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Abstract

A long-term ambition of information seeking001
question answering (QA) systems is to rea-002
son over multi-modal contexts and generate003
natural answers to user queries. Today, mem-004
ory intensive pre-trained language models are005
adapted to downstream tasks such as QA by006
fine-tuning the model on QA data in a spe-007
cific modality like unstructured text or struc-008
tured tables. To avoid training such memory-009
hungry models and utilizing a uniform archi-010
tecture for each modality, parameter-efficient011
transfer learning techniques such as adapters012
add and train small task-specific bottle-neck013
layers between transformer layers. However,014
modality-specific adapter layers infused in a015
pre-trained transformer also require uniformity016
in the input sequence, which contradicts with017
existing work that trains structure-specific lay-018
ers on multi-modal data. In this work, we study019
parameter-efficient abstractive QA in encoder-020
decoder models over structured tabular data021
and unstructured textual data using only 1.5%022
additional parameters for each modality. We023
retain table structure information by a hierar-024
chy preserving transformation of complex hi-025
erarchical tables to 1-dimensional sequences,026
thus maintaining uniformity in the model in-027
put. We also ablate over adapter layers in both028
encoder and decoder modules and study the029
efficiency-performance trade-off and demon-030
strate that reducing additional trainable param-031
eters down to 0.7%–1.0% leads to comparable032
results. Our models outperform current state-033
of-the-art models on tabular QA datasets such034
as Tablesum and FeTaQA and achieve compa-035
rable performance on a text QA dataset such as036
NarrativeQA using significantly less trainable037
parameters.038

1 Introduction039

Information seeking systems over diverse contexts040

necessitates model capabilities to reason over un-041

structured and structured data such as free-form042

text, tables and images (Agrawal et al., 2016; Vaku-043

Figure 1: Parameter-efficient transfer learning using
modality-specific (table/text) adapters for Abstractive
Question Answering

lenko et al., 2019; Hudson and Manning, 2019; 044

Zhang et al., 2020; Zhu et al., 2021; Deldjoo et al., 045

2021). Such systems might have the additional re- 046

quirement of generating natural language responses 047

if deployed as task-oriented conversational agents 048

(Wen et al., 2015; Carnegie and Oh, 2000; Rambow 049

et al., 2001; Ratnaparkhi, 2002). Recent work on 050

open-domain question answering (QA) predomi- 051

nately addresses these challenges with fine-tuning 052

massive pre-trained language models on the differ- 053

ent modalities such as tables and text (Yin et al., 054

2020; Herzig et al., 2020, 2021; Katsis et al., 2021; 055

Nan et al., 2021). However, each model trained 056

on a specific input type is incompatible with other 057

modalities and imposes huge constraints on stor- 058

age efficient systems. For example, in tabular QA 059

(Herzig et al., 2020), the structure of the table is 060

learnt by training additional position (row and col- 061

umn identifiers) embeddings to identify which row 062

and column a table cell belongs to. Multi-modal 063

models (Zhu et al., 2021) can reason over both 064

tables and text by concatenating the textual con- 065

text and the flattened table, leading to longer input 066

sequences and limiting the length of the context 067

paragraph and the size of the table that can be en- 068
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coded. Moreover, they do not explicitly handle069

encoding complex hierarchical tabular structure in070

either the model (row and column embeddings) or071

in the input sequence (ambiguous association of072

table cells with table headers in complex tables).073

To address these challenges, we study parameter-074

efficient transfer learning for abstractive QA over075

tables and text. We are motivated to use adapter-076

layers that inject small bottle-neck layers between077

frozen pre-trained transformer layers as adapters078

achieve comparable performance to fine-tuning on079

a variety of tasks such as multi-lingual translation080

(Pfeiffer et al., 2020b; Philip et al., 2020; Guo081

et al., 2020), classification (Houlsby et al., 2019a),082

language generation (Lin et al., 2020), domain-083

adaptation in dialogue state tracking and response084

generation (Hung et al., 2021).085

Ablation studies on adapter-layers (Rucklé086

et al., 2020) on masked language models such as087

RoBERTa over the GLUE benchmark demonstrate088

that removing beginning adapter layers leads to089

a minimal drop in performance. Our task of ab-090

stractive QA is more challenging as it involves091

language generation in addition to natural language092

understanding (NLU) capability of the model. Fur-093

ther, extending adapter-layer ablation over separate094

encoders and decoders is non-trivial. Lin et al.095

(2020) explore the impact of the bottle-neck em-096

bedding size for various language generation tasks097

over n auto-regressive model such as GPT-2 (Rad-098

ford et al., 2019). Our work deviates from theirs as099

we focus on language generation from multi-modal100

(structured or unstructured) input.101

We propose a system, named parameter-efficient102

abstractive question answering (PeaQA), which103

learns to reason over unstructured and structured104

input using a single, shared pre-trained language105

model and modality-specific adapter layers. We106

also automatically transform hierarchical tables to107

regular tables to have a uniform representation with-108

out breaking association between table cells. In109

addition, we extend the study of ablating adapter-110

layers in a multi-modal setting over both encoder111

and decoder modules.112

Our main contributions can be summarized as113

follows:114

(1) We perform parameter-efficient transfer-115

learning for abstractive question answering116

multi-modal context consisting of semi-117

structured tables and unstructured text using118

only additional 1.5% of trainable parameters119

for each modality. Our model outperforms 120

existing work by a large margin on tabular 121

QA datasets (FeTaQA and Tablesum) and 122

achieves comparable performance on text QA 123

dataset (NarrativeQA) with significantly less 124

parameters. 125

(2) We propose using a single, shared pre-trained 126

language model and modality-specific adapter 127

layers for different types of data. To do so, we 128

introduce a 2-step transformation of hierarchi- 129

cal tables to 1-dimensional sequences which 130

not only preserves table-cell association but 131

also produces a uniform representation for our 132

model. 133

(3) We study the impact of different adapter layers 134

on performance in both encoder and decoder 135

modules and show that beginning adapter lay- 136

ers can be eliminated without significant drop 137

in performance. We also demonstrate that last 138

encoder adapter layers are indispensable and 139

have greater contribution than decoder layers 140

at the same level. 141

2 Background and Related Work 142

Tabular question answering. Tabular QA systems 143

aim to answer questions from tabular data. Such 144

systems are required to reason over the structure of 145

the table to perform numeric computations or ex- 146

tract cellular information. The structure of the table 147

is usually encoded in the embedding layer of large 148

language models by introducing table specific posi- 149

tion information such as row id and column id. The 150

table can then be flattened into a sequence without 151

losing information about the table structure. This 152

method of representing tables is utilized in (Herzig 153

et al., 2020; Zhu et al., 2021; Katsis et al., 2021). 154

Abstractive QA over tables poses additional chal- 155

lenges of generating natural answers by reasoning 156

and aggregating various discontinuous facts from 157

the table. Abstractive QA over tables has been 158

explored in (Nan et al., 2021; Cheng et al., 2021), 159

where the answer is generated with seq2seq models 160

from the structured context. Nan et al. (2021) train 161

a T5 model (Raffel et al., 2020) over a linearized 162

table where each row is separated by a [SEP] token, 163

whereas Cheng et al. (2021) explore generating 164

answers from complex hierarchical tables using 165

hierarchy-aware symbolic logic over a tree-based 166

representation of the table. 167

Our work handles hierarchical tables by lineariz- 168

ing them, after which they can be treated as 1- 169
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dimensional sequences with prompt <context> con-170

catenated as a prefix, imposing uniformity in text171

and tabular QA encoding.172

Textual question answering. Question Answering173

over text measures a system’s ability to compre-174

hend free-form text in the user question and context175

passage(s) and predict an answer. The answer pre-176

dicted can be extractive (Lee et al., 2016; Seo et al.,177

2016; Rajpurkar et al., 2016; Pearce et al., 2021) in178

nature where the system identifies short text spans179

in the context passage to answer the user query or180

it can be abstractive (Yin et al., 2016; Mitra, 2017;181

Bauer et al., 2018; Reddy et al., 2019) in nature182

where the system is required to generate the answer183

in natural free-form text.184

Our work focuses on generative/abstractive185

Question Answering using large pre-trained186

seq2seq models. More specifically, we focus on ma-187

chine reading comprehension aspect of QA where188

the model is provided with the gold context pas-189

sages from where the answer is generated.190

Transfer learning. Transfer learning techniques191

such as fine-tuning large pre-trained models for192

downstream tasks, require a new set of model pa-193

rameters to be learnt for each new task and do-194

main. To avoid such memory intensive transfer195

learning methods, adapters have been proposed as196

a parameter-efficient method of adapting to new do-197

mains (Houlsby et al., 2019b; Pfeiffer et al., 2020b).198

A bottleneck adapter layer is injected after each199

sub-layer of the transformer. The total number of200

parameters added at each layer is limited by the201

size of the bottleneck embedding and reduces the202

total number of trainable parameters in the trans-203

former. Adapters have been extended to language204

generation in a variety of generative tasks such205

as translation, summarization, multi-turn dialogue,206

and task-oriented natural language generation (Lin207

et al., 2020).208

Our work attempts to reduce the additional pa-209

rameters further to 0.7% by removing the begin-210

ning adapter layers from both encoder and decoder211

but still achieving comparable results.212

3 Approach213

Our approach utilizes a shared pre-trained language214

model across modalities and only learns modality-215

specific information in the adapter layers. To en-216

code tables using a language model trained only on217

text imposes a transformation of the 2-dimensional218

tables to a linearized sequence which implicitly re-219

Figure 2: A multi-span table represented as a regular
table.

tains the structure information of the original data. 220

The next sections describe the process of transform- 221

ing hierarchical tables1 into a linear representation, 222

abstractive question answering using BART and 223

details of the ablation study on adapter layers. 224

3.1 Representation of tables 225

QA systems over structured data must parse tables 226

that can be regular or hierarchical. Hierarchical ta- 227

bles can have header cells and body cells spanning 228

across multiple rows and columns. Most existing 229

work on tabular data (Nan et al., 2021; Zhang et al., 230

2020) is over regular tables. Concurrent to our 231

work, recent work on hierarchical tables (Cheng 232

et al., 2021) uses heuristics to extract hierarchies in 233

tables and uses logical forms to perform operations 234

of selected regions in the table. For our work, we 235

choose to represent all tables uniformly in a 2 step 236

process: 237

(1) Transformation of a hierarchical table into a 238

regular table. 239

(2) Linearization of a regular table into a flattened 240

sequence which can be encoded with a lan- 241

guage model. 242

Linearize hierarchical table headers. Hierarchi- 243

cal table headers are linearized into a single row 244

of headers by the following process. A header cell 245

spanning multiple columns is duplicated and split 246

into multiple number of cells. Next, the values of 247

cells in all rows over which this header cell spans 248

are concatenated with the entire split. For example, 249

as shown in Figure 2, table header a spans across 250

2 other header columns d and e of the next header 251

row. We first split header cell a into 2 columns a, 252

a. Next, we concatenate the values of the next row 253

over which the span is present, i.e., values d and 254

e, to a linearized header a(d), b(e). Repeating this 255

process over all the table header rows flattens the 256

hierarchical header into a sequential one. In our 257

running example, this process will yield the linear 258

1The tables in the datasets we studied contains only hierar-
chical column headers.
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header a(d), a(d), b, e(f).259

Linearizing table body. Multi-span cells in the ta-260

ble body are parsed differently than the table header.261

All table body cells are associated with one or mul-262

tiple header cells depending on whether the cell263

spans across one or multiple columns. For exam-264

ple, in Figure 2, cell at position (1, 1) with value 1265

is associated with 2 header columns a(d) and a(e),266

whereas the cell at position (1, 2) is associated with267

1 header column b. Cells which spans across multi-268

ple rows are associated with all the spanned rows269

in that column. For example, the cell with value 4270

spans across 2 rows and can be treated as present271

in both rows in separate cells. This process leads272

to a regular table (Nan et al., 2021) which can then273

be interpreted as a sequence of keys (table head-274

ers) with associated values (table body). We flatten275

the regular table in row-major form, concatenating276

rows sequentially. Each row is a sequence of (key,277

value) pairs where a key is a column header and278

the value is the cell value of that column. The table279

in our running example is flattened to a(d): 1 b(e):280

1 b : 2 c(f): 3 a(d): 1 b(e): 1 b: 4 c(f): 5 a(d): 1281

b(e): 1 b: 4 c(f): 6 a(d): 7 b(e): 8 b: 9 c(f): 10.282

3.2 Uniform representation of text and tables283

for abstractive question answering284

We focus on encoder-decoder models for the task285

of abstractive question answering. We use BART286

(Lewis et al., 2019) encoder-decoder architecture287

which comprises of a bidirectional encoder and an288

auto-regressive decoder. The input sequence con-289

sists of the question, the context title and context290

sequence preceded with prompts indicating the be-291

ginning of the each sub-sequence. Formally, the292

input sequence is represented as <question> q0 q1293

. . . qm <title> t1 t2 . . . tp <context> c0 c1 . . . cn,294

where qi is the i-th question token, tj is the j-th title295

token, and ck is the k-th context token. The context296

can either be a text passage or a flattened table as297

explained in the previous section. The parameters298

of the pre-trained BART model are frozen during299

training. Modality specific adapter layers added to300

the model are trained on either tabular context or301

textual context to generate natural answers.302

3.3 Ablation study: Adapter pruning303

Adapter-layer pruning has been explored on the304

GLUE benchmark in (Rucklé et al., 2020) which305

demonstrates that removing adapter layers from the306

beginning transformer layers leads to minimal per-307

Adapter-tune
#Trainable
parameters

Encoder
adapters
removed

Decoder
adapters
removed

– – 6, 343, 680 (1.56%)
0 12 5, 815, 040 (1.43%)

0− 1 12− 13 5, 286, 400 (1.30%)
0− 2 12− 14 4, 757, 760 (1.17%)
0− 3 12− 15 4, 229, 120 (1.04%)
0− 4 12− 16 3, 700, 480 (0.91%)
0− 5 12− 17 3, 171, 840 (0.78%)
0− 6 12− 18 2, 643, 200 (0.65%)
0− 7 12− 19 2, 114, 560 (0.52%)
0− 8 12− 20 1, 585, 920 (0.39%)
0− 9 12− 21 1, 057, 280 (0.26%)
0− 10 12− 22 528, 640 (0.13%)
0− 11 12− 22 264, 320 (0.07%)

Fine-tune 406, 291, 456 (100%)

Table 1: Trainable parameters in the encoder and de-
coder. Encoder adapter layers are numbered from 0−11
and decoder adapter layers are numbered from 12− 23.
x− y implies all adapter layers from x to y inclusive.

formance drop. For encoder-decoder architectures, 308

we hypothesize that this phenomenon should be 309

observed on both the encoder and decoder modules. 310

However, it is non-trivial how the adapter-layers 311

in the encoder and decoder modules contribute to 312

performance and whether the adapter layers of the 313

encoder and decoder module have equal impact 314

on the performance. To measure the impact of the 315

adapter layers in different modules, we perform 316

adapter ablation in both the encoder and decoder. 317

We progressively remove adapter layers from both 318

the encoder and decoder modules starting from the 319

beginning layers and analyze performance drop 320

caused by each successive elimination. We report 321

our findings in Section 5. We observe minimal 322

performance drop until the last few adapter-layers 323

indicating that these layers contribute the most to 324

task-specific representations. 325

4 Experimental Setup 326

We seek to answer the following research questions 327

with our experiments: (RQ1) How does adapter– 328

tuning affect performance and can we achieve com- 329

parable results to fine-tuning in the context of mul- 330

ti-modal input? (RQ2) Do all adapter layers across 331

the encoder and decoder contribute equally to per- 332

formance across tasks/modalities? 333
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Method Model Training Rouge-1 Rouge-2 Rouge-L BLEU

Tablesum (Lin et al., 2020)
CopyNet

Fine-tune
0.041 0.012 0.030 0.80

GPT2 0.272 0.073 0.200 5.35
T5 0.362 0.143 0.276 10.43

Ours (Pea-QA) bart-large
Fine-tune 0.410 0.188 0.32 6.46
Adapter-tune 0.391 0.183 0.309 6.64

Table 2: Results: Scores calculated on the test split of 20% random split of Tablesum.

Method Model Training Rouge-1 Rouge-2 Rouge-L BLEU

FeTaQA (Nan et al., 2021)
T5-small

Fine-tune
0.55 0.33 0.47 21.60

T5-base 0.61 0.39 0.51 28.14
T5-large 0.63 0.414 0.53 30.54

Ours (Pea-QA) bart-large
Fine-tune 0.632 0.415 0.534 30.81
Adapter-tune 0.651 0.436 0.553 33.45

Table 3: Results: Scores calculated on the test split of FeTaQA.

Method Model Training Rouge-1 Rouge-2 Rouge-L BLEU

Masque (Nishida et al., 2019) – Fine-tune – – 0.547 –

Ours (Pea-QA) bart-large
Fine-tune 0.518 0.268 0.515 21.07
Adapter-tune 0.51 0.27 0.50 20.08

Table 4: Results: Scores calculated on the test split of NarrativeQA. We use sacreBLEU 2 to measure BLEU score

4.1 Datasets334

Tabular datasets. For abstractive QA over tables335

we use the Tablesum (Zhang et al., 2020) and Fe-336

TaQA (Nan et al., 2021) datasets. Tablesum con-337

sists of 200 unique Wikipedia tables over which338

questions and abstractive answers are manually an-339

notated. Tablesum contains natural answers as well340

as summaries to tables as abstractive answers. 35%341

of samples are questions over complex hierarchi-342

cal tables. For our experiments, we randomly split343

the samples into a 80%-20% split as the training344

and validation set.3 FeTaQA is a larger abstrac-345

tive tabular QA dataset consisting of question and346

free-form answers over 10, 330 regular tables. The347

dataset consists of 7, 326 samples in the training348

set, 1, 001 in the validation set, and 2, 003 in the349

test set. FeTaQA consists of human-annotated an-350

swers containing explanations involving entities351

and relations.352

Text dataset. We train adapter layers for textual353

context on the NarrativeQA dataset (Kočiský et al.,354

2018). NarrativeQA is a complex abstractive ques-355

tion answering dataset over stories. The dataset356

3The original Tablesum dataset do not have Dev and Test
splits. We choose to use the random Dev split for evaluaring
our models due to limited number of samples in the dataset

contains 32, 747 samples in the training set, 3, 461 357

samples in the validation set and 10, 557 samples 358

in the test set. For our task, we have selected the 359

input context passage to be the human annotated 360

summary of each sample which is the Wikipedia 361

page summary of the story and represented as a 362

paragraph. The input to the seq2seq model is the 363

question, title and summary of each passage and 364

the target is the abstractive answer associated with 365

each sample. For samples with multiple answers, 366

we treat each answer and the associated question 367

and context as an independent sample. 368

Tablesum dataset’s target answers are of 369

summary-type where many questions require sum- 370

marizaing the sections of the table. This leads to 371

longer target sequences as observed in the maxi- 372

mum target length of 1579 compared to 338 for 373

FeTaQA and 224 for NarrativeQA. Tablesum also 374

contains larger tables of maximum 155 rows com- 375

pared to 34 rows of FeTaQA. A summary of all 376

datasets is presented in Appendix C. 377

4.2 Experiments 378

We perform all our experiments on a BART-Large 379

variant of the BART model.4 We add bottle-neck 380

4The results can be reproduced using code at
https://anonymous.4open.science/r/
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adapter layers from the Houlsby adapter configu-381

ration (Houlsby et al., 2019a). Each adapter layer382

has a bottle-neck embedding size of 64. We also383

fine-tune the model on each dataset for comparison.384

We sweep learning rates from {8e−4, 6e−4, 3e−4,385

1e−4, 5e−5, 4−5, 3e−5, 2e−5, 1e−5} and select a386

learning rate of 6e−4 to train the adapter layers387

for the tabular QA datasets Tablesum and FeTaQA388

and use 1e−1 to train text QA dataset NarrativeQA.389

We select 4e−5 for fine-tuning on Tablesum, 8e−4390

on FeTaQA datasets and 2e−5 to fine-tune Nar-391

rativeQA. We use a batch size of 4 and gradient392

accumulation of 8 to emulate an effective batch size393

of 32. The maximum prediction sequence length394

is set to 200 for the tabular QA datasets and to 100395

for the text QA dataset. We train the model on396

each dataset for 15 epochs and evaluate on Rouge-397

2, Rouge-L and sacreBLEU metrics.5 A summary398

of hyper-parameters are mentioned in Appendix B.399

5 Results400

We conduct experiments to answer the research401

questions as described in Section 4. The experi-402

mental results to answer our question are explained403

in the following sections.404

5.1 Parameter efficient adapter-tuning405

We address (RQ1) by comparing the performance406

of adapter-tuning to fine-tuning across the three407

datasets described in Section 4.1. The results of the408

experiments are shown in Table 2 for the Tablesum409

dataset, Table 3 for the FeTaQA dataset, and Table410

4 for the NarrativeQA dataset.411

We observe that for tabular QA, we outperform412

the state-of-art models. On the Tablesum dataset,413

we evaluate the model performance on 20% ran-414

dom split which we keep aside during training. We415

observe that the model outperforms the existing416

work by a large margin on both adapter-tuning and417

fine-tuning. Fine-tuning on Tablesum achieves 2%418

higher performance compared to adapter-tuning419

on Rouge-L,6 1% on Rouge-1 and is marginally420

higher on Rouge-2 scores. For the FeTaQA dataset,421

our model achieves higher gains in performance422

on adapter-tuning compared to fine-tuning. This423

can be attributed to catastrophic forgetting (French,424

1999; Kirkpatrick et al., 2017; Chen et al., 2020)425

Pea-QA-0717/README.md
5We use Adapter-hub library to conduct all our experi-

ments (Pfeiffer et al., 2020a)
6Rouge scores are calculated using https://pypi.

org/project/rouge-score/

induced by differences in the distribution of down- 426

stream task data. Fine-tuning on FeTaQA achieves 427

comparable performance with slight performance 428

gain compared to the state-of-the-art model. For 429

text QA, on the NarrativeQA dataset, adapter-tune 430

performs comparable to fine-tune as shown in the 431

F-scores of Table 4. Our fine-tuning results on 432

NarrativeQA are lower than state-of-the-art mod- 433

els trained with sophisticated reasoning architec- 434

tures, as our focus was primarily on comparing 435

fine-tuning and adapter-tuning. We conclude that 436

adapter-tuning achieves comparable performance 437

to fine-tuning when using a standard pre-trained 438

language model. 439

Figure 3: Adapter layer ablation Rouge-2 scores. X-axis
represents encoder-adapter layers (0− 11) and decoder
adapter layers (12 − 23) deleted progressively. x − y
implies all adapter layers from x to y inclusive. Each
point represents the Rouge-2 F-score for the model con-
figuration that has encoder layers p to q deleted and
decoder layers r to s deleted for x-tick (x−y)

(r−s)
.

5.2 Ablation of adapter layers 440

We study (RQ2) by ablating adapter layers in both 441

the encoder and decoder modules. We do so to 442

study the impact of each adapter layer in the per- 443

formance across different modality inputs. We 444

progressively eliminate adapter layers from both 445

the encoder and decoder starting from the first 446

adapter layer from both the modules and finally 447

deleting all layers from both the encoder and de- 448

coder. This leads to 12 experiments corresponding 449

to 12 encoder adapter layer and 12 decoder adapter 450

layer. We number the encoder adapter layers from 451

0−11 and the decoder adapter layers from 12−23. 452

We measure the performance of the models using 453

Rouge-2, Rouge-L and sacreBLEU scores. The 454
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Figure 4: Adapter layer ablation Rouge-L scores. X-axis
represents encoder-adapter layers (0− 11) and decoder
adapter layers (12-23) deleted progressively. x − y
implies all adapter layers from x to y inclusive. Each
point represents the Rouge-L F-score for the model
configuration that has encoder layers p to q deleted and
decoder layers r to s deleted for x-tick (x−y)

(r−s)
.

Figure 5: Adapter layer ablation sacreBLEU F-scores.
X-axis represents encoder-adapter layers (0− 11) and
decoder adapter layers (12− 23) deleted progressively.
x − y implies all adapter layers from xtoy inclusive.
Each point in the plot represents the F-score for a model
configuration that has encoder layers p to q deleted and
decoder layers r to s deleted for x-tick (x−y)

(r−s)
.

F-scores for each dataset (NarrativeQA, Tablesum,455

FeTaQA) are shown in Figure 3, 4, and 5, respec-456

tively. We observe that as more adapter layers457

are eliminated, the performance drops across all458

datasets. However, the performance drop is mini-459

mal until the last adapter layers are also deleted. A460

steep drop is observed when the last few adapter461

layers from the encoder and decoder are deleted.462

This inflection point varies across dataset but is lim-463

ited to the last 2 layers of the encoder and decoder.464

For the NarrativeQA dataset, this point is when465

all layers till the second last adapter layer from 466

both the encoder and decoder are deleted. For the 467

FeTaQA and Tablesum dataset, the performance 468

drops sharply only when the last encoder and de- 469

coder layers are removed. 470

To analyze contribution of the i-th adapter layer 471

of the encoder and the i-th layer of the decoder to 472

the performance, we ablate over different combi- 473

nations of eliminating adapter layers from the later 474

half of both encoder and decoder, i.e., successively 475

removing adapter layers 0− 6, 0− 7, 0− 8, 0− 9, 476

0 − 10, 0 − 11 from the encoder and adapter lay- 477

ers 12 − 18, 12 − 19, 12 − 20, 12 − 21, 12 − 22, 478

12− 23 from the decoder (decoder layers are num- 479

bered from 12 − 23). This leads to 36 different 480

configurations of ablation study where a configura- 481

tion (p− q, r − s) represents all adapters from the 482

p-th to the q-th layer in the encoder and from the 483

r-th to the s-th in the decoder has been removed. 484

The results are shown in Figure 6. 485

We observe that performance remains compa- 486

rable as we progressively eliminate adapter lay- 487

ers from the encoder and decoder until layers at 488

the end are removed. The drop in performance is 489

steeper when we remove the last encoder and de- 490

coder adapter layers depicted towards the top-right 491

corner of Figures 6a, 6b, and 6c. This reinforces the 492

assumption that the last adapter layers learns most 493

of the domain/task specific information. We also 494

observe that the last adapter layers of the encoder 495

and decoder contribute differently to performance. 496

Removing the last encoder adapter layer (depicted 497

in the last column 0 − 11 across all rows) leads 498

to a massive drop in all scores in-spite of decoder 499

adapter layers. This pattern is observed across all 500

datasets. This indicates that the last encoder adapter 501

layer is indispensable for learning domain-specific 502

knowledge. Dropping all decoder adapter layers 503

till the last (represented by top row 12−23) is com- 504

parable to dropping all adapter-layers till the 2-nd 505

last encoder adapter layer (represented by column 506

0 − 10). This pattern is observed for all ablation 507

configurations till last 4 layers in the decoder (top 4 508

rows 12−20, 12−21, 12−22, 12−23 in Figure 6). 509

The drop in performance stabilizes as we retain 510

more end adapter layers and remove only beginning 511

adapter layers. We observe that retaining just 50% 512

of adapter layers by removing the beginning half 513

of the adapters from both the encoder and decoder 514

further increases parameter efficiency by introduc- 515

ing only 0.7% parameters as summarized in Table 1 516
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(a) FeTaQA Rouge-L scores (b) Tablesum Rouge-L scores (c) NarrativeQA Rouge-L scores
Figure 6: Adapter layer ablation Rouge scores. X-axis represents range of encoder adapter layers deleted, Y-Axis
represents range of decoder adapter layers deleted. x− y implies all adapter layers from x to y inclusive. There are
36 model ablation configurations displayed. The ablation starts from 0 to 6 encoder adapter layers removal and
12 to 18 decoder adapter layer removal represented by the bottom left cell ((0− 6), (12− 18)) and progressively
increases deletion of encoder adapter layers along the X-axis and decoder adapter layers along the Y-axis.

but without significant compromise to performance.517

Further parameters can be removed to only 0.52%518

(removing (0− 7, 12− 19)) trainable parameters519

with only minor drop in performance. As an ex-520

treme case of performance-parameter trade-off, all521

but the last adapter layer of the decoder (2-nd last522

row in Figure 6) can be removed with any of the523

encoder configurations of 0− 7, 0− 8 and 0− 9.524

5.3 Case studies525

In Appendix F we detail a number of case studies.526

The main insights gained from these case studies527

are: (1) The mean length of predicted sequences528

is 193.27 for Tablesum dataset while that of target529

sequences is 259.76. The adapter-tuned model pre-530

dicts shorter sequences than the target as observed531

in the case-study and in lower BLEU scores (pre-532

cision) compared to the Rouge-L (recall) scores533

listed in Table 2 and ablation results in Figure 3,534

4, and 5. This may be due to brevity penalty of535

BLEU. (2) The adapter-tuned model performs best536

on FeTaQA with gradual decrease in Rouge and537

BLEU across more ablations; the dataset has simi-538

lar length targets in both training and test sets and539

scores are more stable across different configura-540

tions. (3) NarrativeQA samples contains diverse541

targets from very short phrases to longer sequences542

with a maximum target length of 224 characters.543

Many fact-based correct predictions have words544

reordered but reproduced correctly.545

6 Conclusion546

We study parameter-efficient transfer learning over547

tables and text in the context of abstractive question548

answering using small bottle-neck adapter layers.549

We achieve comparable performance to fine-tuning550

with only 1.5% training parameters across each 551

modality. We propose a transformation from hier- 552

archical tables to regular ones which can then be 553

flattened to a 1-dimensional sequence for use in the 554

shared pre-trained language model. This leads to 555

a uniform pre-trained model with frozen weights 556

across all modalities. We outperform results of 557

state-of-the-art models on tabular QA datasets such 558

as Tablesum and FeTaQA, and achieve compara- 559

ble performance on the text QA dataset Narra- 560

tiveQA. We extend an ablation study on adapter 561

layers to encoder-decoder setting to study the im- 562

pact of adapter layers from the respective modules. 563

Encoder and decoder adapter layers at the same 564

level contribute deferentially to performance. More 565

specifically, we demonstrate that the adapter lay- 566

ers from the end of the encoder is indispensable 567

to performance and contributes significantly more 568

to encoding modality specific information than de- 569

coder adapter layers of the same level. Our results 570

are useful for exploring scalability of QA models in 571

memory constrained situations where comparable 572

performance can be achieved with storing only one 573

copy of a uniform language model while scaling 574

across modalities using light-weight adapters. 575

One of the limitations of our work is that we 576

only consider one way of representing the struc- 577

ture of the table by a hierarchical transformation 578

process that linearizes the 2-dimensional table to 579

a 1-dimensional sequence. Alternatively, one can 580

encode the table structure in model embeddings 581

using structure specific row and column ids. This 582

is left as future work. We also do not perform ex- 583

plicit logical reasoning and cell aggregation over 584

the tables. This might lead to better explainability 585

of the model and is to be explored as future work. 586
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APPENDICES808

We provide further details on training hyper-809

parameters for adapter-tuning (Appendix A), train-810

ing hyper-parameters for fine-tuning (Appendix B),811

statistics of the datasets used (Appendix C), Rouge-812

2 scores for an encoder-decoder adapter layer abla-813

tion study (Appendix D), Bleu scores for an encode-814

decoder adapter layer ablation study (Appendix E),815

example outputs of adapter-tuned bart-large model816

on Tablesum dataset, FeTaQA dataset and Narra-817

tiveQA dataset. Appendix F includes examples of818

predictions on the 3 datasets.819

A Training Hyper-Parameters for820

Adapter-Tuning821

The hyper-parameters for adapter-tuning for Ta-822

blesum dataset, FeTaQA dataset and NarrativeQA823

dataset are listed as in Table 5.

Dataset Hyper-parameters Value

Tablesum

learning rate 6e-4
scheduler linear
batch size 32
sequence length 200
seed 6
training epochs 15

FeTaQA

learning rate 6e-4
scheduler linear
batch size 32
sequence length 100
seed 6
training epochs 15

NarrativeQA

learning rate 1e-4
scheduler linear
batch size 32
sequence length 50
seed 6
training epochs 15

Table 5: Hyper-parameters for adapter-tuning.
824

B Training Hyper-Parameter for825

Fine-Tuning826

The hyper-parameters for fine-tuning on Tablesum827

dataset, FeTaQA dataset and NarrativeQA dataset828

are listed in Table 6.829

Dataset Hyper-parameters Value

Tablesum

learning rate 4e-5
scheduler linear
batch size 32
sequence length 200
seed 6
training epochs 15

FeTaQA

learning rate 8e-4
scheduler linear
batch size 32
sequence length 100
seed 6
training epochs 15

NarrativeQA

learning rate 2e-5
scheduler linear
batch size 32
sequence length 50
seed 6
training epochs 15

Table 6: Hyper-parameters for fine-tuning.

C Dataset Statistics 830

Statistics of the 3 datasets, i.e., Tablesum, FeTaQA 831

and NarrativeQA are listed in Table 7. Tablesum 832

has the longest answer length. The answers are 833

summary-like, often, describing aspects of the ta- 834

ble contents. FeTaQA dataset contains answers 835

of mostly single sentences and targeted towards 836

specific facts asked in the question. NarrativeQA 837

datasets focuses on questions from stories. The 838

answer lengths vary from single words to long 839

sentences. For the tabularQA dataset, Tablesum 840

contains larger tables than FeTaQA dataset even 841

though it is limited to 200 unique tables over which 842

questions are asked. FeTaQA dataset’s tables con- 843

tain more columns on an average compared to Ta- 844

blesum. Examples of samples can be found in 845

Appendix F in Table 8 for Tablesum dataset, in 846

Table 9 for FeTaQA dataset, and in Table 10 for 847

NarrativeQA dataset. 848
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Tablesum

Domain Open
Modality Table
Table-type Regular
Training samples 798
Validation samples 200
Test samples –
Max question length 114
Max target length 1, 579
Max table row 155
Max table column 8

FeTaQA

Domain Open
Modality Table
Table-type Hybrid
Training samples 7, 326
Validation samples 1, 001
Test samples 2, 003
Train max question length 165
Train max target length 338
Train max table rows 34
Train max table columns 30
Val max question length 182
Val target length 325
Val max table rows 34
Val max table columns 22
Test max question length 193
Test max target length 295
Test max table lows 34
Test max table columns 22

NarrativeQA

Domain Stories
Modality Text
Training samples 65, 494
Validation samples 6, 922
Test samples 21, 114
Train max question length 175
Train max target length 171
Train max context length 6, 045
Val max question length 158
Val target length 187
Val max context length 6, 033
Test max question length 1, 220
Test target length 224
Test max context length 6, 090

Table 7: Dataset statistics.
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D Encoder-Decoder Adapter layer849

Ablation Rouge-2 Scores850

Ablation results (Rouge-2 F-scores) of 36 config-851

urations of adapter layers deleted from the later852

half of the encoder and decoder. Deleting the last853

encoder adapter layers leads to massive drop in854

performance as observed in last 3 columns of Fig-855

ures 7, 8 and 9. However, deleting the last decoder856

adapter layers results in better performance in com-857

parison to the encoder layers at the same level as858

observed from the top 3 rows of Figures 7, 8 and 9.859

Figure 7: FeTaQA Rouge-2 scores. X-axis represents
encoder adapter layers (0 − 11) deleted, Y-axis repre-
sents decoder adapter layers (12− 23) deleted.

860

Figure 8: Tablesum Rouge-2 scores. X-axis represents
encoder adapter layers (0 − 11) deleted, Y-axis repre-
sents decoder adapter layers (12− 23) deleted.

E Encode-Decoder Adapter layer861

Ablation sacreBLEU Scores862

Ablation results (sacreBLEU F-scores) of 36 con-863

figurations of adapter layers deleted from the later864

Figure 9: NarrativeQA Rouge-2 scores. X-axis repre-
sents encoder adapter layers(0-11) deleted, Y-axis rep-
resents decoder adapter layers(12-23) deleted.

half of the encoder and decoder. Deleting the last 865

encoder adapter layers leads to massive drop in per- 866

formance as observed in last 3 columns of Figures 867

10, 11 and 12. However, deleting the last decoder 868

adapter layers results in less performance drop in 869

comparison to the encoder layers at the same level 870

as observed from the top 3 rows of Figures 7, 8 and 871

9.

Figure 10: FeTaQA sacreBLEU-F scores. X-axis rep-
resents encoder adapter layers (0− 11) deleted, Y-axis
represents decoder adapter layers (12− 23) deleted.

872

F Examples 873

We present a few examples of predictions from tab- 874

ular QA datasets (FeTaQA and Tablesum) and text 875

QA (NarrativeQA). Each row of Tables 8, 9 and 10 876

depicts the input sub-sequences to the system such 877

as Question, title, context in the form of Flattened 878

table for tabular QA or Text summary for text QA, 879

the ground-truth Target abstractive answer and the 880

Prediction by the adapter-tuned model. 881
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Figure 11: Tablesum sacreBLEU scores. X-axis repre-
sents encoder adapter layers (0 − 11) deleted, Y-axis
represents decoder adapter layers (12− 23) deleted.

Figure 12: NarrativeQA sacreBLEU-F scores. X-axis
represents encoder adapter layers (0− 11) deleted, Y-
axis represents decoder adapter layers (12−23) deleted.

For Tablesum samples, the abstractive answer is882

long summary type. The questions can vary from883

fact-based queries as depicted in the 1-st sample to884

summarization of table cells as depicted in the 2-nd885

and 3-rd samples of Table 8. The predictions of the886

adapter-tuned model are usually shorter than the887

target as observed by the lower BLEU scores due888

to brevity penalty for Tablesum dataset as listed889

in Table 2. The Rouge scores are also lower in890

comparison to the other 2 datasets. This indicates891

that the target contains n-grams not present in the892

predicted answer. This pattern also persists across893

the ablation studies as observed from similar trend894

in the Rouge scores in Figure 3, 4, 8, and 6b, and895

BLEU scores are in Figure 11.896

The FeTaQA dataset mostly contains single sen-897

tence abstractive answers as ground-truth as ob-898

served from the Target of Table 9. Our model per-899

forms best over FeTaQA dataset generating similar900

length answers as the ground-truth. This is indi- 901

cated in more stable Rouge and BLEU scores as 902

depicted in Table 3. The Rouge scores can be ob- 903

served in Figure 3, 4, 7, and 6a, and BLEU scores 904

are in Figure 10. 905

NarrativeQA dataset also contains shortest ab- 906

stractive answers compared to the other 2 datasets 907

as observed in Table 7. The maximum answer 908

length for the test set is 224 compared to 295 909

for test split of FeTaQA and 1, 579 for Table- 910

sum. Many target answers of NarrativeQA are 911

short phrases as depicted in the last row of Table 912

10. Many predictions of the adapter-tuned model 913

change the order of words even though the facts 914

are reproduced correctly as shown in the 1-st and 915

2-nd rows of Table 9. 916
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Tablesum Examples

Question: What are the songs included in 21 & Over?
Title: Track listing
Flattened table: No.: 1. <,> Title: "Likwit" (featuring King Tee) <,> Writer(s): SmithBrooksRobin-
sonRoger McBride <,> Producer(s): E-SwiftTha Alkaholiks[a] <,> Length: 3:27 <,> No.: 2. <,> Title:
"Only When I’m Drunk" <,> Writer(s): ...
Target: The table is about listing of tracks related to group “21 & Over” In this track listing one can
find the title of the track, Producer name, Performer name and Length of the performance.
Prediction: I found a table of the track listing of 21 & Over. It is a compilation of songs by E-
Swift and King Tee. The songs include "Likwit", "Only When I’m Drunk", "Last Call", "Soda Pop",
"Make Room", "Bullshit", "Can’t Tell Me Shit" and "Last Night". The songs are all written by
SmithBrooksRobinsonRoger McBride.

Question: Tell me about the games that the Badgers lost in 1981
Title: 1981 Wisconsin Badgers football team schedule
Flattened table: Date: September 12 <,> Opponent: No. 1 Michigan <,> Rank: <,> Site: Camp
Randall StadiumMadison, WI <,> Result: W 21–14 <,> Attendance: 68,733 <,> Date: September 19
<,> Opponent: No. 9 UCLA* <,> Rank: No. 20 <,> Site: Camp Randall StadiumMadison, WI <,>
Result: L 13–31 ...
Target: In 1981 the Wisconsin Badgers lost to UCLA 13-31 on September 19th for the first loss of the
season. October showed two losses, both away games, at Michigan State and again at Illinois with just
a 2 point deficit. In November Iowa stomped them on the field winning with a ten point lead, and their
final loss in December was to Tennessee.
Prediction: I found a table of the 1981 wisconsin badgers football team schedule. it shows the games
that the badgers lost in 1981.

Question: Can you introduce to me Richard Strauss’s operas?
Title: List of operas by Richard Strauss
Flattened table: Period[a]: 1876 <,> Title: Der Kampf mit dem Drachen <,> Genre: ? <,> Act(s):
1 act <,> Librettist: Körner <,> Premiere (Date): Unperformed <,> Premiere (Venue): Unperformed
<,> Op.[1]: – <,> TrV[1]: 44 <,> Av: 206 <,> Period[a]: 1892–93 <,> Title: Guntram(revised
1940) <,> Genre: Opera[3] <,> Act(s): 3 acts <,> Librettist: Strauss <,> Premiere (Date): 10 May
1894;revised version: 29 October 1940 <,> Premiere (Venue): Weimar, Grossherzogliches Hoftheater
(both versions)...
Target: I found a table called List of operas by Richard Strauss. 18 operas have been made by the
composer Richard Strauss. Strauss has operas from 1876 all they way through 1964.
Prediction: I found a table of Richard Strauss’s operas. It is a list of operas by Richard Strauss from
1876 to 1940. There are 12 operas in the list. The first one is Der Kampf mit dem Drachen (1876) and
the last one is Elektra (1908).

Question: Tell me about the teams and their performance in the 2007 San Jose Grand Prix Race
Title: 2007 San Jose Grand Prix at Redback Raceway
Flattened table: 1: 2 <,> [United_Kingdom|]: [France|] <,> [Justin_Wilson_(racing_driver)|Justin
Wilson]: [S%C3%A9bastien_Bourdais|Sébastien Bourdais] <,> [RSPORTS|RSPORTS]:
[N/H/L_Racing|N/H/L Racing] <,> 49.747:...
Target: I see the top 17 results. Within the 17, the best and worst times ranged between 40.039 and
50.083. The top person was Justin Wilson from Great Brittain. The table shows the rank, name and
country of person as well as their times.
Prediction: i found a table of 2007 san jose grand prix at redback raceway. there were 5 teams and
their performance in the race. the first team was minardi team usa with sébastien bourdais. the second
team was forsythe racing with neel jani.

Table 8: Predictions by adapter-tuned bart-large model on the Tablesum dataset.
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FeTaQA Examples

Question: What roles did Christian Cooke play in 2009?
Title: Christian Cooke Television
Flattened table: Title: Wilmot Year: 1999 Role: Wilmot Tanner Notes: Main role Title: Where the
Heart Is Year: 2000–06 Role: Luke Kirkwall Notes: 68 episodes...
Target: During 2009, Christian Cooke played the lead role of Luke Rutherford in Demons & Lord
Dorian Gaudain in Trinity.
Prediction: In 2009, Christian Cooke played Lord Dorian Gaudain in Dark Relic and Luke Rutherford-
Van Helsing in Trinity.

Question: Who did Grace Dove Play in The Revenant and How It Ends?
Title: Grace DoveFilm
Flattened table: Year: 2012 Title: These Walls Role: Mary Notes: - Year: 2014 Title: The Cut Role:
Emma Notes: - Year: 2015 Title: The Revenant Role: Hugh Glass’s wife Notes: - Year: 2017 Title: O
for a Thousand Tongues Role: Yaahl-Ts’uu-Kuuyas Notes: - Year: 2017 Title: Mino Bimaadiziwin
Role: Bangishimogikwe Notes: - Year: 2018 Title: How It Ends Role: Ricki Notes: - Year: 2019 Title:
Monkey Beach Role: Lisa Notes: Filming ...
Target: Grace Dove played as Hugh Glass’s wife in the 2015 film The Revenant and Ricki in the 2018
film How It Ends.
Prediction: Grace Dove starred as Hugh Glass’s wife in The Revenant (2015) and as Ricki in How It
Ends (2018).

Question: What was Yevgeniy Ektov’s personal record in the 2007 Asian Indoor Games, and how did
he place?
Title: Yevgeniy Ektov Competition record
Flattened table: Year: Representing Kazakhstan Competition: Representing Kazakhstan Venue:
Representing Kazakhstan Position: Representing Kazakhstan Event: Representing Kazakhstan Notes:
Representing Kazakhstan Year: 2005 Competition: Asian Championships Venue: Incheon, ...
Target: At the 2007 Asian Indoor Games, Yevgeniy Ektov jumped 16.34 m, which brought him the
bronze.
Prediction: Yevgeniy Ektov won the bronze medal at the 2007 Asian Indoor Games with a personal
record of 16.34 m.

Question: In the 86th United States Congress, What date was the end of Richard M. Simpson’s service,
and who was his successor?
Title: 86th United States CongressHouse of Representatives
Flattened table: District: Missouri 4th Vacator: George H. Christopher (D) Reason for change: Died
January 23, 1959 Successor: William J. Randall (D) Date of successor’s formal installation: March
3, 1959 District: New York 43rd Vacator: Daniel A. Reed (R) Reason for change: Died February 19,
1959 Successor: Charles Goodell (R) Date of successor’s formal installation: ...
Target: In the 86th United States Congress, Richard M. Simpson (R) served until January 7, 1960 and
was succeeded by Douglas H. Elliott (R) on April 26, 1960, who served until June 19, 1960.
Prediction: In the 86th United States Congress, Richard M. Simpson (R) served from January 7, 1960
to January 7th, 1960, when he was succeeded by Douglas H. Elliott (R).

Table 9: Predictions by adapter-tuned bart-large model on the FeTaQA dataset.
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NarrativeQA Examples

Question: What are the four objects the three-headed giant gives Jack as a show of gratitude?
Title: Jack the Giant Killer
Text summary: This plot summary is based on a text published ca. 1760 by John Cotton and Joshua
Eddowes, which in its turn was based on a chapbook ca. 1711, and reprinted in ’The Classic Fairy
Tales’ by Iona and Peter Opie in 1974. The tale is set during the reign of King Arthur and tells of a
young Cornish farmer’s son named Jack who is not only strong but so clever he easily confounds the
learned with his penetrating...
Target: cap of knowledge, shoes of swiftness, magic sword, and invisibility cloak.
Prediction: a magic sword, a cap of knowledge, a cloak of invisibility, and shoes

Question: Why did Vivie’s mother change her name to Mrs. Warren?
Title: Mrs. Warren’s Profession
Text summary: This plot summary is based on a text published ca. 1760 by John Cotton and Joshua
Eddowes, which in its turn was based on a chapbook ca. 1711, and reprinted in ’The Classic Fairy
Tales’ by Iona and Peter Opie in 1974. The tale is set during the reign of King Arthur and tells of
a young Cornish farmer’s son named Jack who is not only strong but so clever he easily confounds
the learned with his penetrating wit. Jack encounters a cattle-eating giant called Cormoran (Cornish:
’The Giant of the Sea’ SWF:Kowr-Mor-An) and lures him to his death in a pit trap. Jack is dubbed
’Jack the Giant-Killer’ for this feat and receives not only the giant’s wealth, but a sword and belt to
commemorate the event. ....
Target: To give the impression of being married and to hide her true identity.
Prediction: to hide her identity and give the impression that she is married.

Question: What battle is Jim and Jack preparing for?
Title: The Great Shadow
Text Summary: Instead of Sherlock Holmes being the main character, the story follows Jack Colder,
who claims his only notable childhood experience was when he accidentally prevented a burglary
during an attempt to escape a boarding school. This event caught Jim Horscroft and the two become
friends. Once Jim goes off to medical school, Jack reunites with his cousin Edie, who found herself in
a lot of money due to her father’s death. ...
Target: The Battle of Waterloo
Prediction: The Battle of Waterloo

Table 10: Predictions by adapter-tuned bart-large model on the NarrativeQA dataset.
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