is set during the reign of King Arthur and tells of a
young Cornish farmer’s son named Jack who is not only strong but so clever he easily confounds the
learned with his penetrating...

Target: cap of knowledge, shoes of swiftness, magic sword, and invisibility cloak.

Prediction: a magic sword, a cap of knowledge, a cloak of invisibility, and shoes

Question: Why did Vivie’s mother change her name to Mrs. Warren?

Title: Mrs. Warren’s Profession

Text summary: This plot summary is based on a text published ca. 1760 by John Cotton and Joshua
Eddowes, which in its turn was based on a chapbook ca. 1711, and reprinted in *The Classic Fairy
Tales’ by Iona and Peter Opie in 1974. The tale is set during the reign of King Arthur and tells of
a young Cornish farmer’s son named Jack who is not only strong but so clever he easily confounds
the learned with his penetrating wit. Jack encounters a cattle-eating giant called Cormoran (Cornish:
"The Giant of the Sea’ SWF:Kowr-Mor-An) and lures him to his death in a pit trap. Jack is dubbed
*Jack the Giant-Killer’ for this feat and receives not only the giant’s wealth, but a sword and belt to
commemorate the event. ....

Target: To give the impression of being married and to hide her true identity.

Prediction: to hide her identity and give the impression that she is married.

Question: What battle is Jim and Jack preparing for?

Title: The Great Shadow

Text Summary: Instead of Sherlock Holmes being the main character, the story follows Jack Colder,
who claims his only notable childhood experience was when he accidentally prevented a burglary
during an attempt to escape a boarding school. This event caught Jim Horscroft and the two become
friends. Once Jim goes off to medical school, Jack reunites with his cousin Edie, who found herself in
a lot of money due to her father’s death. ...

Target: The Battle of Waterloo

Prediction: The Battle of Waterloo

Table 10: Predictions by adapter-tuned bart-large model on the NarrativeQA dataset.
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